601
|
Yosef N, Regev A. Impulse control: temporal dynamics in gene transcription. Cell 2011; 144:886-96. [PMID: 21414481 DOI: 10.1016/j.cell.2011.02.015] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 02/08/2011] [Accepted: 02/08/2011] [Indexed: 12/31/2022]
Abstract
Regulatory circuits controlling gene expression constantly rewire to adapt to environmental stimuli, differentiation cues, and disease. We review our current understanding of the temporal dynamics of gene expression in eukaryotes and prokaryotes and the molecular mechanisms that shape them. We delineate several prototypical temporal patterns, including "impulse" (or single-pulse) patterns in response to transient environmental stimuli, sustained (or state-transitioning) patterns in response to developmental cues, and oscillating patterns. We focus on impulse responses and their higher-order temporal organization in regulons and cascades and describe how core protein circuits and cis-regulatory sequences in promoters integrate with chromatin architecture to generate these responses.
Collapse
Affiliation(s)
- Nir Yosef
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
602
|
Li R, Ackerman WE, Summerfield TL, Yu L, Gulati P, Zhang J, Huang K, Romero R, Kniss DA. Inflammatory gene regulatory networks in amnion cells following cytokine stimulation: translational systems approach to modeling human parturition. PLoS One 2011; 6:e20560. [PMID: 21655103 PMCID: PMC3107214 DOI: 10.1371/journal.pone.0020560] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 05/05/2011] [Indexed: 11/18/2022] Open
Abstract
A majority of the studies examining the molecular regulation of human labor have been conducted using single gene approaches. While the technology to produce multi-dimensional datasets is readily available, the means for facile analysis of such data are limited. The objective of this study was to develop a systems approach to infer regulatory mechanisms governing global gene expression in cytokine-challenged cells in vitro, and to apply these methods to predict gene regulatory networks (GRNs) in intrauterine tissues during term parturition. To this end, microarray analysis was applied to human amnion mesenchymal cells (AMCs) stimulated with interleukin-1β, and differentially expressed transcripts were subjected to hierarchical clustering, temporal expression profiling, and motif enrichment analysis, from which a GRN was constructed. These methods were then applied to fetal membrane specimens collected in the absence or presence of spontaneous term labor. Analysis of cytokine-responsive genes in AMCs revealed a sterile immune response signature, with promoters enriched in response elements for several inflammation-associated transcription factors. In comparison to the fetal membrane dataset, there were 34 genes commonly upregulated, many of which were part of an acute inflammation gene expression signature. Binding motifs for nuclear factor-κB were prominent in the gene interaction and regulatory networks for both datasets; however, we found little evidence to support the utilization of pathogen-associated molecular pattern (PAMP) signaling. The tissue specimens were also enriched for transcripts governed by hypoxia-inducible factor. The approach presented here provides an uncomplicated means to infer global relationships among gene clusters involved in cellular responses to labor-associated signals.
Collapse
Affiliation(s)
- Ruth Li
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research,
Department of Obstetrics and Gynecology, The Ohio State University, Columbus,
Ohio, United States of America
| | - William E. Ackerman
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research,
Department of Obstetrics and Gynecology, The Ohio State University, Columbus,
Ohio, United States of America
| | - Taryn L. Summerfield
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research,
Department of Obstetrics and Gynecology, The Ohio State University, Columbus,
Ohio, United States of America
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, Ohio,
United States of America
| | - Parul Gulati
- Center for Biostatistics, The Ohio State University, Columbus, Ohio,
United States of America
| | - Jie Zhang
- Department of Biomedical Informatics, The Ohio State University,
Columbus, Ohio, United States of America
| | - Kun Huang
- Department of Biomedical Informatics, The Ohio State University,
Columbus, Ohio, United States of America
| | - Roberto Romero
- Perinatology Research Branch, Intramural Division, Eunice Kennedy Shriver
National Institute of Child Health and Human Development, National Institutes of
Health, Department of Health and Human Services, Bethesda, Maryland, United
States of America
- Hutzel Women's Hospital, Detroit, Michigan, United States of
America
| | - Douglas A. Kniss
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research,
Department of Obstetrics and Gynecology, The Ohio State University, Columbus,
Ohio, United States of America
- Department of Biomedical Engineering, The Ohio State University,
Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
603
|
Jung KH, Song YM, Das ND, Park KS, Choi MR, Hwang SY, Lee EK, Lee MK, Choo J, Kim KS, Kim MS, Lee SR, Chai YG. Real-time detection of cellular apoptosis using a rat C6 glioma cell-based assay system. Mol Cell Toxicol 2011. [DOI: 10.1007/s13273-011-0024-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
604
|
Sin MLY, Gao J, Liao JC, Wong PK. System Integration - A Major Step toward Lab on a Chip. J Biol Eng 2011; 5:6. [PMID: 21612614 PMCID: PMC3117764 DOI: 10.1186/1754-1611-5-6] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/25/2011] [Indexed: 02/08/2023] Open
Abstract
Microfluidics holds great promise to revolutionize various areas of biological engineering, such as single cell analysis, environmental monitoring, regenerative medicine, and point-of-care diagnostics. Despite the fact that intensive efforts have been devoted into the field in the past decades, microfluidics has not yet been adopted widely. It is increasingly realized that an effective system integration strategy that is low cost and broadly applicable to various biological engineering situations is required to fully realize the potential of microfluidics. In this article, we review several promising system integration approaches for microfluidics and discuss their advantages, limitations, and applications. Future advancements of these microfluidic strategies will lead toward translational lab-on-a-chip systems for a wide spectrum of biological engineering applications.
Collapse
Affiliation(s)
- Mandy LY Sin
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Jian Gao
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA
- Department of Chemical Engineering, Shandong Polytechnic University, Jinan, 250353, China
| | - Joseph C Liao
- Department of Urology, Stanford University, 300 Pasteur Drive, S-287, Stanford, CA 94305, USA
| | - Pak Kin Wong
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA
- Biomedical Engineering and Bio5 Institute, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
605
|
Selvarajoo K. Macroscopic law of conservation revealed in the population dynamics of Toll-like receptor signaling. Cell Commun Signal 2011; 9:9. [PMID: 21507223 PMCID: PMC3103489 DOI: 10.1186/1478-811x-9-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 04/20/2011] [Indexed: 11/23/2022] Open
Abstract
Stimulating the receptors of a single cell generates stochastic intracellular signaling. The fluctuating response has been attributed to the low abundance of signaling molecules and the spatio-temporal effects of diffusion and crowding. At population level, however, cells are able to execute well-defined deterministic biological processes such as growth, division, differentiation and immune response. These data reflect biology as a system possessing microscopic and macroscopic dynamics. This commentary discusses the average population response of the Toll-like receptor (TLR) 3 and 4 signaling. Without requiring detailed experimental data, linear response equations together with the fundamental law of information conservation have been used to decipher novel network features such as unknown intermediates, processes and cross-talk mechanisms. For single cell response, however, such simplicity seems far from reality. Thus, as observed in any other complex systems, biology can be considered to possess order and disorder, inheriting a mixture of predictable population level and unpredictable single cell outcomes.
Collapse
Affiliation(s)
- Kumar Selvarajoo
- Institute for Advanced Biosciences, Keio University, Baba-Cho, 14-1, Tsuruoka, Yamagata, 997-0035 Japan.
| |
Collapse
|
606
|
Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL, Webb AI, Rickard JA, Anderton H, Wong WWL, Nachbur U, Gangoda L, Warnken U, Purcell AW, Silke J, Walczak H. Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 2011; 471:591-6. [DOI: 10.1038/nature09816] [Citation(s) in RCA: 701] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 01/11/2011] [Indexed: 01/19/2023]
|
607
|
|
608
|
Young EW, Berthier E, Guckenberger DJ, Sackmann E, Lamers C, Meyvantsson I, Huttenlocher A, Beebe DJ. Rapid prototyping of arrayed microfluidic systems in polystyrene for cell-based assays. Anal Chem 2011; 83:1408-17. [PMID: 21261280 PMCID: PMC3052265 DOI: 10.1021/ac102897h] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Microfluidic cell-based systems have enabled the study of cellular phenomena with improved spatiotemporal control of the microenvironment and at increased throughput. While poly(dimethylsiloxane) (PDMS) has emerged as the most popular material in microfluidics research, it has specific limitations that prevent microfluidic platforms from achieving their full potential. We present here a complete process, ranging from mold design to embossing and bonding, that describes the fabrication of polystyrene (PS) microfluidic devices with similar cost and time expenditures as PDMS-based devices. Emphasis was placed on creating methods that can compete with PDMS fabrication methods in terms of robustness, complexity, and time requirements. To achieve this goal, several improvements were made to remove critical bottlenecks in existing PS embossing methods. First, traditional lithographic techniques were adapted to fabricate bulk epoxy molds capable of resisting high temperatures and pressures. Second, a method was developed to emboss through-holes in a PS layer, enabling creation of large arrays of independent microfluidic systems on a single device without need to manually create access ports. Third, thermal bonding of PS layers was optimized in order to achieve quality bonding over large arrays of microsystems. The choice of materials and methods was validated for biological function in two different cell-based applications to demonstrate the versatility of our streamlined fabrication process.
Collapse
Affiliation(s)
- Edmond W.K. Young
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705
| | - Erwin Berthier
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705
| | - David J. Guckenberger
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705
| | - Eric Sackmann
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705
| | - Casey Lamers
- Bellbrook Labs, 5500 Nobel Drive, Suite 250, Madison, WI 53711
| | | | - Anna Huttenlocher
- Department of Pediatrics, University of Wisconsin-Madison, 4205 Microbial Sciences Building, Madison, WI 53705
| | - David J. Beebe
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705
| |
Collapse
|
609
|
Fallahi-Sichani M, El-Kebir M, Marino S, Kirschner DE, Linderman JJ. Multiscale computational modeling reveals a critical role for TNF-α receptor 1 dynamics in tuberculosis granuloma formation. THE JOURNAL OF IMMUNOLOGY 2011; 186:3472-83. [PMID: 21321109 DOI: 10.4049/jimmunol.1003299] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Multiple immune factors control host responses to Mycobacterium tuberculosis infection, including the formation of granulomas, which are aggregates of immune cells whose function may reflect success or failure of the host to contain infection. One such factor is TNF-α. TNF-α has been experimentally characterized to have the following activities in M. tuberculosis infection: macrophage activation, apoptosis, and chemokine and cytokine production. Availability of TNF-α within a granuloma has been proposed to play a critical role in immunity to M. tuberculosis. However, in vivo measurement of a TNF-α concentration gradient and activities within a granuloma are not experimentally feasible. Further, processes that control TNF-α concentration and activities in a granuloma remain unknown. We developed a multiscale computational model that includes molecular, cellular, and tissue scale events that occur during granuloma formation and maintenance in lung. We use our model to identify processes that regulate TNF-α concentration and cellular behaviors and thus influence the outcome of infection within a granuloma. Our model predicts that TNF-αR1 internalization kinetics play a critical role in infection control within a granuloma, controlling whether there is clearance of bacteria, excessive inflammation, containment of bacteria within a stable granuloma, or uncontrolled growth of bacteria. Our results suggest that there is an interplay between TNF-α and bacterial levels in a granuloma that is controlled by the combined effects of both molecular and cellular scale processes. Finally, our model elucidates processes involved in immunity to M. tuberculosis that may be new targets for therapy.
Collapse
|
610
|
Awais M, Ozawa T. Illuminating intracellular signaling and molecules for single cell analysis. MOLECULAR BIOSYSTEMS 2011; 7:1376-87. [PMID: 21318203 DOI: 10.1039/c0mb00328j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent and bioluminescent proteins are now widely used for detection of small molecules and various intracellular events ranging from protein conformational change to cell death in living cells. To analyze the dynamics of molecular processes in real time at the level of single cells, engineered protein-based probes with higher sensitivity and selectivity are required. The probes can be entirely genetically encoded and can comprise fusions of different proteins or domains. This review specifically examines basic concepts of designing genetically encoded fluorescent and bioluminescent probes developed in the past decade, highlighting some potential applications for basic research and for drug discovery.
Collapse
Affiliation(s)
- Muhammad Awais
- Liverpool NIHR Pancreas Biomedical Research Unit, Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3GA, UK.
| | | |
Collapse
|
611
|
Abstract
Single-cell measurements and lineage-tracing experiments are revealing that phenotypic cell-to-cell variability is often the result of deterministic processes, despite the existence of intrinsic noise in molecular networks. In most cases, this determinism represents largely uncharacterized molecular regulatory mechanisms, which places the study of cell-to-cell variability in the realm of molecular cell biology. Further research in the field will be important to advance quantitative cell biology because it will provide new insights into the mechanisms by which cells coordinate their intracellular activities in the spatiotemporal context of the multicellular environment.
Collapse
Affiliation(s)
- Berend Snijder
- Swiss Federal Institute of Technology (ETH), Institute of Molecular Systems Biology, Wolfgang Pauli-Str. 16, CH-8093 Zürich, Switzerland
| | | |
Collapse
|
612
|
Toettcher JE, Gong D, Lim WA, Weiner OD. Light control of plasma membrane recruitment using the Phy-PIF system. Methods Enzymol 2011; 497:409-23. [PMID: 21601096 DOI: 10.1016/b978-0-12-385075-1.00017-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The ability to control the activity of intracellular signaling processes in live cells would be an extraordinarily powerful tool. Ideally, such an intracellular input would be (i) genetically encoded, (ii) able to be turned on and off in defined temporal or spatial patterns, (iii) fast to switch between on and off states, and (iv) orthogonal to other cellular processes. The light-gated interaction between fragments of two plant proteins--termed Phy and PIF--satisfies each of these constraints. In this system, Phy can be switched between two conformations using red and infrared light, while PIF only binds one of these states. This chapter describes known constraints for designing genetic constructs using Phy and PIF and provides protocols for expressing these constructs in mammalian cells, purifying the small molecule chromophore required for the system's light responsivity, and measuring light-gated binding by microscopy.
Collapse
Affiliation(s)
- Jared E Toettcher
- Cardiovascular Research Institute and Department of Biochemistry, University of California San Francisco, San Francisco, California, USA
| | | | | | | |
Collapse
|
613
|
Mehta S, Zhang J. Reporting from the field: genetically encoded fluorescent reporters uncover signaling dynamics in living biological systems. Annu Rev Biochem 2011; 80:375-401. [PMID: 21495849 PMCID: PMC4384825 DOI: 10.1146/annurev-biochem-060409-093259] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Real-time visualization of a wide range of biochemical processes in living systems is being made possible through the development and application of genetically encoded fluorescent reporters. These versatile biosensors have proven themselves tailor-made to the study of signal transduction, and in this review, we discuss some of the unique insights that they continue to provide regarding the spatial organization and dynamic regulation of intracellular signaling networks. In addition, we explore the more recent push to expand the scope of biological phenomena that can be monitored using these reporters, while also considering the potential to integrate this highly adaptable technology with a number of emerging techniques that may significantly broaden our view of how networks of biochemical processes shape larger biological phenomena.
Collapse
Affiliation(s)
- Sohum Mehta
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Jin Zhang
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Solomon H. Snyder Department of Neuroscience and Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
614
|
Garré JM, Retamal MA, Cassina P, Barbeito L, Bukauskas FF, Sáez JC, Bennett MVL, Abudara V. FGF-1 induces ATP release from spinal astrocytes in culture and opens pannexin and connexin hemichannels. Proc Natl Acad Sci U S A 2010; 107:22659-64. [PMID: 21148774 PMCID: PMC3012468 DOI: 10.1073/pnas.1013793107] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spinal astrocytes are coupled by connexin (Cx) gap junctions and express pannexin 1 (Px1) and purinergic receptors. Fibroblast growth factor 1 (FGF-1), which is released in spinal cord injury, activated spinal astrocytes in culture, induced secretion of ATP, and permeabilized them to relatively large fluorescent tracers [ethidium (Etd) and lucifer yellow (LY)] through "hemichannels" (HCs). HCs can be formed by connexins or pannexins; they can open to extracellular space or can form gap junction (GJ) channels, one HC from each cell. (Pannexins may not form gap junctions in mammalian tissues, but they do in invertebrates). HC types were differentiated pharmacologically and by Px1 knockdown with siRNA and by use of astrocytes from Cx43 knockout mice. Permeabilization was reduced by apyrase (APY), an ATPase, and by P2X(7) receptor antagonists, implicating secretion of ATP and autocrine and/or paracrine action. Increased permeability of cells exposed to FGF-1 or ATP for 2 h was mediated largely by Px1 HCs activated by P2X(7) receptors. After a 7-h treatment, the permeability was mediated by both Cx43 and Px1 HCs. FGF-1 also caused reduction in gap junctional communication. Botulinum neurotoxin A, a blocker of vesicular release, reduced permeabilization when given 30 min before FGF-1 application, but not when given 1 h after FGF-1. We infer that ATP is initially released from vesicles and then it mediates continued release by action on P2X(7) receptors and opening of HCs. These changes in HCs and gap junction channels may promote inflammation and deprive neurons of astrocyte-mediated protection in spinal cord trauma and neurodegenerative disease.
Collapse
Affiliation(s)
- Juan M. Garré
- Facultad de Medicina, Universidad de la República Oriental del Uruguay, C.P. 11800 Montevideo, Uruguay
- The Albert Einstein College of Medicine, Bronx, NY 10461
| | - Mauricio A. Retamal
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
- Núcleo Milenio de Inmunología e Inmunoterapia, Santiago 6513677, Chile
| | - Patricia Cassina
- Facultad de Medicina, Universidad de la República Oriental del Uruguay, C.P. 11800 Montevideo, Uruguay
| | - Luis Barbeito
- Instituto de Investigaciones Biológicas Clemente Estable, C.P. 11600 Montevideo, Uruguay; and
- Institut Pasteur Montevideo, C.P. 11400 Montevideo, Uruguay
| | | | - Juan C. Sáez
- The Albert Einstein College of Medicine, Bronx, NY 10461
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago 6513677, Chile
- Núcleo Milenio de Inmunología e Inmunoterapia, Santiago 6513677, Chile
| | | | - Verónica Abudara
- Facultad de Medicina, Universidad de la República Oriental del Uruguay, C.P. 11800 Montevideo, Uruguay
| |
Collapse
|
615
|
Theoretical modeling techniques and their impact on tumor immunology. Clin Dev Immunol 2010; 2010:271794. [PMID: 21234354 PMCID: PMC3018070 DOI: 10.1155/2010/271794] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/10/2010] [Accepted: 10/11/2010] [Indexed: 01/19/2023]
Abstract
Currently, cancer is one of the leading causes of death in industrial nations. While conventional cancer treatment usually results in the patient suffering from severe side effects, immunotherapy is a promising alternative. Nevertheless, some questions remain unanswered with regard to using immunotherapy to treat cancer hindering it from being widely established. To help rectify this deficit in knowledge, experimental data, accumulated from a huge number of different studies, can be integrated into theoretical models of the tumor-immune system interaction. Many complex mechanisms in immunology and oncology cannot be measured in experiments, but can be analyzed by mathematical simulations. Using theoretical modeling techniques, general principles of tumor-immune system interactions can be explored and clinical treatment schedules optimized to lower both tumor burden and side effects. In this paper, we aim to explain the main mathematical and computational modeling techniques used in tumor immunology to experimental researchers and clinicians. In addition, we review relevant published work and provide an overview of its impact to the field.
Collapse
|
616
|
Lio CWJ, Hsieh CS. Becoming self-aware: the thymic education of regulatory T cells. Curr Opin Immunol 2010; 23:213-9. [PMID: 21146972 DOI: 10.1016/j.coi.2010.11.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 11/22/2010] [Accepted: 11/23/2010] [Indexed: 12/21/2022]
Abstract
The generation of Foxp3(+) regulatory T (Treg) cells in the thymus is essential for immune homeostasis. In the past several years, substantial progress has been made in understanding the mechanisms by which a minor portion of developing thymocytes are selected to become Treg cells. Although previously controversial, recent data support the importance of TCR specificity as a primary determinant for selecting self-reactive thymocytes to become Treg cells in a multi-step process involving cytokines, co-stimulatory molecules, and a variety of antigen-presenting cells. Importantly, the antigenic niche for Treg cell development appears to be typically quite small, implying the recognition of tissue-specific, rather than ubiquitous, self-antigens. Finally, it appears that an NF-κB transcription factor, c-Rel, may be the link between TCR recognition and the induction of Foxp3 expression, which is required for the function and stability of the natural Treg cell population.
Collapse
Affiliation(s)
- Chan-Wang J Lio
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO, USA
| | | |
Collapse
|
617
|
Paszek P, Jackson DA, White MR. Oscillatory control of signalling molecules. Curr Opin Genet Dev 2010; 20:670-6. [PMID: 20850963 DOI: 10.1016/j.gde.2010.08.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 07/23/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
Abstract
The emergence of biological function from the dynamic control of cellular signalling molecules is a fundamental process in biology. Key questions include: How do cells decipher noisy environmental cues, encode these signals to control fate decisions and propagate information through tissues? Recent advances in systems biology, and molecular and cellular biology, exemplified by analyses of signalling via the transcription factor Nuclear Factor kappaB (NF-κB), reveal a critical role of oscillatory control in the regulation of these biological functions. The emerging view is that the oscillatory dynamics of signalling molecules and the epigenetically regulated specificity for target genes contribute to robust regulation of biological function at different levels of cellular organisation through frequency-dependent information encoding.
Collapse
Affiliation(s)
- Pawel Paszek
- Centre for Cell Imaging, School of Biological Sciences, The Biosciences Building, University of Liverpool, Crown St., Liverpool L69 7ZB, UK.
| | | | | |
Collapse
|
618
|
Systems biology approaches to dissect mammalian innate immunity. Curr Opin Immunol 2010; 23:71-7. [PMID: 21111589 DOI: 10.1016/j.coi.2010.10.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 10/29/2010] [Indexed: 01/09/2023]
Abstract
Advances in experimental tools have allowed for the systematic identification of components and biological processes as well as quantification of their activities over time. Together with computational analysis, these measurement and perturbation technologies have given rise to the field of systems biology, which seeks to discover, analyze and model the interactions of physical components in a biological system. Although in its infancy, recent application of this approach has resulted in novel insights into the machinery that regulates and modifies innate immune cell functions. Here, we summarize contributions that have been made through the unbiased interrogation of the mammalian innate immune system, emphasizing the importance of integrating orthogonal datasets into models. To enable application of approaches more broadly, however, a concerted effort across the immunology community to develop reagent and tool platforms will be required.
Collapse
|
619
|
Behar M, Hoffmann A. Understanding the temporal codes of intra-cellular signals. Curr Opin Genet Dev 2010; 20:684-93. [PMID: 20956081 DOI: 10.1016/j.gde.2010.09.007] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/15/2010] [Accepted: 09/15/2010] [Indexed: 01/07/2023]
Abstract
The health of organisms and cells depends on appropriate responses to diverse internal and external cues, stimuli, or challenges, such as changes in hormone or cytokine levels, or exposure to a pathogen. Cellular responses must be tailored to the identity and intensity of the stimulus and therefore intra-cellular signals must carry information about both. However, signaling mediators often form intricate networks that react to multiple stimuli yet manage to produce stimulus-specific responses. The multi-functionality ('functional pleiotropism') of signaling nodes suggests that biological networks have evolved ways of passing physiologically relevant stimulus information through shared channels. Increasing evidence supports the notion that this is achieved in part through temporal regulation of signaling mediators' activities. The present challenge is to identify the features of temporal activity profile that represent information about a given stimulus and understand how cells read the temporal codes to control their responses.
Collapse
Affiliation(s)
- Marcelo Behar
- Signaling Systems Laboratory, BioCircuits Institute, and San Diego Center for Systems Biology of Cellular Stress Responses, University of California, San Diego, 9500 Gillman Dr, La Jolla, CA 92093, United States
| | | |
Collapse
|
620
|
Kingeter LM, Paul S, Maynard SK, Cartwright NG, Schaefer BC. Cutting edge: TCR ligation triggers digital activation of NF-kappaB. THE JOURNAL OF IMMUNOLOGY 2010; 185:4520-4. [PMID: 20855880 DOI: 10.4049/jimmunol.1001051] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TCR-mediated activation of the transcription factor NF-κB is required for T cell proliferation, survival, and effector differentiation. Although this pathway is the subject of intense study, it is not known whether TCR signaling to NF-κB is digital (switch-like) or analog in nature. Through analysis of the phosphorylation and degradation of IκBα and the nuclear translocation and phosphorylation of the NF-κB subunit RelA, we show that TCR-directed NF-κB activation is digital. Furthermore, digitization occurs well upstream of the IκB kinase complex, as protein kinase C translocation to the immunologic synapse and activation-associated aggregation of Bcl10 and Malt1 also demonstrate both digital behavior and high correlation with RelA nuclear translocation. Thus, similar to the TCR-to-MAPK signaling cascade, analog Ag inputs are converted to digital activation outputs to NF-κB at an early step downstream of TCR ligation.
Collapse
Affiliation(s)
- Lara M Kingeter
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
621
|
Lee TK, Covert MW. High-throughput, single-cell NF-κB dynamics. Curr Opin Genet Dev 2010; 20:677-83. [PMID: 20846851 DOI: 10.1016/j.gde.2010.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 07/23/2010] [Accepted: 08/19/2010] [Indexed: 01/08/2023]
Abstract
Single cells in a population often respond differently to perturbations in the environment. Live-cell microscopy has enabled scientists to observe these differences at the single-cell level. Some advantages of live-cell imaging over population-based methods include better time resolution, higher sensitivity, automation, and richer datasets. One specific area where live-cell microscopy has made a significant impact is the field of NF-κB signaling dynamics, and recent efforts have focused on making live-cell imaging of these dynamics more high-throughput. We highlight the major aspects of increasing throughput and describe a current system that can monitor, image and analyze the NF-κB activation of thousands of single cells in parallel.
Collapse
Affiliation(s)
- Timothy K Lee
- Department of Bioengineering, Stanford University, 318 Campus Drive, Stanford, CA 94305, United States
| | | |
Collapse
|
622
|
Abstract
Although NF-kappaB (nuclear factor kappaB) was discovered less than 25 years ago, it is one of the most well-studied transcription factors. It plays critical roles in various immune and cellular processes, and its dysregulation is a major driver of cancer and inflammatory pathology. A new book published by Cold Spring Harbor Laboratory Press, NF-kappaB: A Network Hub Controlling Immunity, Inflammation, and Cancer, provides a series of excellent reviews on the architecture, regulation, and pathophysiological roles of NF-kappaB signaling by some of the leading investigators in the field.
Collapse
Affiliation(s)
- Bahram Razani
- Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, 609 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | | |
Collapse
|