601
|
Li S, Symonds ALJ, Miao T, Sanderson I, Wang P. Modulation of antigen-specific T-cells as immune therapy for chronic infectious diseases and cancer. Front Immunol 2014; 5:293. [PMID: 24987395 PMCID: PMC4060297 DOI: 10.3389/fimmu.2014.00293] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 06/04/2014] [Indexed: 12/22/2022] Open
Abstract
T-cell responses are induced by antigen presenting cells (APC) and signals from the microenvironment. Antigen persistence and inflammatory microenvironments in chronic infections and cancer can induce a tolerant state in T-cells resulting in hyporesponsiveness, loss of effector function, and weak biochemical signaling patterns in response to antigen stimulation. Although the mechanisms of T-cell tolerance induced in chronic infection and cancer may differ from those involved in tolerance to self-antigen, the impaired proliferation and production of IL-2 in response to antigen stimulation are hallmarks of all tolerant T cells. In this review, we will summarize the evidence that the immune responses change from non-self to “self”-like in chronic infection and cancer, and will provide an overview of strategies for re-balancing the immune response of antigen-specific T cells in chronic infection and cancer without affecting the homeostasis of the immune system.
Collapse
Affiliation(s)
- Suling Li
- Bioscience, Brunel University , London , UK
| | - Alistair L J Symonds
- Blizard Institute (BICMS), Barts and the London School of Medicine and Dentistry , London , UK
| | - Tizong Miao
- Blizard Institute (BICMS), Barts and the London School of Medicine and Dentistry , London , UK
| | - Ian Sanderson
- Blizard Institute (BICMS), Barts and the London School of Medicine and Dentistry , London , UK
| | - Ping Wang
- Blizard Institute (BICMS), Barts and the London School of Medicine and Dentistry , London , UK
| |
Collapse
|
602
|
Raval RR, Sharabi AB, Walker AJ, Drake CG, Sharma P. Tumor immunology and cancer immunotherapy: summary of the 2013 SITC primer. J Immunother Cancer 2014; 2:14. [PMID: 24883190 PMCID: PMC4039332 DOI: 10.1186/2051-1426-2-14] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 04/10/2014] [Indexed: 01/05/2023] Open
Abstract
Knowledge of the basic mechanisms of the immune system as it relates to cancer has been increasing rapidly. These developments have accelerated the translation of these advancements into medical breakthroughs for many cancer patients. The immune system is designed to discriminate between self and non-self, and through genetic recombination there is virtually no limit to the number of antigens it can recognize. Thus, mutational events, translocations, and other genetic abnormalities within cancer cells may be distinguished as “altered-self” and these differences may play an important role in preventing the development or progression of cancer. However, tumors may utilize a variety of mechanisms to evade the immune system as well. Cancer biologists are aiming to both better understand the relationship between tumors and the normal immune system, and to look for ways to alter the playing field for cancer immunotherapy. Summarized in this review are discussions from the 2013 SITC Primer, which focused on reviewing current knowledge and future directions of research related to tumor immunology and cancer immunotherapy, including sessions on innate immunity, adaptive immunity, therapeutic approaches (dendritic cells, adoptive T cell therapy, anti-tumor antibodies, cancer vaccines, and immune checkpoint blockade), challenges to driving an anti-tumor immune response, monitoring immune responses, and the future of immunotherapy clinical trial design.
Collapse
Affiliation(s)
- Raju R Raval
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew B Sharabi
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Amanda J Walker
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Charles G Drake
- Department of Medical Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA ; The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Padmanee Sharma
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA ; Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
603
|
Xu F, Liu J, Liu D, Liu B, Wang M, Hu Z, Du X, Tang L, He F. LSECtin Expressed on Melanoma Cells Promotes Tumor Progression by Inhibiting Antitumor T-cell Responses. Cancer Res 2014; 74:3418-28. [DOI: 10.1158/0008-5472.can-13-2690] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
604
|
Fehres CM, Unger WWJ, Garcia-Vallejo JJ, van Kooyk Y. Understanding the biology of antigen cross-presentation for the design of vaccines against cancer. Front Immunol 2014; 5:149. [PMID: 24782858 PMCID: PMC3986565 DOI: 10.3389/fimmu.2014.00149] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 03/21/2014] [Indexed: 12/19/2022] Open
Abstract
Antigen cross-presentation, the process in which exogenous antigens are presented on MHC class I molecules, is crucial for the generation of effector CD8(+) T cell responses. Although multiple cell types are being described to be able to cross-present antigens, in vivo this task is mainly carried out by certain subsets of dendritic cells (DCs). Aspects such as the internalization route, the pathway of endocytic trafficking, and the simultaneous activation through pattern-recognition receptors have a determining influence in how antigens are handled for cross-presentation by DCs. In this review, we will summarize new insights in factors that affect antigen cross-presentation of human DC subsets, and we will discuss the possibilities to exploit antigen cross-presentation for immunotherapy against cancer.
Collapse
Affiliation(s)
- Cynthia M Fehres
- Department of Molecular Cell Biology and Immunology, VU University Medical Center , Amsterdam , Netherlands
| | - Wendy W J Unger
- Department of Molecular Cell Biology and Immunology, VU University Medical Center , Amsterdam , Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center , Amsterdam , Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center , Amsterdam , Netherlands
| |
Collapse
|
605
|
Zheng Z, Bu Z, Liu X, Zhang L, Li Z, Wu A, Wu X, Cheng X, Xing X, Du H, Wang X, Hu Y, Ji J. Level of circulating PD-L1 expression in patients with advanced gastric cancer and its clinical implications. Chin J Cancer Res 2014; 26:104-11. [PMID: 24653632 DOI: 10.3978/j.issn.1000-9604.2014.02.08] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/10/2014] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The programmed cell death-1 receptor/programmed cell death-1 ligand (PD-1/PD-L1) pathway plays a crucial role in tumor evasion from host immunity. This study was designed to evaluate the association between circulating PD-L1 expression and prognosis in patients with advanced gastric cancer. METHODS Totally 80 advanced gastric cancer patients and 40 health controls from Beijing Cancer Hospital were enrolled in the present study. Circulating PD-L1 expression was tested by enzyme-linked immunosorbent assay (ELISA). The associations between the expression level of PD-L1 and clinicopathological features and prognosis were analyzed statistically. RESULTS Expression of PD-L1 in advanced gastric cancer patients was significantly up-regulated compared with health people (P=0.006). The expression of PD-L1 was significantly correlated with differentiation and lymph node metastasis (P=0.026 and P=0.041, respectively). Although we didn't find significant difference in all advanced gastric cancer patients with different PD-L1 expression, the adenocarcinoma patients with higher up-regulated PD-L1 expression had much better prognosis than low expression patients (65.6% vs. 44.7%, P=0.028). CONCLUSIONS PD-L1 was elevated in advance gastric cancer patients and may play an important role in tumor immune evasion and patients prognosis.
Collapse
Affiliation(s)
- Zhixue Zheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 1 Department of Gastrointestinal Surgery, 2 Department of Central Laboratory, 3 Clinical Gastric Cancer Translational Research Laboratory, 4 Biological Tissue Bank, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhaode Bu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 1 Department of Gastrointestinal Surgery, 2 Department of Central Laboratory, 3 Clinical Gastric Cancer Translational Research Laboratory, 4 Biological Tissue Bank, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xijuan Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 1 Department of Gastrointestinal Surgery, 2 Department of Central Laboratory, 3 Clinical Gastric Cancer Translational Research Laboratory, 4 Biological Tissue Bank, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Lianhai Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 1 Department of Gastrointestinal Surgery, 2 Department of Central Laboratory, 3 Clinical Gastric Cancer Translational Research Laboratory, 4 Biological Tissue Bank, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ziyu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 1 Department of Gastrointestinal Surgery, 2 Department of Central Laboratory, 3 Clinical Gastric Cancer Translational Research Laboratory, 4 Biological Tissue Bank, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Aiwen Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 1 Department of Gastrointestinal Surgery, 2 Department of Central Laboratory, 3 Clinical Gastric Cancer Translational Research Laboratory, 4 Biological Tissue Bank, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaojiang Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 1 Department of Gastrointestinal Surgery, 2 Department of Central Laboratory, 3 Clinical Gastric Cancer Translational Research Laboratory, 4 Biological Tissue Bank, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaojing Cheng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 1 Department of Gastrointestinal Surgery, 2 Department of Central Laboratory, 3 Clinical Gastric Cancer Translational Research Laboratory, 4 Biological Tissue Bank, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaofang Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 1 Department of Gastrointestinal Surgery, 2 Department of Central Laboratory, 3 Clinical Gastric Cancer Translational Research Laboratory, 4 Biological Tissue Bank, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hong Du
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 1 Department of Gastrointestinal Surgery, 2 Department of Central Laboratory, 3 Clinical Gastric Cancer Translational Research Laboratory, 4 Biological Tissue Bank, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaohong Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 1 Department of Gastrointestinal Surgery, 2 Department of Central Laboratory, 3 Clinical Gastric Cancer Translational Research Laboratory, 4 Biological Tissue Bank, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Ying Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 1 Department of Gastrointestinal Surgery, 2 Department of Central Laboratory, 3 Clinical Gastric Cancer Translational Research Laboratory, 4 Biological Tissue Bank, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), 1 Department of Gastrointestinal Surgery, 2 Department of Central Laboratory, 3 Clinical Gastric Cancer Translational Research Laboratory, 4 Biological Tissue Bank, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
606
|
Scurr M, Ladell K, Besneux M, Christian A, Hockey T, Smart K, Bridgeman H, Hargest R, Phillips S, Davies M, Price D, Gallimore A, Godkin A. Highly prevalent colorectal cancer-infiltrating LAP⁺ Foxp3⁻ T cells exhibit more potent immunosuppressive activity than Foxp3⁺ regulatory T cells. Mucosal Immunol 2014; 7:428-39. [PMID: 24064667 PMCID: PMC3931584 DOI: 10.1038/mi.2013.62] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 06/13/2013] [Accepted: 07/09/2013] [Indexed: 02/04/2023]
Abstract
Although elevated CD4⁺Foxp3⁺ regulatory T cell (Treg) frequencies within tumors are well documented, the functional and phenotypic characteristics of CD4⁺Foxp3⁺ and CD4⁺Foxp3⁻ T cell subsets from matched blood, healthy colon, and colorectal cancer require in-depth investigation. Flow cytometry revealed that the majority of intratumoral CD4⁺Foxp3⁺ T cells (Tregs) were Helios⁺ and expressed higher levels of cytotoxic T-lymphocyte antigen 4 (CTLA-4) and CD39 than Tregs from colon and blood. Moreover, ∼30% of intratumoral CD4⁺Foxp3⁻ T cells expressed markers associated with regulatory functions, including latency-associated peptide (LAP), lymphocyte activation gene-3 (LAG-3), and CD25. This unique population of cells produced interleukin-10 (IL-10) and transforming growth factor-β (TGF-β), and was ∼50-fold more suppressive than Foxp3⁺ Tregs. Thus, intratumoral Tregs are diverse, posing multiple obstacles to immunotherapeutic intervention in colorectal malignancies.
Collapse
Affiliation(s)
- M Scurr
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - K Ladell
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - M Besneux
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - A Christian
- Department of Pathology, University Hospital of Wales, Cardiff, UK
| | - T Hockey
- Department of Pathology, University Hospital of Wales, Cardiff, UK
| | - K Smart
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - H Bridgeman
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - R Hargest
- Department of Surgery, University Hospital of Wales, Cardiff, UK
| | - S Phillips
- Department of Surgery, University Hospital of Wales, Cardiff, UK
| | - M Davies
- Department of Surgery, University Hospital of Wales, Cardiff, UK
| | - D Price
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - A Gallimore
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - A Godkin
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK,
| |
Collapse
|
607
|
Kato T, Nishida T, Ito Y, Murase M, Murata M, Naoe T. Correlations of programmed death 1 expression and serum IL-6 level with exhaustion of cytomegalovirus-specific T cells after allogeneic hematopoietic stem cell transplantation. Cell Immunol 2014; 288:53-9. [DOI: 10.1016/j.cellimm.2014.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/26/2014] [Indexed: 01/08/2023]
|
608
|
da Silva IP, Gallois A, Jimenez-Baranda S, Khan S, Anderson AC, Kuchroo VK, Osman I, Bhardwaj N. Reversal of NK-cell exhaustion in advanced melanoma by Tim-3 blockade. Cancer Immunol Res 2014; 2:410-22. [PMID: 24795354 DOI: 10.1158/2326-6066.cir-13-0171] [Citation(s) in RCA: 285] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The immunoregulatory protein T-cell immunoglobulin- and mucin-domain-containing molecule-3 (Tim-3) mediates T-cell exhaustion and contributes to the suppression of immune responses in both viral infections and tumors. Tim-3 blockade reverses the exhausted phenotype of CD4+ and CD8+ T cells in several chronic diseases, including melanoma. Interestingly, natural killer (NK) cells constitutively express Tim-3; however, the role of Tim-3 in modulating the function of these innate effector cells remains unclear, particularly in human diseases. In this study, we compared the function of Tim-3 in NK cells from healthy donors and patients with metastatic melanoma. NK cells from the latter were functionally impaired/exhausted, and Tim-3 blockade reversed this exhausted phenotype. Moreover, Tim-3 expression levels were correlated with the stage of the disease and poor prognostic factors. These data indicate that Tim-3 can function as an NK-cell exhaustion marker in advanced melanoma and support the development of Tim-3-targeted therapies to restore antitumor immunity.
Collapse
Affiliation(s)
- Ines Pires da Silva
- Authors' Affiliations: Programme for Advanced Medical Education, Lisbon, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
609
|
Affiliation(s)
- Benjamin C. Creelan
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| |
Collapse
|
610
|
Goc J, Germain C, Vo-Bourgais TKD, Lupo A, Klein C, Knockaert S, de Chaisemartin L, Ouakrim H, Becht E, Alifano M, Validire P, Remark R, Hammond SA, Cremer I, Damotte D, Fridman WH, Sautès-Fridman C, Dieu-Nosjean MC. Dendritic cells in tumor-associated tertiary lymphoid structures signal a Th1 cytotoxic immune contexture and license the positive prognostic value of infiltrating CD8+ T cells. Cancer Res 2013; 74:705-15. [PMID: 24366885 DOI: 10.1158/0008-5472.can-13-1342] [Citation(s) in RCA: 445] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Tumor-infiltrating T cells, particularly CD45RO(+)CD8(+) memory T cells, confer a positive prognostic value in human cancers. However, the mechanisms that promote a protective T-cell response in the tumor microenvironment remain unclear. In chronic inflammatory settings such as the tumor microenvironment, lymphoid neogenesis can occur to create local lymph node-like structures known as tertiary lymphoid structures (TLS). These structures can exacerbate a local immune response, such that TLS formation in tumors may help promote an efficacious immune contexture. However, the role of TLS in tumors has yet to be investigated carefully. In lung tumors, mature dendritic cells (DC) present in tumor-associated TLS can provide a specific marker of these structures. In this study, we evaluated the influence of TLS on the characteristics of the immune infiltrate in cohorts of prospective and retrospective human primary lung tumors (n = 458). We found that a high density of mature DC correlated closely to a strong infiltration of T cells that are predominantly of the effector-memory phenotype. Moreover, mature DC density correlated with expression of genes related to T-cell activation, T-helper 1 (Th1) phenotype, and cytotoxic orientation. Lastly, a high density of TLS-associated DC correlated with long-term survival, which also allowed a distinction of patients with high CD8(+) T-cell infiltration but a high risk of death. Taken together, our results show how tumors infiltrated by TLS-associated mature DC generate a specific immune contexture characterized by a strong Th1 and cytotoxic orientation that confers the lowest risk of death. Furthermore, our findings highlight the pivotal function of TLS in shaping the immune character of the tumor microenvironment, in promoting a protective immune response mediated by T cells against cancer.
Collapse
Affiliation(s)
- Jérémy Goc
- Authors' Affiliations: Laboratory Immune Microenvironment and Tumors, INSERM U872, Cordeliers Research Center; University Pierre et Marie Curie; University Paris Descartes, UMRS 872; Departments of Pathology and Thoracic Surgery, Hôtel Dieu Hospital, AP-HP; Department of Pathology, Institut Mutualiste Montsouris; Department of Immunology, European Georges Pompidou Hospital, AP-HP, Paris, France; and Oncology Research, MedImmune LLC, Gaithersburg, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
611
|
Legat A, Speiser DE, Pircher H, Zehn D, Fuertes Marraco SA. Inhibitory Receptor Expression Depends More Dominantly on Differentiation and Activation than "Exhaustion" of Human CD8 T Cells. Front Immunol 2013; 4:455. [PMID: 24391639 PMCID: PMC3867683 DOI: 10.3389/fimmu.2013.00455] [Citation(s) in RCA: 187] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/29/2013] [Indexed: 01/02/2023] Open
Abstract
Under conditions of chronic antigen stimulation, such as persistent viral infection and cancer, CD8 T cells may diminish effector function, which has been termed "exhaustion." Expression of inhibitory Receptors (iRs) is often regarded as a hallmark of "exhaustion." Here we studied the expression of eight different iRs by CD8 T cells of healthy humans, including CTLA-4, PD1, TIM3, LAG3, 2B4, BTLA, CD160, and KLRG1. We show that many iRs are expressed upon activation, and with progressive differentiation to effector cells, even in absence of long-term ("chronic") antigenic stimulation. In particular, we evaluated the direct relationship between iR expression and functionality in CD8 T cells by using anti-CD3 and anti-CD28 stimulation to stimulate all cells and differentiation subsets. We observed a striking up-regulation of certain iRs following the cytokine production wave, in agreement with the notion that iRs function as a negative feedback mechanism. Intriguingly, we found no major impairment of cytokine production in cells positive for a broad array of iRs, as previously shown for PD1 in healthy donors. Rather, the expression of the various iRs strongly correlated with T cell differentiation or activation states, or both. Furthermore, we analyzed CD8 T cells from lymph nodes (LNs) of melanoma patients. Interestingly, we found altered iR expression and lower cytokine production by T cells from metastatic LNs, but also from non-metastatic LNs, likely due to mechanisms which are not related to exhaustion. Together, our data shows that expression of iRs per se does not mark dysfunctional cells, but is rather tightly linked to activation and differentiation. This study highlights the importance of considering the status of activation and differentiation for the study and the clinical monitoring of CD8 T cells.
Collapse
Affiliation(s)
- Amandine Legat
- Clinical Tumor Biology and Immunotherapy Unit, Department of Oncology, Ludwig Center for Cancer Research, Lausanne University Hospital (CHUV) , Lausanne , Switzerland
| | - Daniel E Speiser
- Clinical Tumor Biology and Immunotherapy Unit, Department of Oncology, Ludwig Center for Cancer Research, Lausanne University Hospital (CHUV) , Lausanne , Switzerland
| | - Hanspeter Pircher
- Department of Immunology, Institute of Medical Microbiology and Hygiene, University of Freiburg , Freiburg , Germany
| | - Dietmar Zehn
- Swiss Vaccine Research Institute (SVRI) , Epalinges , Switzerland ; Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital (CHUV) , Lausanne , Switzerland
| | - Silvia A Fuertes Marraco
- Clinical Tumor Biology and Immunotherapy Unit, Department of Oncology, Ludwig Center for Cancer Research, Lausanne University Hospital (CHUV) , Lausanne , Switzerland
| |
Collapse
|
612
|
Matsuzaki J, Tsuji T, Luescher I, Old LJ, Shrikant P, Gnjatic S, Odunsi K. Nonclassical antigen-processing pathways are required for MHC class II-restricted direct tumor recognition by NY-ESO-1-specific CD4(+) T cells. Cancer Immunol Res 2013; 2:341-50. [PMID: 24764581 DOI: 10.1158/2326-6066.cir-13-0138] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tumor antigen-specific CD4(+) T cells that directly recognize cancer cells are important for orchestrating antitumor immune responses at the local tumor sites. However, the mechanisms of direct MHC class II (MHC-II) presentation of intracellular tumor antigen by cancer cells are poorly understood. We found that two functionally distinct subsets of CD4(+) T cells were expanded after HLA-DPB1*04 (DP04)-binding NY-ESO-1157-170 peptide vaccination in patients with ovarian cancer. Although both subsets recognized exogenous NY-ESO-1 protein pulsed on DP04(+) target cells, only one type recognized target cells with intracellular expression of NY-ESO-1. The tumor-recognizing CD4(+) T cells more efficiently recognized the short 8-9-mer peptides than the non-tumor-recognizing CD4(+) T cells. In addition to endosomal/lysosomal proteases that are typically involved in MHC-II antigen presentation, several pathways in the MHC class I presentation pathways, such as the proteasomal degradation and transporter-associated with antigen-processing-mediated peptide transport, were also involved in the presentation of intracellular NY-ESO-1 on MHC-II. The presentation was inhibited significantly by primaquine, a small molecule that inhibits endosomal recycling, consistent with findings that pharmacologic inhibition of new protein synthesis enhances antigen presentation. Together, our data demonstrate that cancer cells selectively present peptides from intracellular tumor antigens on MHC-II by multiple nonclassical antigen-processing pathways. Harnessing the direct tumor-recognizing ability of CD4(+) T cells could be a promising strategy to enhance antitumor immune responses in the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Junko Matsuzaki
- Authors' Affiliations: Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland
| | | | | | | | | | | | | |
Collapse
|
613
|
Noguchi T, Ritter G, Nishikawa H. Antibody-based therapy in colorectal cancer. Immunotherapy 2013; 5:533-45. [PMID: 23638747 DOI: 10.2217/imt.13.35] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Treatment in patients with nonresectable and resectable colorectal cancer at the advanced stage is challenging, therefore intensive strategies such as chemotherapy, signaling inhibitors and monoclonal antibodies (mAbs) to control the disease are required. mAbs are particularly promising tools owing to their target specificities and strong antitumor activities through multiple mechanisms, as shown by rituximab in B-cell non-Hodgkin's lymphoma and trastuzumab in breast cancer. Three mAbs (cetuximab, bevacizumab and panitumumab) have been approved for the treatment of colorectal cancer in the USA and many other mAbs are being tested in clinical trials. The potential of antibody therapy is associated with several mechanisms including interference of vital signaling pathways targeted by the antibody and immune cytotoxicity selectively directed against tumor cells by tumor-bound antibody through the Fc portion of the antibody, such as antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. Moreover, recent experimental findings have shown that immune complexes formed by therapeutic mAbs with tumor-released antigens could augment the induction of tumor-specific cytotoxic CD8(+) T cells through activation of APCs. In addition, antibodies targeting immune checkpoints on hematopoietic cells have recently opened a new avenue for the treatment of cancer. In this review, we focus on mAb treatment in colorectal cancer and its immunological aspects.
Collapse
Affiliation(s)
- Takuro Noguchi
- Ludwig Institute for Cancer Research, New York Branch, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | |
Collapse
|
614
|
Vasaturo A, Di Blasio S, Peeters DGA, de Koning CCH, de Vries JM, Figdor CG, Hato SV. Clinical Implications of Co-Inhibitory Molecule Expression in the Tumor Microenvironment for DC Vaccination: A Game of Stop and Go. Front Immunol 2013; 4:417. [PMID: 24348481 PMCID: PMC3847559 DOI: 10.3389/fimmu.2013.00417] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 11/15/2013] [Indexed: 12/13/2022] Open
Abstract
The aim of therapeutic dendritic cell (DC) vaccines in cancer immunotherapy is to activate cytotoxic T cells to recognize and attack the tumor. T cell activation requires the interaction of the T cell receptor with a cognate major-histocompatibility complex-peptide complex. Although initiated by antigen engagement, it is the complex balance between co-stimulatory and co-inhibitory signals on DCs that results in T cell activation or tolerance. Even when already activated, tumor-specific T cells can be neutralized by the expression of co-inhibitory molecules on tumor cells. These and other immunosuppressive cues in the tumor microenvironment are major factors currently hampering the application of DC vaccination. In this review, we discuss recent data regarding the essential and complex role of co-inhibitory molecules in regulating the immune response within the tumor microenvironment. In particular, possible therapeutic intervention strategies aimed at reversing or neutralizing suppressive networks within the tumor microenvironment will be emphasized. Importantly, blocking co-inhibitory molecule signaling, often referred to as immune checkpoint blockade, does not necessarily lead to an effective activation of tumor-specific T cells. Therefore, combination of checkpoint blockade with other immune potentiating therapeutic strategies, such as DC vaccination, might serve as a synergistic combination, capable of reversing effector T cells immunosuppression while at the same time increasing the efficacy of T cell-mediated immunotherapies. This will ultimately result in long-term anti-tumor immunity.
Collapse
Affiliation(s)
- Angela Vasaturo
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Stefania Di Blasio
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Deborah G A Peeters
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Coco C H de Koning
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Jolanda M de Vries
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands ; Department of Medical Oncology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| | - Stanleyson V Hato
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre , Nijmegen , Netherlands
| |
Collapse
|
615
|
Krönig H, Kremmler L, Haller B, Englert C, Peschel C, Andreesen R, Blank CU. Interferon-induced programmed death-ligand 1 (PD-L1/B7-H1) expression increases on human acute myeloid leukemia blast cells during treatment. Eur J Haematol 2013; 92:195-203. [PMID: 24175978 DOI: 10.1111/ejh.12228] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2013] [Indexed: 12/27/2022]
Abstract
INTRODUCTION While current treatment for acute myeloid leukemia is characterized by high response rates, patients' long-term outcome is still disappointing, due to frequent relapse and ineligibility of the often elderly patients for stem cell transplantation approaches. Considerable efforts have, thus, been made to incorporate immunotherapeutic approaches in the acute myeloid leukemia (AML) consolidation, with so far disappointing clinical benefit. The B7 family ligand programmed-death receptor-ligand 1 (PD-L1, B7-H1, CD274) has been recently described (with conflicting results) to be expressed on AML blast cells, and interaction with its receptor on T cells, programmed death receptor-1 (PD-1, CD279), has been shown to suppress T-cell functions and to allow survival of dormant AML cells in animal models. DESIGN AND METHODS In this work, we analyzed freshly isolated myeloid precursor cells from healthy donors and from AML patients for PD-L1 expression with or without interferon-γ exposure at different time points during their treatment. RESULTS While without IFN exposure, only minor differences were observed, we found IFN-γ-induced PD-L1 expression most prominent after initial treatment and independent of treatment outcome. CONCLUSIONS Our observations support the recently suggested PD-L1-mediated adaptive immune resistance and argue for a targeting of the PD-L1/PD-1 pathway during the consolidation phase of AML treatment.
Collapse
Affiliation(s)
- Holger Krönig
- Department of Hematology and Medical Oncology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
616
|
Abstract
Patients with advanced melanoma can develop spontaneous cellular and humoral responses to tumor antigens. Understanding the failure of spontaneous or vaccine-induced tumor antigen-specific T-cell responses to promote the immunologic clearance of melanomas is critical. Multiple mechanisms of melanoma-induced immune escape, which are likely to cause the failure of the spontaneous or vaccine-induced immune responses to promote tumor regression in humans, have been elucidated. In addition, a number of negative factors in the tumor microenvironment dampen antitumor immune responses, including cytokines (like transforming growth factor-β or interleukin-10), suppressive cells (regulatory T cells and myelosuppressive dendritic cells), defective antigen presentation by tumor cells (human leukocyte antigen or T antigen expression loss, antigen processing machinery defects), amino acid catabolizing enzymes (indoleamine-2-3 dioxygenase, arginase), and immune inhibitory pathways (like cytotoxic T-lymphocyte antigen 4/cluster of differentiation 28, programmed death 1/programmed death 1 ligand 1). This information has been used to develop a number of therapies to specifically target these negative regulators of antimelanoma immune responses to enhance tumor antigen-specific immune responses and to increase the likelihood of clinical benefits in patients with advanced melanoma.
Collapse
Affiliation(s)
- Julien Fourcade
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
617
|
Lavoué V, Foucher F, Henno S, Bauville E, Catros V, Cabillic F, Levêque J. [Immunotherapy in epithelial ovarian carcinoma: hope and reality]. ACTA ACUST UNITED AC 2013; 43:198-210. [PMID: 24230482 DOI: 10.1016/j.jgyn.2013.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Epithelial ovarian carcinoma (EOC) has a worst prognosis with little progress in terms of survival for the last two decades. Immunology received little interest in EOC in the past, but now appears very important in the natural history of this cancer. This review is an EOC immunology state of art and focuses on the place of immunotherapy in future. MATERIAL AND METHODS A systematic review of published studies was performed. Medline baseline interrogation was performed with the following keywords: "Ovarian carinoma, immunotherapy, T-lymphocyte, regulator T-lymphocyte, dendritic cells, macrophage, antigen, chemotherapy, surgery, clinical trials". Identified publications (English or French) were assessed for the understanding of EOC immunology and the place of conventional treatment and immunotherapy strategy. RESULTS Intratumoral infiltration by immune cells is a strong prognotic factor in EOC. Surgery and chemotherapy in EOC decrease imunosuppression in patients. The antitumoral immunity is a part of the therapeutic action of surgery and chemotherapy. Until now, immunotherapy gave some disappointing results, but the new drugs that target the tolerogenic tumoral microenvironnement rise and give a new hope in the treatment of cancer. CONCLUSION Immunology controls the EOC natural history. The modulation of immunosuppressive microenvironment associated with the stimulation of antitumoral immunity could be the next revolution in the treatment of cancer.
Collapse
Affiliation(s)
- V Lavoué
- Service de chirurgie gynécologique, centre hospitalier universitaire de Rennes, 35000 Rennes, France; Faculté de médecine, université de Rennes 1, 35000 Rennes, France; Inserm, UMR991, 35000 Rennes, France.
| | - F Foucher
- Service de chirurgie gynécologique, centre hospitalier universitaire de Rennes, 35000 Rennes, France
| | - S Henno
- Service d'anatomo-pathologie, centre hospitalier universitaire de Rennes, 35000 Rennes, France
| | - E Bauville
- Service de chirurgie gynécologique, centre hospitalier universitaire de Rennes, 35000 Rennes, France
| | - V Catros
- Faculté de médecine, université de Rennes 1, 35000 Rennes, France; Inserm, UMR991, 35000 Rennes, France; Service de biologie cellulaire, centre hospitalier universitaire de Rennes, 35000 Rennes, France
| | - F Cabillic
- Faculté de médecine, université de Rennes 1, 35000 Rennes, France; Inserm, UMR991, 35000 Rennes, France; Service de biologie cellulaire, centre hospitalier universitaire de Rennes, 35000 Rennes, France
| | - J Levêque
- Service de chirurgie gynécologique, centre hospitalier universitaire de Rennes, 35000 Rennes, France; Faculté de médecine, université de Rennes 1, 35000 Rennes, France
| |
Collapse
|
618
|
Tolerance and exhaustion: defining mechanisms of T cell dysfunction. Trends Immunol 2013; 35:51-60. [PMID: 24210163 DOI: 10.1016/j.it.2013.10.001] [Citation(s) in RCA: 483] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/29/2013] [Accepted: 10/05/2013] [Indexed: 02/08/2023]
Abstract
CD8 T cell activation and differentiation are tightly controlled, and dependent on the context in which naïve T cells encounter antigen, can either result in functional memory or T cell dysfunction, including exhaustion, tolerance, anergy, or senescence. With the identification of phenotypic and functional traits shared in different settings of T cell dysfunction, distinctions between such dysfunctional states have become blurred. Here, we discuss distinct states of CD8 T cell dysfunction, with an emphasis on: (i) T cell tolerance to self-antigens (self-tolerance); (ii) T cell exhaustion during chronic infections; and (iii) tumor-induced T cell dysfunction. We highlight recent findings on cellular and molecular characteristics defining these states, cell-intrinsic regulatory mechanisms that induce and maintain them, and strategies that can lead to their reversal.
Collapse
|
619
|
Charbonneau B, Goode EL, Kalli KR, Knutson KL, Derycke MS. The immune system in the pathogenesis of ovarian cancer. Crit Rev Immunol 2013; 33:137-64. [PMID: 23582060 DOI: 10.1615/critrevimmunol.2013006813] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clinical outcomes in ovarian cancer are heterogeneous even when considering common features such as stage, response to therapy, and grade. This disparity in outcomes warrants further exploration into tumor and host characteristics. One compelling host characteristic is the immune response to ovarian cancer. While several studies have confirmed a prominent role for the immune system in modifying the clinical course of the disease, recent genetic and protein analyses also suggest a role in disease incidence. Recent studies also show that anti-tumor immunity is often negated by immune suppressive cells present in the tumor microenvironment. These suppressive immune cells also directly enhance the pathogenesis through the release of various cytokines and chemokines, which together form an integrated pathologic network. Thus, future research into immunotherapy targeting ovarian cancer will likely become increasingly focused on combination approaches that simultaneously augment immunity while preventing local immune suppression or by disrupting critical cytokine networks.
Collapse
Affiliation(s)
- Bridget Charbonneau
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
620
|
Hypoxia-inducible factors enhance the effector responses of CD8(+) T cells to persistent antigen. Nat Immunol 2013; 14:1173-82. [PMID: 24076634 DOI: 10.1038/ni.2714] [Citation(s) in RCA: 480] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 08/21/2013] [Indexed: 12/21/2022]
Abstract
Cytolytic activity by CD8(+) cytotoxic T lymphocytes (CTLs) is a powerful strategy for the elimination of intracellular pathogens and tumor cells. The destructive capacity of CTLs is progressively dampened during chronic infection, yet the environmental cues and molecular pathways that influence immunological 'exhaustion' remain unclear. Here we found that CTL immunity was regulated by the central transcriptional response to hypoxia, which is controlled in part by hypoxia-inducible factors (HIFs) and the von Hippel-Lindau tumor suppressor VHL. Loss of VHL, the main negative regulator of HIFs, led to lethal CTL-mediated immunopathology during chronic infection, and VHL-deficient CTLs displayed enhanced control of persistent viral infection and neoplastic growth. We found that HIFs and oxygen influenced the expression of pivotal transcription, effector and costimulatory-inhibitory molecules of CTLs, which was relevant to strategies that promote the clearance of viruses and tumors.
Collapse
|
621
|
Wayteck L, Breckpot K, Demeester J, De Smedt SC, Raemdonck K. A personalized view on cancer immunotherapy. Cancer Lett 2013; 352:113-25. [PMID: 24051308 DOI: 10.1016/j.canlet.2013.09.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 02/08/2023]
Abstract
Recent progress in cancer immunotherapy has resulted in complete responses in patients refractory to current standard cancer therapies. However, due to tumor heterogeneity and inter-individual variations in anti-tumor immunity, only subsets of patients experience clinical benefit. This review highlights the implementation of a personalized approach to enhance treatment efficacy and reduce side effects, including the identification of tumor-specific antigens for cancer vaccination and adoptive T cell therapies. Furthermore, together with the current advances and promising clinical outcomes of combination cancer (immuno-)therapies, the screening for predictive biomarkers in a patient-specific manner is emphasized.
Collapse
Affiliation(s)
- Laura Wayteck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Immunology and Physiology, Medical School of the Vrije Universiteit Brussel, Laarbeeklaan 103/E, 1090 Brussels, Belgium
| | - Jo Demeester
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent, Belgium.
| |
Collapse
|
622
|
Pedersen SR, Sørensen MR, Buus S, Christensen JP, Thomsen AR. Comparison of vaccine-induced effector CD8 T cell responses directed against self- and non-self-tumor antigens: implications for cancer immunotherapy. THE JOURNAL OF IMMUNOLOGY 2013; 191:3955-67. [PMID: 24018273 DOI: 10.4049/jimmunol.1300555] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is generally accepted that CD8 T cells play a major role in tumor control, yet vaccination aimed at eliciting potent CD8 T cell responses are rarely efficient in clinical trials. To try and understand why this is so, we have generated potent adenoviral vectors encoding the endogenous tumor Ags (TA) tyrosinase-related protein-2 (TRP-2) and glycoprotein 100 (GP100) tethered to the invariant chain (Ii). Using these vectors, we sought to characterize the self-TA-specific CD8 T cell response and compare it to that induced against non-self-Ags expressed from a similar vector platform. Prophylactic vaccination with adenoviral vectors expressing either TRP-2 (Ad-Ii-TRP-2) or GP100 (Ad-Ii-GP100) had little or no effect on the growth of s.c. B16 melanomas, and only Ad-Ii-TRP-2 was able to induce a marginal reduction of B16 lung metastasis. In contrast, vaccination with a similar vector construct expressing a foreign (viral) TA induced efficient tumor control. Analyzing the self-TA-specific CD8 T cells, we observed that these could be activated to produce IFN-γ and TNF-α. In addition, surface expression of phenotypic markers and inhibitory receptors, as well as in vivo cytotoxicity and degranulation capacity matched that of non-self-Ag-specific CD8 T cells. However, the CD8 T cells specific for self-TAs had a lower functional avidity, and this impacted on their in vivo performance. On the basis of these results and a low expression of the targeted TA epitopes on the tumor cells, we suggest that low avidity of the self-TA-specific CD8 T cells may represent a major obstacle for efficient immunotherapy of cancer.
Collapse
Affiliation(s)
- Sara R Pedersen
- Department of International Health, Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen North, Denmark
| | | | | | | | | |
Collapse
|
623
|
Prato S, Zhan Y, Mintern JD, Villadangos JA. Rapid Deletion and Inactivation of CTLs upon Recognition of a Number of Target Cells over a Critical Threshold. THE JOURNAL OF IMMUNOLOGY 2013; 191:3534-44. [DOI: 10.4049/jimmunol.1300803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
624
|
Romero PJ, Withington T, Marincola F. Immune evasion in acute myeloid leukemia: current concepts and future directions. J Immunother Cancer 2013; 1:1/1/13. [PMID: 24353898 PMCID: PMC3864190 DOI: 10.1186/2051-1426-1-13] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 01/22/2023] Open
Abstract
Immune responses generated against malignant cells have the potential to inhibit tumor growth, or even eliminate transformed cells before a tumor forms. However, immune tolerance mechanisms that normally protect healthy tissues from autoimmune damage pose a formidable barrier to the development of effective anti-tumor immunity. Because malignant cells are derived from self-tissues, the majority of defined tumor antigens are either shared or aberrantly expressed self-proteins. Eliciting productive T cell responses against such proteins is challenging, as most high-affinity, self-reactive T cells are purged during thymic selection. Some T cells capable of tumor antigen recognition escape thymic deletion, but are functionally inhibited by peripheral tolerance mechanisms which limit their ability to attack a developing malignancy. Alternatively, some tumors express antigens derived from mutated self-proteins, viral proteins or self proteins expressed only during embryonic development. These antigens are recognized by the immune system as foreign and could be recognized by a relatively large number of peripheral T cells. Even in this scenario, tumors evade otherwise effective T cell responses by employing potent immunosuppressive mechanisms within their local environment. In the setting for solid malignancies, such as melanoma, a growing number of putative immune evasion mechanisms have been characterized. However, acute myeloid leukemia (AML) is a systemic disease, and the pathways it exploits to subvert the host immune response may be quite different than those of a solid tumor. Much remains unknown regarding the immune escape mechanisms promoted by AML, and whether efforts to thwart tolerance may influence the progression of this disease. Here, we review current concepts of immune evasion in AML, and speculate how potentially effective immunotherapeutic strategies might be developed to reverse immune tolerance in leukemia patients in the future.
Collapse
Affiliation(s)
- Pedro J Romero
- Ludwig Center for Cancer Research, Lausanne, Switzerland
| | - Tara Withington
- Society for Immunotherapy of Cancer (SITC), Milwaukee, WI, USA
| | | |
Collapse
|
625
|
Duraiswamy J, Freeman GJ, Coukos G. Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer. Cancer Res 2013; 73:6900-12. [PMID: 23975756 DOI: 10.1158/0008-5472.can-13-1550] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The tumor microenvironment mediates induction of the immunosuppressive programmed cell death-1 (PD-1) pathway, and targeted interventions against this pathway can help restore antitumor immunity. To gain insight into these responses, we studied the interaction between PD-1 expressed on T cells and its ligands (PD-1:PD-L1, PD-1:PD-L2, and PD-L1:B7.1), expressed on other cells in the tumor microenvironment, using a syngeneic orthotopic mouse model of epithelial ovarian cancer (ID8). Exhaustion of tumor-infiltrating lymphocytes (TIL) correlated with expression of PD-1 ligands by tumor cells and tumor-derived myeloid cells, including tumor-associated macrophages (TAM), dendritic cells, and myeloid-derived suppressor cells (MDSC). When combined with GVAX or FVAX vaccination (consisting of irradiated ID8 cells expressing granulocyte macrophage colony-stimulating factor or FLT3 ligand) and costimulation by agonistic α-4-1BB or TLR 9 ligand, antibody-mediated blockade of PD-1 or PD-L1 triggered rejection of ID8 tumors in 75% of tumor-bearing mice. This therapeutic effect was associated with increased proliferation and function of tumor antigen-specific effector CD8(+) T cells, inhibition of suppressive regulatory T cells (Treg) and MDSC, upregulation of effector T-cell signaling molecules, and generation of T memory precursor cells. Overall, PD-1/PD-L1 blockade enhanced the amplitude of tumor immunity by reprogramming suppressive and stimulatory signals that yielded more powerful cancer control.
Collapse
Affiliation(s)
- Jaikumar Duraiswamy
- Authors' Affiliations: Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; and Department of Oncology and Ludwig Center for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
626
|
Chen ML, Yan BS, Lu WC, Chen MH, Yu SL, Yang PC, Cheng AL. Sorafenib relieves cell-intrinsic and cell-extrinsic inhibitions of effector T cells in tumor microenvironment to augment antitumor immunity. Int J Cancer 2013; 134:319-31. [PMID: 23818246 DOI: 10.1002/ijc.28362] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 06/03/2013] [Accepted: 06/11/2013] [Indexed: 12/16/2022]
Abstract
Sorafenib, a multitargeted antiangiogenic tyrosine kinase inhibitor, is the standard of care for patients with advanced hepatocellular carcinoma (HCC). Cumulating evidence suggests that sorafenib differentially affects immune cells; however, whether this immunomodulatory effect has any impact on antitumor immune responses is unknown. Using an orthotopic mouse model of HCC and tumor-free mice, we investigated the effects of sorafenib on antitumor immunity and characterized the underlying mechanisms. Sorafenib treatment inhibited tumor growth and augmented antitumor immune responses in mice bearing established orthotopic HCC. The tumor-specific effector T cell functions were upregulated, while the proportion of PD-1-expressing CD8(+) T cells and regulatory T cells (Tregs) was reduced in tumor microenvironment of sorafenib-treated mice. Mechanistically, the sorafenib-mediated effects on Tregs could be independent of its direct tumor-suppressing activities. Sorafenib treatment reduced Treg numbers by inhibiting their proliferation and inducing apoptosis. Moreover, sorafenib inhibited the function of Tregs, characterized by diminished expression of Treg-associated molecules important for their function and by their impaired suppressive capacity. These data reveal that sorafenib treatment enhanced functions of tumor-specific effector T cells as well as relieved PD-1-mediated intrinsic and Treg-mediated non-cell-autonomous inhibitions in tumor microenvironment leading to effective antitumor immune responses. In addition to the well-known tumor-inhibiting activity of sorafenib, its enhancement of antitumor immunity may also contribute to the clinical efficacy. Our findings uncover a previously unrecognized mechanism of action of sorafenib and indicate that sorafenib represents a potential targeted agent suitable to be combined with immunotherapeutic approaches to treat cancer patients.
Collapse
Affiliation(s)
- Mei-Ling Chen
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
627
|
Harris TJ, Drake CG. Primer on tumor immunology and cancer immunotherapy. J Immunother Cancer 2013; 1:12. [PMID: 24829749 PMCID: PMC4019888 DOI: 10.1186/2051-1426-1-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/10/2013] [Indexed: 01/05/2023] Open
Abstract
Individualized cancer therapy is a central goal of cancer biologists. Immunotherapy is a rational means to this end—because the immune system can recognize a virtually limitless number of antigens secondary to the biology of genetic recombination in B and T lymphocytes. The immune system is exquisitely structured to distinguish self from non-self, as demonstrated by anti-microbial immune responses. Moreover the immune system has the potential to recognize self from “altered-self”, which is the case for cancer. However, the immune system has mechanisms in place to inhibit self-reactive responses, many of which are usurped by evolving tumors. Understanding the interaction of cancer with the immune system provides insights into mechanisms that can be exploited to disinhibit anti-tumor immune responses. Here, we summarize the 2012 SITC Primer, reviewing past, present, and emerging immunotherapeutic approaches for the treatment of cancer—including targeting innate versus adaptive immune components; targeting and/or utilizing dendritic cells and T cells; the role of the tumor microenvironment; and immune checkpoint blockade.
Collapse
Affiliation(s)
- Timothy J Harris
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Charles G Drake
- Department of Oncology and Brady Urological Institute, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, 1650 Orleans St., CRB I #410, Baltimore, MD 21231, USA
| |
Collapse
|
628
|
Ikebuchi R, Konnai S, Okagawa T, Yokoyama K, Nakajima C, Suzuki Y, Murata S, Ohashi K. Blockade of bovine PD-1 increases T cell function and inhibits bovine leukemia virus expression in B cells in vitro. Vet Res 2013; 44:59. [PMID: 23876077 PMCID: PMC3726328 DOI: 10.1186/1297-9716-44-59] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 06/25/2013] [Indexed: 12/28/2022] Open
Abstract
Programmed death-1 (PD-1) is a known immunoinhibitory receptor that contributes to immune evasion of various tumor cells and pathogens causing chronic infection, such as bovine leukemia virus (BLV) infection. First, in this study, to establish a method for the expression and functional analysis of bovine PD-1, hybridomas producing monoclonal antibodies (mAb) specific for bovine PD-1 were established. Treatment with these anti-PD-1 mAb enhanced interferon-gamma (IFN-γ) production of bovine peripheral blood mononuclear cells (PBMC). Next, to examine whether PD-1 blockade by anti-PD-1 mAb could upregulate the immune reaction during chronic infection, the expression and functional analysis of PD-1 in PBMC isolated from BLV-infected cattle with or without lymphoma were performed using anti-PD-1 mAb. The frequencies of both PD-1+ CD4+ T cells in blood and lymph node and PD-1+ CD8+ T cells in lymph node were higher in BLV-infected cattle with lymphoma than those without lymphoma or control uninfected cattle. PD-1 blockade enhanced IFN-γ production and proliferation and reduced BLV-gp51 expression and B-cell activation in PBMC from BLV-infected cattle in response to BLV-gp51 peptide mixture. These data show that anti-bovine PD-1 mAb could provide a new therapy to control BLV infection via upregulation of immune response.
Collapse
Affiliation(s)
- Ryoyo Ikebuchi
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
629
|
Nirschl CJ, Drake CG. Molecular pathways: coexpression of immune checkpoint molecules: signaling pathways and implications for cancer immunotherapy. Clin Cancer Res 2013; 19:4917-24. [PMID: 23868869 DOI: 10.1158/1078-0432.ccr-12-1972] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The expression of immune checkpoint molecules on T cells represents an important mechanism that the immune system uses to regulate responses to self-proteins. Checkpoint molecules include cytotoxic T lymphocyte antigen-4, programmed death-1, lymphocyte activation gene-3, T-cell immunoglobulin and mucin protein-3, and several others. Previous studies have identified individual roles for each of these molecules, but more recent data show that coexpression of checkpoint molecules occurs frequently on cancer-specific T cells as well as on pathogen-specific T cells in chronic infections. As the signaling pathways associated with each checkpoint molecule have not been fully elucidated, blocking multiple checkpoints with specific monoclonal antibodies results in improved outcomes in several chronic viral infections as well as in a wide array of preclinical models of cancer. Recent clinical data suggest similar effects in patients with metastatic melanoma. These findings support the concept that individual immune checkpoint molecules may function through nonoverlapping molecular mechanisms. Here, we review current data regarding immune checkpoint molecule signaling and coexpression, both in cancer and infectious disease, as well as the results of preclinical and clinical manipulations of checkpoint proteins.
Collapse
Affiliation(s)
- Christopher J Nirschl
- Authors' Affiliation: Departments of Oncology, Immunology, and Urology, Johns Hopkins Sidney Kimmel Comprehensives Cancer Center, Baltimore, Maryland
| | | |
Collapse
|
630
|
Simpson-Abelson MR, Loyall JL, Lehman HK, Barnas JL, Minderman H, O’Loughlin KL, Wallace PK, George TC, Peng P, Kelleher RJ, Odunsi K, Bankert RB. Human ovarian tumor ascites fluids rapidly and reversibly inhibit T cell receptor-induced NF-κB and NFAT signaling in tumor-associated T cells. CANCER IMMUNITY 2013; 13:14. [PMID: 23882159 PMCID: PMC3718770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Human memory T cells present in ovarian tumor ascites fluids fail to respond normally to stimulation via the T cell receptor (TCR). This immunosuppression is manifested by decreases in NF-κB and NFAT activation, IFN-γ production, and cell proliferation in response to TCR stimulation with immobilized antibodies to CD3 and CD28. The anergy of the tumor-associated T cells (TATs) is mediated by soluble factors present in ovarian tumor ascites fluids. The non-responsiveness of the T cells is quickly reversed when the cells are assayed in the absence of the ascites fluid, and is rapidly reestablished when a cell-free ascites fluid is added back to the T cells. Based upon the observed normal phosphorylation patterns of the TCR proximal signaling molecules, the inhibition of NF-κB, and NFAT activation in response to TCR stimulation, as well as the ability of the diacylglycerol analog PMA and the ionophore ionomycin to bypass the ascites fluid-induced TCR signaling arrest, the site of the arrest in the activation cascade appears to be at or just upstream of PLC-γ. An identical TCR signaling arrest pattern was observed when T cells derived from normal donor peripheral blood were incubated with either malignant or nonmalignant (cirrhotic) ascites fluids. The immunosuppressive activity of ascites fluids reported here suggests that soluble factors acting directly or indirectly upon T cells present within tumors contribute to the anergy that has previously been observed in T cells derived from malignant and nonmalignant inflammatory microenvironments. The soluble immunosuppressive factors represent potential therapeutic targets for ovarian cancer.
Collapse
Affiliation(s)
- Michelle R. Simpson-Abelson
- The State University of New York at Buffalo, Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY, USA
- University of Pittsburgh, Department of Medicine, Division of Rheumatology and Clinical Immunology, Pittsburgh, PA, USA
| | - Jenni L. Loyall
- The State University of New York at Buffalo, Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY, USA
| | - Heather K. Lehman
- The State University of New York at Buffalo, Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY, USA
| | - Jennifer L. Barnas
- The State University of New York at Buffalo, Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY, USA
| | - Hans Minderman
- Department of Flow Cytometry, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Paul K. Wallace
- Department of Flow Cytometry, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Peng Peng
- The State University of New York at Buffalo, Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY, USA
| | - Raymond J. Kelleher
- The State University of New York at Buffalo, Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY, USA
| | - Kunle Odunsi
- Department of Gynecologic Oncology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Richard B. Bankert
- The State University of New York at Buffalo, Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
631
|
Bruno TC, French JD, Jordan KR, Ramirez O, Sippel TR, Borges VF, Haugen BR, McCarter MD, Waziri A, Slansky JE. Influence of human immune cells on cancer: studies at the University of Colorado. Immunol Res 2013; 55:22-33. [PMID: 22941561 DOI: 10.1007/s12026-012-8346-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There will be over half a million cancer-related deaths in the United States in 2012, with lung cancer being the leader followed by prostate in men and breast in women. There is estimated to be more than one and a half million new cases of cancer in 2012, making the development of effective therapies a high priority. As tumor immunologists, we are interested in the development of immunotherapies because the immune response offers exquisite specificity and the potential to target tumor cells without harming normal cells. In this review, we highlight the current advances in the field of immunotherapy and the current work being completed by laboratories at University of Colorado School of Medicine in multiple malignancies, including breast cancer, lung cancer, melanoma, thyroid cancer, and glioblastoma. This work focuses on augmenting the anti-tumor response of CD8 T cells in the blood, lymph nodes, and tumors of patients, determining biomarkers for patients who are more likely to respond to immunotherapy, and identifying additional anti-tumor and immunosuppressive cells that influence the overall response to tumors. These collaborative efforts will identify mechanisms to improve immune function, which may elucidate therapeutic targets for clinical trials to improve patient health and survival.
Collapse
Affiliation(s)
- Tullia C Bruno
- National Jewish Health, Integrated Department of Immunology, University of Colorado School of Medicine, Denver, CO 80206, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
632
|
Lavoué V, Thédrez A, Levêque J, Foucher F, Henno S, Jauffret V, Belaud-Rotureau MA, Catros V, Cabillic F. Immunity of human epithelial ovarian carcinoma: the paradigm of immune suppression in cancer. J Transl Med 2013; 11:147. [PMID: 23763830 PMCID: PMC3683338 DOI: 10.1186/1479-5876-11-147] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/27/2013] [Indexed: 12/21/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is a significant cause of cancer-related mortality in women, and there has been no substantial decrease in the death rates due to EOC in the last three decades. Thus, basic knowledge regarding ovarian tumor cell biology is urgently needed to allow the development of innovative treatments for EOC. Traditionally, EOC has not been considered an immunogenic tumor, but there is evidence of an immune response to EOC in patients. Clinical data demonstrate that an antitumor immune response and immune evasion mechanisms are correlated with a better and lower survival, respectively, providing evidence for the immunoediting hypothesis in EOC. This review focuses on the immune response and immune suppression in EOC. The immunological roles of chemotherapy and surgery in EOC are also described. Finally, we detail pilot data supporting the efficiency of immunotherapy in the treatment of EOC and the emerging concept that immunomodulation aimed at counteracting the immunosuppressive microenvironment must be associated with immunotherapy strategies.
Collapse
Affiliation(s)
- Vincent Lavoué
- Lady Davis Institut, Jewish General Hospital, McGill University, Montreal QC H3T 1E2, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
633
|
Callahan MK, Wolchok JD. At the bedside: CTLA-4- and PD-1-blocking antibodies in cancer immunotherapy. J Leukoc Biol 2013; 94:41-53. [PMID: 23667165 DOI: 10.1189/jlb.1212631] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It is increasingly appreciated that cancers are recognized by the immune system, and under some circumstances, the immune system may control or even eliminate tumors. The modulation of signaling via coinhibitory or costimulatory receptors expressed on T cells has proven to be a potent way to amplify antitumor immune responses. This approach has been exploited successfully for the generation of a new class of anticancer therapies, "checkpoint-blocking" antibodies, exemplified by the recently FDA-approved agent, ipilimumab, an antibody that blocks the coinhibitory receptor CTLA-4. Capitalizing on the success of ipilimumab, agents that target a second coinhibitory receptor, PD-1, or its ligand, PD-L1, are in clinical development. Lessons learned from treating patients with CTLA-4 and PD-1 pathway-blocking antibodies will be reviewed, with a focus on concepts likely to inform the clinical development and application of agents in earlier stages of development. See related review At the bench: Preclinical rationale for CTLA-4 and PD-1 blockade as cancer immunotherapy.
Collapse
Affiliation(s)
- Margaret K Callahan
- Melanoma and Sarcoma Service, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY 10065, USA
| | | |
Collapse
|
634
|
Abstract
BACKGROUND With our growing understanding of the immune system and mechanisms employed by tumors to evade destruction, the field of cancer immunotherapy has been revitalized. Concurrent inflammation has long been associated with follicular cell-derived thyroid cancer (FDTC). In the last decade, much research has focused on characterizing the tumor-associated immune response in patients with FDTC. SUMMARY Mast cells, natural killer cells, macrophages, dendritic cells, B cells, and T cells have been identified within FDTC-associated immune infiltrate. Collectively, these findings suggest that the immune response to FDTC is compromised and may even promote tumor progression. A more thorough characterization of the tumor-associated immune response in FDTC may lead to the development of immune-based adjuvant therapies for patients with aggressive disease. CONCLUSIONS Immune-based therapies could provide essential alternatives to patients that cannot be treated surgically, those with recurrent or persistent lymph node metastases, and those with anaplastic thyroid cancer.
Collapse
Affiliation(s)
- Jena D French
- Department of Medicine, Division of Endocrinology, Metabolism, and Diabetes, University of Colorado , Aurora, CO 80045, USA.
| |
Collapse
|
635
|
Voutsas IF, Pistamaltzian N, Tsiatas ML, Skopeliti M, Katsila T, Mavrothalassiti I, Spyrou S, Dimopoulos MA, Tsitsilonis OE, Bamias A. Ovarian malignant ascites-derived lymphocytes stimulated with prothymosin α or its immunoactive decapeptide lyse autologous tumour cells in vitro and retard tumour growth in SCID mice. Eur J Cancer 2013; 49:1706-14. [DOI: 10.1016/j.ejca.2012.11.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/09/2012] [Accepted: 11/30/2012] [Indexed: 01/01/2023]
|
636
|
Duraiswamy J, Kaluza KM, Freeman GJ, Coukos G. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res 2013; 73:3591-603. [PMID: 23633484 DOI: 10.1158/0008-5472.can-12-4100] [Citation(s) in RCA: 535] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tumor progression is facilitated by regulatory T cells (Treg) and restricted by effector T cells. In this study, we document parallel regulation of CD8(+) T cells and Foxp3(+) Tregs by programmed death-1 (PD-1, PDCD1). In addition, we identify an additional role of CTL antigen-4 (CTLA-4) inhibitory receptor in further promoting dysfunction of CD8(+) T effector cells in tumor models (CT26 colon carcinoma and ID8-VEGF ovarian carcinoma). Two thirds of CD8(+) tumor-infiltrating lymphocytes (TIL) expressed PD-1, whereas one third to half of CD8(+) TIL coexpressed PD-1 and CTLA-4. Double-positive (PD-1(+)CTLA-4(+)) CD8(+) TIL had characteristics of more severe dysfunction than single-positive (PD-1(+) or CTLA-4(+)) TIL, including an inability to proliferate and secrete effector cytokines. Blockade of both PD-1 and CTLA-4 resulted in reversal of CD8(+) TIL dysfunction and led to tumor rejection in two thirds of mice. Double blockade was associated with increased proliferation of antigen-specific effector CD8(+) and CD4(+) T cells, antigen-specific cytokine release, inhibition of suppressive functions of Tregs, and upregulation of key signaling molecules critical for T-cell function. When used in combination with GVAX vaccination (consisting of granulocyte macrophage colony-stimulating factor-expressing irradiated tumor cells), inhibitory pathway blockade induced rejection of CT26 tumors in 100% of mice and ID8-VEGF tumors in 75% of mice. Our study indicates that PD-1 signaling in tumors is required for both suppressing effector T cells and maintaining tumor Tregs, and that PD-1/PD-L1 pathway (CD274) blockade augments tumor inhibition by increasing effector T-cell activity, thereby attenuating Treg suppression.
Collapse
Affiliation(s)
- Jaikumar Duraiswamy
- Ovarian Cancer Research Center; Department of Obstetrics & Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | |
Collapse
|
637
|
Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr Opin Immunol 2013; 25:268-76. [PMID: 23579075 DOI: 10.1016/j.coi.2013.02.009] [Citation(s) in RCA: 322] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/11/2013] [Accepted: 02/15/2013] [Indexed: 12/22/2022]
Abstract
For tumor antigen-specific T cells to effectively control the growth of cancer cells in vivo, they must gain access to, and function within, the tumor microenvironment. While tumor antigen-based vaccines and T cell adoptive transfer strategies can result in clinical benefit in a subset of patients, most of the patients do not respond clinically. Even for tumor-infiltrating lymphocyte (TIL)-based adoptive transfer for patients with metastatic melanoma, which can provide tumor shrinkage in around 50% of treated individuals, many patients are not eligible, in part because there are not sufficient TIL present in the resected tumor. Thus, the denominator is in fact larger, and it has been suggested that absence of TIL may be a marker for poor efficacy of immunotherapies in general. While qualitative and/or quantitative features of the T cells are important considerations for efficacy, a major component of primary resistance likely can be attributed to the tumor microenvironment. Data are accumulating suggesting that two major categories of immune resistance within the tumor microenvironment may exist: failure of T cell trafficking due to low levels of inflammation and lack of chemokines for migration, and dominant suppression through immune inhibitory mechanisms. New therapeutic interventions are being guided by these observations, and preliminary clinical success is validating this working model.
Collapse
|
638
|
Yao S, Zhu Y, Chen L. Advances in targeting cell surface signalling molecules for immune modulation. Nat Rev Drug Discov 2013; 12:130-46. [PMID: 23370250 PMCID: PMC3698571 DOI: 10.1038/nrd3877] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed a surge in the development of immunomodulatory approaches to combat a broad range of human diseases, including cancer, viral infections, autoimmunity and inflammation as well as in the prevention of transplant rejection. Immunomodulatory approaches mostly involve the use of monoclonal antibodies or recombinant fusion proteins that target cell surface signalling molecules on immune cells to drive immune responses towards the desired direction. Advances in our understanding of the human immune system, along with valuable lessons learned from the first generation of therapeutic biologics, are aiding the design of the next generation of immunomodulatory biologics with better therapeutic efficacy, minimized adverse effects and long-lasting clinical benefit. The recent encouraging results from antibodies targeting programmed cell death protein 1 (PD1) and B7 homolog 1 (B7H1; also known as PDL1) for the treatment of various advanced human cancers show that immunomodulatory therapy has come of age.
Collapse
Affiliation(s)
- Sheng Yao
- Department of Immunobiology and Yale Comprehensive Cancer Center, Yale University School of Medicine, 300 George Street, New Haven, Connecticut 06519, USA
| | | | | |
Collapse
|
639
|
Mhawech-Fauceglia P, Wang D, Ali L, Lele S, Huba MA, Liu S, Odunsi K. Intraepithelial T cells and tumor-associated macrophages in ovarian cancer patients. CANCER IMMUNITY 2013; 13:1. [PMID: 23390372 PMCID: PMC3559189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The aims of this study were to evaluate the prognostic significance of tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs) in patients with familial ovarian cancer. Clinical and pathological information were retrieved from the Gilda Radner Familial Ovarian Cancer Registry (GRFOCR) in Buffalo, NY. Immunohistochemistry was performed on paraffin-embedded tissue specimens of GRFOCR participants using specific antibodies for CD3+, CD8+, CD25+, FOXP3+, CD68+, and CD163+. The correlation between the frequencies of TILs and TAMs and clinic-pathologic parameters were determined. Overall survival was determined using univariate and multivariate Cox proportional hazards models. High tumor grade correlated with higher frequencies of CD3+ (p = 0.019), CD68+ (p = 0.025), CD163+ (p = 0.018), and T(reg) (CD25+ FOXP3+) (p = 0.024) cells. Higher stage correlated with higher frequencies of CD163+ cells (p = 0.012). There were correlations between the frequencies of CD68+ and CD3+ (p = 0.029), between T(reg) and each of CD3+ (p = 0.002), CD8+ (p = 0.018), and CD68+ (p = 0.028) cells. In univariate analysis, age and T(reg) significantly predicted patient survival. In multivariate survival analysis, T(reg) frequency was the only significant predictor of prognosis in patients with familial ovarian cancer [HR = 0.92; 95% CI 0.87 - 0.98; p = 0.012]. We concluded that interaction between TILs and TAMs in familial EOC also exists, and tumors with high T(reg) frequencies have a more favorable outcome. Thus, therapeutic strategies to modulate tumor T(reg) infiltration could be beneficial for patients with familial ovarian cancer.
Collapse
|
640
|
Meraz IM, Segura-Ibarra V, Leonard F, Gonzalez J, Ally S, Godin B, Serda RE. Biological Microniches Characterizing Pathological Lesions. Nanomedicine (Lond) 2013. [DOI: 10.1016/b978-0-08-098338-7.00006-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
641
|
Li FJ, Zhang Y, Jin GX, Yao L, Wu DQ. Expression of LAG-3 is coincident with the impaired effector function of HBV-specific CD8(+) T cell in HCC patients. Immunol Lett 2012; 150:116-22. [PMID: 23261718 DOI: 10.1016/j.imlet.2012.12.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Revised: 11/27/2012] [Accepted: 12/06/2012] [Indexed: 12/12/2022]
Abstract
Hepatitis B virus (HBV)-specific T cells play a key role in the pathogenesis of hepatocellular carcinoma (HCC), but little is known about the regulation of HBV-specific CD8(+) T cells function in HCC patients. Lymphocyte activation gene-3 (LAG-3) is an inhibitory molecule with diverse biologic effects on T cell function, including direct effects on CD8(+) T cells. In this study, we assessed the frequency and function of HBV-specific CD8(+) T cells derived from peripheral blood lymphocytes (PBLs) and tumor-infiltrating lymphocytes (TILs) of HCC patients. Our data showed that compared with PBLs, LAG-3 expression is significantly up-regulated in tumor infiltrating CD8(+) T cells of HCC patients, and a severe functional defect were detectable in tumor infiltrating HBV-specific CD8(+) T cells at the tumor site. Since LAG-3 is an inhibitory molecule that plays a down-regulatory role on T cell responses, we found the correlation between LAG-3 expression and HBV-specific CD8(+) T cells dysfunction. Taken together, these results further provide a support for the role for LAG-3 in the suppression of HBV-specific cell-mediated immunity in HCC, and also provide a contribution to the potential cancer treatment.
Collapse
Affiliation(s)
- Fu-Jun Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | | | | | | | | |
Collapse
|
642
|
Berrien-Elliott MM, Jackson SR, Meyer JM, Rouskey CJ, Nguyen TLM, Yagita H, Greenberg PD, DiPaolo RJ, Teague RM. Durable adoptive immunotherapy for leukemia produced by manipulation of multiple regulatory pathways of CD8+ T-cell tolerance. Cancer Res 2012. [PMID: 23188506 DOI: 10.1158/0008-5472.can-12-2179] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tolerizing mechanisms within the host and tumor microenvironment inhibit T-cell effector functions that can control cancer. These mechanisms blunt adoptive immunotherapy with infused T-cells due to a complex array of signals that determine T-cell tolerance, survival, or deletion. Ligation of the negative regulatory receptors CTLA4, PD-1(PDCD1), or LAG3 on T-cells normally hinders their response to antigen through nonredundant biochemical processes that interfere with stimulatory pathways. In this study, we used an established mouse model of T-cell tolerance to define the roles of these inhibitory receptors in regulating CD8(+) T-cell tolerance during adoptive immunotherapy to treat leukemia. Blocking CTLA4 and PD-1 in vivo combined to promote survival of transferred T-cells despite powerful deletional signals that mediate Bim (BCL2L11)-dependent apoptosis. However, this dual blockade was not optimal for stimulating effector function by responding T-cells, which required the additional blockade of LAG3 to induce full expansion and allow the acquisition of robust cytolytic activity. Thus, the cooperation of multiple distinct regulatory pathways was needed for the survival and effector differentiation of adoptively transferred tumor-reactive CD8(+) T-cells. Our work defines the immune escape pathways in which simultaneous blockade could yield durable immunotherapeutic responses that can eradicate disseminated leukemia.
Collapse
Affiliation(s)
- Melissa M Berrien-Elliott
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
643
|
Lipson EJ, Sharfman WH, Drake CG, Wollner I, Taube JM, Anders RA, Xu H, Yao S, Pons A, Chen L, Pardoll DM, Brahmer JR, Topalian SL. Durable cancer regression off-treatment and effective reinduction therapy with an anti-PD-1 antibody. Clin Cancer Res 2012; 19:462-8. [PMID: 23169436 DOI: 10.1158/1078-0432.ccr-12-2625] [Citation(s) in RCA: 420] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Results from the first-in-human phase I trial of the anti-programmed death-1 (PD-1) antibody BMS-936558 in patients with treatment-refractory solid tumors, including safety, tolerability, pharmacodynamics, and immunologic correlates, have been previously reported. Here, we provide long-term follow-up on three patients from that trial who sustained objective tumor regressions off therapy, and test the hypothesis that reinduction therapy for late tumor recurrence can be effective. EXPERIMENTAL DESIGN Three patients with colorectal cancer, renal cell cancer, and melanoma achieved objective responses on an intermittent dosing regimen of BMS-936558. Following cessation of therapy, patients were followed for more than 3 years. A patient with melanoma who experienced a prolonged partial regression followed by tumor recurrence received reinduction therapy. RESULTS A patient with colorectal cancer experienced a complete response, which is ongoing after 3 years. A patient with renal cell cancer experienced a partial response lasting 3 years off therapy, which converted to a complete response, which is ongoing at 12 months. A patient with melanoma achieved a partial response that was stable for 16 months off therapy; recurrent disease was successfully treated with reinduction anti-PD-1 therapy. CONCLUSION These data represent the most prolonged observation to date of patients with solid tumors responding to anti-PD-1 immunotherapy and the first report of successful reinduction therapy following delayed tumor progression. They underscore the potential for immune checkpoint blockade with anti-PD-1 to reset the equilibrium between tumor and the host immune system.
Collapse
Affiliation(s)
- Evan J Lipson
- Department of Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21287, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
644
|
|
645
|
Konnai S, Suzuki S, Shirai T, Ikebuchi R, Okagawa T, Sunden Y, Mingala CN, Onuma M, Murata S, Ohashi K. Enhanced expression of LAG-3 on lymphocyte subpopulations from persistently lymphocytotic cattle infected with bovine leukemia virus. Comp Immunol Microbiol Infect Dis 2012; 36:63-9. [PMID: 23146685 DOI: 10.1016/j.cimid.2012.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/01/2012] [Accepted: 09/27/2012] [Indexed: 12/28/2022]
Abstract
An immunoinhibitory receptor, lymphocyte activation gene-3 (LAG-3), which is mainly expressed in T-cells, is involved in the immune evasion of several pathogens causing chronic infections and tumors. However, unlike human or mouse LAG-3, no functional analysis of LAG-3 has been reported in domestic animals. Thus, in this study, bovine LAG-3 expression was analyzed in bovine leukemia virus (BLV)-infected cattle. In persistent lymphocytotic (PL) cattle, the numbers of LAG-3(+)CD4(+) cells and LAG-3(+)CD8(+) cells were conserved whilst the number of MHC class II(+) cells was remarkably higher than in the control animals. In contrast, the mean fluorescence intensity (MFI) for LAG-3 on PBMCs from PL cattle was significantly increased compared to control and asymptomatic (AL) cattle. Specifically, the LAG-3 expression level was significantly increased in both CD4(+) and CD8(+) T cells from PL cattle. LAG-3 expression correlated positively with increased numbers of lymphocytes and MHC class II(+) cells in infected animals. Preliminary results from PD-L1 and LAG-3 blockade assay revealed that IFN-γ and IL-2 expressions were significantly up-regulated by addition of anti- PD-L1 and LAG-3 antibodies in PBMCs from PL cattle. These findings suggest that LAG-3 might be involved in the inhibition of T-cell function through its binding and signaling on MHC class II molecule during BLV infection.
Collapse
Affiliation(s)
- Satoru Konnai
- Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
646
|
Saito H, Kuroda H, Matsunaga T, Osaki T, Ikeguchi M. Increased PD-1 expression on CD4+ and CD8+ T cells is involved in immune evasion in gastric cancer. J Surg Oncol 2012; 107:517-22. [PMID: 23129549 DOI: 10.1002/jso.23281] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 09/30/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Co-signaling molecules play an important role in T cells. Programmed death-1 (PD-1) is an immunoinhibitory receptor and its overexpression on T cells appears to be involved in immune evasion in cancer patients. The present study was designed to investigate PD-1 expression on T cells and its relationship with immune evasion in gastric cancer patients. METHODS PD-1 expression on CD4+ and CD8+ T cells obtained from peripheral blood mononuclear cells (PBMC), normal gastric mucosa, and gastric cancer tissue was evaluated by multicolor flow cytometry. RESULTS PD-1 expression on CD4+ and CD8+ T cells from gastric cancer patients was significantly higher than that from normal controls. PD-1 expression on CD4+ and CD8+ T cells was related to disease progression. Furthermore, PD-1 expression on CD4+ and CD8+ T cells from gastric cancer tissue was significantly higher than that from normal gastric mucosa and PBMC. PD-1 positive CD4+ and CD8+ T cells produced significantly less IFN-gamma than PD-1 negative CD4+ and CD8+ T cells. CONCLUSIONS Upregulation of PD-1 on both CD4+ and CD8+ T cells may be, in part, responsible for immune evasion in gastric cancer patients.
Collapse
Affiliation(s)
- Hiroaki Saito
- Division of Surgical Oncology, Department of Surgery, Tottori University School of Medicine, Yonago, Japan.
| | | | | | | | | |
Collapse
|
647
|
Ferris R. PD-1 targeting in cancer immunotherapy. Cancer 2012; 119:E1-3. [PMID: 23042635 DOI: 10.1002/cncr.27832] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/12/2012] [Accepted: 08/13/2012] [Indexed: 01/22/2023]
|
648
|
Wang J, Xing SS, Guo SB, Jin W, Zhang W. Oxidative dna damage of lymphocytes in peripheral blood and ascites in cancer patients. ACTA ACUST UNITED AC 2012; 19:eS10-4. [PMID: 22876163 DOI: 10.3747/co.19.1136] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Patients with malignant ascites (ma) usually experience poor quality of life, and treatment of this symptom remains a challenge. Oxidative stress, which can cause oxidative damage to dna, plays a pivotal role in carcinogenesis; however, the relationship between oxidative stress and dna damage to tumour-associated lymphocytes (tals) in ma is unclear. METHODS We measured the total antioxidant capacity (tac) of plasma and ma supernatant in 31 cancer patients with ma, and we used a comet assay to assess dna damage to both peripheral blood mononuclear cells (pbmcs) and tals. Measurements in age- and sex-matched healthy volunteers were used as controls. RESULTS The tac of plasma was remarkably lower in cancer patients (9.73 ± 1.96 U/mL) than in healthy control subjects (11.31 ± 1.50 U/mL, p < 0.001). The tac of ma supernatant (6.34 ± 1.57 U/mL) was significantly lower than that of plasma in cancer patients (7.42 ± 1.36 U/mL, p < 0.001). The comet percentage of pbmcs was higher in cancer patients (17.26% ± 6.04%) than in healthy control subjects (9.44% ± 4.47%, p < 0.01). In cancer patients, the comet percentage of tals (36.14% ± 17.85%) was significantly higher than that of pbmcs (17.26% ± 6.04%, p < 0.001). In cancer patients with ma, negative correlations were observed between plasma tac and dna damage to pbmcs (r = -0.505, p = 0.004) and between the tac of ma supernatant and the comet percentage of tals (r = -0.588, p = 0.001). CONCLUSIONS Results indicate the presence of significant oxidative damage to the dna of lymphocytes in peripheral blood and ascites from patients with ma, being especially higher in the cells from ascites. The lower tac of ma supernatant may be related to a higher degree of dna damage to tals. The present study suggests that an oxidant-antioxidant imbalance may be one of the mechanisms leading to the dna damage detected in peripheral blood and local tals in patients with ma, which may provide a novel approach to the treatment of ma.
Collapse
Affiliation(s)
- J Wang
- Department of Experimental Center, Yidu Central Hospital of Weifang City, Weifang, PR China
| | | | | | | | | |
Collapse
|
649
|
Verhagen LM, Hermans PWM, Warris A, de Groot R, Maes M, Villalba JA, del Nogal B, van den Hof S, Mughini Gras L, van Soolingen D, Pinelli E, de Waard JH. Helminths and skewed cytokine profiles increase tuberculin skin test positivity in Warao Amerindians. Tuberculosis (Edinb) 2012; 92:505-12. [PMID: 22877977 DOI: 10.1016/j.tube.2012.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/14/2012] [Accepted: 07/16/2012] [Indexed: 01/09/2023]
Abstract
The immune regulatory mechanisms involved in the acquisition of Mycobacterium tuberculosis infection in children are largely unknown. We investigated the influence of parasitic infections, malnutrition and plasma cytokine profiles on tuberculin skin test (TST) positivity in Warao Amerindians in Venezuela. Pediatric household contacts of sputum smear-positive tuberculosis (TB) cases were enrolled for TST, chest radiograph, plasma cytokine analyses, QuantiFERON-TB Gold In-Tube (QFT-GIT) testing and stool examinations. Factors associated with TST positivity were studied using generalized estimation equations logistic regression models. Of the 141 asymptomatic contacts, 39% was TST-positive. After adjusting for age, gender and nutritional status, TST positivity was associated with Trichuris trichiura infections (OR 3.5, 95% CI 1.1-11.6) and low circulating levels of T helper 1 (Th1) cytokines (OR 0.51, 95% CI 0.33-0.79). Ascaris lumbricoides infections in interaction with Th2- and interleukin (IL)-10-dominated cytokine profiles were positively associated with TST positivity (OR 3.1, 95% CI 1.1-8.9 and OR 2.4, 95% CI 1.04-5.7, respectively). A negative correlation of QFT-GIT mitogen responses with Th1 and Th2 levels and a positive correlation with age were observed (all p < 0.01). We conclude that helminth infections and low Th1 cytokine plasma levels are significantly associated with TST positivity in indigenous Venezuelan pediatric TB contacts.
Collapse
Affiliation(s)
- L M Verhagen
- Laboratorio de Tuberculosis, Instituto de Biomedicina, Caracas, Venezuela.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
650
|
Park HJ, Kusnadi A, Lee EJ, Kim WW, Cho BC, Lee IJ, Seong J, Ha SJ. Tumor-infiltrating regulatory T cells delineated by upregulation of PD-1 and inhibitory receptors. Cell Immunol 2012; 278:76-83. [PMID: 23121978 DOI: 10.1016/j.cellimm.2012.07.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 06/23/2012] [Accepted: 07/10/2012] [Indexed: 01/19/2023]
Abstract
Foxp3(+) regulatory T (T(reg)) cells are dominant suppressor cells which regulate conventional T (T(conv)) cells. Inside tumor microenvironment, T(reg) cells have been known to become potent in suppressing T(conv) cell responses, thereby enabling tumor cells to circumvent immune response. However, the underlying mechanism by which tumor-infiltrating T(reg) cells display enhanced suppressive function is still unresolved. To understand characteristics and function of tumor-infiltrating T(reg) cells as well as T(conv) cells in the tumor site, we analyzed their phenotypes either within tumor burden or at distant site of tumor using both heterotopic and orthotopic mouse cancer models. Compared to CD8(+) T cells at distant site of tumor, tumor-infiltrating CD8(+) T cells dramatically upregulated programmed death 1 (PD-1) and other inhibitory receptors, thereby being more exhausted functionally. Tumor-infiltrating CD4(+) T cells also expressed higher level of PD-1 than CD4(+) T cells at distant site of tumor but very surprisingly, upregulation of PD-1 occurred in CD4(+)Foxp3(+) T(reg) as well as CD4(+)Foxp3(-) T(conv) cells. Moreover, tumor infiltrating T(reg) cells upregulated other inhibitory receptors such as T cell immunoglobulin mucin 3 (TIM-3), cytotoxic T lymphocyte antigen-4 (CTLA-4), glucocorticoid-induced tumor necrosis factor receptor (GITR), and lymphocyte activation gene-3 (LAG-3). These results suggest that upregulation of PD-1 and other inhibitory receptors on tumor-infiltrating T(reg) cells is related with their enhanced suppressive function.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, Differentiation/genetics
- Antigens, Differentiation/immunology
- CD4 Antigens/immunology
- CTLA-4 Antigen/genetics
- CTLA-4 Antigen/immunology
- Cell Movement/immunology
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Glucocorticoid-Induced TNFR-Related Protein/genetics
- Glucocorticoid-Induced TNFR-Related Protein/immunology
- Hepatitis A Virus Cellular Receptor 2
- Male
- Mice
- Myeloid Cells/immunology
- Myeloid Cells/pathology
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Programmed Cell Death 1 Receptor
- Receptors, Virus/genetics
- Receptors, Virus/immunology
- Signal Transduction
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
- Tumor Burden/immunology
- Tumor Escape
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
- Up-Regulation
- Lymphocyte Activation Gene 3 Protein
Collapse
Affiliation(s)
- Hyo Jin Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|