601
|
Affiliation(s)
- D C Rees
- Howard Hughes Medical Institute, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
602
|
Taricani L, Feilotter HE, Weaver C, Young PG. Expression of hsp16 in response to nucleotide depletion is regulated via the spc1 MAPK pathway in Schizosaccharomyces pombe. Nucleic Acids Res 2001; 29:3030-40. [PMID: 11452028 PMCID: PMC55794 DOI: 10.1093/nar/29.14.3030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2001] [Revised: 05/21/2001] [Accepted: 05/21/2001] [Indexed: 11/13/2022] Open
Abstract
A universal response to elevated temperature and other forms of physiological stress is the induction of heat shock proteins (HSPs). Hsp16 in Schizosaccharomyces pombe encodes a polypeptide of predicted molecular weight 16 kDa that belongs to the HSP20/alpha-crystallin family whose members range in size from 12 to 43 kDa. Heat shock treatment increases expression of the hsp16 gene by 64-fold in wild-type cells and 141-fold in cdc22-M45 (ribonucleotide reductase) mutant cells. Hsp16 expression is mediated by the spc1 MAPK signaling pathway through the transcription factor atf1 and in addition through the HSF pathway. Nucleotide depletion or DNA damage as occurs in cdc22-M45 mutant cells, or during hydroxyurea or camptothecin treatment, is sufficient to activate hsp16 expression through atf1. Our findings suggest a novel role for small HSPs in the stress response following nucleotide depletion and DNA damage. This extends the types of damage that are sensed by the spc1 MAPK pathway via atf1.
Collapse
Affiliation(s)
- L Taricani
- Department of Biology, Bioscience Complex, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | | | |
Collapse
|
603
|
Scharf KD, Siddique M, Vierling E. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing alpha-crystallin domains (Acd proteins). Cell Stress Chaperones 2001; 6:225-37. [PMID: 11599564 PMCID: PMC434404 DOI: 10.1379/1466-1268(2001)006<0225:tefoat>2.0.co;2] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2001] [Accepted: 05/01/2001] [Indexed: 11/24/2022] Open
Abstract
Comprehensive analysis of the Arabidopsis genome revealed a total of 13 sHsps belonging to 6 classes defined on the basis of their intracellular localization and sequence relatedness plus 6 ORFs encoding proteins distantly related to the cytosolic class Cl or the plastidial class of sHsps. The complexity of the Arabidopsis sHsp family far exceeds that in any other organism investigated to date. Furthermore, we have identified a new family of ORFs encoding multidomain proteins that contain one or more regions with homology to the ACD (Acd proteins). The functions of the Acd proteins and the role of their ACDs remain to be investigated.
Collapse
Affiliation(s)
- K D Scharf
- Biocenter of the Goethe University, Frankfurt/Main, Germany.
| | | | | |
Collapse
|
604
|
Mao Q, Ke D, Feng X, Chang Z. Preheat treatment for Mycobacterium tuberculosis Hsp16.3: correlation between a structural phase change at 60 degrees C and a dramatic increase in chaperone-like activity. Biochem Biophys Res Commun 2001; 284:942-7. [PMID: 11409884 DOI: 10.1006/bbrc.2001.5074] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The in vitro chaperone-like activity of Mycobacterium tuberculosis small heat shock protein Hsp16.3 was found to be dramatically enhanced to the same extent after preheat treatment at or over 60 degrees C. Structural analysis using gel filtration, native pore-gradient PAGE, nondenaturing PAGE, and far-UV CD spectroscopy consistently revealed no significant difference between the native and the preheated Hsp16.3 proteins. However, near-UV CD spectroscopy clearly demonstrated that the tertiary structure of preheated Hsp16.3 is quite similar to its native conformation, with a minor but significant difference. Further analysis using differential scanning calorimetry indicated that Hsp16.3 exhibited a structural transition near 60 degrees C. All these results together indicate that Hsp16.3 suffers a phase change at approximately 60 degrees C, which seem to remove a structural energy barrier for the protein to refold to a conformational status with increased chaperone-like activity.
Collapse
Affiliation(s)
- Q Mao
- Protein Science Laboratory, Education Ministry, People's Republic of China
| | | | | | | |
Collapse
|
605
|
Teichmann SA, Murzin AG, Chothia C. Determination of protein function, evolution and interactions by structural genomics. Curr Opin Struct Biol 2001; 11:354-63. [PMID: 11406387 DOI: 10.1016/s0959-440x(00)00215-3] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The genome sequencing projects and knowledge of the entire protein repertoires of many organisms have prompted new procedures and techniques for the large-scale determination of protein structure, function and interactions. Recently, new work has been carried out on the determination of the function and evolutionary relationships of proteins by experimental structural genomics, and the discovery of protein-protein interactions by computational structural genomics.
Collapse
Affiliation(s)
- S A Teichmann
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, WC1E 6BT, London, UK.
| | | | | |
Collapse
|
606
|
Feil IK, Malfois M, Hendle J, van Der Zandt H, Svergun DI. A novel quaternary structure of the dimeric alpha-crystallin domain with chaperone-like activity. J Biol Chem 2001; 276:12024-9. [PMID: 11278766 DOI: 10.1074/jbc.m010856200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alphaB-crystallin, a member of the small heat-shock protein family and a major eye lens protein, is a high molecular mass assembly and can act as a molecular chaperone. We report a synchrotron radiation x-ray solution scattering study of a truncation mutant from the human alphaB-crystallin (alphaB57-157), a dimeric protein that comprises the alpha-crystallin domain of the alphaB-crystallin and retains a significant chaperone-like activity. According to the sequence analysis (more than 23% identity), the monomeric fold of the alpha-crystallin domain should be close to that of the small heat-shock protein from Methanococcus jannaschii (MjHSP16.5). The theoretical scattering pattern computed from the crystallographic model of the dimeric MjHSP16.5 deviates significantly from the experimental scattering by the alpha-crystallin domain, pointing to different quaternary structures of the two proteins. A rigid body modeling against the solution scattering data yields a model of the alpha-crystallin domain revealing a new dimerization interface. The latter consists of a strand-turn-strand motif contributed by each of the monomers, which form a four-stranded, antiparallel, intersubunit composite beta-sheet. This model agrees with the recent spin labeling results and suggests that the alphaB-crystallin is composed by flexible building units with an extended surface area. This flexibility may be important for biological activity and for the formation of alphaB-crystallin complexes of variable sizes and compositions.
Collapse
Affiliation(s)
- I K Feil
- European Molecular Biology Laboratory (EMBL), EMBL Hamburg Outstation, Notkestrasse 85, D-22603 Hamburg, Germany.
| | | | | | | | | |
Collapse
|
607
|
Wieske M, Benndorf R, Behlke J, Dölling R, Grelle G, Bielka H, Lutsch G. Defined sequence segments of the small heat shock proteins HSP25 and alphaB-crystallin inhibit actin polymerization. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:2083-90. [PMID: 11277931 DOI: 10.1046/j.1432-1327.2001.02082.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The interaction of small heat shock proteins (sHSPs) with the actin cytoskeleton has been described and some members of this family, e.g. chicken and murine HSP25 (HSP27), inhibit the polymerization of actin in vitro. To analyse the molecular basis of this interaction, we synthesized a set of overlapping peptides covering the complete sequence of murine HSP25 and tested the effect of these peptides on actin polymerization in vitro by fluorescence spectroscopy and electron microscopy. Two peptides comprising the sequences W43 to R57 (peptide 6) and I92 to N106 (peptide 11) of HSP25 were found to be potent inhibitors of actin polymerization. Phosphorylation of N-terminally extended peptide 11 at serine residues known to be phosphorylated in vivo resulted in decline of their inhibitory activity. Interestingly, peptides derived from the homologous peptide 11 sequence of murine alphaB-crystallin showed the same behaviour. The results suggest that both HSP25 and alphaB-crystallin have the potential to inhibit actin polymerization and that this activity is regulated by phosphorylation.
Collapse
Affiliation(s)
- M Wieske
- Max Delbrück Center of Molecular Medicine, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
608
|
Abgar S, Vanhoudt J, Aerts T, Clauwaert J. Study of the chaperoning mechanism of bovine lens alpha-crystallin, a member of the alpha-small heat shock superfamily. Biophys J 2001; 80:1986-95. [PMID: 11259311 PMCID: PMC1301387 DOI: 10.1016/s0006-3495(01)76168-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We have studied the interaction between lysozyme, destabilized by reducing its -S-S- bonds, and bovine eye lens alpha-crystallin, a member of the alpha-small heat shock protein superfamily. We have used gel filtration, photon correlation spectroscopy, and analytical ultracentrifugation to study the binding of lysozyme by alpha-crystallin at 25 degrees C and 37 degrees C. We can conclude that alpha-crystallin chaperones the destabilized protein in a two-step process. First the destabilized proteins are bound by the alpha-crystallin so that nonspecific aggregation of the destabilized protein is prevented. This complex is unstable, and a reorganization and inter-particle exchange of the peptides result in stable and soluble large particles. alpha-Crystallin does not require activation by temperature for the first step of its chaperone activity as it prevents the formation of nonspecific aggregates at 25 degrees C as well as at 37 degrees C. The reorganization of the peptides, however, gives rise to smaller particles at 37 degrees C than at 25 degrees C. Indirect evidence shows that the association of several alpha-crystallin/substrate protein complexes leads to the formation of very large particles. These are responsible for the increase of the light scattering.
Collapse
Affiliation(s)
- S Abgar
- Biophysics Research Group, Department of Biochemistry, University of Antwerp, B-2610 Antwerp, Belgium
| | | | | | | |
Collapse
|
609
|
Török Z, Goloubinoff P, Horváth I, Tsvetkova NM, Glatz A, Balogh G, Varvasovszki V, Los DA, Vierling E, Crowe JH, Vigh L. Synechocystis HSP17 is an amphitropic protein that stabilizes heat-stressed membranes and binds denatured proteins for subsequent chaperone-mediated refolding. Proc Natl Acad Sci U S A 2001; 98:3098-103. [PMID: 11248038 PMCID: PMC30613 DOI: 10.1073/pnas.051619498] [Citation(s) in RCA: 172] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The small heat shock proteins (sHSPs) are ubiquitous stress proteins proposed to act as molecular chaperones to prevent irreversible protein denaturation. We characterized the chaperone activity of Synechocystis HSP17 and found that it has not only protein-protective activity, but also a previously unrecognized ability to stabilize lipid membranes. Like other sHSPs, recombinant Synechocystis HSP17 formed stable complexes with denatured malate dehydrogenase and served as a reservoir for the unfolded substrate, transferring it to the DnaK/DnaJ/GrpE and GroEL/ES chaperone network for subsequent refolding. Large unilamellar vesicles made of synthetic and cyanobacterial lipids were found to modulate this refolding process. Investigation of HSP17-lipid interactions revealed a preference for the liquid crystalline phase and resulted in an elevated physical order in model lipid membranes. Direct evidence for the participation of HSP17 in the control of thylakoid membrane physical state in vivo was gained by examining an hsp17(-) deletion mutant compared with the isogenic wild-type hsp17(+) revertant Synechocystis cells. We suggest that, together with GroEL, HSP17 behaves as an amphitropic protein and plays a dual role. Depending on its membrane or cytosolic location, it may function as a "membrane stabilizing factor" as well as a member of a multichaperone protein-folding network. Membrane association of sHSPs could antagonize the heat-induced hyperfluidization of specific membrane domains and thereby serve to preserve structural and functional integrity of biomembranes.
Collapse
Affiliation(s)
- Z Török
- Institute of Biochemistry, Biological Research Centre, POB 521, 6701 Szeged, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
610
|
Härndahl U, Sundby C. Does the chloroplast small heat shock protein protect photosystem II during heat stress in vitro? PHYSIOLOGIA PLANTARUM 2001; 111:273-275. [PMID: 11240909 DOI: 10.1034/j.1399-3054.2001.1110302.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
It has been suggested that the function of the chloroplast-localized small heat shock protein (sHsp) is to protect photosystem II (PSII) from heat inactivation. This paper reports that addition of purified sHsp protein to isolated thylakoid membranes gave no protection of PSII and questions that there is any direct effect of the sHsp on PSII. The opinion is forwarded that the primary role for the chloroplast-localized sHsp may not even be protection of PSII.
Collapse
Affiliation(s)
- Ulrika Härndahl
- Department of Biochemistry, Lund University, PO Box 124, S-221 00 Lund, Sweden
| | | |
Collapse
|
611
|
Heinemann U, Frevert J, Hofmann K, Illing G, Maurer C, Oschkinat H, Saenger W. An integrated approach to structural genomics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 73:347-62. [PMID: 11063780 DOI: 10.1016/s0079-6107(00)00009-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Structural genomics aims at determining a set of protein structures that will represent all domain folds present in the biosphere. These structures can be used as the basis for the homology modelling of the majority of all remaining protein domains or, indeed, proteins. Structural genomics therefore promises to provide a comprehensive structural description of the protein universe. To achieve this, a broad scientific effort is required. The Berlin-based "Protein Structure Factory" (PSF) plans to contribute to this effort by setting up a local infrastructure for the low-cost, high-throughput analysis of soluble human proteins. In close collaboration with the German Human Genome Project (DHGP) protein-coding genes will be expressed in Escherichia coli or yeast. Affinity-tagged proteins will be purified semi-automatically for biophysical characterization and structure analysis by X-ray diffraction methods and NMR spectroscopy. In all steps of the structure analysis process, possibilities for automation, parallelization and standardization will be explored. Major new facilities that are created for the PSF include a robotic station for large-scale protein crystallization, an NMR center and an experimental station for protein crystallography at the synchrotron storage ring BESSY II in Berlin.
Collapse
Affiliation(s)
- U Heinemann
- Forschungsgruppe Kristallographie, Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13122, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
612
|
Härndahl U, Kokke BP, Gustavsson N, Linse S, Berggren K, Tjerneld F, Boelens WC, Sundby C. The chaperone-like activity of a small heat shock protein is lost after sulfoxidation of conserved methionines in a surface-exposed amphipathic alpha-helix. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1545:227-37. [PMID: 11342048 DOI: 10.1016/s0167-4838(00)00280-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The small heat shock proteins (sHsps) possess a chaperone-like activity which prevents aggregation of other proteins during transient heat or oxidative stress. The sHsps bind, onto their surface, molten globule forms of other proteins, thereby keeping them in a refolding competent state. In Hsp21, a chloroplast-located sHsp in all higher plants, there is a highly conserved region forming an amphipathic alpha-helix with several methionines on the hydrophobic side according to secondary structure prediction. This paper describes how sulfoxidation of the methionines in this amphipathic alpha-helix caused conformational changes and a reduction in the Hsp21 oligomer size, and a complete loss of the chaperone-like activity. Concomitantly, there was a loss of an outer-surface located alpha-helix as determined by limited proteolysis and circular dichroism spectroscopy. The present data indicate that the methionine-rich amphipathic alpha-helix, a motif of unknown physiological significance which evolved during the land plant evolution, is crucial for binding of substrate proteins and has rendered the chaperone-like activity of Hsp21 very dependent on the chloroplast redox state.
Collapse
Affiliation(s)
- U Härndahl
- Department of Biochemistry, Lund University, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
613
|
Small heat shock protein of a hyperthermophilic archaeum, Thermococcus sp. strain KS-1, exists as a spherical 24 mer and its expression is highly induced under heat-stress conditions. J Biosci Bioeng 2001. [DOI: 10.1016/s1389-1723(01)80218-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
614
|
Macario AJ, De Macario EC. Molecular chaperones and age-related degenerative disorders. INTERORGANELLAR SIGNALING IN AGE-RELATED DISEASE 2001. [DOI: 10.1016/s1566-3124(01)07018-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
615
|
The Transcription of Genes. Biochemistry 2001. [DOI: 10.1016/b978-012492543-4/50031-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
616
|
Abstract
This review focuses on a very important but little understood type of molecular recognition--the recognition between highly flexible molecular structures. The formation of a specific complex in this case is a dynamic process that can occur through sequential steps of mutual conformational adaptation. This allows modulation of specificity and affinity of interaction in extremely broad ranges. The interacting partners can interact together to form a complex with entirely new properties and produce conformational signal transduction at substantial distance. We show that this type of recognition is frequent in formation of different protein-protein and protein-nucleic acid complexes. It is also characteristic for self-assembly of protein molecules from their unfolded fragments as well as for interaction of molecular chaperones with their substrates and it can be the origin of 'protein misfolding' diseases. Thermodynamic and kinetic features of this type of dynamic recognition and the principles underlying their modeling and analysis are discussed.
Collapse
Affiliation(s)
- A P Demchenko
- The Palladin Institute of Biochemistry of the Academy of Sciences of Ukraine, Kiev 252030, Ukraine.
| |
Collapse
|
617
|
Studer S, Narberhaus F. Chaperone activity and homo- and hetero-oligomer formation of bacterial small heat shock proteins. J Biol Chem 2000; 275:37212-8. [PMID: 10978322 DOI: 10.1074/jbc.m004701200] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rhizobia are the only bacteria known to induce a multitude of small heat shock proteins (sHsps) upon temperature upshift. The sHsps of Bradyrhizobium japonicum fall into two different classes, class A and class B. Here, we studied the chaperone activity and oligomeric features of two representative members of each class. The purified sHsps were efficient chaperones, as demonstrated by their ability to prevent thermally induced aggregation of citrate synthase in vitro. Homo-oligomer formation of all four sHsps was demonstrated by gel filtration and by two independent co-purification approaches. Mixed oligomers were readily observed between members of the same class, even when these proteins originated from different species such as Escherichia coli and B. japonicum. The chaperone activity of purified hetero-oligomers was indistinguishable from the activity of homo-oligomers. Heteromeric complexes were never obtained between class A and class B sHsps, indicating that hetero-oligomer formation is restricted to sHsps of the same class.
Collapse
Affiliation(s)
- S Studer
- Institute of Microbiology, Eidgenössische Technische Hochschule, Schmelzbergstrasse 7, CH-8092 Zürich, Switzerland
| | | |
Collapse
|
618
|
Kirschner M, Winkelhaus S, Thierfelder JM, Nover L. Transient expression and heat-stress-induced co-aggregation of endogenous and heterologous small heat-stress proteins in tobacco protoplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2000; 24:397-411. [PMID: 11069712 DOI: 10.1046/j.1365-313x.2000.00887.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Heat-stress granules (HSG) are highly ordered, cytoplasmic chaperone complexes found in all heat-stressed plant cells. We have developed an experimental system involving expression of cytosolic class I and class II small heat-stress proteins (Hsps) of pea, Arabidopsis and tomato in tobacco protoplasts to study the structural prerequisites for the assembly of HSG or HSG-like complexes. Class I and class II small Hsps formed class-specific dodecamers of 210-280 kDa, which, upon heat stress, were incorporated into HSG complexes. Interestingly, class II dodecamers alone could form HSG-like complexes (auto-aggregation), whereas class I dodecamers could do so only in the presence of class II proteins (recruitment). By analysing C-terminal deletion forms of Hsp17 class II, we obtained evidence that the intact C-terminus is critical for the oligomerization state, for the heat-stress-induced auto-aggregation and for recruitment of class I proteins. The class-specific formation of dimers as a prerequisite for oligomerization was analysed by the yeast two-hybrid system. In the presence of the endogenous (tobacco) set of heat-stress-induced proteins, all heterologous class I and class II proteins were incorporated into HSG complexes, whose ultrastructure was different from that of complexes formed by class I and class II proteins alone. Although other, more distantly related, members of the Hsp20 family, i.e. the plastidic pea Hsp21, the Drosophila Hsp23 and the mouse Hsp25, were well expressed in tobacco protoplasts and formed homo-oligomers of 200-700 kDa, none of them could be recruited to HSG complexes.
Collapse
Affiliation(s)
- M Kirschner
- Department of Molecular Cell Biology, Biocenter N200, 3OG, Goethe University Frankfurt, Marie Curie Str. 9, D-60439 Frankfurt, Germany
| | | | | | | |
Collapse
|
619
|
Abstract
Small heat shock proteins (sHsp) have been implicated in many cell processes involving the dynamics of protein-protein interactions. Two unusual sequences containing self-complementary motifs (SCM) have been identified within the conserved alpha-crystallin domain of sHsps. When two SCMs are aligned in an anti-parallel direction (N to C and C to N), the charged or polar residues form either salt bridges or hydrogen bonds while the non-polar residues participate in hydrophobic interactions. When aligned in reverse order, the residues of these motifs in alpha-crystallin subunits form either hydrophobic and/or polar interactions. Homology based molecular modeling of the C-terminal domain of alpha-crystallin subunits using the crystal structure of MjHSP16.5 suggests that SCM1 and 2 participate in stabilizing secondary structure and subunit interactions. Also there is overwhelming evidence that these motifs are important in the chaperone-like activity of alpha-crystallin subunits. These sequences are conserved and appear to be characteristic of the entire sHsp superfamily. Similar motifs are also present in the Hsp70 family and the immunoglobulin superfamily.
Collapse
Affiliation(s)
- P N Farnsworth
- Department of Pharmacology and Physiology, UMD-New Jersey Medical School, Newark, New Jersey 07103, USA.
| | | |
Collapse
|
620
|
Abgar S, Backmann J, Aerts T, Vanhoudt J, Clauwaert J. The structural differences between bovine lens alphaA- and alphaB-crystallin. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5916-25. [PMID: 10998051 DOI: 10.1046/j.1432-1033.2000.01646.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lens alphaA- and alphaB-crystallin have been reported to act differently in their protection against nonthermal destabilization of proteins. The nature of this difference, however, is not completely understood. Therefore we used a combination of thermally and solvent-induced structural changes to investigate the difference in the secondary, tertiary and quaternary structures of alphaA- and alphaB-crystallin. We demonstrate the relationship between the changes in the tertiary and quaternary structures for both polypeptides. Far-ultraviolet circular dichroism revealed that the secondary structure of alphaB-crystallin is more stable than that of alphaA-crystallin, and the temperature-induced secondary structure changes of both polypeptides are partially reversible. Tryptophan fluorescence revealed two distinct transitions for both alphaA- and alphaB-crystallin. Compared to alphaB-crystallin, both transitions of alphaA-crystallin occurred at higher temperature. The changes in the hydrophobicity are accompanied by changes in the quaternary structure and are biphasic, as shown by bis-1-anilino-8-naphthalenesulfonate fluorescence and sedimentation velocity. These phenomena explain the difference in the chaperone capacity of alphaA- and alphaB-crystallin carried out at different temperatures. The quaternary structure of alpha-crystallin is more stable than that of alphaA- and alphaB-crystallin. The latter has a strong tendency to dissociate under thermal or solvent destabilization. This phenomenon is related to the difference in subunit organization of alphaA- and alphaB-crystallin where both hydrophobic and ionic interactions are involved. We find that an important subunit rearrangement of alphaA-crystallin takes place once the molecule is destabilized. This subunit rearrangement is a requisite phenomenon for maintaining alpha-crystallin in its globular form and as a stable complex. On the base of our results, we suggest a four-state model describing the folding and dissociation of alphaA- and alphaB-crystallin better than a three-state model [Sun et al. (1999) J. Biol. Chem. 274, 34067-34071].
Collapse
Affiliation(s)
- S Abgar
- Biophysics Research Group, Department of Biochemistry, University of Antwerp, Belgium
| | | | | | | | | |
Collapse
|
621
|
van Rijk AF, van den Hurk MJ, Renkema W, Boelens WC, de Jong WW, Bloemendal H. Characteristics of super alphaA-crystallin, a product of in vitro exon shuffling. FEBS Lett 2000; 480:79-83. [PMID: 11034304 DOI: 10.1016/s0014-5793(00)01908-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
alphaA-Crystallin, a small heat shock protein with chaperone-like activity, forms dynamic multimeric complexes. Recently we described the spontaneous generation of a mutant protein (super alphaA-crystallin) by exon duplication arisen via exon shuffling confirming a classic hypothesis by Gilbert [Nature 271 (1978) 501]. Comparison of super alphaA-crystallin, which is viable in a mouse skeletal muscle cell line, with normal alphaA-crystallin shows that it has diminished thermostability, increased exposure of hydrophobic patches, a larger complex size and lost its chaperone activity. However, super alphaA-crystallin subunits exchange as readily between complexes as does normal alphaA-crystallin. These data indicate that chaperone-like activity may vanish independent of subunit hydrophobicity and exchangeability.
Collapse
Affiliation(s)
- A F van Rijk
- Department of Biochemistry, University of Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
622
|
Abstract
Age-related nuclear cataract is a major cause of blindness. It is characterised by opacification and colouration in the centre of the lens and is accompanied by extensive protein oxidation. The reason for the onset of nuclear cataract is not known, but it is proposed here that the underlying cause is the development, with age, of a barrier to the transport of metabolites within the lens. Such a barrier may result in an increase in the half-lives of reactive molecules, such as UV filters, thus promoting posttranslational modification of proteins in the nucleus and may also act to prevent an adequate flux of antioxidants from reaching the lens interior and, as a consequence, allow oxidation of nuclear components. Further, this oxidation may take place even if the lens outer cortex and epithelium remain perfectly functional.
Collapse
Affiliation(s)
- R J Truscott
- Australian Cataract Research Foundation, University of Wollongong, Australia
| |
Collapse
|
623
|
Treweek TM, Lindner RA, Mariani M, Carver JA. The small heat-shock chaperone protein, alpha-crystallin, does not recognize stable molten globule states of cytosolic proteins. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1481:175-88. [PMID: 10962105 DOI: 10.1016/s0167-4838(00)00109-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The small heat-shock protein (sHsp), alpha-crystallin, acts as a molecular chaperone by interacting with destabilized 'substrate' proteins to prevent their precipitation from solution under conditions of stress. alpha-Crystallin and all sHsps are intracellular proteins. Similarly to other chaperones, the 'substrate' protein is in an intermediately folded, partly structured molten globule state when it interacts and complexes with alpha-crystallin. In this study, stable molten globule states of the cytosolic proteins, gamma-crystallin and myoglobin, have been prepared. Within the lens, gamma-crystallin naturally interacts with alpha-crystallin and myoglobin and alpha-crystallin are present together in muscle tissue. The molten globule states of gamma-crystallin and myoglobin were prepared by reacting gamma-crystallin with glucose 6-phosphate and by removing the haem group of myoglobin. Following spectroscopic characterisation of these modified proteins, their interaction with alpha-crystallin was examined by a variety of spectroscopic and protein chemical techniques. In both cases, there was no interaction with alpha-crystallin that led to complexation. It is concluded that alpha-crystallin does not recognise stable molten globule states of cytosolic 'substrate' proteins and only interacts with molten globule states of proteins that are on the irreversible pathway towards an aggregated and precipitated form.
Collapse
Affiliation(s)
- T M Treweek
- Department of Chemistry, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | | | | | | |
Collapse
|
624
|
Abstract
Alpha-crystallin high-molecular-weight (HMW) aggregates can be formed in vitro by many mechanisms, but the mechanism of in vivo aggregation has not been clearly established. HMW and LMW (low-molecular-weight) alpha-crystallins were isolated from human lenses 50-60 years of age and some spectroscopic measurements were performed. Conformational differences were suggested based on data of increased bis-ANS (4,4'-dianilino-1,1'-binaphthalene-5, 5'-disulfonic acid) and ThT (thioflavin T) fluorescence as well as increased far-UV and decreased near-UV circular dichroism (CD). These results indicated that HMW alpha-crystallin was more hydrophobic than LMW alpha-crystallin, possibly resulting from partial unfolding of alpha-crystallin. On the other hand, the increased ThT fluorescence and far-UV CD intensities indicate that an increased amount of beta-sheet conformation was involved in aggregation. These data, along with little difference in chaperone-like activity between the LMW and HMW alpha-crystallins, strongly suggest that HMW alpha-crystallin aggregates resulted from partial unfolding and disassembling-reassembling of LMW alpha-crystallin caused by posttranslational modification rather than chaperone complex formation.
Collapse
Affiliation(s)
- J J Liang
- Center for Ophthalmic Research, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
625
|
Beck FX, Neuhofer W, Müller E. Molecular chaperones in the kidney: distribution, putative roles, and regulation. Am J Physiol Renal Physiol 2000; 279:F203-15. [PMID: 10919839 DOI: 10.1152/ajprenal.2000.279.2.f203] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Molecular chaperones are intracellular proteins that prevent inappropriate intra- and intermolecular interactions of polypetide chains. A specific group of highly conserved molecular chaperones are the heat shock proteins (HSPs), many of which are constitutively expressed but most of which are inducible by diverse (in some cases specific) stress factors. HSPs, either alone or in cooperation with "partner" chaperones, are involved in cellular processes as disparate as correct folding and assembly of proteins, transport of proteins to specific intracellular locations, protein degradation, and preservation and restructuring of the cytoskeleton. The characteristic distribution of individual HSPs in the kidney, and their response to different challenges, suggests that a number of HSPs may fulfill specific, kidney-related functions. HSP72 and the osmotic stress protein 94 (Osp94) appear to participate in the adaptation of medullary cells to high extracellular salt and urea concentrations; the small HSPs (HSP25/27 and crystallins) may be involved in the function of mesangial cells and podocytes and contribute to the volume-regulatory remodeling of the cytoskeleton in medullary cells during changes in extracellular tonicity. HSP90 contributes critically to the maturation of steroid hormone receptors and may thus be a critical determinant of the aldosterone sensitivity of specific renal epithelial cells. Certain HSPs are also induced in various pathological states of the kidney. The observation that the expression of individual HSPs in specific kidney diseases often displays characteristic time courses and intrarenal distribution patterns supports the idea that HSPs are involved in the recovery but possibly also in the initiation and/or maintenance phases of these disturbances.
Collapse
Affiliation(s)
- F X Beck
- Physiologisches Institut der Universität München, Munich, Germany.
| | | | | |
Collapse
|
626
|
Weaver AJ, Sullivan WP, Felts SJ, Owen BA, Toft DO. Crystal structure and activity of human p23, a heat shock protein 90 co-chaperone. J Biol Chem 2000; 275:23045-52. [PMID: 10811660 DOI: 10.1074/jbc.m003410200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p23 is a co-chaperone for the heat shock protein, hsp90. This protein binds hsp90 and participates in the folding of a number of cell regulatory proteins, but its activities are still unclear. We have solved a crystal structure of human p23 lacking 35 residues at the COOH terminus. The structure reveals a disulfide-linked dimer with each subunit containing eight beta-strands in a compact antiparallel beta-sandwich fold. In solution, however, p23 is primarily monomeric and the dimer appears to be a minor component. Conserved residues are clustered on one face of the monomer and define a putative surface region and binding pocket for interaction(s) with hsp90 or protein substrates. p23 contains a COOH-terminal tail that is apparently less structured and is unresolved in the crystal structure. This tail is not needed for the binding of p23 to hsp90 or to complexes with the progesterone receptor. However, the tail is necessary for optimum active chaperoning of the progesterone receptor, as well as the passive chaperoning activity of p23 in assays measuring inhibition of heat-induced protein aggregation.
Collapse
Affiliation(s)
- A J Weaver
- hkl Research, Inc., Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
627
|
Ding L, Candido EP. HSP43, a small heat-shock protein localized to specific cells of the vulva and spermatheca in the nematode Caenorhabditis elegans. Biochem J 2000; 349:409-12. [PMID: 10880338 PMCID: PMC1221162 DOI: 10.1042/0264-6021:3490409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heat-shock protein 43 (HSP43) of Caenorhabditis elegans is prominently expressed in the utse cell, which attaches the uterus to the hypodermis, the uv1 cells joining the vulva and the uterus, the spermathecal valve and junctions between cells of the spermathecal cage. In body-wall muscle, HSP43 forms a punctate pattern of circumferential lines, probably corresponding to regions where the hypodermis contacts the muscle cells.
Collapse
Affiliation(s)
- L Ding
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
628
|
Jaenicke R, Lilie H. Folding and association of oligomeric and multimeric proteins. ADVANCES IN PROTEIN CHEMISTRY 2000; 53:329-401. [PMID: 10751948 DOI: 10.1016/s0065-3233(00)53007-1] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- R Jaenicke
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Germany
| | | |
Collapse
|
629
|
Ideno A, Yoshida T, Furutani M, Maruyama T. The 28.3 kDa FK506 binding protein from a thermophilic archaeum, Methanobacterium thermoautotrophicum, protects the denaturation of proteins in vitro. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3139-49. [PMID: 10824098 DOI: 10.1046/j.1432-1327.2000.01332.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two families of FK506 binding protein (FKBP) type peptidyl-prolyl cis-trans isomerase (PPIase) have been found in Archaea. One is the 16-18 kDa short type FKBP family, and another is the 26-30 kDa long type FKBP family. The latter has a longer C-terminal region than the former. In this study, the 28.3 kDa long type FKBP gene from a thermophilic archaeum, Methanobacterium thermoautotrophicum, was expressed in Escherichia coli, and its gene product (MbFK) was characterized. The PPIase activity of MbFK was much lower than those of other FKBPs reported against oligopeptidyl substrates. MbFK protected green fluorescent protein (GFP) and rhodanese from thermal denaturation. Furthermore, MbFK suppressed the aggregation of chemically unfolded rhodanese and elevated the yield of its refolding although this activity was weaker than that of GroEL/ES. We made two deletion mutants, MbFK-N which lacked the C-terminal region, and MbFK-C which had only the C-terminal region. Far-UV CD spectra of these mutants showed that their secondary structures did not change from that of the wild-type. Whereas the PPIase activity of MbFK-N was low but detectable, that of MbFK-C was undetectable. The MbFK-C protected the thermal protein aggregation, and possessed a weak but significant aggregation suppressing activity against chemically unfolded protein. However, the MbFK-N did not suppress the aggregation of chemically unfolded rhodanese while it protected heat induced aggregation of rhodanese. These results may indicate that aggregation suppressing activity of MbFK-W against chemically unfolded protein are exerted mainly by its C-terminal domain while both domains contribute to thermal protein aggregation suppression.
Collapse
Affiliation(s)
- A Ideno
- Marine Biotechnology Institute Co., Ltd, Kamaishi, Iwate, Japan; Sekisui Chemical Co., Ltd, Minase Research Institute, Osaka, Japan.
| | | | | | | |
Collapse
|
630
|
Dai H, Mao Q, Yang H, Huang S, Chang Z. Probing the roles of the only universally conserved leucine residue (Leu122) in the oligomerization and chaperone-like activity of Mycobacterium tuberculosis small heat shock protein Hsp16.3. JOURNAL OF PROTEIN CHEMISTRY 2000; 19:319-26. [PMID: 11043937 DOI: 10.1023/a:1007003631120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
To understand the role of the only universally conserved hydrophobic residue among all the members of the sHsp family, this extremely well conserved Leu122 residue in Hsp16.3 was replaced by valine, alanine, asparigine, or aspartate residues. Only very small amounts of the L122D and L122N mutant Hsp16.3 proteins were expressed in the transformed E. coli; however, both the L122V and L122A were readily expressed. The L122V and L122A mutant proteins had similar oligomeric structures to the wild-type protein at room temperature. Examination of the L122A mutant protein by native pore gradient PAGE and CD spectroscopy, however, revealed a smaller oligomeric size and different secondary structure at 37 degrees C. Both L122V and L122A mutant proteins exhibited significantly lowered chaperone activities. Observations reported here suggest a very important role of this only universally conserved Leu residue in both the formation of specific oligomeric structures and the molecular chaperone activities of Hsp16.3.
Collapse
Affiliation(s)
- H Dai
- Department of Biological Science and Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | |
Collapse
|
631
|
Haley DA, Bova MP, Huang QL, Mchaourab HS, Stewart PL. Small heat-shock protein structures reveal a continuum from symmetric to variable assemblies. J Mol Biol 2000; 298:261-72. [PMID: 10764595 DOI: 10.1006/jmbi.2000.3657] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The small heat-shock proteins (sHSPs) form a diverse family of proteins that are produced in all organisms. They function as chaperone-like proteins in that they bind unfolded polypeptides and prevent uncontrolled protein aggregation. Here, we present parallel cryo-electron microscopy studies of five different sHSP assemblies: Methanococcus jannaschii HSP16.5, human alphaB-crystallin, human HSP27, bovine native alpha-crystallin, and the complex of alphaB-crystallin and unfolded alpha-lactalbumin. Gel-filtration chromatography indicated that HSP16.5 is the most monodisperse, while HSP27 and the alpha-crystallin assemblies are more polydisperse. Particle images revealed a similar trend showing mostly regular and symmetric assemblies for HSP16.5 particles and the most irregular assemblies with a wide range of diameters for HSP27. A symmetry test on the particle images indicated stronger octahedral symmetry for HSP16.5 than for HSP27 or the alpha-crystallin assemblies. A single particle reconstruction of HSP16.5, based on 5772 particle images with imposed octahedral symmetry, resulted in a structure that closely matched the crystal structure. In addition, the cryo-EM reconstruction revealed internal density presumably corresponding to the flexible 32 N-terminal residues that were not observed in the crystal structure. The N termini were found to partially fill the central cavity making it unlikely that HSP16.5 sequesters denatured proteins in the cavity. A reconstruction calculated without imposed symmetry confirmed the presence of at least loose octahedral symmetry for HSP16.5 in contrast to the other sHSPs examined, which displayed no clear overall symmetry. Asymmetric reconstructions for the alpha-crystallin assemblies, with an additional mass selection step during image processing, resulted in lower resolution structures. We interpret the alpha-crystallin reconstructions to be average representations of variable assemblies and suggest that the resolutions achieved indicate the degree of variability. Quaternary structural information derived from cryo-electron microscopy is related to recent EPR studies of the alpha-crystallin domain fold and dimer interface of alphaA-crystallin.
Collapse
Affiliation(s)
- D A Haley
- Department of Molecular and Medical Pharmacology and Crump Institute for Biological Imaging, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
632
|
Abstract
MJ0968 has been proposed to be an ancestor of P-type ATPase, because its primary structure is highly homologous to that of the core catalytic domain of P-type ATPase. However it completely lacks amino acid sequences that possibly constitute transmembrane domains. To examine if MJ0968 is indeed a P-type ATPase, it was overexpressed in Escherichia coli and purified. It did show ATPase activity, autophosphorylation and inhibition by vanadate. All these properties support the idea that MJ0968 is indeed a soluble P-type ATPase.
Collapse
Affiliation(s)
- H Ogawa
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, Japan
| | | | | |
Collapse
|
633
|
Lindner RA, Carver JA, Ehrnsperger M, Buchner J, Esposito G, Behlke J, Lutsch G, Kotlyarov A, Gaestel M. Mouse Hsp25, a small shock protein. The role of its C-terminal extension in oligomerization and chaperone action. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:1923-32. [PMID: 10727931 DOI: 10.1046/j.1432-1327.2000.01188.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Under conditions of cellular stress, small heat shock proteins (sHsps), e.g. Hsp25, stabilize unfolding proteins and prevent their precipitation from solution. 1H NMR spectroscopy has shown that mammalian sHsps possess short, polar and highly flexible C-terminal extensions. A mutant of mouse Hsp25 without this extension has been constructed. CD spectroscopy reveals some differences in secondary and tertiary structure between this mutant and the wild-type protein but analytical ultracentrifugation and electron microscopy show that the proteins have very similar oligomeric masses and quaternary structures. The mutant shows chaperone ability comparable to that of wild-type Hsp25 in a thermal aggregation assay using citrate synthase, but does not stabilize alpha-lactalbumin against precipitation following reduction with dithiothreitol. The accessible hydrophobic surface of the mutant protein is less than that of the wild-type protein and the mutant is also less stable at elevated temperature. 1H NMR spectroscopy reveals that deletion of the C-terminal extension of Hsp25 leads to induction of extra C-terminal flexibility in the molecule. Monitoring complex formation between Hsp25 and dithiothreitol-reduced alpha-lactalbumin by 1H NMR spectroscopy indicates that the C-terminal extension of Hsp25 retains its flexibility during this interaction. Overall, these data suggest that a highly flexible C-terminal extension in mammalian sHsps is required for full chaperone activity.
Collapse
Affiliation(s)
- R A Lindner
- Department of Chemistry, University of Wollongong, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
634
|
Mandal K, Dillon J, Gaillard ER. Heat and concentration effects on the small heat shock protein, alpha-crystallin. Photochem Photobiol 2000; 71:470-5. [PMID: 10824600 DOI: 10.1562/0031-8655(2000)071<0470:haceot>2.0.co;2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
alpha-Crystallin, a major protein of the mammalian lens, plays a vital role in maintaining the structural stability and transparency of the lens. It performs this function through chaperone-like activity; it has recently been reported that heating alpha-crystallin enhances this ability. The present studies, using both time-resolved and steady-state fluorescence methods, were carried out to compare the conformational changes that result from heating with those that result from increasing protein concentration (up to 70 mg/mL). The relative fluorescence quantum yield from tryptophan (Trp) present in alpha-crystallin increases and then decreases with a concomitant shift of the emission maximum to longer wavelengths when either heating times or protein concentrations are increased. The time profile of fluorescence decay was resolved into three components with lifetimes of ca 0.5, 3 and 7 ns and emission maxima of ca 340, 342 and 350 nm, respectively. With longer heating time or increasing concentrations the contribution from the longer-lived component increases at the expense of the shorter-lived species. These data indicate that with heating or at higher concentrations the internal Trp residues move to the surface of the protein giving a more hydrophobic exterior and possibly explain the reported increased chaperone activity upon heating. As a result of the concentration studies, alpha-crystallin may be more efficient in its chaperone activity in vivo than has been determined by in vitro experiments.
Collapse
Affiliation(s)
- K Mandal
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | | | | |
Collapse
|
635
|
Ding L, Candido EP. HSP25, a small heat shock protein associated with dense bodies and M-lines of body wall muscle in Caenorhabditis elegans. J Biol Chem 2000; 275:9510-7. [PMID: 10734099 DOI: 10.1074/jbc.275.13.9510] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
HSP25, a previously uncharacterized member of the alpha-crystallin family of small heat shock proteins in Caenorhabditis elegans, has been examined using biochemical and immunological techniques. HSP25 is the second largest of 16 identifiable small heat shock proteins in the nematode and is expressed at all developmental stages under normal growth conditions. Recombinant HSP25 produced in Escherichia coli exists predominantly as small oligomers (dimers to tetramers) and possesses chaperone activity against citrate synthase in vitro. In C. elegans, HSP25 is localized to dense bodies and M-lines in body wall muscle, to the lining of the pharynx, and to the junctions between cells of the spermathecal wall. Affinity chromatography of nematode extracts on a column of immobilized HSP25 resulted in specific binding of vinculin and alpha-actinin but not actin, as revealed by Western blotting. These results suggest a role for HSP25 in the organization or maintenance of the myofilament lattice and adherens junctions in C. elegans.
Collapse
Affiliation(s)
- L Ding
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | |
Collapse
|
636
|
Sharma KK, Kumar RS, Kumar GS, Quinn PT. Synthesis and characterization of a peptide identified as a functional element in alphaA-crystallin. J Biol Chem 2000; 275:3767-71. [PMID: 10660525 DOI: 10.1074/jbc.275.6.3767] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eye lens alpha-crystallin is a member of the small heat shock protein (sHSP) family and forms large multimeric structures. Earlier studies have shown that it can act like a molecular chaperone and form a stable complex with partially unfolded proteins. We have observed that prior binding of the hydrophobic protein melittin to alpha-crystallin diminishes its chaperone-like activity toward denaturing alcohol dehydrogenase, suggesting the presence of mutually exclusive sites for these proteins in alpha-crystallin. To investigate the mechanism of the interaction between alpha-crystallin and substrate proteins, we determined the melittin-binding sites in alpha-crystallin by cross-linking studies. Localization of melittin-binding sites in alpha-crystallin resulted in the identification of RTLGPFYPSR and FVIFLDVKHFSPEDLTVK of alphaA-crystallin and FSVNLDVK of alphaB-crystallin as the chaperone sites. Of these sites, FVIFLDVKHFSPEDLTVK and FSVNLDVK were identified earlier as 1,1'-bi(4-anilino) naphthalene-5,5'-disulfonic acid (bis-ANS)-binding hydrophobic sites. Here we also report the synthesis and characterization of the peptide, KFVIFLDVKHFSPEDLTVK, having the melittin as well as bis-ANS-binding sequence of alphaA-crystallin. We show that this peptide has characteristics similar to that of alphaA-crystallin by in vitro thermal aggregation assay, gel filtration study, CD spectroscopy, and bis-ANS interaction studies. The peptide sequence corresponds to the beta3 and beta4 region present in the alpha-crystallin domain of sHSP 16.5. We hypothesize that the alpha-crystallin domain in other sHSPs may have a similar function and would likely possess the anti-aggregation property even when separated from the native protein.
Collapse
Affiliation(s)
- K K Sharma
- Mason Eye Institute, Department of Ophthalmology, University of Missouri, Columbia, Missouri, 65212, USA.
| | | | | | | |
Collapse
|
637
|
Abstract
The elevated expression of stress proteins is considered to be a universal response to adverse conditions, representing a potential mechanism of cellular defense against disease and a potential target for novel therapeutics, including gene therapy and chaperone-modulating reagents. Recently, a single mutation in the small heat-shock protein human alphaB-crystallin was linked to desmin-related myopathy, which is characterized by abnormal intracellular aggregates of intermediate filaments in human muscle. New findings demonstrate that the high level of expression of stress proteins can contribute to an autoimmune response and can protect proteins that contribute to disease processes.
Collapse
Affiliation(s)
- J I Clark
- 357420 Biological Structure and Ophthalmology, University of Washington, Seattle, WA 98195-7420, USA.
| | | |
Collapse
|
638
|
Abstract
The alpha-crystallins account for approximately one-third of the total soluble protein in the lens, contributing to its refractive power. In addition, alpha-crystallin also has a chaperone-like function and thus can bind unfolding lens proteins. Alpha B-crystallin is also found outside the lens, having an extensive tissue distribution. It is over-expressed in response to stresses of all kinds, where it is thought to serve a general protective function. Recently, it has been shown in humans that naturally occurring point mutations in the alpha-crystallins result in a deficit in chaperone-like function, and cause cataracts as well as a desmin-related myopathy. This review summarizes much of the past and current knowledge concerning the structure and functions of alpha-crystallin.
Collapse
Affiliation(s)
- J Horwitz
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
639
|
Bova MP, McHaourab HS, Han Y, Fung BK. Subunit exchange of small heat shock proteins. Analysis of oligomer formation of alphaA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. J Biol Chem 2000; 275:1035-42. [PMID: 10625643 DOI: 10.1074/jbc.275.2.1035] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
alphaA-Crystallin, a member of the small heat shock protein (sHsp) family, is a large multimeric protein composed of 30-40 identical subunits. Its quaternary structure is highly dynamic, with subunits capable of freely and rapidly exchanging between oligomers. We report here the development of a fluorescence resonance energy transfer method for measuring structural compatibility between alphaA-crystallin and other proteins. We found that Hsp27 and alphaB-crystallin readily exchanged with fluorescence-labeled alphaA-crystallin, but not with other proteins structurally unrelated to sHsps. Truncation of 19 residues from the N terminus or 10 residues from the C terminus of alphaA-crystallin did not significantly change its subunit organization or exchange rate constant. In contrast, removal of the first 56 or more residues converts alphaA-crystallin into a predominantly small multimeric form consisting of three or four subunits, with a concomitant loss of exchange activity. These findings suggest residues 20-56 are essential for the formation of large oligomers and the exchange of subunits. Similar results were obtained with truncated Hsp27 lacking the first 87 residues. We further showed that the exchange rate is independent of alphaA-crystallin concentration, suggesting subunit dissociation may be the rate-limiting step in the exchange reaction. Our findings reveal a quarternary structure of alphaA-crystallin, consisting of small multimers of alphaA-crystallin subunits in a dynamic equilibrium with the oligomeric complex.
Collapse
Affiliation(s)
- M P Bova
- Jules Stein Eye Institute, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | | | |
Collapse
|
640
|
Ganea E, Harding JJ. alpha-crystallin protects glucose 6-phosphate dehydrogenase against inactivation by malondialdehyde. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1500:49-58. [PMID: 10564717 DOI: 10.1016/s0925-4439(99)00087-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present work investigates the effect of malondialdehyde (MDA) binding on the enzymic activity and on some structural properties of glucose 6-phosphate dehydrogenase (G6PD). We studied whether alpha-crystallin could protect the enzyme against MDA damage, and if so, by what mechanism. We also studied whether alpha-crystallin could renature G6PD denatured by MDA. alpha-Crystallin was prepared from bovine lenses by gel chromatography. MDA was freshly prepared and incubated with G6PD with or without alpha-crystallin. The results show that MDA reacted with G6PD non-enzymically causing inactivation at concentrations lower than those used previously on structural proteins. The modified enzyme became fluorescent. alpha-Crystallin, acting as a molecular chaperone, specifically protected the enzyme against inactivation by MDA. The enzyme was not reactivated by alpha-crystallin, but it was stabilised and protected against further denaturation. Complex formation between alpha-crystallin and the modified enzyme was demonstrated by immunoprecipitation. G6PD was very susceptible to MDA and we have shown for the first time that alpha-crystallin is able to protect the enzyme against this damage.
Collapse
Affiliation(s)
- E Ganea
- Nuffield Laboratory of Ophthalmology, University of Oxford, Walton Street, Oxford, UK
| | | |
Collapse
|
641
|
Waters ER, Vierling E. Chloroplast small heat shock proteins: evidence for atypical evolution of an organelle-localized protein. Proc Natl Acad Sci U S A 1999; 96:14394-9. [PMID: 10588716 PMCID: PMC24447 DOI: 10.1073/pnas.96.25.14394] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/1999] [Indexed: 11/18/2022] Open
Abstract
Knowledge of the origin and evolution of gene families is critical to our understanding of the evolution of protein function. To gain a detailed understanding of the evolution of the small heat shock proteins (sHSPs) in plants, we have examined the evolutionary history of the chloroplast (CP)-localized sHSPs. Previously, these nuclear-encoded CP proteins had been identified only from angiosperms. This study reveals the presence of the CP sHSPs in a moss, Funaria hygrometrica. Two clones for CP sHSPs were isolated from a F. hygrometrica heat shock cDNA library that represent two distinct CP sHSP genes. Our analysis of the CP sHSPs reveals unexpected evolutionary relationships and patterns of sequence conservation. Phylogenetic analysis of the CP sHSPs with other plant CP sHSPs and eukaryotic, archaeal, and bacterial sHSPs shows that the CP sHSPs are not closely related to the cyanobacterial sHSPs. Thus, they most likely evolved via gene duplication from a nuclear-encoded cytosolic sHSP and not via gene transfer from the CP endosymbiont. Previous sequence analysis had shown that all angiosperm CP sHSPs possess a methionine-rich region in the N-terminal domain. The primary sequence of this region is not highly conserved in the F. hygrometrica CP sHSPs. This lack of sequence conservation indicates that sometime in land plant evolution, after the divergence of mosses from the common ancestor of angiosperms but before the monocot-dicot divergence, there was a change in the selective constraints acting on the CP sHSPs.
Collapse
Affiliation(s)
- E R Waters
- Department of Biology, Marquette University, Milwaukee, WI 53201-1881, USA.
| | | |
Collapse
|
642
|
Macario AJ, Lange M, Ahring BK, Conway de Macario E. Stress genes and proteins in the archaea. Microbiol Mol Biol Rev 1999; 63:923-67, table of contents. [PMID: 10585970 PMCID: PMC98981 DOI: 10.1128/mmbr.63.4.923-967.1999] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The field covered in this review is new; the first sequence of a gene encoding the molecular chaperone Hsp70 and the first description of a chaperonin in the archaea were reported in 1991. These findings boosted research in other areas beyond the archaea that were directly relevant to bacteria and eukaryotes, for example, stress gene regulation, the structure-function relationship of the chaperonin complex, protein-based molecular phylogeny of organisms and eukaryotic-cell organelles, molecular biology and biochemistry of life in extreme environments, and stress tolerance at the cellular and molecular levels. In the last 8 years, archaeal stress genes and proteins belonging to the families Hsp70, Hsp60 (chaperonins), Hsp40(DnaJ), and small heat-shock proteins (sHsp) have been studied. The hsp70(dnaK), hsp40(dnaJ), and grpE genes (the chaperone machine) have been sequenced in seven, four, and two species, respectively, but their expression has been examined in detail only in the mesophilic methanogen Methanosarcina mazei S-6. The proteins possess markers typical of bacterial homologs but none of the signatures distinctive of eukaryotes. In contrast, gene expression and transcription initiation signals and factors are of the eucaryal type, which suggests a hybrid archaeal-bacterial complexion for the Hsp70 system. Another remarkable feature is that several archaeal species in different phylogenetic branches do not have the gene hsp70(dnaK), an evolutionary puzzle that raises the important question of what replaces the product of this gene, Hsp70(DnaK), in protein biogenesis and refolding and for stress resistance. Although archaea are prokaryotes like bacteria, their Hsp60 (chaperonin) family is of type (group) II, similar to that of the eukaryotic cytosol; however, unlike the latter, which has several different members, the archaeal chaperonin system usually includes only two (in some species one and in others possibly three) related subunits of approximately 60 kDa. These form, in various combinations depending on the species, a large structure or chaperonin complex sometimes called the thermosome. This multimolecular assembly is similar to the bacterial chaperonin complex GroEL/S, but it is made of only the large, double-ring oligomers each with eight (or nine) subunits instead of seven as in the bacterial complex. Like Hsp70(DnaK), the archaeal chaperonin subunits are remarkable for their evolution, but for a different reason. Ubiquitous among archaea, the chaperonins show a pattern of recurrent gene duplication-hetero-oligomeric chaperonin complexes appear to have evolved several times independently. The stress response and stress tolerance in the archaea involve chaperones, chaperonins, other heat shock (stress) proteins including sHsp, thermoprotectants, the proteasome, as yet incompletely understood thermoresistant features of many molecules, and formation of multicellular structures. The latter structures include single- and mixed-species (bacterial-archaeal) types. Many questions remain unanswered, and the field offers extraordinary opportunities owing to the diversity, genetic makeup, and phylogenetic position of archaea and the variety of ecosystems they inhabit. Specific aspects that deserve investigation are elucidation of the mechanism of action of the chaperonin complex at different temperatures, identification of the partners and substitutes for the Hsp70 chaperone machine, analysis of protein folding and refolding in hyperthermophiles, and determination of the molecular mechanisms involved in stress gene regulation in archaeal species that thrive under widely different conditions (temperature, pH, osmolarity, and barometric pressure). These studies are now possible with uni- and multicellular archaeal models and are relevant to various areas of basic and applied research, including exploration and conquest of ecosystems inhospitable to humans and many mammals and plants.
Collapse
Affiliation(s)
- A J Macario
- Wadsworth Center, New York State Department of Health, and Department of Biomedical Sciences, School of Public Health, The University at Albany, Albany, New York 12201-0509, USA
| | | | | | | |
Collapse
|
643
|
Liang JJ, Sun TX, Akhtar NJ. Spectral contribution of the individual tryptophan of alphaB-crystallin: a study by site-directed mutagenesis. Protein Sci 1999; 8:2761-4. [PMID: 10631993 PMCID: PMC2144234 DOI: 10.1110/ps.8.12.2761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
There are two tryptophan residues in the lens alphaB-crystallin, Trp9 and Trp60. We prepared two Trp --> Phe substituted mutants, W9F and W60F, for use in a spectroscopic study. The two tryptophan residues contribute to Trp fluorescence and near-ultraviolet circular dichroism (UV CD) differently. The major difference in the near-UV CD is the contribution of 1La of Trp: it is positive in W60F but becomes negative in W9F. Further analysis of the near-UV CD shows an increased intensity in the region of 270-280 nm for W60F, suggesting that the Tyr48 is affected by the W60F mutation. It appears that Trp60 is located in a more rigid environment than Trp9, which agrees with a recent structural model in which Trp60 is in a beta-strand.
Collapse
Affiliation(s)
- J J Liang
- Center for Ophthalmic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
644
|
Sun TX, Akhtar NJ, Liang JJ. Thermodynamic stability of human lens recombinant alphaA- and alphaB-crystallins. J Biol Chem 1999; 274:34067-71. [PMID: 10567374 DOI: 10.1074/jbc.274.48.34067] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Lens alpha-crystallin is a 600-800-kDa heterogeneous oligomer protein consisting of two subunits, alphaA and alphaB. The homogeneous oligomers (alphaA- and alphaB-crystallins) have been prepared by recombinant DNA technology and shown to differ in the following biophysical/biochemical properties: hydrophobicity, chaperone-like activity, subunit exchange rate, and thermal stability. In this study, we studied their thermodynamic stability by unfolding in guanidine hydrochloride. The unfolding was probed by three spectroscopic parameters: absorbance at 235 nm, Trp fluorescence intensity at 320 nm, and far-UV circular dichroism at 223 nm. Global analysis indicated that a three-state model better describes the unfolding behavior than a two-state model, an indication that there are stable intermediates for both alphaA- and alphaB-crystallins. In terms of standard free energy (DeltaG(NU)(H(2)(O))), alphaA-crystallin is slightly more stable than alphaB-crystallin. The significance of the intermediates may be related to the functioning of alpha-crystallins as chaperone-like molecules.
Collapse
Affiliation(s)
- T X Sun
- Center for Ophthalmic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
645
|
Koteiche HA, Mchaourab HS. Folding pattern of the alpha-crystallin domain in alphaA-crystallin determined by site-directed spin labeling. J Mol Biol 1999; 294:561-77. [PMID: 10610780 DOI: 10.1006/jmbi.1999.3242] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The folding pattern of the alpha-crystallin domain, a conserved protein module encoding the molecular determinants of structure and function in the small heat-shock protein superfamily, was determined in the context of the lens protein alphaA-crystallin by systematic application of site-directed spin labeling. The sequence-specific secondary structure was assigned primarily from nitroxide scanning experiments in which the solvent accessibility and mobility of a nitroxide probe were measured as a function of residue number. Seven beta-strands were identified and their orientation relative to the aqueous solvent determined, thus defining the residues lining the hydrophobic core. The pairwise packing of adjacent strands in the primary structure was deduced from patterns of proximities in nitroxide pairs with one member on the exposed surface of each strand. In addition to identifying supersecondary structures, these proximities revealed that the seven strands are arranged in two beta-sheets. The overall packing of the two sheets was determined by application of the general rules of protein structure and from proximities in nitroxide pairs designed to distinguish between known all beta-sheet folds. Our data are consistent with an immunoglobulin-like fold consisting of two aligned beta-sheets. Comparison of this folding pattern to that of the evolutionary distant alpha-crystallin domain in Methanococcus jannaschii heat-shock protein 16.5 reveals a conserved core structure with the differences sequestered at one edge of the beta-sandwich. A beta-strand deletion in alphaA-crystallin disrupts a subunit interface and allows for a different dimerization motif. Putative substrate binding regions appear to include a buried loop and a buried turn, suggesting that the chaperone function involves a disassembly of the oligomer.
Collapse
Affiliation(s)
- H A Koteiche
- Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
646
|
Perng MD, Muchowski PJ, van Den IJssel P, Wu GJ, Hutcheson AM, Clark JI, Quinlan RA. The cardiomyopathy and lens cataract mutation in alphaB-crystallin alters its protein structure, chaperone activity, and interaction with intermediate filaments in vitro. J Biol Chem 1999; 274:33235-43. [PMID: 10559197 DOI: 10.1074/jbc.274.47.33235] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Desmin-related myopathy and cataract are both caused by the R120G mutation in alphaB-crystallin. Desmin-related myopathy is one of several diseases characterized by the coaggregation of intermediate filaments with alphaB-crystallin, and it identifies intermediate filaments as important physiological substrates for alphaB-crystallin. Using recombinant human alphaB-crystallin, the effects of the disease-causing mutation R120G upon the structure and the chaperone activities of alphaB-crystallin are reported. The secondary, tertiary, and quaternary structural features of alphaB-crystallin are all altered by the mutation as deduced by near- and far-UV circular dichroism spectroscopy, size exclusion chromatography, and chymotryptic digestion assays. The R120G alphaB-crystallin is also less stable than wild type alphaB-crystallin to heat-induced denaturation. These structural changes coincide with a significant reduction in the in vitro chaperone activity of the mutant alphaB-crystallin protein, as assessed by temperature-induced protein aggregation assays. The mutation also significantly altered the interaction of alphaB-crystallin with intermediate filaments. It abolished the ability of alphaB-crystallin to prevent those filament-filament interactions required to induce gel formation while increasing alphaB-crystallin binding to assembled intermediate filaments. These activities are closely correlated to the observed disease pathologies characterized by filament aggregation accompanied by alphaB-crystallin binding. These studies provide important insight into the mechanism of alphaB-crystallin-induced aggregation of intermediate filaments that causes disease.
Collapse
Affiliation(s)
- M D Perng
- Department of Biochemistry, Medical Science Institute, The University, Dundee DD1 5EH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
647
|
Young LS, Yeh CH, Chen YM, Lin CY. Molecular characterization of Oryza sativa 16.9 kDa heat shock protein. Biochem J 1999; 344 Pt 1:31-8. [PMID: 10548530 PMCID: PMC1220610 DOI: 10.1042/0264-6021:3440031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A rice class I low-molecular-mass heat shock protein (LMM HSP) Oshsp 16.9 was overexpressed in Escherichia coli. Oligomerized complexes of Oshsp16.9 were harvested and electron microscopic observations of purified complexes revealed globular structures of 10-20 nm in diameter (with majority of 15-18 nm) and calculated to comprise approx. 12 monomers per complex. In comparison, complexes from native rice class I LMM HSPs were observed as larger ellipsoid- or globular-like random aggregated hetero-oligomers. To characterize the biochemical functions of the hydrophobic N-terminal region of Oshsp16.9, a truncation in the N-terminal region was constructed and introduced into E. coli. Results showed that the N-terminal truncated Oshsp16.9 mutant was capable of forming complexes similar to the full-length Oshsp16.9; however, the deletion protein failed to confer in vitro protein thermostability under elevated temperatures. Protein assays from in vivo treatments at higher temperatures exhibited that non-specific interactions of E. coli cellular proteins only occurred with full-length Oshsp16.9 complexes but not with the mutant complex. In vitro immunoprecipitation of cellular proteins from E. coli overexpressing full-length Oshsp16.9 showed that interactions between plant LMM HSP and E. coli cellular proteins are temperature-dependent. Taken together, the hydrophobic N-terminal region of rice class I LMM HSP is critical in the ability of the protein to interact/bind with its potential substrates.
Collapse
Affiliation(s)
- L S Young
- Department of Botany, National Taiwan University, Taipei, 106, Taiwan, R.O.C
| | | | | | | |
Collapse
|
648
|
Abstract
Association-seeking surfaces on partially structured polypeptides can participate in interactions that are either intramolecular (folding related) or intermolecular (aggregative). During heat shock, intermolecular associations leading to aggregation are prevented through the binding of such surfaces by chaperones of the Hsp20 family (with Hsp70 later effecting release and refolding). Here we report that the hydrophobic dye, 8-anilino-1-naphthalenesulfonate (ANS), mimics the function of the chaperones in its interactions with molten carbonic anhydrase (CA). At 150-fold molar excess of dye over protein, heat-induced aggregation of CA is almost completely inhibited by binding of ANS to solvent-exposed clusters of nonpolar residues. After exposure of ANS-containing protein solutions to temperatures as high as 95 degrees C, refolded CA can be recovered through cooling and dialysis, with no accompanying aggregation. This apparent mimicking of chaperone activity by a small dye opens up new approaches to understanding and manipulating protein aggregation.
Collapse
Affiliation(s)
- B Kundu
- Protein Science & Engineering, Institute of Microbial Technology, Chandigarh, India
| | | |
Collapse
|
649
|
Gustavsson N, Härndahl U, Emanuelsson A, Roepstorff P, Sundby C. Methionine sulfoxidation of the chloroplast small heat shock protein and conformational changes in the oligomer. Protein Sci 1999; 8:2506-12. [PMID: 10595556 PMCID: PMC2144199 DOI: 10.1110/ps.8.11.2506] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The small heat shock proteins (sHsps), which counteract heat and oxidative stress in an unknown way, belong to a protein family of sHsps and alpha-crystallins whose members form large oligomeric complexes. The chloroplast-localized sHsp, Hsp21, contains a conserved methionine-rich sequence, predicted to form an amphipatic helix with the methionines situated along one of its sides. Here, we report how methionine sulfoxidation was detected by mass spectrometry in proteolytically cleaved peptides that were produced from recombinant Arabidopsis thaliana Hsp21, which had been treated with varying concentrations of hydrogen peroxide. Sulfoxidation of the methionine residues in the conserved amphipatic helix coincided with a significant conformational change in the Hsp21 protein oligomer.
Collapse
Affiliation(s)
- N Gustavsson
- Department of Biochemistry, Lund University, Sweden
| | | | | | | | | |
Collapse
|
650
|
Muchowski PJ, Hays LG, Yates JR, Clark JI. ATP and the core "alpha-Crystallin" domain of the small heat-shock protein alphaB-crystallin. J Biol Chem 1999; 274:30190-5. [PMID: 10514509 DOI: 10.1074/jbc.274.42.30190] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Electrospray ionization mass spectrometry (ESI-LC/MS) of tryptic digests of human alphaB-crystallin in the presence and absence of ATP identified four residues located within the core "alpha-crystallin" domain, Lys(82), Lys(103), Arg(116), and Arg(123), that were shielded from the action of trypsin in the presence of ATP. In control experiments, chymotrypsin was used in place of trypsin. The chymotryptic fragments of human alphaB-crystallin produced in the presence and absence of ATP were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Seven chymotryptic cleavage sites, Trp(60), Phe(61), Phe(75), Phe(84), Phe(113), Phe(118), and Tyr(122), located near or within the core alpha-crystallin domain, were shielded from the action of chymotrypsin in the presence of ATP. Chemically similar analogs of ATP were less protective than ATP against proteolysis by trypsin or chymotrypsin. ATP had no effect on the enzymatic activity of trypsin and the K(m) for trypsin was 0.031 mM in the presence of ATP and 0.029 mM in the absence of ATP. The results demonstrated an ATP-dependent structural modification in the core alpha-crystallin domain conserved in nearly all identified small heat-shock proteins that act as molecular chaperones.
Collapse
Affiliation(s)
- P J Muchowski
- Department of Biological Structure, University of Washington, Seattle, Washington 98195-7420, USA
| | | | | | | |
Collapse
|