601
|
Zhao Y, Ting KK, Coleman P, Qi Y, Chen J, Vadas M, Gamble J. The Tumour Vasculature as a Target to Modulate Leucocyte Trafficking. Cancers (Basel) 2021; 13:cancers13071724. [PMID: 33917287 PMCID: PMC8038724 DOI: 10.3390/cancers13071724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Tumour blood vessels, characterised by abnormal morphology and function, create an immunosuppressive tumour microenvironment via restricting the appropriate leucocyte subsets trafficking. Strategies to trigger phenotypic alteration in tumour vascular system to resemble normal vascular system, named vascular normalisation, promote effective trafficking of leucocytes into tumours through enhancing the interactions between leucocytes and endothelial cells. This review specifically demonstrates how targeting tumour blood vessels modulates the critical steps of leucocyte trafficking. Furthermore, selective regulation of leucocyte subsets trafficking in tumours can be achieved by vasculature-targeting strategies, contributing to improved immunotherapy and thereby delayed tumour progression. Abstract The effectiveness of immunotherapy against solid tumours is dependent on the appropriate leucocyte subsets trafficking and accumulating in the tumour microenvironment (TME) with recruitment occurring at the endothelium. Such recruitment involves interactions between the leucocytes and the endothelial cells (ECs) of the vessel and occurs through a series of steps including leucocyte capture, their rolling, adhesion, and intraluminal crawling, and finally leucocyte transendothelial migration across the endothelium. The tumour vasculature can curb the trafficking of leucocytes through influencing each step of the leucocyte recruitment process, ultimately producing an immunoresistant microenvironment. Modulation of the tumour vasculature by strategies such as vascular normalisation have proven to be efficient in facilitating leucocyte trafficking into tumours and enhancing immunotherapy. In this review, we discuss the underlying mechanisms of abnormal tumour vasculature and its impact on leucocyte trafficking, and potential strategies for overcoming the tumour vascular abnormalities to boost immunotherapy via increasing leucocyte recruitment.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Correspondence: (Y.Z.); (J.G.); Tel.: +86-025-85811237 (Y.Z.); +61-02-95656225 (J.G.)
| | - Ka Ka Ting
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Paul Coleman
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Yanfei Qi
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Jinbiao Chen
- Liver Injury and Cancer Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia;
| | - Mathew Vadas
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
| | - Jennifer Gamble
- Vascular Biology Program, Centenary Institute, The University of Sydney, Sydney 2050, Australia; (K.K.T.); (P.C.); (Y.Q.); (M.V.)
- Correspondence: (Y.Z.); (J.G.); Tel.: +86-025-85811237 (Y.Z.); +61-02-95656225 (J.G.)
| |
Collapse
|
602
|
Zhang Z, Xia F, Wang W, Huang Y, Li X. The systemic immune-inflammation index-based model is an effective biomarker on predicting central lymph node metastasis in clinically nodal-negative papillary thyroid carcinoma. Gland Surg 2021; 10:1368-1373. [PMID: 33968688 DOI: 10.21037/gs-20-666] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background A high proportion of papillary thyroid carcinoma (PTC) patients are involved in central lymph node metastasis (CLNM) with preoperative imaging examinations showing clinically nodal-negative (cN0). Meanwhile, many inflammatory biomarkers are also proven as effective factors to predict the outcomes of cancer patients and tumor progression. Thus, the values of these factors are investigated to help detecting CLNM in cN0 PTC patients. Methods 406 cN0 PTC patients who underwent curative surgery were retrospectively analyzed. CLNM was determined by histopathological examination following the thyroidectomy. Multiple inflammatory biomarkers were comprehensively researched. Results A total of 406 consecutive patients were eventually included. The univariate and multivariate analyses revealed that age (OR: 0.924, 95% CI: 0.909, 0.940), gender (OR: 1.781, 95% CI: 1.060, 2.993), location of tumors (OR: 2.229, 95% CI: 1.228, 4.046) and level of systemic immune-inflammation index (SII) (OR: 1.005, 95% CI: 1.004, 1.006) were independently associated with CLNM in cN0 PTC patients, and the SII-based predictive model was constructed using these four factors. Receiver operating characteristic (ROC) curves showed significant results of the SII-based predictive model in PTC cohort with area under curve (AUC) as 0.814 (95% CI: 0.771-0.857) and in PTMC subgroup with AUC as 0.803 (95% CI: 0.752-0.854). Conclusions The SII-based model can effectively help predicting CLNM in both cN0 PTC patients and cN0 PTMC patients.
Collapse
Affiliation(s)
- Zeyu Zhang
- Department of Thyroid Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fada Xia
- Department of Thyroid Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wenlong Wang
- Department of Thyroid Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Huang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Xinying Li
- Department of Thyroid Surgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
603
|
Reusch N, De Domenico E, Bonaguro L, Schulte-Schrepping J, Baßler K, Schultze JL, Aschenbrenner AC. Neutrophils in COVID-19. Front Immunol 2021; 12:652470. [PMID: 33841435 PMCID: PMC8027077 DOI: 10.3389/fimmu.2021.652470] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
Strong evidence has been accumulated since the beginning of the COVID-19 pandemic that neutrophils play an important role in the pathophysiology, particularly in those with severe disease courses. While originally considered to be a rather homogeneous cell type, recent attention to neutrophils has uncovered their fascinating transcriptional and functional diversity as well as their developmental trajectories. These new findings are important to better understand the many facets of neutrophil involvement not only in COVID-19 but also many other acute or chronic inflammatory diseases, both communicable and non-communicable. Here, we highlight the observed immune deviation of neutrophils in COVID-19 and summarize several promising therapeutic attempts to precisely target neutrophils and their reactivity in patients with COVID-19.
Collapse
Affiliation(s)
- Nico Reusch
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Elena De Domenico
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, Bonn, Germany
| | - Lorenzo Bonaguro
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonas Schulte-Schrepping
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Kevin Baßler
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, Bonn, Germany
| | - Anna C Aschenbrenner
- Systems Medicine, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Genomics & Immunoregulation, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany.,German Center for Neurodegenerative Diseases (DZNE), PRECISE Platform for Genomics and Epigenomics at DZNE, University of Bonn, Bonn, Germany.,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
604
|
Silva-Del Toro SL, Allen LAH. Microtubules and Dynein Regulate Human Neutrophil Nuclear Volume and Hypersegmentation During H. pylori Infection. Front Immunol 2021; 12:653100. [PMID: 33828562 PMCID: PMC8019731 DOI: 10.3389/fimmu.2021.653100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Neutrophils (also called polymorphonuclear leukocytes, PMNs) are heterogeneous and can exhibit considerable phenotypic and functional plasticity. In keeping with this, we discovered previously that Helicobacter pylori infection induces N1-like subtype differentiation of human PMNs that is notable for profound nuclear hypersegmentation. Herein, we utilized biochemical approaches and confocal and super-resolution microscopy to gain insight into the underlying molecular mechanisms. Sensitivity to inhibition by nocodazole and taxol indicated that microtubule dynamics were required to induce and sustain hypersegmentation, and super-resolution Stimulated Emission Depletion (STED) imaging demonstrated that microtubules were significantly more abundant and longer in hypersegmented cells. Dynein activity was also required, and enrichment of this motor protein at the nuclear periphery was enhanced following H. pylori infection. In contrast, centrosome splitting did not occur, and lamin B receptor abundance and ER morphology were unchanged. Finally, analysis of STED image stacks using Imaris software revealed that nuclear volume increased markedly prior to the onset of hypersegmentation and that nuclear size was differentially modulated by nocodazole and taxol in the presence and absence of infection. Taken together, our data define a new mechanism of hypersegmentation that is mediated by microtubules and dynein and as such advance understanding of processes that regulate nuclear morphology.
Collapse
Affiliation(s)
- Stephanie L Silva-Del Toro
- Inflammation Program of the University of Iowa, Iowa City, IA, United States.,Immunology Graduate Program of the University of Iowa, Iowa City, IA, United States
| | - Lee-Ann H Allen
- Inflammation Program of the University of Iowa, Iowa City, IA, United States.,Immunology Graduate Program of the University of Iowa, Iowa City, IA, United States.,Department of Internal Medicine, University of Iowa, Iowa City, IA, United States.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States.,Iowa City VA Healthcare System, Iowa City, IA, United States
| |
Collapse
|
605
|
Yun NK, Rouhani SJ, Bestvina CM, Ritz EM, Gilmore BA, Tarhoni I, Borgia JA, Batus M, Bonomi PD, Fidler MJ. Neutrophil-to-Lymphocyte Ratio Is a Predictive Biomarker in Patients with Epidermal Growth Factor Receptor (EGFR) Mutated Advanced Non-Small Cell Lung Cancer (NSCLC) Treated with Tyrosine Kinase Inhibitor (TKI) Therapy. Cancers (Basel) 2021; 13:1426. [PMID: 33804721 PMCID: PMC8003851 DOI: 10.3390/cancers13061426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/11/2021] [Accepted: 03/16/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND First-line treatment for patients with non-small cell lung cancer (NSCLC) with a sensitizing epidermal growth factor receptor (EGFR) mutation is a tyrosine kinase inhibitor (TKI). Despite higher response rates and prolonged progression free survival (PFS) compared with platinum doublet chemotherapy, a subset of these patients do not receive prolonged benefit from these agents. We investigate if the neutrophil-to-lymphocyte ratio (NLR) and other markers of cachexia and chronic inflammation correlate with worse outcomes in these patients. METHODS This study is a retrospective review of 137 patients with advanced EGFR-mutated NSCLC treated with TKIs at Rush University Medical Center and University of Chicago Medicine from August 2011 to July 2019, with outcomes followed through July 2020. The predictive value of NLR and body mass index (BMI) was assessed at the start of therapy, and after 6 and 12 weeks of treatment by univariable and multivariable analyses. RESULTS On univariable analysis, NLR ≥ 5 or higher NLR on a continuous scale were both associated with significantly worse PFS and overall survival (OS) at treatment initiation, and after 6 or 12 weeks of treatment. On multivariable analysis, NLR ≥ 5 was associated with increased risk of death at 12 weeks of therapy (HR 3.002, 95% CI 1.282-7.029, p = 0.011), as was higher NLR on a continuous scale (HR 1.231, 95% CI 1.063-1.425, p = 0.0054). There was no difference in PFS and OS and amongst BMI categories though number of disease sites and Eastern Cooperative Oncology Group (ECOG) performance status was associated with worse PFS and OS. CONCLUSIONS Patients with NLR ≥ 5 have a worse median PFS and median OS than patients with NLR < 5. NLR may have value as a predictive biomarker and may be useful for selecting patients for therapy intensification in the front-line setting either at diagnosis or after 12 weeks on therapy. NLR needs to be validated prospectively.
Collapse
Affiliation(s)
- Nicole K. Yun
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Sherin J. Rouhani
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago Comprehensive Cancer Center, Chicago, IL 60637, USA; (S.J.R.); (C.M.B.)
| | - Christine M. Bestvina
- Section of Hematology/Oncology, Department of Medicine, The University of Chicago Comprehensive Cancer Center, Chicago, IL 60637, USA; (S.J.R.); (C.M.B.)
| | - Ethan M. Ritz
- Bioinformatics and Biostatistics Core, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Brendan A. Gilmore
- Hematology, Oncology and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (B.A.G.); (M.B.); (P.D.B.)
| | - Imad Tarhoni
- Cell & Molecular Medicine, Pathology, Rush University Medical Center, Chicago, IL 60612, USA; (I.T.); (J.A.B.)
| | - Jeffrey A. Borgia
- Cell & Molecular Medicine, Pathology, Rush University Medical Center, Chicago, IL 60612, USA; (I.T.); (J.A.B.)
| | - Marta Batus
- Hematology, Oncology and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (B.A.G.); (M.B.); (P.D.B.)
| | - Philip D. Bonomi
- Hematology, Oncology and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (B.A.G.); (M.B.); (P.D.B.)
| | - Mary Jo Fidler
- Hematology, Oncology and Cell Therapy, Department of Medicine, Rush University Medical Center, Chicago, IL 60612, USA; (B.A.G.); (M.B.); (P.D.B.)
| |
Collapse
|
606
|
Sacdalan DB, Lucero JA. The Association Between Inflammation and Immunosuppression: Implications for ICI Biomarker Development. Onco Targets Ther 2021; 14:2053-2064. [PMID: 33776452 PMCID: PMC7987319 DOI: 10.2147/ott.s278089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Evasion of immune destruction is considered one of the hallmarks of cancer. Chronic inflammation can enable immune escape by suppressing immune surveillance and permitting the development of tumors and creating a tumor microenvironment that sustains cancer. This includes generating mechanisms that prevent the effectiveness of anti-tumor treatment including immune checkpoint inhibitor therapy. In this review, we explore the interplay of inflammation and immunosuppression, their effects on the tumor microenvironment, and their implications for immune checkpoint inhibitor therapy particularly in the context of predictive biomarkers for their use.
Collapse
Affiliation(s)
- Danielle Benedict Sacdalan
- Department of Pharmacology and Toxicology, University of the Philippines Manila College of Medicine, Manila, Philippines
- Division of Medical Oncology, Department of Medicine, Philippine General Hospital and University of the Philippines Manila, Manila, Philippines
| | - Josephine Anne Lucero
- Division of Hematology, Department of Medicine, Philippine General Hospital and University of the Philippines Manila, Manila, Philippines
| |
Collapse
|
607
|
Du F, Qiu Z, Ai W, Huang C, Ji J, Xiao X, Zhou J, Fang M, Jiang X, Gao C. Blood tests predict the therapeutic prognosis of anti-PD-1 in advanced biliary tract cancer. J Leukoc Biol 2021; 110:327-334. [PMID: 33724548 DOI: 10.1002/jlb.5ma1220-631r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Predictive prognostic markers for immunotherapy are crucial and desperately required for clinical precise medicine. This retrospective study aimed to assess the efficacy of anti-PD-1 (programmed cell death protein 1) treatment and find the therapeutic prognostic biomarkers in advanced biliary tract cancer (BTC). A total of 60 patients of advanced BTC who received at least one dose of anti-PD-1 therapy between June 2016 and October 2019 were recruited and followed up till April 2020. Systemic immune-inflammation index (SII) and neutrophils-to-lymphocytes ration (NLR) were obtained from the routine circulating hematologic analysis before treatment. Serum 45-Plex Panel cytokines were detected using multiplexed bead immunoassays. Logistic regression nomogram was used to construct the algorithm model for prognosis prediction. Of the 60 patients, the overall benefit rate (OBR) was 38.3%, the median progression free survival (PFS), and overall survival (OS) were 4.0 mo (95% confidence interval [CI]: 2.28-5.72) and 13.0 mo (95% CI: 8.05-17.95), respectively. High levels of SII (≥720), NLR (≥4.3) and cytokine IFN-inducible protein-10 (IP-10; ≥45 pg/ml) indicated worse OS. Those with high SII (≥720) and high IP-10 (≥45 pg/ml) also had shorter PFS. The nomogram algorithm combining above three independent factors (SII, IP-10, and macrophage inflammatory protein-1β) had better efficacy in predicting OBR. Our study offers a simple, affordable, and noninvasive method to help physicians predict therapeutic response in BTC patients receiving anti-PD-1 antibody treatment.
Collapse
Affiliation(s)
- Fei Du
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Zhiquan Qiu
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Wenchao Ai
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Chenjun Huang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jun Ji
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xiao Xiao
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Jun Zhou
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Meng Fang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Xiaoqing Jiang
- Department of Biliary Tract Surgery I, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Chunfang Gao
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| |
Collapse
|
608
|
McFarlane AJ, Fercoq F, Coffelt SB, Carlin LM. Neutrophil dynamics in the tumor microenvironment. J Clin Invest 2021; 131:143759. [PMID: 33720040 PMCID: PMC7954585 DOI: 10.1172/jci143759] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment profoundly influences the behavior of recruited leukocytes and tissue-resident immune cells. These immune cells, which inherently have environmentally driven plasticity necessary for their roles in tissue homeostasis, dynamically interact with tumor cells and the tumor stroma and play critical roles in determining the course of disease. Among these immune cells, neutrophils were once considered much more static within the tumor microenvironment; however, some of these earlier assumptions were the product of the notorious difficulty in manipulating neutrophils in vitro. Technological advances that allow us to study neutrophils in context are now revealing the true roles of neutrophils in the tumor microenvironment. Here we discuss recent data generated by some of these tools and how these data might be synthesized into more elegant ways of targeting these powerful and abundant effector immune cells in the clinic.
Collapse
Affiliation(s)
| | - Frédéric Fercoq
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Seth B. Coffelt
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Leo M. Carlin
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
609
|
Abstract
Neutrophils can facilitate the metastatic spread of cancer; however, how neutrophils are activated at metastatic sites remains poorly understood. In this issue, Xiao et al. demonstrate that the protease cathepsin C, secreted by breast cancer cells, triggers neutrophils to form neutrophil extracellular traps in the metastatic niche, thereby promoting lung metastasis.
Collapse
Affiliation(s)
- Kevin Kos
- Division of Tumor Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Karin E de Visser
- Division of Tumor Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
610
|
Ng MSF, Tan L, Wang Q, Mackay CR, Ng LG. Neutrophils in cancer-unresolved questions. SCIENCE CHINA-LIFE SCIENCES 2021; 64:1829-1841. [PMID: 33661490 DOI: 10.1007/s11427-020-1853-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022]
Abstract
There is growing recognition that neutrophils play an important role in cancer initiation, progression and metastasis. Although they are typically characterized as short-lived effector cells, neutrophils have been shown to acquire immunosuppressive and pro-tumorigenic functions that promote tumor progression and escape. As such, inhibition of their function or depletion of neutrophils are being explored as potential cancer therapies. However, growing evidence of neutrophil diversification in cancer and their potential anti-tumor roles raise many unresolved questions. Here, we review recent advances that address the definition, origin and function of neutrophils in cancer, and elaborate on obstacles that make the study of neutrophils challenging. We envision that this review will provide the groundwork for focused design of therapeutics that will specifically target "tumorreprogrammed" neutrophils while sparing normal neutrophils to improve patient outcomes.
Collapse
Affiliation(s)
- Melissa S F Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore.
| | - Leonard Tan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore
| | - Quanbo Wang
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Charles R Mackay
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648, Singapore. .,State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
611
|
Liu Q, Hao Y, Du R, Hu D, Xie J, Zhang J, Deng G, Liang N, Tian T, Käsmann L, Rades D, Rim CH, Hu P, Zhang J. Radiotherapy programs neutrophils to an antitumor phenotype by inducing mesenchymal-epithelial transition. Transl Lung Cancer Res 2021; 10:1424-1443. [PMID: 33889520 PMCID: PMC8044478 DOI: 10.21037/tlcr-21-152] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Neutrophils can play a pro-tumor or anti-tumor role depending on the tumor microenvironment. The effects of concurrent treatment with granulocyte colony-stimulating factor (G-CSF) and radiotherapy (RT) on neutrophils have not yet to be described. Methods Hypofractionated radiation of 8 Gy ×3 fractions was administered with or without recombinant G-CSF to Lewis lung carcinoma tumor-bearing C57BL/6 model mice. The activation status of cytotoxic T cells in the mice was measured, along with the levels of tumor-associated neutrophils, cytotoxic T cells, and Treg cells. Tumor growth, survival, cytokine expression, and signaling pathways underlying anti-tumor effects of tumor-associated neutrophils after treatment were also studied. To ascertain the effects of concurrent RT and G-CSF on tumor-associated neutrophils, neutrophil depletion was performed. Results RT affected early neutrophil infiltration, which is the first-line immune response. Subsequently, enhanced accumulation of lymphocytes, particularly CD8 cytotoxic T cells, was observed. Notably, lymphocytic infiltration was inhibited by neutrophil depletion but enhanced by G-CSF treatment. RT generated persistent DNA damage, as evidenced by an accumulation of phosphorylation of histone H2AX (γH2AX), and subsequently triggered inflammatory chemokine secretion. The chemokines CXCL1, CXCL2, and CCL5 were upregulated in both radiation-treated cells and the corresponding supernatants. Neutrophils that were newly recruited after RT improved radiosensitivity by inhibiting epithelial-mesenchymal transition via the reactive oxygen species-mediated PI3K/Akt/Snail signaling pathway, and G-CSF treatment enhanced this effect. Conclusions The results of this study suggest that RT activates neutrophil recruitment and polarizes newly recruited neutrophils toward an antitumor phenotype, which is enhanced by the concurrent administration of G-CSF. Mesenchymal-epithelial transition induced by reactive oxygen species accumulation plays a major role in this process. Thus, the polarization of tumor-associated neutrophils might play a role in future cancer immunotherapies.
Collapse
Affiliation(s)
- Qiqi Liu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shandong Lung Cancer Institute, Jinan, China
| | - Yuying Hao
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Shandong Lung Cancer Institute, Jinan, China.,Department of Radiation Oncology, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Du
- Division of Oncology, Department of Graduate, Weifang Medical College, Weifang, China
| | - Dan Hu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Department of Physiology, Jeonbuk National University Medical School, Jeonju 54907, Jeollabuk-do, Korea
| | - Jian Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Shandong Lung Cancer Institute, Jinan, China
| | - Jingxin Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China
| | - Guodong Deng
- Department of Chemical Etiology and Carcinogenesis, Cancer Institute, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ning Liang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Shandong Lung Cancer Institute, Jinan, China
| | - Tiantian Tian
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Shandong Lung Cancer Institute, Jinan, China
| | - Lukas Käsmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Dirk Rades
- Department of Radiation Oncology, University of Lübeck, Lübeck, Germany
| | - Chai Hong Rim
- Department of Radiation Oncology, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Pingping Hu
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Shandong Lung Cancer Institute, Jinan, China
| | - Jiandong Zhang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China.,Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
612
|
Mantovani A, Marchesi F, Jaillon S, Garlanda C, Allavena P. Tumor-associated myeloid cells: diversity and therapeutic targeting. Cell Mol Immunol 2021; 18:566-578. [PMID: 33473192 PMCID: PMC8027665 DOI: 10.1038/s41423-020-00613-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/25/2020] [Indexed: 12/15/2022] Open
Abstract
Myeloid cells in tumor tissues constitute a dynamic immune population characterized by a non-uniform phenotype and diverse functional activities. Both tumor-associated macrophages (TAMs), which are more abundantly represented, and tumor-associated neutrophils (TANs) are known to sustain tumor cell growth and invasion, support neoangiogenesis and suppress anticancer adaptive immune responses. In recent decades, several therapeutic approaches have been implemented in preclinical cancer models to neutralize the tumor-promoting roles of both TAMs and TANs. Some of the most successful strategies have now reached the clinic and are being investigated in clinical trials. In this review, we provide an overview of the recent literature on the ever-growing complexity of the biology of TAMs and TANs and the development of the most promising approaches to target these populations therapeutically in cancer patients.
Collapse
Affiliation(s)
- Alberto Mantovani
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy.
- Department of Biomedical Science, Humanitas University, Rozzano, Italy.
- The William Harvey Research Institute, Queen Mary University of London, London, UK.
| | - Federica Marchesi
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sebastien Jaillon
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Rozzano, Italy
| | - Cecilia Garlanda
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
- Department of Biomedical Science, Humanitas University, Rozzano, Italy
| | - Paola Allavena
- Department of Immunology and Inflammation, Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| |
Collapse
|
613
|
Jokic V, Savic-Vujovic K, Spasic J, Stanic N, Marinkovic M, Radosavljevic D, Cavic M. Hematological parameters in EGFR-mutated advanced NSCLC patients treated with TKIs: predicting survival and toxicity. Expert Rev Anticancer Ther 2021; 21:673-679. [PMID: 33606592 DOI: 10.1080/14737140.2021.1893694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background: The aim of this study was to analyze the prognostic value of pre-treatment hematological parameters in EGFR-mutated non-small cell lung cancer patients treated with tyrosine-kinase inhibitors (TKIs).Patients and methods: Patients with EGFR mutations were treated with EGFR-TKIs in the first line until progression/unacceptable toxicity. Hematological parameters were derived from the absolute baseline differential counts of a complete blood count. The associations between the patients' and tumor characteristics were analyzed using Pearson Chi-Square, Fisher's exact, t-test, and Mann-Whitney tests. Cutoff values were determined using ROC curves, and correlation with survival was examined by Kaplan-Meier method and Cox regression.Results: Patients with NMR<12.62 had a longer PFS compared to patients with higher NMR values (12.0 vs. 10.0 months, p = 0.054) and a significantly longer OS (20.0 vs. 11.0 months, p = 0.010). The same parameter was confirmed as a predictors of favorable response in the patient subgroup with activating EGFR mutations. Patients with NLR>2.9 and LMR<2.5 more often presented with paronichia and diarrhea, and patients with PLR>190 more often had paronichia, diarrhea and hyperbilirubinemia.Conclusion: Low baseline value of the hematological parameter NMR has shown potential as a routine, low-cost, and minimally invasive predictor of survival in EGFR-TKI-treated NSCLC patients.
Collapse
Affiliation(s)
- Vera Jokic
- Clinic for Medical Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Katarina Savic-Vujovic
- Department of Pharmacology, Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Spasic
- Clinic for Medical Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Nemanja Stanic
- Clinic for Medical Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Mladen Marinkovic
- Clinic for Radiation Oncology and Diagnostics, Department of Radiation Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Davorin Radosavljevic
- Clinic for Medical Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Milena Cavic
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| |
Collapse
|
614
|
Sadozai H, Acharjee A, Eppenberger-Castori S, Gloor B, Gruber T, Schenk M, Karamitopoulou E. Distinct Stromal and Immune Features Collectively Contribute to Long-Term Survival in Pancreatic Cancer. Front Immunol 2021; 12:643529. [PMID: 33679807 PMCID: PMC7933000 DOI: 10.3389/fimmu.2021.643529] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 01/25/2021] [Indexed: 01/05/2023] Open
Abstract
Background: The aggressive biology and treatment refractory nature of pancreatic ductal adenocarcinoma (PDAC) significantly limits long-term survival. Examining the tumor microenvironment (TME) of long-term survivors (LTS) of PDAC offers the potential of unveiling novel biological insights and therapeutic targets. Methods: We performed an integrated approach involving immunophenotyping, stromal scoring and histomorphological profiling of a cohort of 112 PDAC-cases, including 25 long-term survivors (LTSs, OS ≥ 60 months). Mutational frequencies were assessed using targeted next generation sequencing. Finally, we validated our findings in silico using an external cohort of microarray data from PDAC patients. Results: LTS cases exhibit a largely quiescent population of cancer-associated fibroblasts (CAFs). Immune profiling revealed key differences between LTS and NON-LTS cases in the intratumoral and stromal compartments. In both compartments, LTS cases exhibit a T cell inflamed profile with higher density of CD3+ T cells, CD4+ T cells, iNOS+ leukocytes and strikingly diminished numbers of CD68+ total macrophages, CD163+ (M2) macrophages and FOXP3+ Tregs. A large proportion of LTS cases exhibited tertiary lymphoid tissue (TLT) formation, which has been observed to be a positive prognostic marker in a number of tumor types. Using a Random-Forest variable selection approach, we identified the density of stromal iNOS+ cells and CD68+ cells as strong positive and negative prognostic variables, respectively. In an external cohort, computational cell-type deconvolution revealed a higher abundance of T cells, B lymphocytes and dendritic cells (DCs) in patients with long-term OS compared to short-term survivors. Thus, in silico profiling of long-term survivors in an external cohort, strongly corroborated the T cell-inflamed TME observed in our LTS group. Conclusions: Collectively, our findings highlight the prognostic importance of TME profiles in PDAC, underlining the crucial role of tumor associated macrophages (TAMs) and the potential interdependence between immunosuppressive TAMs and activated CAFs in pancreatic cancer. Additionally, our data has potential for precision medicine and patient stratification. Patients with a T cell inflamed TME might derive benefit from agonistic T cell antibodies (e.g., OX40 or CD137 agonists). Alternately, patients with activated CAFs and high infiltration of immunosuppressive TAMs are highly likely to exhibit therapeutic responses to macrophage targeted drugs (e.g., anti-CSF1R) and anti-CAF agents.
Collapse
Affiliation(s)
- Hassan Sadozai
- Center for Sport, Exercise and Life Sciences, Coventry University, Coventry, United Kingdom
| | - Animesh Acharjee
- College of Medical and Dental Sciences, Centre for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom.,Institute of Translational Medicine, University Hospitals Birmingham National Health Service, Foundation Trust, Birmingham, United Kingdom.,National Institute for Health Research Surgical Reconstruction and Microbiology Research Centre, University Hospital Birmingham, Birmingham, United Kingdom
| | | | - Beat Gloor
- Department of Visceral Surgery, Insel University Hospital, University of Bern, Bern, Switzerland
| | - Thomas Gruber
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Mirjam Schenk
- Institute of Pathology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
615
|
Lonardi S, Missale F, Calza S, Bugatti M, Vescovi R, Debora B, Uppaluri R, Egloff AM, Mattavelli D, Lombardi D, Benerini Gatta L, Marini O, Tamassia N, Gardiman E, Cassatella MA, Scapini P, Nicolai P, Vermi W. Tumor-associated neutrophils (TANs) in human carcinoma-draining lymph nodes: a novel TAN compartment. Clin Transl Immunology 2021; 10:e1252. [PMID: 33643653 PMCID: PMC7886597 DOI: 10.1002/cti2.1252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/04/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022] Open
Abstract
Objectives The role of tumor‐associated neutrophils (TANs) in the nodal spread of cancer cells remains unexplored. The present study evaluates the occurrence and clinical significance of human nodal TANs. Methods The relevance, derivation, phenotype and interactions of nodal TANs were explored via a large immunohistochemical analysis of carcinoma‐draining lymph nodes, and their clinical significance was evaluated on a retrospective cohort of oral squamous cell carcinomas (OSCC). The tumor‐promoting function of nodal TAN was probed in the OSCC TCGA dataset combining TAN and epithelial‐to‐mesenchymal transition (EMT) signatures. Results The pan‐carcinoma screening identified a consistent infiltration (59%) of CD66b+ TANs in tumor‐draining lymph nodes (TDLNs). Microscopic findings, including the occurrence of intra‐lymphatic conjugates of TANs and cancer cells, indicate that TANs migrate through lymphatic vessels. In vitro experiments revealed that OSCC cell lines sustain neutrophil viability and activation via release of GM‐CSF. Moreover, by retrospective analysis, a high CD66b+ TAN density in M‐TDLNs of OSCC (n = 182 patients) predicted a worse prognosis. The analysis of the OSCC‐TCGA dataset unveiled that the expression of a set of neutrophil‐specific genes in the primary tumor (PT) is highly associated with an EMT signature, which predicts nodal spread. Accordingly, in the PT of OSCC cases, CD66b+TANs co‐localised with PDPN+S100A9− EMT‐switched tumor cells in areas of lymphangiogenesis. The pro‐EMT signature is lacking in peripheral blood neutrophils from OSCC patients, suggesting tissue skewing of TANs. Conclusion Our findings are consistent with a novel pro‐tumoral TAN compartment that may promote nodal spread via EMT, through the lymphatics.
Collapse
Affiliation(s)
- Silvia Lonardi
- Section of Pathology Department of Molecular and Translational Medicine University of Brescia Brescia Italy.,ASST- Spedali Civili di Brescia Brescia Italy
| | - Francesco Missale
- Unit of Otorhinolaryngology - Head and Neck Surgery Department of Surgical Specialties Radiological Sciences, and Public Health University of Brescia Brescia Italy.,IRCCS Ospedale Policlinico San Martino Unit of Otorhinolaryngology, Head and Neck Surgery Department of Surgical and Diagnostic Integrated Sciences University of Genoa Genoa Italy
| | - Stefano Calza
- Unit of Biostatistics Department of Molecular and Translational Medicine University of Brescia Brescia Italy.,Department of Medical Epidemiology and Biostatistics Karolinska Institutet Stockholm Sweden.,Big&Open Data Innovation Laboratory University of Brescia Brescia Italy
| | - Mattia Bugatti
- Section of Pathology Department of Molecular and Translational Medicine University of Brescia Brescia Italy.,ASST- Spedali Civili di Brescia Brescia Italy
| | - Raffaella Vescovi
- Section of Pathology Department of Molecular and Translational Medicine University of Brescia Brescia Italy
| | - Bresciani Debora
- Section of Pathology Department of Molecular and Translational Medicine University of Brescia Brescia Italy.,ASST- Spedali Civili di Brescia Brescia Italy
| | - Ravindra Uppaluri
- Department of Surgery/Otolaryngology Brigham and Women's Hospital and Dana-Farber Cancer Institute and Harvard Medical School Boston MA USA
| | - Ann Marie Egloff
- Department of Surgery/Otolaryngology Brigham and Women's Hospital and Dana-Farber Cancer Institute and Harvard Medical School Boston MA USA
| | - Davide Mattavelli
- Unit of Otorhinolaryngology - Head and Neck Surgery Department of Surgical Specialties Radiological Sciences, and Public Health University of Brescia Brescia Italy
| | - Davide Lombardi
- ASST- Spedali Civili di Brescia Brescia Italy.,Unit of Otorhinolaryngology - Head and Neck Surgery Department of Surgical Specialties Radiological Sciences, and Public Health University of Brescia Brescia Italy
| | - Luisa Benerini Gatta
- Section of Pathology Department of Molecular and Translational Medicine University of Brescia Brescia Italy.,ASST- Spedali Civili di Brescia Brescia Italy
| | - Olivia Marini
- Section of General Pathology Department of Medicine University of Verona Verona Italy
| | - Nicola Tamassia
- Section of General Pathology Department of Medicine University of Verona Verona Italy
| | - Elisa Gardiman
- Section of General Pathology Department of Medicine University of Verona Verona Italy
| | - Marco A Cassatella
- Section of General Pathology Department of Medicine University of Verona Verona Italy
| | - Patrizia Scapini
- Section of General Pathology Department of Medicine University of Verona Verona Italy
| | - Piero Nicolai
- ASST- Spedali Civili di Brescia Brescia Italy.,Unit of Otorhinolaryngology - Head and Neck Surgery Department of Surgical Specialties Radiological Sciences, and Public Health University of Brescia Brescia Italy
| | - William Vermi
- Section of Pathology Department of Molecular and Translational Medicine University of Brescia Brescia Italy.,ASST- Spedali Civili di Brescia Brescia Italy.,Department of Pathology and Immunology Washington University Saint Louis MO USA
| |
Collapse
|
616
|
Caronni N, Montaldo E, Mezzanzanica L, Cilenti F, Genua M, Ostuni R. Determinants, mechanisms, and functional outcomes of myeloid cell diversity in cancer. Immunol Rev 2021; 300:220-236. [PMID: 33565148 DOI: 10.1111/imr.12944] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
Most, if not all, aspects of carcinogenesis are influenced by the tumor microenvironment (TME), a complex architecture of cells, matrix components, soluble signals, and their dynamic interactions in the context of physical traits of the tissue. Expanding application of technologies for high-dimensional analyses with single-cell resolution has begun to decipher the contributions of the immune system to cancer progression and its implications for therapy. In this review, we will discuss the multifaceted roles of tumor-associated macrophages and neutrophils, focusing on factors that subvert tissue immune homeostasis and offer therapeutic opportunities for TME reprogramming. By performing a critical analysis of available datasets, we elaborate on diversification mechanisms and unifying principles of myeloid cell heterogeneity in human tumors.
Collapse
Affiliation(s)
- Nicoletta Caronni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Montaldo
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Mezzanzanica
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Francesco Cilenti
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Marco Genua
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Renato Ostuni
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
617
|
Immune cell - produced ROS and their impact on tumor growth and metastasis. Redox Biol 2021; 42:101891. [PMID: 33583736 PMCID: PMC8113043 DOI: 10.1016/j.redox.2021.101891] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Reactive oxygen species (ROS) are derivatives of molecular oxygen (O2) involved in various physiological and pathological processes. In immune cells, ROS are mediators of pivotal functions such as phagocytosis, antigen presentation and recognition, cytolysis as well as phenotypical differentiation. Furthermore, ROS exert immunosuppressive effects on T and natural killer (NK) cells which is of particular importance in the so-called “tumor microenvironment” (TME) of solid tumors. This term describes the heterogenous group of non-malignant cells including tumor-associated fibroblasts and immune cells, vascular cells, bacteria etc. by which cancer cells are surrounded and with whom they engage in functional crosstalk. Importantly, pharmacological targeting of the TME and, specifically, tumor-associated immune cells utilizing immune checkpoint inhibitors - monoclonal antibodies that mitigate immunosuppression - turned out to be a major breakthrough in the treatment of malignant tumors. In this review, we aim to give an overview of the role that ROS produced in tumor-associated immune cells play during initiation, progression and metastatic outgrowth of solid cancers. Finally, we summarize findings on how ROS in the TME could be targeted therapeutically to increase the efficacy of cancer immunotherapy and discuss factors determining therapeutic success of redox modulation in tumors.
Collapse
|
618
|
TGF-β in Cancer: Metabolic Driver of the Tolerogenic Crosstalk in the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13030401. [PMID: 33499083 PMCID: PMC7865468 DOI: 10.3390/cancers13030401] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Overcoming tumor immunosuppression still represents one ambitious achievement for cancer immunotherapy. Of note, the cytokine TGF-β contributes to immune evasion in multiple cancer types, by feeding the establishment of a tolerogenic environment in the host. Indeed, it fosters the expansion and accumulation of immunosuppressive regulatory cell populations within the tumor microenvironment (TME), where it also activates resident stromal cells and enhances angiogenesis programs. More recently, TGF-β has also turned out as a key metabolic adjuster in tumors orchestrating metabolic pathways in the TME. In this review, we will scrutinize TGF-β-mediated immune and stromal cell crosstalk within the TME, with a primary focus on metabolic programs.
Collapse
|
619
|
Hou J, Karin M, Sun B. Targeting cancer-promoting inflammation - have anti-inflammatory therapies come of age? Nat Rev Clin Oncol 2021; 18:261-279. [PMID: 33469195 DOI: 10.1038/s41571-020-00459-9] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
The immune system has crucial roles in cancer development and treatment. Whereas adaptive immunity can prevent or constrain cancer through immunosurveillance, innate immunity and inflammation often promote tumorigenesis and malignant progression of nascent cancer. The past decade has witnessed the translation of knowledge derived from preclinical studies of antitumour immunity into clinically effective, approved immunotherapies for cancer. By contrast, the successful implementation of treatments that target cancer-associated inflammation is still awaited. Anti-inflammatory agents have the potential to not only prevent or delay cancer onset but also to improve the efficacy of conventional therapeutics and next-generation immunotherapies. Herein, we review the current clinical advances and experimental findings supporting the utility of an anti-inflammatory approach to the treatment of solid malignancies. Gaining a better mechanistic understanding of the mode of action of anti-inflammatory agents and designing more effective treatment combinations would advance the clinical application of this therapeutic approach.
Collapse
Affiliation(s)
- Jiajie Hou
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.,Department of Liver Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego School of Medicine, La Jolla, CA, USA.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
620
|
Filippou PS, Karagiannis GS. Editorial: Revisiting the Metastatic Cascade-Putting Myeloid Cells Into Context. Front Oncol 2021; 10:631278. [PMID: 33425772 PMCID: PMC7786308 DOI: 10.3389/fonc.2020.631278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Panagiota S Filippou
- School of Health & Life Sciences, Teesside University, Middlesbrough, United Kingdom.,National Horizons Centre, Teesside University, Darlington, United Kingdom
| | - George S Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, United States.,Integrated Imaging Program, Albert Einstein College of Medicine, Bronx, NY, United States.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
621
|
The Functional Crosstalk between Myeloid-Derived Suppressor Cells and Regulatory T Cells within the Immunosuppressive Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13020210. [PMID: 33430105 PMCID: PMC7827203 DOI: 10.3390/cancers13020210] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 12/13/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Immunotherapy improved the therapeutic landscape for patients with advanced cancer diseases. However, many patients do not benefit from immunotherapy. The bidirectional crosstalk between myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg) contributes to immune evasion, limiting the success of immunotherapy by checkpoint inhibitors. This review aims to outline the current knowledge of the role and the immunosuppressive properties of MDSC and Treg within the tumor microenvironment (TME). Furthermore, we will discuss the importance of the functional crosstalk between MDSC and Treg for immunosuppression, issuing particularly the role of cell adhesion molecules. Lastly, we will depict the impact of this interaction for cancer research and discuss several strategies aimed to target these pathways for tumor therapy. Abstract Immune checkpoint inhibitors (ICI) have led to profound and durable tumor regression in some patients with metastatic cancer diseases. However, many patients still do not derive benefit from immunotherapy. Here, the accumulation of immunosuppressive cell populations within the tumor microenvironment (TME), such as myeloid-derived suppressor cells (MDSC), tumor-associated macrophages (TAM), and regulatory T cells (Treg), contributes to the development of immune resistance. MDSC and Treg expand systematically in tumor patients and inhibit T cell activation and T effector cell function. Numerous studies have shown that the immunosuppressive mechanisms exerted by those inhibitory cell populations comprise soluble immunomodulatory mediators and receptor interactions. The latter are also required for the crosstalk of MDSC and Treg, raising questions about the relevance of cell–cell contacts for the establishment of their inhibitory properties. This review aims to outline the current knowledge on the crosstalk between these two cell populations, issuing particularly the potential role of cell adhesion molecules. In this regard, we further discuss the relevance of β2 integrins, which are essential for the differentiation and function of leukocytes as well as for MDSC–Treg interaction. Lastly, we aim to describe the impact of such bidirectional crosstalk for basic and applied cancer research and discuss how the targeting of these pathways might pave the way for future approaches in immunotherapy.
Collapse
|
622
|
Teijeira A, Garasa S, Ochoa MC, Villalba M, Olivera I, Cirella A, Eguren-Santamaria I, Berraondo P, Schalper KA, de Andrea CE, Sanmamed MF, Melero I. IL8, Neutrophils, and NETs in a Collusion against Cancer Immunity and Immunotherapy. Clin Cancer Res 2020; 27:2383-2393. [PMID: 33376096 DOI: 10.1158/1078-0432.ccr-20-1319] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/18/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
One of the most important mechanisms by which cancer fosters its own development is the generation of an immune microenvironment that inhibits or impairs antitumor immune responses. A cancer permissive immune microenvironment is present in a large proportion of the patients with cancer who do not respond to immunotherapy approaches intended to trigger preexisting antitumor immune responses, for instance, immune checkpoint blockade. High circulating levels of IL8 in patients with cancer quite accurately predict those who will not benefit from checkpoint-based immunotherapy. IL8 has been reported to favor cancer progression and metastases via different mechanisms, including proangiogenesis and the maintenance of cancer stem cells, but its ability to attract and functionally modulate neutrophils and macrophages is arguably one of the most important factors. IL8 does not only recruit neutrophils to tumor lesions, but also triggers the extrusion of neutrophil extracellular traps (NET). The relevance and mechanisms underlying the contribution of both neutrophils and NETs to cancer development and progression are starting to be uncovered and include both direct effects on cancer cells and changes in the tumor microenvironment, such as facilitating metastasis, awakening micrometastases from dormancy, and facilitating escape from cytotoxic immune cells. Blockade of IL8 or its receptors (CXCR1 and CXCR2) is being pursued in drug development, and clinical trials alone or in combination with anti-PD-L1 checkpoint inhibitors are already ongoing.
Collapse
Affiliation(s)
- Alvaro Teijeira
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Navarra, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Navarra, Spain
| | - Saray Garasa
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Navarra, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Navarra, Spain
| | - Maria C Ochoa
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Navarra, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maria Villalba
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Pathology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Irene Olivera
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Navarra, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Navarra, Spain
| | - Assunta Cirella
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Navarra, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Navarra, Spain
| | - Iñaki Eguren-Santamaria
- Departments of Oncology and Immunology, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Navarra, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Navarra, Spain
| | - Kurt A Schalper
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Carlos E de Andrea
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Pathology, Clínica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Miguel F Sanmamed
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Navarra, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Navarra, Spain.,Departments of Oncology and Immunology, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Navarra, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Navarra, Spain
| |
Collapse
|
623
|
Neutrophils and Macrophages as Targets for Development of Nanotherapeutics in Inflammatory Diseases. Pharmaceutics 2020; 12:pharmaceutics12121222. [PMID: 33348630 PMCID: PMC7766591 DOI: 10.3390/pharmaceutics12121222] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Neutrophils and macrophages are major components of innate systems, playing central roles in inflammation responses to infections and tissue injury. If they are out of control, inflammation responses can cause the pathogenesis of a wide range of diseases, such as inflammatory disorders and autoimmune diseases. Precisely regulating the functions of neutrophils and macrophages in vivo is a potential strategy to develop immunotherapies to treat inflammatory diseases. Advances in nanotechnology have enabled us to design nanoparticles capable of targeting neutrophils or macrophages in vivo. This review discusses the current status of how nanoparticles specifically target neutrophils or macrophages and how they manipulate leukocyte functions to inhibit their activation for inflammation resolution or to restore their defense ability for pathogen clearance. Finally, we present a novel concept of hijacking leukocytes to deliver nanotherapeutics across the blood vessel barrier. This review highlights the challenges and opportunities in developing nanotherapeutics to target leukocytes for improved treatment of inflammatory diseases.
Collapse
|
624
|
Sirica AE, Strazzabosco M, Cadamuro M. Intrahepatic cholangiocarcinoma: Morpho-molecular pathology, tumor reactive microenvironment, and malignant progression. Adv Cancer Res 2020; 149:321-387. [PMID: 33579427 PMCID: PMC8800451 DOI: 10.1016/bs.acr.2020.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a relatively rare, but highly lethal and biologically complex primary biliary epithelial cancer arising within liver. After hepatocellular carcinoma, iCCA is the second most common primary liver cancer, accounting for approximately 10-20% of all primary hepatic malignancies. Over the last 10-20 years, iCCA has become the focus of increasing concern largely due to its rising incidence and high mortality rates in various parts of the world, including the United States. The challenges posed by iCCA are daunting and despite recent progress in the standard of care and management options for iCCA, the prognosis for this cancer continues to be dismal. In an effort to provide a framework for advancing our understanding of iCCA malignant aggressiveness and therapy resistance, this review will highlight key etiological, biological, molecular, and microenvironmental factors hindering more effective management of this hepatobiliary cancer. Particular focus will be on critically reviewing the cell origins and morpho-molecular heterogeneity of iCCAs, providing mechanistic insights into high risk fibroinflammatory cholangiopathies associated with iCCA development, and notably discussing the deleterious role played by the tumor reactive desmoplastic stroma in regulating iCCA malignant progression, lymphangiogenesis, and tumor immunobiology.
Collapse
Affiliation(s)
- Alphonse E Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States.
| | - Mario Strazzabosco
- Liver Center and Section of Digestive Diseases, Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, United States
| | | |
Collapse
|
625
|
Wei T, Bi G, Bian Y, Ruan S, Yuan G, Xie H, Zhao M, Shen R, Zhu Y, Wang Q, Yang Y, Zhu D. The Significance of Secreted Phosphoprotein 1 in Multiple Human Cancers. Front Mol Biosci 2020; 7:565383. [PMID: 33324676 PMCID: PMC7724571 DOI: 10.3389/fmolb.2020.565383] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022] Open
Abstract
Malignant tumor represents a major reason for death in the world and its incidence is growing rapidly. Developing the tools for early diagnosis is possibly a promising way to offer diverse therapeutic options and promote the survival chance. Secreted phosphoprotein 1 (SPP1), also called Osteopontin (OPN), has been demonstrated overexpressed in many cancers. However, the specific role of SPP1 in prognosis, gene mutations, and changes in gene and miRNA expression in human cancers is unclear. In this report, we found SPP1 expression was higher in most of the human cancers. Based on Kaplan-Meier plotter and the PrognoScan database, we found high SPP1 expression was significantly correlated with poor survival in various cancers. Using a large dataset of colon adenocarcinoma (COAD), head and neck cancer (HNSC), lung adenocarcinoma (LUAD), and lung squamous cell carcinoma (LUSC) patients from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, this study identified 22 common genes and 2 common miRNAs. GO, and KEGG paths analyses suggested that SPP1 correlated genes were mainly involved in positive regulation of immune cell activation and infiltration. SPP1-associated genes and miRNAs regulatory networks suggested that their interactions may play a role in the progression of four selected cancers. SPP1 showed significant positive correlation with the immunocyte and immune marker sets infiltrating degrees. All of these data provide strong evidence that SPP1 may promote tumor progress through interacting with carcinogenic genes and facilitating immune cells’ infiltration in COAD, HNSC, LUAD, and LUSC.
Collapse
Affiliation(s)
- Tengteng Wei
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Suhong Ruan
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Guangda Yuan
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Hongya Xie
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Mengnan Zhao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Rongming Shen
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Yimeng Zhu
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yong Yang
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Donglin Zhu
- Department of Thoracic Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| |
Collapse
|
626
|
Ombrato L, Montagner M. Technical Advancements for Studying Immune Regulation of Disseminated Dormant Cancer Cells. Front Oncol 2020; 10:594514. [PMID: 33251149 PMCID: PMC7672194 DOI: 10.3389/fonc.2020.594514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Metastases are a major cause of cancer-related death and despite the fact that they have been focus of intense research over the last two decades, effective therapies for patients with distant secondary lesions are still very limited. In addition, in some tumor types metastases can grow years after the patients have been declared clinically cured, indicating that disseminated cancer cells (DCCs) persist undetected for years, even decades in a quiescent state. Clinical and experimental data highlight the importance of the immune system in shaping the fitness and behaviour of DCCs. Here, we review mechanisms of survival, quiescence and outgrowth of DCCs with a special focus on immune-regulation and we highlight the latest cutting-edge techniques for modelling the biology of DCCs in vitro and for studying the metastatic niche in vivo. We believe that a wide dissemination of those techniques will boost scientific findings towards new therapies to defeat metastatic relapses in cancer patients.
Collapse
Affiliation(s)
- Luigi Ombrato
- Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Marco Montagner
- Department of Molecular Medicine, School of Medicine and Surgery, University of Padua, Padua, Italy
| |
Collapse
|
627
|
De Santis M, Mantovani A, Selmi C. The other side of the innate immune system: humoral arms favoring cancer. Cell Mol Immunol 2020; 17:1024-1025. [PMID: 32728201 PMCID: PMC7609556 DOI: 10.1038/s41423-020-0512-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/04/2023] Open
Affiliation(s)
- Maria De Santis
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy
| | - Alberto Mantovani
- Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, 20089, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy.,The William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Clinical and Research Center-IRCCS, Rozzano, Milan, Italy. .,Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20090 Pieve Emanuele, Milan, Italy.
| |
Collapse
|
628
|
The complexity of neutrophils in health and disease: Focus on cancer. Semin Immunol 2020; 48:101409. [PMID: 32958359 PMCID: PMC7500440 DOI: 10.1016/j.smim.2020.101409] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
Neutrophils are essential soldiers of the immune response and their role have long been restricted to their activities in defence against microbial infections and during the acute phase of the inflammatory response. However, increasing number of investigations showed that neutrophils are endowed with plasticity and can participate in the orchestration of both innate and adaptive immune responses. Neutrophils have an impact on a broad range of disorders, including infections, chronic inflammations, and cancer. Neutrophils are present in the tumour microenvironment and have been reported to mediate both pro-tumour and anti-tumour responses. Neutrophils can contribute to genetic instability, tumour cell proliferation, angiogenesis and suppression of the anti-tumour immune response. In contrast, neutrophils are reported to mediate anti-tumour resistance by direct killing of tumour cells or by engaging cooperative interactions with other immune cells. Here we discuss the current understandings of neutrophils biology and functions in health and diseases, with a specific focus on their role in cancer biology and their prognostic significance in human cancer.
Collapse
|