601
|
Abstract
In a recent issue of Nature Communications Ukleja and co‐workers reported a cryo‐EM 3D reconstruction of the Ccr4‐Not complex from Schizosaccharomyces pombe with an immunolocalization of the different subunits. The newly gained architectural knowledge provides cues to apprehend the functional diversity of this major eukaryotic regulator. Indeed, in the cytoplasm alone, Ccr4‐Not regulates translational repression, decapping and deadenylation, and the Not module additionally plays a positive role in translation. The spatial distribution of the subunits within the structure is compatible with a model proposing that the Ccr4‐Not complex interacts with the 5′ and 3′ ends of target mRNAs, allowing different functional modules of the complex to act at different stages of the translation process, possibly within a circular constellation of the mRNA. This work opens new avenues, and reveals important gaps in our understanding regarding structure and mode of function of the Ccr4‐Not complex that need to be addressed in the future.
Collapse
Affiliation(s)
- Zoltan Villanyi
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland.,Institute of Genetics and Genomics Geneva, Geneva, Switzerland
| | - Martine A Collart
- Faculty of Medicine, Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland. .,Institute of Genetics and Genomics Geneva, Geneva, Switzerland.
| |
Collapse
|
602
|
Mishima Y, Tomari Y. Codon Usage and 3' UTR Length Determine Maternal mRNA Stability in Zebrafish. Mol Cell 2016; 61:874-85. [PMID: 26990990 DOI: 10.1016/j.molcel.2016.02.027] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 01/25/2016] [Accepted: 02/19/2016] [Indexed: 11/17/2022]
Abstract
The control of mRNA stability plays a central role in regulating gene expression. In metazoans, the earliest stages of development are driven by maternally supplied mRNAs. The degradation of these maternal mRNAs is critical for promoting the maternal-to-zygotic transition of developmental programs, although the underlying mechanisms are poorly understood in vertebrates. Here, we characterized maternal mRNA degradation pathways in zebrafish using a transcriptome analysis and systematic reporter assays. Our data demonstrate that ORFs enriched with uncommon codons promote deadenylation by the CCR4-NOT complex in a translation-dependent manner. This codon-mediated mRNA decay is conditional on the context of the 3' UTR, with long 3' UTRs conferring resistance to deadenylation. These results indicate that the combined effect of codon usage and 3' UTR length determines the stability of maternal mRNAs in zebrafish embryos. Our study thus highlights the codon-mediated mRNA decay as a conserved regulatory mechanism in eukaryotes.
Collapse
Affiliation(s)
- Yuichiro Mishima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Yukihide Tomari
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
603
|
Bazzini AA, Del Viso F, Moreno-Mateos MA, Johnstone TG, Vejnar CE, Qin Y, Yao J, Khokha MK, Giraldez AJ. Codon identity regulates mRNA stability and translation efficiency during the maternal-to-zygotic transition. EMBO J 2016; 35:2087-2103. [PMID: 27436874 DOI: 10.15252/embj.201694699] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/16/2016] [Indexed: 12/26/2022] Open
Abstract
Cellular transitions require dramatic changes in gene expression that are supported by regulated mRNA decay and new transcription. The maternal-to-zygotic transition is a conserved developmental progression during which thousands of maternal mRNAs are cleared by post-transcriptional mechanisms. Although some maternal mRNAs are targeted for degradation by microRNAs, this pathway does not fully explain mRNA clearance. We investigated how codon identity and translation affect mRNA stability during development and homeostasis. We show that the codon triplet contains translation-dependent regulatory information that influences transcript decay. Codon composition shapes maternal mRNA clearance during the maternal-to-zygotic transition in zebrafish, Xenopus, mouse, and Drosophila, and gene expression during homeostasis across human tissues. Some synonymous codons show consistent stabilizing or destabilizing effects, suggesting that amino acid composition influences mRNA stability. Codon composition affects both polyadenylation status and translation efficiency. Thus, the ribosome interprets two codes within the mRNA: the genetic code which specifies the amino acid sequence and a conserved "codon optimality code" that shapes mRNA stability and translation efficiency across vertebrates.
Collapse
Affiliation(s)
- Ariel A Bazzini
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Florencia Del Viso
- Departments of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Timothy G Johnstone
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Charles E Vejnar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Yidan Qin
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Jun Yao
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Mustafa K Khokha
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA Departments of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
604
|
Satapathy SS, Powdel BR, Buragohain AK, Ray SK. Discrepancy among the synonymous codons with respect to their selection as optimal codon in bacteria. DNA Res 2016; 23:441-449. [PMID: 27426467 PMCID: PMC5066170 DOI: 10.1093/dnares/dsw027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/19/2016] [Indexed: 01/05/2023] Open
Abstract
The different triplets encoding the same amino acid, termed as synonymous codons, are not equally abundant in a genome. Factors such as G + C% and tRNA are known to influence their abundance in a genome. However, the order of the nucleotide in each codon per se might also be another factor impacting on its abundance values. Of the synonymous codons for specific amino acids, some are preferentially used in the high expression genes that are referred to as the 'optimal codons' (OCs). In this study, we compared OCs of the 18 amino acids in 221 species of bacteria. It is observed that there is amino acid specific influence for the selection of OCs. There is also influence of phylogeny in the choice of OCs for some amino acids such as Glu, Gln, Lys and Leu. The phenomenon of codon bias is also supported by the comparative studies of the abundance values of the synonymous codons with same G + C. It is likely that the order of the nucleotides in the triplet codon is also perhaps involved in the phenomenon of codon usage bias in organisms.
Collapse
Affiliation(s)
| | - Bhesh Raj Powdel
- Department of Statistics, Darrang College, Tezpur 784001, Assam, India
| | - Alak Kumar Buragohain
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India.,Office of the Vice-Chancellor, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Suvendra Kumar Ray
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| |
Collapse
|
605
|
Gamble CE, Brule CE, Dean KM, Fields S, Grayhack EJ. Adjacent Codons Act in Concert to Modulate Translation Efficiency in Yeast. Cell 2016; 166:679-690. [PMID: 27374328 PMCID: PMC4967012 DOI: 10.1016/j.cell.2016.05.070] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/14/2016] [Accepted: 05/19/2016] [Indexed: 12/18/2022]
Abstract
Translation elongation efficiency is largely thought of as the sum of decoding efficiencies for individual codons. Here, we find that adjacent codon pairs modulate translation efficiency. Deploying an approach in Saccharomyces cerevisiae that scored the expression of over 35,000 GFP variants in which three adjacent codons were randomized, we have identified 17 pairs of adjacent codons associated with reduced expression. For many pairs, codon order is obligatory for inhibition, implying a more complex interaction than a simple additive effect. Inhibition mediated by adjacent codons occurs during translation itself as GFP expression is restored by increased tRNA levels or by non-native tRNAs with exact-matching anticodons. Inhibition operates in endogenous genes, based on analysis of ribosome profiling data. Our findings suggest translation efficiency is modulated by an interplay between tRNAs at adjacent sites in the ribosome and that this concerted effect needs to be considered in predicting the functional consequences of codon choice.
Collapse
Affiliation(s)
- Caitlin E Gamble
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA 98195, USA; Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Christina E Brule
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Kimberly M Dean
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Stanley Fields
- Departments of Genome Sciences and Medicine, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | - Elizabeth J Grayhack
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
606
|
Redefining the Translational Status of 80S Monosomes. Cell 2016; 164:757-69. [PMID: 26871635 DOI: 10.1016/j.cell.2016.01.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/20/2015] [Accepted: 12/23/2015] [Indexed: 11/20/2022]
Abstract
Fully assembled ribosomes exist in two populations: polysomes and monosomes. While the former has been studied extensively, to what extent translation occurs on monosomes and its importance for overall translational output remain controversial. Here, we used ribosome profiling to examine the translational status of 80S monosomes in Saccharomyces cerevisiae. We found that the vast majority of 80S monosomes are elongating, not initiating. Further, most mRNAs exhibit some degree of monosome occupancy, with monosomes predominating on nonsense-mediated decay (NMD) targets, upstream open reading frames (uORFs), canonical ORFs shorter than ∼ 590 nt, and ORFs for which the total time required to complete elongation is substantially shorter than that required for initiation. Importantly, mRNAs encoding low-abundance regulatory proteins tend to be enriched in the monosome fraction. Our data highlight the importance of monosomes for the translation of highly regulated mRNAs.
Collapse
|
607
|
Buhr F, Jha S, Thommen M, Mittelstaet J, Kutz F, Schwalbe H, Rodnina MV, Komar AA. Synonymous Codons Direct Cotranslational Folding toward Different Protein Conformations. Mol Cell 2016; 61:341-351. [PMID: 26849192 DOI: 10.1016/j.molcel.2016.01.008] [Citation(s) in RCA: 246] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 11/12/2015] [Accepted: 12/24/2015] [Indexed: 11/26/2022]
Abstract
In all genomes, most amino acids are encoded by more than one codon. Synonymous codons can modulate protein production and folding, but the mechanism connecting codon usage to protein homeostasis is not known. Here we show that synonymous codon variants in the gene encoding gamma-B crystallin, a mammalian eye-lens protein, modulate the rates of translation and cotranslational folding of protein domains monitored in real time by Förster resonance energy transfer and fluorescence-intensity changes. Gamma-B crystallins produced from mRNAs with changed codon bias have the same amino acid sequence but attain different conformations, as indicated by altered in vivo stability and in vitro protease resistance. 2D NMR spectroscopic data suggest that structural differences are associated with different cysteine oxidation states of the purified proteins, providing a link between translation, folding, and the structures of isolated proteins. Thus, synonymous codons provide a secondary code for protein folding in the cell.
Collapse
Affiliation(s)
- Florian Buhr
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Sujata Jha
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Michael Thommen
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Joerg Mittelstaet
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Felicitas Kutz
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance, Institute of Organic Chemistry and Chemical Biology, Johann Wolfgang Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Anton A Komar
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio 44115, USA.,Department of Biochemistry and Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, Ohio 44106, USA.,Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| |
Collapse
|
608
|
Komar AA. The Yin and Yang of codon usage. Hum Mol Genet 2016; 25:R77-R85. [PMID: 27354349 DOI: 10.1093/hmg/ddw207] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/24/2016] [Indexed: 01/07/2023] Open
Abstract
The genetic code is degenerate. With the exception of two amino acids (Met and Trp), all other amino acid residues are each encoded by multiple, so-called synonymous codons. Synonymous codons were initially presumed to have entirely equivalent functions, however, the finding that synonymous codons are not present at equal frequencies in genes/genomes suggested that codon choice might have functional implications beyond amino acid coding. The pattern of non-uniform codon use (known as codon usage bias) varies between organisms and represents a unique feature of an organism. Organism-specific codon choice is related to organism-specific differences in populations of cognate tRNAs. This implies that, in a given organism, frequently used codons will be translated more rapidly than infrequently used ones and vice versa A theory of codon-tRNA co-evolution (necessary to balance accurate and efficient protein production) was put forward to explain the existence of codon usage bias. This model suggests that selection favours preferred (frequent) over un-preferred (rare) codons in order to sustain efficient protein production in cells and that a given un-preferred codon will have the same effect on an organism's fitness regardless of its position within an mRNA's open reading frame. However, many recent studies refute this prediction. Un-preferred codons have been found to have important functional roles and their effects appeared to be position-dependent. Synonymous codon usage affects the efficiency/stringency of mRNA decoding, mRNA biogenesis/stability, and protein secretion and folding. This review summarizes recent developments in the field that have identified novel functions of synonymous codons and their usage.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, Ohio, OH, USA Department of Biochemistry and Center for RNA Molecular Biology, Case Western Reserve University, Cleveland, Ohio, USA Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, OH, USA
| |
Collapse
|
609
|
Rissland OS. The organization and regulation of mRNA-protein complexes. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27324829 PMCID: PMC5213448 DOI: 10.1002/wrna.1369] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/21/2022]
Abstract
In a eukaryotic cell, each messenger RNA (mRNA) is bound to a variety of proteins to form an mRNA-protein complex (mRNP). Together, these proteins impact nearly every step in the life cycle of an mRNA and are critical for the proper control of gene expression. In the cytoplasm, for instance, mRNPs affect mRNA translatability and stability and provide regulation of specific transcripts as well as global, transcriptome-wide control. mRNPs are complex, diverse, and dynamic, and so they have been a challenge to understand. But the advent of high-throughput sequencing technology has heralded a new era in the study of mRNPs. Here, I will discuss general principles of cytoplasmic mRNP organization and regulation. Using microRNA-mediated repression as a case study, I will focus on common themes in mRNPs and highlight the interplay between mRNP composition and posttranscriptional regulation. mRNPs are an important control point in regulating gene expression, and while the study of these fascinating complexes presents remaining challenges, recent advances provide a critical lens for deciphering gene regulation. WIREs RNA 2017, 8:e1369. doi: 10.1002/wrna.1369 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Olivia S Rissland
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
610
|
Villanueva E, Martí-Solano M, Fillat C. Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness. Sci Rep 2016; 6:27546. [PMID: 27278133 PMCID: PMC4899721 DOI: 10.1038/srep27546] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/20/2016] [Indexed: 11/09/2022] Open
Abstract
Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development.
Collapse
Affiliation(s)
- Eneko Villanueva
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Maria Martí-Solano
- Research Programme on Biomedical Informatics, Department of Experimental and Health Sciences, Pompeu Fabra University, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Cristina Fillat
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Barcelona, Spain
| |
Collapse
|
611
|
Rodnina MV. The ribosome in action: Tuning of translational efficiency and protein folding. Protein Sci 2016; 25:1390-406. [PMID: 27198711 DOI: 10.1002/pro.2950] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/28/2022]
Abstract
The cellular proteome is shaped by the combined activities of the gene expression and quality control machineries. While transcription plays an undoubtedly important role, in recent years also translation emerged as a key step that defines the composition and quality of the proteome and the functional activity of proteins in the cell. Among the different post-transcriptional control mechanisms, translation initiation and elongation provide multiple checkpoints that can affect translational efficiency. A multitude of specific signals in mRNAs can determine the frequency of translation initiation, choice of the open reading frame, global and local elongation velocities, and the folding of the emerging protein. In addition to specific signatures in the mRNAs, also variations in the global pools of translation components, including ribosomes, tRNAs, mRNAs, and translation factors can alter translational efficiencies. The cellular outcomes of phenomena such as mRNA codon bias are sometimes difficult to understand due to the staggering complexity of covariates that affect codon usage, translation, and protein folding. Here we summarize the experimental evidence on how the ribosome-together with the other components of the translational machinery-can alter translational efficiencies of mRNA at the initiation and elongation stages and how translation velocity affects protein folding. We seek to explain these findings in the context of mechanistic work on the ribosome. The results argue in favour of a new understanding of translation control as a hub that links mRNA homeostasis to production and quality control of proteins in the cell.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077, Germany
| |
Collapse
|
612
|
Critical reflections on synthetic gene design for recombinant protein expression. Curr Opin Struct Biol 2016; 38:155-62. [DOI: 10.1016/j.sbi.2016.07.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 06/29/2016] [Accepted: 07/06/2016] [Indexed: 11/17/2022]
|
613
|
Radhakrishnan A, Green R. Connections Underlying Translation and mRNA Stability. J Mol Biol 2016; 428:3558-64. [PMID: 27261255 DOI: 10.1016/j.jmb.2016.05.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/03/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
Gene expression and regulation in organisms minimally depends on transcription by RNA polymerase and on the stability of the RNA product (for both coding and non-coding RNAs). For coding RNAs, gene expression is further influenced by the amount of translation by the ribosome and by the stability of the protein product. The stabilities of these two classes of RNA, non-coding and coding, vary considerably: tRNAs and rRNAs tend to be long lived while mRNAs tend to be more short lived. Even among mRNAs, however, there is a considerable range in stability (ranging from seconds to hours in bacteria and up to days in metazoans), suggesting a significant role for stability in the regulation of gene expression. Here, we review recent experiments from bacteria, yeast and metazoans indicating that the stability of most mRNAs is broadly impacted by the actions of ribosomes that translate them. Ribosomal recognition of defective mRNAs triggers "mRNA surveillance" pathways that target the mRNA for degradation [Shoemaker and Green (2012) ]. More generally, even the stability of perfectly functional mRNAs appears to be dictated by overall rates of translation by the ribosome [Herrick et al. (1990), Presnyak et al. (2015) ]. Given that mRNAs are synthesized for the purpose of being translated into proteins, it is reassuring that such intimate connections between mRNA and the ribosome can drive biological regulation. In closing, we consider the likelihood that these connections between protein synthesis and mRNA stability are widespread or whether other modes of regulation dominate the mRNA stability landscape in higher organisms.
Collapse
Affiliation(s)
- Aditya Radhakrishnan
- Program in Molecular Biophysics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Department of Molecular Biology and Genetics, Baltimore, MD 21205, USA
| | - Rachel Green
- Howard Hughes Medical Institute, Johns Hopkins School of Medicine, Department of Molecular Biology and Genetics, Baltimore, MD 21205, USA.
| |
Collapse
|
614
|
Averesch NJH, Winter G, Krömer JO. Production of para-aminobenzoic acid from different carbon-sources in engineered Saccharomyces cerevisiae. Microb Cell Fact 2016; 15:89. [PMID: 27230236 PMCID: PMC4882779 DOI: 10.1186/s12934-016-0485-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/11/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Biological production of the aromatic compound para-aminobenzoic acid (pABA) is of great interest to the chemical industry. Besides its application in pharmacy and as crosslinking agent for resins and dyes pABA is a potential precursor for the high-volume aromatic feedstocks terephthalic acid and para-phenylenediamine. The yeast Saccharomyces cerevisiae synthesises pABA in the shikimate pathway: Outgoing from the central shikimate pathway intermediate chorismate, pABA is formed in two enzyme-catalysed steps, encoded by the genes ABZ1 and ABZ2. In this study S. cerevisiae metabolism was genetically engineered for the overproduction of pABA. Using in silico metabolic modelling an observed impact of carbon-source on product yield was investigated and exploited to optimize production. RESULTS A strain that incorporated the feedback resistant ARO4 (K229L) and deletions in the ARO7 and TRP3 genes, in order to channel flux to chorismate, was used to screen different ABZ1 and ABZ2 genes for pABA production. In glucose based shake-flaks fermentations the highest titer (600 µM) was reached when over-expressing the ABZ1 and ABZ2 genes from the wine yeast strains AWRI1631 and QA23, respectively. In silico metabolic modelling indicated a metabolic advantage for pABA production on glycerol and combined glycerol-ethanol carbon-sources. This was confirmed experimentally, the empirical ideal glycerol to ethanol uptake ratios of 1:2-2:1 correlated with the model. A (13)C tracer experiment determined that up to 32% of the produced pABA originated from glycerol. Finally, in fed-batch bioreactor experiments pABA titers of 1.57 mM (215 mg/L) and carbon yields of 2.64% could be achieved. CONCLUSION In this study a combination of genetic engineering and in silico modelling has proven to be a complete and advantageous approach to increase pABA production. Especially the enzymes that catalyse the last two steps towards product formation appeared to be crucial to direct flux to pABA. A stoichiometric model for carbon-utilization proved useful to design carbon-source composition, leading to increased pABA production. The reported pABA concentrations and yields are, to date, the highest in S. cerevisiae and the second highest in a microbial production system, underlining the great potential of yeast as a cell factory for renewable aromatic feedstocks.
Collapse
Affiliation(s)
- Nils J. H. Averesch
- />Centre for Microbial Electrochemical Systems (CEMES), The University of Queensland, Office 618, Level 6 Gehrmann Building (60), St. Lucia, Brisbane, QLD 4072 Australia
- />Advanced Water Management Centre (AWMC), The University of Queensland, Brisbane, Australia
| | - Gal Winter
- />Centre for Microbial Electrochemical Systems (CEMES), The University of Queensland, Office 618, Level 6 Gehrmann Building (60), St. Lucia, Brisbane, QLD 4072 Australia
- />Advanced Water Management Centre (AWMC), The University of Queensland, Brisbane, Australia
- />School of Science and Technology, University of New England, Armidale, Australia
| | - Jens O. Krömer
- />Centre for Microbial Electrochemical Systems (CEMES), The University of Queensland, Office 618, Level 6 Gehrmann Building (60), St. Lucia, Brisbane, QLD 4072 Australia
- />Advanced Water Management Centre (AWMC), The University of Queensland, Brisbane, Australia
| |
Collapse
|
615
|
Brogna S, McLeod T, Petric M. The Meaning of NMD: Translate or Perish. Trends Genet 2016; 32:395-407. [PMID: 27185236 DOI: 10.1016/j.tig.2016.04.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 04/02/2016] [Accepted: 04/25/2016] [Indexed: 02/08/2023]
Abstract
Premature translation termination leads to a reduced mRNA level in all types of organisms. In eukaryotes, the phenomenon is known as nonsense-mediated mRNA decay (NMD). This is commonly regarded as the output of a specific surveillance and destruction mechanism that is activated by the presence of a premature translation termination codon (PTC) in an atypical sequence context. Despite two decades of research, it is still unclear how NMD discriminates between PTCs and normal stop codons. We suggest that cells do not possess any such mechanism and instead propose a new model in which this mRNA depletion is a consequence of the appearance of long tracts of mRNA that are unprotected by scanning ribosomes.
Collapse
Affiliation(s)
- Saverio Brogna
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT, UK.
| | - Tina McLeod
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT, UK
| | - Marija Petric
- University of Birmingham, School of Biosciences, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
616
|
Ishimura R, Nagy G, Dotu I, Chuang JH, Ackerman SL. Activation of GCN2 kinase by ribosome stalling links translation elongation with translation initiation. eLife 2016; 5. [PMID: 27085088 PMCID: PMC4917338 DOI: 10.7554/elife.14295] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 04/14/2016] [Indexed: 12/17/2022] Open
Abstract
Ribosome stalling during translation has recently been shown to cause neurodegeneration, yet the signaling pathways triggered by stalled elongation complexes are unknown. To investigate these pathways we analyzed the brain of C57BL/6J-Gtpbp2nmf205-/- mice in which neuronal elongation complexes are stalled at AGA codons due to deficiencies in a tRNAArgUCU tRNA and GTPBP2, a mammalian ribosome rescue factor. Increased levels of phosphorylation of eIF2α (Ser51) were detected prior to neurodegeneration in these mice and transcriptome analysis demonstrated activation of ATF4, a key transcription factor in the integrated stress response (ISR) pathway. Genetic experiments showed that this pathway was activated by the eIF2α kinase, GCN2, in an apparent deacylated tRNA-independent fashion. Further we found that the ISR attenuates neurodegeneration in C57BL/6J-Gtpbp2nmf205-/- mice, underscoring the importance of cellular and stress context on the outcome of activation of this pathway. These results demonstrate the critical interplay between translation elongation and initiation in regulating neuron survival during cellular stress. DOI:http://dx.doi.org/10.7554/eLife.14295.001 Information stored in DNA is used to make proteins in a two-step process. First, the DNA is copied to make molecules of messenger ribonucleic acid (or messenger RNA for short). Next, machines called ribosomes use the messenger RNAs as templates to assemble chains of amino acids – the building blocks of proteins – in a process called translation. Another type of RNA molecule called transfer RNA carries each amino acid to the ribosomes. If a specific transfer RNA is not available for translation at the right time, the ribosome might stall as it moves along the messenger RNA. At this point, the ribosome needs to be restarted or it will fall off the mRNA without finishing the protein. In 2014, a group of researchers reported that certain types of brain cells are very sensitive to ribosome stalling, and tend to die if translation does not continue. A protein called GTPBP2 was shown to play an important role in restarting stalled ribosomes in these cells. Here, Ishimura, Nagy et al. – including some of the researchers from the earlier work – investigated the molecular pathways that ribosome stalling triggers in brain cells using mutant mice that lacked the GTPBP2 protein. The experiments show that ribosome stalling activates an enzyme known as GCN2, which was already known to sense other types of malfunctions in cellular processes. Ishimura, Nagy et al. also show that GCN2 triggers stress responses in the cells by activating a communication system called the ATF4 pathway. This pathway protects the cells from damage, and its absence results in more rapid cell deterioration and death. The next challenges are to understand the exact mechanism by which GCN2 senses stalled ribosomes, and to find out how ribosome stalling causes the death of brain cells. DOI:http://dx.doi.org/10.7554/eLife.14295.002
Collapse
Affiliation(s)
- Ryuta Ishimura
- Howard Hughes Medical Institute, The Jackson Laboratory for Mammalian Genetics, Bar Harbor, United States
| | - Gabor Nagy
- Howard Hughes Medical Institute, The Jackson Laboratory for Mammalian Genetics, Bar Harbor, United States
| | - Ivan Dotu
- Research Programme on Biomedical Informatics, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, United States.,Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, United States
| | - Susan L Ackerman
- Howard Hughes Medical Institute, The Jackson Laboratory for Mammalian Genetics, Bar Harbor, United States.,Department of Cell and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, United States.,Section of Neurobiology, University of California, La Jolla, United States
| |
Collapse
|
617
|
Horizontally acquired genes in early-diverging pathogenic fungi enable the use of host nucleosides and nucleotides. Proc Natl Acad Sci U S A 2016; 113:4116-21. [PMID: 27035945 DOI: 10.1073/pnas.1517242113] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Horizontal gene transfer (HGT) among bacteria, archaea, and viruses is widespread, but the extent of transfers from these lineages into eukaryotic organisms is contentious. Here we systematically identify hundreds of genes that were likely acquired horizontally from a variety of sources by the early-diverging fungal phyla Microsporidia and Cryptomycota. Interestingly, the Microsporidia have acquired via HGT several genes involved in nucleic acid synthesis and salvage, such as those encoding thymidine kinase (TK), cytidylate kinase, and purine nucleotide phosphorylase. We show that these HGT-derived nucleic acid synthesis genes tend to function at the interface between the metabolic networks of the host and pathogen. Thus, these genes likely play vital roles in diversifying the useable nucleic acid components available to the intracellular parasite, often through the direct capture of resources from the host. Using an in vivo viability assay, we also demonstrate that one of these genes, TK, encodes an enzyme that is capable of activating known prodrugs to their active form, which suggests a possible treatment route for microsporidiosis. We further argue that interfacial genes with well-understood activities, especially those horizontally transferred from bacteria or viruses, could provide medical treatments for microsporidian infections.
Collapse
|
618
|
Barahimipour R, Neupert J, Bock R. Efficient expression of nuclear transgenes in the green alga Chlamydomonas: synthesis of an HIV antigen and development of a new selectable marker. PLANT MOLECULAR BIOLOGY 2016; 90:403-18. [PMID: 26747175 PMCID: PMC4766212 DOI: 10.1007/s11103-015-0425-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 12/23/2015] [Indexed: 05/18/2023]
Abstract
The unicellular green alga Chlamydomonas reinhardtii has become an invaluable model system in plant biology. There is also considerable interest in developing this microalga into an efficient production platform for biofuels, pharmaceuticals, green chemicals and industrial enzymes. However, the production of foreign proteins in the nucleocytosolic compartment of Chlamydomonas is greatly hampered by the inefficiency of transgene expression from the nuclear genome. We have recently addressed this limitation by isolating mutant algal strains that permit high-level transgene expression and by determining the contributions of GC content and codon usage to gene expression efficiency. Here we have applied these new tools and explored the potential of Chlamydomonas to produce a recombinant biopharmaceutical, the HIV antigen P24. We show that a codon-optimized P24 gene variant introduced into our algal expression strains give rise to recombinant protein accumulation levels of up to 0.25% of the total cellular protein. Moreover, in combination with an expression strain, a resynthesized nptII gene becomes a highly efficient selectable marker gene that facilitates the selection of transgenic algal clones at high frequency. By establishing simple principles of successful transgene expression, our data open up new possibilities for biotechnological research in Chlamydomonas.
Collapse
Affiliation(s)
- Rouhollah Barahimipour
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Juliane Neupert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|
619
|
Differences in codon bias and GC content contribute to the balanced expression of TLR7 and TLR9. Proc Natl Acad Sci U S A 2016; 113:E1362-71. [PMID: 26903634 DOI: 10.1073/pnas.1518976113] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The innate immune system detects diverse microbial species with a limited repertoire of immune receptors that recognize nucleic acids. The cost of this immune surveillance strategy is the potential for inappropriate recognition of self-derived nucleic acids and subsequent autoimmune disease. The relative expression of two closely related receptors, Toll-like receptor (TLR) 7 and TLR9, is balanced to allow recognition of microbial nucleic acids while limiting recognition of self-derived nucleic acids. Situations that tilt this balance toward TLR7 promote inappropriate responses, including autoimmunity; therefore, tight control of expression is critical for proper homeostasis. Here we report that differences in codon bias limit TLR7 expression relative to TLR9. Codon optimization of Tlr7 increases protein levels as well as responses to ligands, but, unexpectedly, these changes only modestly affect translation. Instead, we find that much of the benefit attributed to codon optimization is actually the result of enhanced transcription. Our findings, together with other recent examples, challenge the dogma that codon optimization primarily increases translation. We propose that suboptimal codon bias, which correlates with low guanine-cytosine (GC) content, limits transcription of certain genes. This mechanism may establish low levels of proteins whose overexpression leads to particularly deleterious effects, such as TLR7.
Collapse
|
620
|
Johnstone TG, Bazzini AA, Giraldez AJ. Upstream ORFs are prevalent translational repressors in vertebrates. EMBO J 2016; 35:706-23. [PMID: 26896445 DOI: 10.15252/embj.201592759] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/08/2016] [Indexed: 12/20/2022] Open
Abstract
Regulation of gene expression is fundamental in establishing cellular diversity and a target of natural selection. Untranslated mRNA regions (UTRs) are key mediators of post-transcriptional regulation. Previous studies have predicted thousands of ORFs in 5'UTRs, the vast majority of which have unknown function. Here, we present a systematic analysis of the translation and function of upstream open reading frames (uORFs) across vertebrates. Using high-resolution ribosome footprinting, we find that (i)uORFs are prevalent within vertebrate transcriptomes, (ii) the majority show signatures of active translation, and (iii)uORFs act as potent regulators of translation and RNA levels, with a similar magnitude to miRNAs. Reporter experiments reveal clear repression of downstream translation by uORFs/oORFs. uORF number, intercistronic distance, overlap with the CDS, and initiation context most strongly influence translation. Evolution has targeted these features to favor uORFs amenable to regulation over constitutively repressive uORFs/oORFs. Finally, we observe that the regulatory potential of uORFs on individual genes is conserved across species. These results provide insight into the regulatory code within mRNA leader sequences and their capacity to modulate translation across vertebrates.
Collapse
Affiliation(s)
- Timothy G Johnstone
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Ariel A Bazzini
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
621
|
Kanduc D. Role of codon usage and tRNA changes in rat cytomegalovirus latency and (re)activation. J Basic Microbiol 2016; 56:617-26. [DOI: 10.1002/jobm.201500621] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/27/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies, and Biopharmaceutics; University of Bari; Bari 70126 Italy
| |
Collapse
|
622
|
Martínez MA, Jordan-Paiz A, Franco S, Nevot M. Synonymous Virus Genome Recoding as a Tool to Impact Viral Fitness. Trends Microbiol 2016; 24:134-147. [DOI: 10.1016/j.tim.2015.11.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 10/28/2015] [Accepted: 11/04/2015] [Indexed: 01/28/2023]
|
623
|
Pausing on Polyribosomes: Make Way for Elongation in Translational Control. Cell 2016; 163:292-300. [PMID: 26451481 DOI: 10.1016/j.cell.2015.09.041] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 11/21/2022]
Abstract
Among the three phases of mRNA translation-initiation, elongation, and termination-initiation has traditionally been considered to be rate limiting and thus the focus of regulation. Emerging evidence, however, demonstrates that control of ribosome translocation (polypeptide elongation) can also be regulatory and indeed exerts a profound influence on development, neurologic disease, and cell stress. The correspondence of mRNA codon usage and the relative abundance of their cognate tRNAs is equally important for mediating the rate of polypeptide elongation. Here, we discuss recent results showing that ribosome pausing is a widely used mechanism for controlling translation and, as a result, biological transitions in health and disease.
Collapse
|
624
|
Codon influence on protein expression in E. coli correlates with mRNA levels. Nature 2016; 529:358-363. [PMID: 26760206 DOI: 10.1038/nature16509] [Citation(s) in RCA: 267] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/01/2015] [Indexed: 02/06/2023]
Abstract
Degeneracy in the genetic code, which enables a single protein to be encoded by a multitude of synonymous gene sequences, has an important role in regulating protein expression, but substantial uncertainty exists concerning the details of this phenomenon. Here we analyse the sequence features influencing protein expression levels in 6,348 experiments using bacteriophage T7 polymerase to synthesize messenger RNA in Escherichia coli. Logistic regression yields a new codon-influence metric that correlates only weakly with genomic codon-usage frequency, but strongly with global physiological protein concentrations and also mRNA concentrations and lifetimes in vivo. Overall, the codon content influences protein expression more strongly than mRNA-folding parameters, although the latter dominate in the initial ~16 codons. Genes redesigned based on our analyses are transcribed with unaltered efficiency but translated with higher efficiency in vitro. The less efficiently translated native sequences show greatly reduced mRNA levels in vivo. Our results suggest that codon content modulates a kinetic competition between protein elongation and mRNA degradation that is a central feature of the physiology and also possibly the regulation of translation in E. coli.
Collapse
|
625
|
The Art of Gene Redesign and Recombinant Protein Production: Approaches and Perspectives. TOPICS IN MEDICINAL CHEMISTRY 2016. [DOI: 10.1007/7355_2016_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
626
|
Whisper mutations: cryptic messages within the genetic code. Oncogene 2015; 35:3753-9. [PMID: 26657150 DOI: 10.1038/onc.2015.454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/28/2015] [Accepted: 10/28/2015] [Indexed: 01/17/2023]
Abstract
Recent years have seen a great expansion in our understandings of how silent mutations can drive a disease and that mRNAs are not only mere messengers between the genome and the encoded proteins but also encompass regulatory activities. This review focuses on how silent mutations within open reading frames can affect the functional properties of the encoded protein. We describe how mRNAs exert control of cell biological processes governed by the encoded proteins via translation kinetics, protein folding, mRNA stability, spatio-temporal protein expression and by direct interactions with cellular factors. These examples illustrate how additional levels of information lie within the coding sequences and that the degenerative genetic code is not redundant and have co-evolved with the encoded proteins. Hence, so called synonymous mutations are not always silent but 'whisper'.
Collapse
|
627
|
Hussmann JA, Patchett S, Johnson A, Sawyer S, Press WH. Understanding Biases in Ribosome Profiling Experiments Reveals Signatures of Translation Dynamics in Yeast. PLoS Genet 2015; 11:e1005732. [PMID: 26656907 PMCID: PMC4684354 DOI: 10.1371/journal.pgen.1005732] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/18/2015] [Indexed: 11/18/2022] Open
Abstract
Ribosome profiling produces snapshots of the locations of actively translating ribosomes on messenger RNAs. These snapshots can be used to make inferences about translation dynamics. Recent ribosome profiling studies in yeast, however, have reached contradictory conclusions regarding the average translation rate of each codon. Some experiments have used cycloheximide (CHX) to stabilize ribosomes before measuring their positions, and these studies all counterintuitively report a weak negative correlation between the translation rate of a codon and the abundance of its cognate tRNA. In contrast, some experiments performed without CHX report strong positive correlations. To explain this contradiction, we identify unexpected patterns in ribosome density downstream of each type of codon in experiments that use CHX. These patterns are evidence that elongation continues to occur in the presence of CHX but with dramatically altered codon-specific elongation rates. The measured positions of ribosomes in these experiments therefore do not reflect the amounts of time ribosomes spend at each position in vivo. These results suggest that conclusions from experiments in yeast using CHX may need reexamination. In particular, we show that in all such experiments, codons decoded by less abundant tRNAs were in fact being translated more slowly before the addition of CHX disrupted these dynamics. Ribosome profiling measures the precise locations of millions of actively translating ribosomes on mRNAs. In theory, the frequency with which ribosomes are observed positioned over each type of codon can be used to quantify the speed with which each codon is translated. In practice, ribosome profiling experiments in yeast that use translation inhibitors to arrest translation before measuring the positions of ribosomes report very different apparent translation speeds for each codon than experiments that do not use inhibitors. To explain this inconsistency, we show that a previously unappreciated mechanism causes experiments using translation inhibitors to not measure ribosomes at each position on mRNAs in proportion to the actual amount of time spent there in vivo. Understanding this mechanism reveals that experiments without inhibitors more accurately measure translation dynamics and provides guidance for the design and interpretation of future ribosome profiling experiments.
Collapse
Affiliation(s)
- Jeffrey A. Hussmann
- Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| | - Stephanie Patchett
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Arlen Johnson
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Sara Sawyer
- BioFrontiers Institute, University of Colorado, Boulder, Colorado, United States of America
| | - William H. Press
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
628
|
Wang Y, Zhao L, Xiao Q, Jiang L, He M, Bai X, Ma M, Jiao X, Wei M. miR-302a/b/c/d cooperatively inhibit BCRP expression to increase drug sensitivity in breast cancer cells. Gynecol Oncol 2015; 141:592-601. [PMID: 26644266 DOI: 10.1016/j.ygyno.2015.11.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE BCRP is overexpressed in many tumors and mediates multidrug resistance in breast cancer. In this study, we determined the involvement of miR-302S in the development of drug resistance in breast cancer. METHODS The differential miRNA expression profiling in parental MCF-7 cells and its derivative mitoxantrone (MX)-resistant MCF-7 (MCF-7/MX) cells was determined by the microarray analysis. The levels of miR-302S family and BCRP mRNA expression were determined by using Quantitative Real-Time PCR. The targeting effect between the individuals of miR-302S and BCRP mRNA-3'UTR were detected by dual-luciferase reporter assay. Proteins of BCRP are represented by Western blot assay. Cell viability was assessed by MTS assay. Efflux capacity was evaluated using flow cytometry. RESULTS The miR-302S family including miR-302a, miR-302b, miR-302c, and miR-302d was significantly down-regulated in BCRP-overexpressing MCF-7/MX cells. Luciferase activity assay showed that miR-302 inhibited BCRP expression by targeting the 3'-untranslated region (UTR) of the BCRP mRNA. Overexpression of miR-302 increased intracellular accumulation of MX and sensitized breast cancer cells to MX. Furthermore, intratumoral injection of miR-302 potentiated the inhibitory effect of MX on tumor growth in mice transplanted with MCF-7/MX cells. Most importantly, miR-302S produced stronger effects than each individual member alone. CONCLUSIONS These findings suggest that miR-302 inhibits BCRP expression via targeting the 3'-UTR of BCRP mRNA. miR-302 members may cooperatively downregulate BCRP expression to increase chemosensitivity of breast cancer cells. miR-302 gene cluster may be a potential target for reversing BCRP-mediated chemoresistance in breast cancer.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacology, School of Pharmacy, China Medical University, Puhe Road 77, Shenyang North New Area, Shenyang, 110122, Liaoning Providence, PR China.
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Puhe Road 77, Shenyang North New Area, Shenyang, 110122, Liaoning Providence, PR China.
| | - Qinghuan Xiao
- Department of Ion Channel Pharmacology, School of Pharmacy, China Medical University, Puhe Road 77, Shenyang North New Area, Shenyang, 110122, Liaoning Providence, PR China.
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, Puhe Road 77, Shenyang North New Area, Shenyang, 110122, Liaoning Providence, PR China.
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, Puhe Road 77, Shenyang North New Area, Shenyang, 110122, Liaoning Providence, PR China.
| | - Xuefeng Bai
- Department of Pharmacology, School of Pharmacy, China Medical University, Puhe Road 77, Shenyang North New Area, Shenyang, 110122, Liaoning Providence, PR China.
| | - Mengtao Ma
- Department of Pharmacology, School of Pharmacy, China Medical University, Puhe Road 77, Shenyang North New Area, Shenyang, 110122, Liaoning Providence, PR China.
| | - Xuyang Jiao
- Department of Pharmacology, School of Pharmacy, China Medical University, Puhe Road 77, Shenyang North New Area, Shenyang, 110122, Liaoning Providence, PR China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Puhe Road 77, Shenyang North New Area, Shenyang, 110122, Liaoning Providence, PR China.
| |
Collapse
|
629
|
Supek F. The Code of Silence: Widespread Associations Between Synonymous Codon Biases and Gene Function. J Mol Evol 2015; 82:65-73. [PMID: 26538122 DOI: 10.1007/s00239-015-9714-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/30/2015] [Indexed: 02/07/2023]
Abstract
Some mutations in gene coding regions exchange one synonymous codon for another, and thus do not alter the amino acid sequence of the encoded protein. Even though they are often called 'silent,' these mutations may exhibit a plethora of effects on the living cell. Therefore, they are often selected during evolution, causing synonymous codon usage biases in genomes. Comparative analyses of bacterial, archaeal, fungal, and human cancer genomes have found many links between a gene's biological role and the accrual of synonymous mutations during evolution. In particular, highly expressed genes in certain functional categories are enriched with optimal codons, which are decoded by the abundant tRNAs, thus enhancing the speed and accuracy of the translating ribosome. The set of genes exhibiting codon adaptation differs between genomes, and these differences show robust associations to organismal phenotypes. In addition to selection for translation efficiency, other distinct codon bias patterns have been found in: amino acid starvation genes, cyclically expressed genes, tissue-specific genes in animals and plants, oxidative stress response genes, cellular differentiation genes, and oncogenes. In addition, genomes of organisms harboring tRNA modifications exhibit particular codon preferences. The evolutionary trace of codon bias patterns across orthologous genes may be examined to learn about a gene's relevance to various phenotypes, or, more generally, its function in the cell.
Collapse
Affiliation(s)
- Fran Supek
- Division of electronics, Rudjer Boskovic Institute, 10000, Zagreb, Croatia.
- EMBL-CRG Systems Biology Unit, Centre for Genomic Regulation (CRG), 08003, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
| |
Collapse
|
630
|
Barahimipour R, Strenkert D, Neupert J, Schroda M, Merchant SS, Bock R. Dissecting the contributions of GC content and codon usage to gene expression in the model alga Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:704-17. [PMID: 26402748 PMCID: PMC4715772 DOI: 10.1111/tpj.13033] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/24/2015] [Accepted: 09/14/2015] [Indexed: 05/17/2023]
Abstract
The efficiency of gene expression in all organisms depends on the nucleotide composition of the coding region. GC content and codon usage are the two key sequence features known to influence gene expression, but the underlying molecular mechanisms are not entirely clear. Here we have determined the relative contributions of GC content and codon usage to the efficiency of nuclear gene expression in the unicellular green alga Chlamydomonas reinhardtii. By comparing gene variants that encode an identical amino acid sequence but differ in their GC content and/or codon usage, we show that codon usage is the key factor determining translational efficiency and, surprisingly, also mRNA stability. By contrast, unfavorable GC content affects gene expression at the level of the chromatin structure by triggering heterochromatinization. We further show that mutant algal strains that permit high-level transgene expression are less susceptible to epigenetic transgene suppression and do not establish a repressive chromatin structure at the transgenic locus. Our data disentangle the relationship between GC content and codon usage, and suggest simple strategies to overcome the transgene expression problem in Chlamydomonas.
Collapse
Affiliation(s)
- Rouhollah Barahimipour
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniela Strenkert
- University of California Los Angeles, Department of Chemistry and Biochemistry, and Institute for Genomics and Proteomics, 607 Charles E. Young Dr. East, Los Angeles, California 90095, USA
| | - Juliane Neupert
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Michael Schroda
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Sabeeha S. Merchant
- University of California Los Angeles, Department of Chemistry and Biochemistry, and Institute for Genomics and Proteomics, 607 Charles E. Young Dr. East, Los Angeles, California 90095, USA
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie (MPI-MP), Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
- For correspondence (Fax: +49-331-567-8701; )
| |
Collapse
|
631
|
Koutmou KS, Radhakrishnan A, Green R. Synthesis at the Speed of Codons. Trends Biochem Sci 2015; 40:717-718. [PMID: 26526516 DOI: 10.1016/j.tibs.2015.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
The possibility that different mRNA sequences encoding identical peptides are translated dissimilarly has long been of great interest. Recent work by Yu and co-workers provides striking evidence that mRNA sequences influence the rate of protein synthesis, and lends support to the emerging idea that mRNA sequence informs protein folding.
Collapse
Affiliation(s)
- Kristin S Koutmou
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Aditya Radhakrishnan
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
632
|
Importance of codon usage for the temporal regulation of viral gene expression. Proc Natl Acad Sci U S A 2015; 112:14030-5. [PMID: 26504241 DOI: 10.1073/pnas.1515387112] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The glycoproteins of herpesviruses and of HIV/SIV are made late in the replication cycle and are derived from transcripts that use an unusual codon usage that is quite different from that of the host cell. Here we show that the actions of natural transinducers from these two different families of persistent viruses (Rev of SIV and ORF57 of the rhesus monkey rhadinovirus) are dependent on the nature of the skewed codon usage. In fact, the transinducibility of expression of these glycoproteins by Rev and by ORF57 can be flipped simply by changing the nature of the codon usage. Even expression of a luciferase reporter could be made Rev dependent or ORF57 dependent by distinctive changes to its codon usage. Our findings point to a new general principle in which different families of persisting viruses use a poor codon usage that is skewed in a distinctive way to temporally regulate late expression of structural gene products.
Collapse
|
633
|
Zhang Z, Presgraves DC. DrosophilaX-Linked Genes Have Lower Translation Rates than Autosomal Genes. Mol Biol Evol 2015; 33:413-28. [DOI: 10.1093/molbev/msv227] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 10/12/2015] [Indexed: 12/13/2022] Open
|
634
|
Van Bortle K, Nichols MH, Ramos E, Corces VG. Integrated tRNA, transcript, and protein profiles in response to steroid hormone signaling. RNA (NEW YORK, N.Y.) 2015; 21:1807-17. [PMID: 26289344 PMCID: PMC4574756 DOI: 10.1261/rna.052126.115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/16/2015] [Indexed: 06/04/2023]
Abstract
The accurate and efficient transfer of genetic information into amino acid sequences is carried out through codon-anticodon interactions between mRNA and tRNA, respectively. In this way, tRNAs function at the interface between gene expression and protein synthesis. Whether tRNA levels are dynamically regulated and to what degree tRNA abundance influences the cellular proteome remains largely unexplored. Here we profile tRNA, transcript and protein levels in Drosophila Kc167 cells, a plasmatocyte cell line that, upon treatment with 20-hydroxyecdysone, differentiates into macrophages. We find that high abundance tRNAs associate with codons that are overrepresented in the Kc167 cell proteome, whereas tRNAs that are in low supply associate with codons that are underrepresented. Ecdysone-induced differentiation of Kc167 cells leads to changes in mRNA codon usage in a manner consistent with the developmental progression of the cell. At both early and late time points, ecdysone treatment concomitantly increases the abundance of tRNAThr(CGU), which decodes a differentiation-associated codon that becomes enriched in the macrophage proteome. These results together suggest that tRNA levels may provide a meaningful regulatory mechanism for defining the cellular proteomic landscape.
Collapse
Affiliation(s)
- Kevin Van Bortle
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Michael H Nichols
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Edward Ramos
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | - Victor G Corces
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| |
Collapse
|
635
|
McManus J, Cheng Z, Vogel C. Next-generation analysis of gene expression regulation--comparing the roles of synthesis and degradation. MOLECULAR BIOSYSTEMS 2015; 11:2680-9. [PMID: 26259698 PMCID: PMC4573910 DOI: 10.1039/c5mb00310e] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Technological advances now enable routine measurement of mRNA and protein abundances, and estimates of their rates of synthesis and degradation that inform on their values and the degree of change in response to stimuli. Importantly, more and more data on time-series experiments are emerging, e.g. of cells responding to stress, enabling first insights into a new dimension of gene expression regulation - its dynamics and how it allows for very different response signals across genes. This review discusses recently published methods and datasets, their impact on what we now know about the relationships between concentrations and synthesis rates of mRNAs and proteins in yeast and mammalian cells, their evolution, and new hypotheses on translation regulatory mechanisms generated by approaches that involve ribosome footprinting.
Collapse
Affiliation(s)
- Joel McManus
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA.
| | | | | |
Collapse
|
636
|
Codon Usage Influences the Local Rate of Translation Elongation to Regulate Co-translational Protein Folding. Mol Cell 2015; 59:744-54. [PMID: 26321254 DOI: 10.1016/j.molcel.2015.07.018] [Citation(s) in RCA: 367] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/08/2015] [Accepted: 07/20/2015] [Indexed: 12/20/2022]
Abstract
Codon usage bias is a universal feature of eukaryotic and prokaryotic genomes and has been proposed to regulate translation efficiency, accuracy, and protein folding based on the assumption that codon usage affects translation dynamics. The roles of codon usage in translation, however, are not clear and have been challenged by recent ribosome profiling studies. Here we used a Neurospora cell-free translation system to directly monitor the velocity of mRNA translation. We demonstrated that the preferred codons enhance the rate of translation elongation, whereas non-optimal codons slow elongation. Codon usage also controls ribosome traffic on mRNA. These conclusions were supported by ribosome profiling results in vitro and in vivo with template mRNAs designed to increase the signal-to-noise ratio. Finally, we demonstrate that codon usage regulates protein function by affecting co-translational protein folding. These results resolve a long-standing fundamental question and suggest the existence of a codon usage code for protein folding.
Collapse
|
637
|
Abstract
In this issue of Cell, Pelechano et al. report that sequencing of mRNA decay intermediates shows surprisingly tight coupling of a major decay pathway to the movement of the last translating ribosome, revealing stress- and starvation-dependent modulation of translation elongation.
Collapse
Affiliation(s)
- Edward W J Wallace
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - D Allan Drummond
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
638
|
Yartseva V, Giraldez AJ. The Maternal-to-Zygotic Transition During Vertebrate Development: A Model for Reprogramming. Curr Top Dev Biol 2015; 113:191-232. [PMID: 26358874 DOI: 10.1016/bs.ctdb.2015.07.020] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cellular transitions occur at all stages of organismal life from conception to adult regeneration. Changing cellular state involves three main features: activating gene expression necessary to install the new cellular state, modifying the chromatin status to stabilize the new gene expression program, and removing existing gene products to clear out the previous cellular program. The maternal-to-zygotic transition (MZT) is one of the most profound changes in the life of an organism. It involves gene expression remodeling at all levels, including the active clearance of the maternal oocyte program to adopt the embryonic totipotency. In this chapter, we provide an overview of molecular mechanisms driving maternal mRNA clearance during the MZT, describe the developmental consequences of losing components of this gene regulation, and illustrate how remodeling of gene expression during the MZT is common to other cellular transitions with parallels to cellular reprogramming.
Collapse
Affiliation(s)
- Valeria Yartseva
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
639
|
Hou J, Wang X, McShane E, Zauber H, Sun W, Selbach M, Chen W. Extensive allele-specific translational regulation in hybrid mice. Mol Syst Biol 2015; 11:825. [PMID: 26253569 PMCID: PMC4562498 DOI: 10.15252/msb.156240] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Translational regulation is mediated through the interaction between diffusible trans-factors and cis-elements residing within mRNA transcripts. In contrast to extensively studied transcriptional regulation, cis-regulation on translation remains underexplored. Using deep sequencing-based transcriptome and polysome profiling, we globally profiled allele-specific translational efficiency for the first time in an F1 hybrid mouse. Out of 7,156 genes with reliable quantification of both alleles, we found 1,008 (14.1%) exhibiting significant allelic divergence in translational efficiency. Systematic analysis of sequence features of the genes with biased allelic translation revealed that local RNA secondary structure surrounding the start codon and proximal out-of-frame upstream AUGs could affect translational efficiency. Finally, we observed that the cis-effect was quantitatively comparable between transcriptional and translational regulation. Such effects in the two regulatory processes were more frequently compensatory, suggesting that the regulation at the two levels could be coordinated in maintaining robustness of protein expression.
Collapse
Affiliation(s)
- Jingyi Hou
- Laboratory for Functional and Medical Genomics, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Xi Wang
- Laboratory for Functional and Medical Genomics, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Erik McShane
- Laboratory for Proteome Dynamics, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Henrik Zauber
- Laboratory for Proteome Dynamics, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Wei Sun
- Laboratory for Functional and Medical Genomics, Berlin Institute for Medical Systems Biology, Berlin, Germany
| | - Matthias Selbach
- Laboratory for Proteome Dynamics, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Wei Chen
- Laboratory for Functional and Medical Genomics, Berlin Institute for Medical Systems Biology, Berlin, Germany
| |
Collapse
|
640
|
Ayache J, Bénard M, Ernoult-Lange M, Minshall N, Standart N, Kress M, Weil D. P-body assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes. Mol Biol Cell 2015; 26:2579-95. [PMID: 25995375 PMCID: PMC4501357 DOI: 10.1091/mbc.e15-03-0136] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 01/04/2023] Open
Abstract
P-bodies are cytoplasmic ribonucleoprotein granules involved in posttranscriptional regulation. DDX6 is a key component of their assembly in human cells. This DEAD-box RNA helicase is known to be associated with various complexes, including the decapping complex, the CPEB repression complex, RISC, and the CCR4/NOT complex. To understand which DDX6 complexes are required for P-body assembly, we analyzed the DDX6 interactome using the tandem-affinity purification methodology coupled to mass spectrometry. Three complexes were prominent: the decapping complex, a CPEB-like complex, and an Ataxin2/Ataxin2L complex. The exon junction complex was also found, suggesting DDX6 binding to newly exported mRNAs. Finally, some DDX6 was associated with polysomes, as previously reported in yeast. Despite its high enrichment in P-bodies, most DDX6 is localized out of P-bodies. Of the three complexes, only the decapping and CPEB-like complexes were recruited into P-bodies. Investigation of P-body assembly in various conditions allowed us to distinguish required proteins from those that are dispensable or participate only in specific conditions. Three proteins were required in all tested conditions: DDX6, 4E-T, and LSM14A. These results reveal the variety of pathways of P-body assembly, which all nevertheless share three key factors connecting P-body assembly to repression.
Collapse
Affiliation(s)
- Jessica Ayache
- UPMC Université de Paris 06, Institut de Biologie Paris-Seine, CNRS UMR-7622, F-75005 Paris, France
| | - Marianne Bénard
- UPMC Université de Paris 06, Institut de Biologie Paris-Seine, CNRS UMR-7622, F-75005 Paris, France
| | - Michèle Ernoult-Lange
- UPMC Université de Paris 06, Institut de Biologie Paris-Seine, CNRS UMR-7622, F-75005 Paris, France
| | - Nicola Minshall
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Michel Kress
- UPMC Université de Paris 06, Institut de Biologie Paris-Seine, CNRS UMR-7622, F-75005 Paris, France
| | - Dominique Weil
- UPMC Université de Paris 06, Institut de Biologie Paris-Seine, CNRS UMR-7622, F-75005 Paris, France
| |
Collapse
|
641
|
Shen W, Wang D, Ye B, Shi M, Ma L, Zhang Y, Zhao Z. GC3-biased gene domains in mammalian genomes. Bioinformatics 2015; 31:3081-4. [PMID: 26019240 PMCID: PMC4576692 DOI: 10.1093/bioinformatics/btv329] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/19/2015] [Indexed: 01/17/2023] Open
Abstract
Motivation: Synonymous codon usage bias has been shown to be correlated with many genomic features among different organisms. However, the biological significance of codon bias with respect to gene function and genome organization remains unclear. Results: Guanine and cytosine content at the third codon position (GC3) could be used as a good indicator of codon bias. Here, we used relative GC3 bias values to compare the strength of GC3 bias of genes in human and mouse. We reported, for the first time, that GC3-rich and GC3-poor gene products might have distinct sub-cellular spatial distributions. Moreover, we extended the view of genomic gene domains and identified conserved GC3 biased gene domains along chromosomes. Our results indicated that similar GC3 biased genes might be co-translated in specific spatial regions to share local translational machineries, and that GC3 could be involved in the organization of genome architecture. Availability and implementation: Source code is available upon request from the authors. Contact:zhaozh@nic.bmi.ac.cn or zany1983@gmail.com Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Wenlong Shen
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Dong Wang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Bingyu Ye
- Beijing Institute of Biotechnology, Beijing 100071, China, College of Life Sciences, Capital Normal University, Beijing 100048, China and
| | - Minglei Shi
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Lei Ma
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Yan Zhang
- Beijing Institute of Biotechnology, Beijing 100071, China
| | - Zhihu Zhao
- Beijing Institute of Biotechnology, Beijing 100071, China
| |
Collapse
|