601
|
Hosokawa Y, Arnold A. Mechanism of cyclin D1 (CCND1, PRAD1) overexpression in human cancer cells: analysis of allele-specific expression. Genes Chromosomes Cancer 1998; 22:66-71. [PMID: 9591636 DOI: 10.1002/(sici)1098-2264(199805)22:1<66::aid-gcc9>3.0.co;2-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The cyclin D1/CCND1 oncogene (PRAD1) is amplified in 15% of primary human breast cancers and overexpressed in 30-50% of breast cancers, suggesting that mechanisms in addition to DNA amplification may lead to deregulated expression of this gene in breast cancer. Cyclin D1 overexpression at a higher frequency than gene amplification is also seen in a variety of other tumors. Cyclin D1 overexpression without amplification could result from a trans-acting regulatory disturbance or could be a consequence of a clonal regulatory mutation in one allele of the gene. We have, therefore, examined whether the overexpression of cyclin D1 mRNA is derived from one parental allele or both alleles in tumor cell lines with or without amplification of the cyclin D1 gene. Eight tumor cell lines, MCF-7, SK-BR-3, ZR-75-1, U-2-OS, SK-LMS-1, DLD1, HCT15, and HT29, out of 20 tumor cells initially examined were found to be heterozygous at the polymorphic NciI site within exon 4 of the cyclin D1 gene. Polymerase chain reaction and NciI digestion (PCR-RFLP) analysis of genomic DNA demonstrated DNA amplification of one allele in the ZR-75-1 cells and HT29 cells and no such imbalance in cyclin D1 gene copy number in the other cells, consistent with Southern blot analyses. Reverse-transcription polymerase chain reaction analysis and NciI digestion (RT-PCR-RFLP) of total cDNA revealed that the overexpressed cyclin D1 mRNA is preferentially derived from the amplified allele in the ZR-75-1 and HT29 cells. In contrast, the other tumor cells overexpressed cyclin D1 mRNA equally from both alleles. This finding strongly suggests that, in breast, sarcoma, and in colon cancer cells with cyclin D1 overexpression and normal gene copy number, elevated levels of cyclin D1 mRNA result from a trans-acting influence on both alleles rather than a clonal somatic mutation or rearrangement in or near a single cyclin D1 gene.
Collapse
Affiliation(s)
- Y Hosokawa
- Laboratory of Endocrine Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | | |
Collapse
|
602
|
Steiner P, Rudolph B, Müller D, Eilers M. The functions of Myc in cell cycle progression and apoptosis. PROGRESS IN CELL CYCLE RESEARCH 1998; 2:73-82. [PMID: 9552384 DOI: 10.1007/978-1-4615-5873-6_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
c-myc has emerged as one of the central regulators of mammalian cell proliferation. The gene encodes a transcription factor of the HLH/leucine zipper family of proteins that activates transcription as part of a heteromeric complex with a protein termed Max. In mammalian fibroblasts, Myc acts as an upstream regulator of cyclin-dependent kinases and functionally antagonises the action of at least one cdk inhibitor, p27. Myc also induces cells to undergo apoptosis, and the relationship between Myc-induced cell cycle entry and apoptosis is discussed.
Collapse
Affiliation(s)
- P Steiner
- Zentrum für Molekulare Biologie Heidelberg (ZMBH)
| | | | | | | |
Collapse
|
603
|
Liu Y, Gorospe M, Kokkonen GC, Boluyt MO, Younes A, Mock YD, Wang X, Roth GS, Holbrook NJ. Impairments in both p70 S6 kinase and extracellular signal-regulated kinase signaling pathways contribute to the decline in proliferative capacity of aged hepatocytes. Exp Cell Res 1998; 240:40-8. [PMID: 9570919 DOI: 10.1006/excr.1997.3931] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Treatment of primary cultured hepatocytes from adult (6-month-old) rats with epidermal growth factor (EGF) results in a marked elevation in DNA synthesis, a response that is markedly attenuated in cells of aged (24-month-old) animals. Recently we demonstrated that this age-related attenuation is associated with reduced activation of extracellular signal-regulated kinase (ERK) in response to EGF treatment. In order to gain further insight into the mechanisms responsible for the age-related decline in this proliferative response, we investigated the expression and/or activities of several other regulatory molecules important for G1 to S phase progression in EGF-stimulated young and aged hepatocytes. Induction of cyclin D1 and activation of cyclin-dependent kinase 2 (CDK2) by EGF were found to be diminished in the aged cells. In young cells, prior treatment with rapamycin inhibited the induction of DNA synthesis and activation of CDK2 to levels similar to those seen in aged cells without inhibiting ERK activity and cyclin D1 expression. This suggested that a distinct, ERK-independent, rapamycin-sensitive pathway might also contribute to the proliferative response in hepatocytes and be subject to age-related alterations. Further studies demonstrated that activation of p70 S6 kinase (p70S6k), a rapamycin-sensitive event, following EGF treatment was 40% lower in aged hepatocytes relative to young cells, although the kinetics of activation did not differ in the two age groups. Western blot analysis for p70S6k expression revealed similar levels of proteins in young and aged cells. From these findings, we conclude that deficiencies in both the ERK and p70S6k signaling pathways contribute to the age-related decline in the proliferative response of hepatocytes.
Collapse
Affiliation(s)
- Y Liu
- Laboratory of Biological Chemistry, National Institute on Aging, Baltimore, Maryland 21224, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
604
|
Gómez J, Martínez-A C, González A, Rebollo A. Dual role of Ras and Rho proteins: at the cutting edge of life and death. Immunol Cell Biol 1998; 76:125-34. [PMID: 9619482 DOI: 10.1046/j.1440-1711.1998.00723.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Small GTP-binding proteins of the Ras superfamily are master controllers of the cell physiology. The range of processes in which these proteins are involved include cell cycle progression, cell division, regulation of cell morphology and motility and intracellular trafficking of molecules and organelles. The study of apoptosis, the physiological form of cell suicide, is progressively linking the functions of small G proteins to the control of the mechanisms that trigger the genetic programmes of cell death. To date, isoforms of the Ras and Rho groups have been related to both promotion and suppression of apoptosis. Further, signalling pathways driven by these proteins have been associated with the function and/or expression of molecules that regulate apoptotic responses. Thus, all available evidence points to a critical role for Ras and Rho proteins as major gatekeepers of the decision between cellular life and death.
Collapse
Affiliation(s)
- J Gómez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Universidad Autónoma de Madrid, Spain
| | | | | | | |
Collapse
|
605
|
Migliaccio A, Piccolo D, Castoria G, Di Domenico M, Bilancio A, Lombardi M, Gong W, Beato M, Auricchio F. Activation of the Src/p21ras/Erk pathway by progesterone receptor via cross-talk with estrogen receptor. EMBO J 1998; 17:2008-18. [PMID: 9524123 PMCID: PMC1170546 DOI: 10.1093/emboj/17.7.2008] [Citation(s) in RCA: 461] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The molecular mechanisms by which ovarian hormones stimulate growth of breast tumors are unclear. It has been reported previously that estrogens activate the signal-transducing Src/p21(ras)/Erk pathway in human breast cancer cells via an interaction of estrogen receptor (ER) with c-Src. We now show that progestins stimulate human breast cancer T47D cell proliferation and induce a similar rapid and transient activation of the pathway which, surprisingly, is blocked not only by anti-progestins but also by anti-estrogens. In Cos-7 cells transfected with the B isoform of progesterone receptor (PRB), progestin activation of the MAP kinase pathway depends on co-transfection of ER. A transcriptionally inactive PRB mutant also activates the signaling pathway, demonstrating that this activity is independent of transcriptional effects. PRB does not interact with c-Src but associates via the N-terminal 168 amino acids with ER. This association is required for the signaling pathway activation by progestins. We propose that ER transmits to the Src/p21(ras)/Erk pathway signals received from the agonist-activated PRB. These findings reveal a hitherto unrecognized cross-talk between ovarian hormones which could be crucial for their growth-promoting effects on cancer cells.
Collapse
Affiliation(s)
- A Migliaccio
- Istituto di Patologia Generale e Oncologia, Facoltà di Medicina e Chirurgia, II Università di Napoli, Largo S.Aniello a Caponapoli, 2, 80138 Napoli, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
606
|
Sylvester AM, Chen D, Krasinski K, Andrés V. Role of c-fos and E2F in the induction of cyclin A transcription and vascular smooth muscle cell proliferation. J Clin Invest 1998; 101:940-8. [PMID: 9486962 PMCID: PMC508643 DOI: 10.1172/jci1630] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Excessive proliferation of vascular smooth muscle cells (VSMCs) contributes to vessel renarrowing after angioplasty. Here we investigated the transcriptional regulation of the cyclin A gene, a key positive regulator of S phase that is induced after angioplasty. We show that Ras-dependent mitogenic signaling is essential for the normal stimulation of cyclin A promoter activity and DNA synthesis in VSMCs. Overexpression of the AP-1 transcription factor c-fos can circumvent this requirement via interaction with the cAMP-responsive element (CRE) in the cyclin A promoter. Moreover, c-fos overexpression in serum-starved VSMCs results in the induction of cyclin A promoter activity in a CRE-dependent manner, and increased binding of endogenous c-fos protein to the cyclin A CRE precedes the onset of DNA replication in VSMCs induced by serum in vitro and by angioplasty in vivo. We also show that E2F function is essential for both serum- and c-fos-dependent induction of cyclin A expression. Taken together, these findings suggest that c-fos and E2F are important components of the signaling cascade that link Ras activity to cyclin A transcription in VSMCs. These studies illustrate a novel link between the transcriptional and cell cycle machinery that may be relevant to the pathogenesis of vascular proliferative disorders.
Collapse
Affiliation(s)
- A M Sylvester
- Department of Medicine (Cardiology), St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02135, USA
| | | | | | | |
Collapse
|
607
|
Zohn IE, Symons M, Chrzanowska-Wodnicka M, Westwick JK, Der CJ. Mas oncogene signaling and transformation require the small GTP-binding protein Rac. Mol Cell Biol 1998; 18:1225-35. [PMID: 9488437 PMCID: PMC108835 DOI: 10.1128/mcb.18.3.1225] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/1997] [Accepted: 11/14/1997] [Indexed: 02/06/2023] Open
Abstract
The Mas oncogene encodes a novel G-protein-coupled receptor that was identified originally as a transforming protein when overexpressed in NIH 3T3 cells. The mechanism and signaling pathways that mediate Mas transformation have not been determined. We observed that the foci of transformed NIH 3T3 cells caused by Mas were similar to those caused by activated Rho and Rac proteins. Therefore, we determined if Mas signaling and transformation are mediated through activation of a specific Rho family protein. First, we observed that, like activated Rac1, Mas cooperated with activated Raf and caused synergistic transformation of NIH 3T3 cells. Second, both Mas- and Rac1-transformed NIH 3T3 cells retained actin stress fibers and showed enhanced membrane ruffling. Third, like Rac, Mas induced lamellipodium formation in porcine aortic endothelial cells. Fourth, Mas and Rac1 strongly activated the JNK and p38, but not ERK, mitogen-activated protein kinases. Fifth, Mas and Rac1 stimulated transcription from common DNA promoter elements: NF-kappaB, serum response factor (SRF), Jun/ATF-2, and the cyclin D1 promoter. Finally, Mas transformation and some of Mas signaling (SRF and cyclin D1 but not NF-kappaB activation) were blocked by dominant negative Rac1. Taken together, these observations suggest that Mas transformation is mediated in part by activation of Rac-dependent signaling pathways. Thus, Rho family proteins are common mediators of transformation by a diverse variety of oncogene proteins that include Ras, Dbl family, and G-protein-coupled oncogene proteins.
Collapse
Affiliation(s)
- I E Zohn
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill 27599-7038, USA
| | | | | | | | | |
Collapse
|
608
|
Cheng M, Sexl V, Sherr CJ, Roussel MF. Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc Natl Acad Sci U S A 1998; 95:1091-6. [PMID: 9448290 PMCID: PMC18683 DOI: 10.1073/pnas.95.3.1091] [Citation(s) in RCA: 387] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A constitutively active form of mitogen-activated protein kinase kinase (MEK1) was synthesized under control of a zinc-inducible promoter in NIH 3T3 fibroblasts. Zinc treatment of serum-starved cells activated extracellular signal-regulated protein kinases (ERKs) and induced expression of cyclin D1. Newly synthesized cyclin D1 assembled with cyclin-dependent kinase-4 (CDK4) to form holoenzyme complexes that phosphorylated the retinoblastoma protein inefficiently. Activation of the MEK1/ERK pathway neither triggered degradation of the CDK inhibitor kinase inhibitory protein-1 (p27(Kip1)) nor led to activation of cyclin E- and A-dependent CDK2, and such cells did not enter the DNA synthetic (S) phase of the cell division cycle. In contrast, zinc induction of active MEK1 in cells also engineered to ectopically overexpress cyclin D1 and CDK4 subunits generated levels of cyclin D-dependent retinoblastoma protein kinase activity approximating those achieved in cells stimulated by serum. In this setting, p27(Kip1) was mobilized into complexes containing cyclin D1; cyclin E- and A-dependent CDK2 complexes were activated; and serum-starved cells entered S phase. Thus, although the activity of p27(Kip1) normally is canceled through a serum-dependent degradative process, overexpressed cyclin D1-CDK complexes sequestered p27(Kip1) and reduced the effective inhibitory threshold through a stoichiometric mechanism. A fraction of these cells completed S phase and divided, but they were unable to continuously proliferate, indicating that other serum-responsive factors ultimately became rate limiting for cell cycle progression. Therefore, the MEK/ERK pathway not only acts transcriptionally to induce the cyclin D1 gene but functions posttranslationally to regulate cyclin D1 assembly with CDK4 and to thereby help cancel p27(Kip1)-mediated inhibition.
Collapse
Affiliation(s)
- M Cheng
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
609
|
Abstract
In the past year, complex interactions between Ras and the cell cycle have been identified. In primary cells, activated Ras induces a cell-cycle arrest via the induction of cyclin-dependent kinase inhibitors (CDKIs). Oncogenic changes that cooperate with Ras act by neutralising CDKIs by various mechanisms. In the absence of a negative growth signal from Ras, such as in most immortalised cell lines, Ras acts positively on the cell cycle. Insights have been made into the mechanisms by which Ras abrogates remaining cell-cycle controls.
Collapse
Affiliation(s)
- A C Lloyd
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
| |
Collapse
|
610
|
Abstract
Two opposing enzymatic reactions control the activity of the retinoblastoma tumour suppressor protein, pRB. Phosphorylation inactivates pRB's ability to sequester miscellaneous cellular proteins, mostly involved in regulating gene transcription, whereas pRB dephosphorylation restores this ability. For some time now it has been suspected that members of the cyclin/cyclin-dependent kinase (cyclin/cdk) family mediate pRB inactivation. Recent results indicate that pRB phosphorylation is not executed by single kinase but by a combination of cyclin/cdks, each one phosphorylating a subset of pRB's phosphorylation sites. The different kinases appear to be activated by growth factors through distinct signal transduction pathways. This lends itself to an attractive model whereby pRB phosphorylation may constitute an integration point for these signalling pathways, perhaps allowing cell cycle progression only when concurrent activation of these signalling pathways has been achieved.
Collapse
Affiliation(s)
- S Mittnacht
- Department of Cell and Molecular Biology, Institute of Cancer Research, London, UK.
| |
Collapse
|
611
|
Weber JD, Hu W, Jefcoat SC, Raben DM, Baldassare JJ. Ras-stimulated extracellular signal-related kinase 1 and RhoA activities coordinate platelet-derived growth factor-induced G1 progression through the independent regulation of cyclin D1 and p27. J Biol Chem 1997; 272:32966-71. [PMID: 9407076 DOI: 10.1074/jbc.272.52.32966] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Platelet-derived growth factor (PDGF)-induced Ras activation is required for G1 progression in Chinese hamster embryo fibroblasts (IIC9 cells). Ras stimulates both extracellular signal-related kinase (ERK) activation and RhoA activation in response to PDGF stimulation. Inhibition of either of these Ras-stimulated pathways results in growth arrest. We have shown previously that Ras-stimulated ERK activation is essential for the induction and continued G1 expression of cyclin D1. In this study we examine the role of Ras-induced RhoA activity in G1 progression. Unstimulated IIC9 cells expressed high levels of the G1 cyclin-dependent kinase inhibitor p27(KIP1). Stimulation with PDGF resulted in a dramatic decrease in p27(KIP1) protein expression. This decrease was attributed to increased p27(KIP1) protein degradation. Overexpression of dominant-negative forms of Ras or RhoA completely blocked PDGF-induced p27(KIP1) degradation, but only dominant-negative Ras inhibited cyclin D1 protein expression. C3 transferase also inhibited PDGF-induced p27(KIP1) degradation, thus further implicating RhoA in p27(KIP1) regulation. Overexpression of dominant-negative ERK resulted in inhibition of PDGF-induced cyclin D1 expression but had no effect on PDGF-induced p27(KIP1) degradation. These data suggest that Ras coordinates the independent regulation of cyclin D1 and p27(KIP1) expression by the respective activation of ERK and RhoA and that these pathways converge to determine the activation state of complexes of cyclin D1 and cyclin-dependent kinase in response to mitogen.
Collapse
Affiliation(s)
- J D Weber
- Department of Cell and Molecular Biology, St. Louis University, St. Louis, Missouri 63104, USA
| | | | | | | | | |
Collapse
|
612
|
Yan YX, Nakagawa H, Lee MH, Rustgi AK. Transforming growth factor-alpha enhances cyclin D1 transcription through the binding of early growth response protein to a cis-regulatory element in the cyclin D1 promoter. J Biol Chem 1997; 272:33181-90. [PMID: 9407106 DOI: 10.1074/jbc.272.52.33181] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cyclin D1 is a critical oncogene involved in the regulation of progression through the G1 phase of the cell cycle, thereby contributing to cell proliferation. This is mediated through interaction of cyclin D1 with its catalytic partners, the cyclin-dependent kinases, and the subsequent phosphorylation of the retinoblastoma protein. Cyclin D1, in turn, is regulated by mitogenic stimuli. We demonstrate that transforming growth factor-alpha (TGFalpha) induces cyclin D1 mRNA in esophageal squamous epithelial cells, and this appears to correlate with increased cyclin D1 protein expression and cyclin-dependent kinase 6 activity. The induction of cyclin D1 transcription by TGFalpha is mediated in part through the induction of the early growth response protein (Egr-1) and its subsequent binding of Egr-1 to a cis-regulatory region spanning nucleotides -144 to -104 of the cyclin D1 promoter. The Egr-1 binding activity to the cyclin D1 promoter appears to require de novo protein synthesis and is not influenced by Sp1 binding to overlapping Sp1 motifs. Taken together, these data provide evidence that TGFalpha enhances cyclin D1 transcription through the induction of Egr-1 binding to a cis-regulatory region in the cyclin D1 promoter. This has important mechanistic implications into the transcriptional regulation of cyclin D1 by an essential proproliferative growth factor and cell cycle progression.
Collapse
Affiliation(s)
- Y X Yan
- Gastrointestinal Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
613
|
Dufourny B, Alblas J, van Teeffelen HA, van Schaik FM, van der Burg B, Steenbergh PH, Sussenbach JS. Mitogenic signaling of insulin-like growth factor I in MCF-7 human breast cancer cells requires phosphatidylinositol 3-kinase and is independent of mitogen-activated protein kinase. J Biol Chem 1997; 272:31163-71. [PMID: 9388270 DOI: 10.1074/jbc.272.49.31163] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Addition of insulin-like growth factor I (IGF-I) to quiescent breast tumor-derived MCF-7 cells causes stimulation of cyclin D1 synthesis, hyperphosphorylation of the retinoblastoma protein pRb, DNA synthesis, and cell division. All of these effects are independent of the mitogen-activated protein kinase (MAPK) pathway since none of them is blocked by PD098059, the specific inhibitor of the MAPK activating kinase MEK1. This observation is consistent with the finding that the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA), a strong inducer of MAPK activity in MCF-7 cells, effectively inhibits proliferation. The anti-proliferative effect of TPA in these cells may be accounted for, at least in part, by the MAPK-dependent stimulation of the synthesis of p21(WAF1/CIP1), an inhibitor of cyclin/cyclin-dependent kinase complexes. In contrast, all of the observed stimulatory effects of IGF-I on cell cycle progression, cyclin D1 synthesis, and pRb hyperphosphorylation were blocked by the specific phosphatidylinositol 3-kinase inhibitor LY294002, suggesting that phosphatidylinositol 3-kinase activity but not MAPK activity is required for transduction of the mitogenic IGF-I signal in MCF-7 cells.
Collapse
Affiliation(s)
- B Dufourny
- Utrecht Graduate School of Developmental Biology, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
614
|
Bennett AM, Tonks NK. Regulation of distinct stages of skeletal muscle differentiation by mitogen-activated protein kinases. Science 1997; 278:1288-91. [PMID: 9360925 DOI: 10.1126/science.278.5341.1288] [Citation(s) in RCA: 291] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The signal transduction pathway or pathways linking extracellular signals to myogenesis are poorly defined. Upon mitogen withdrawal from C2C12 myoblasts, the mitogen-activated protein kinase (MAPK) p42Erk2 is inactivated concomitant with up-regulation of muscle-specific genes. Overexpression of MAPK phosphatase-1 (MKP-1) inhibited p42Erk2 activity and was sufficient to relieve the inhibitory effects of mitogens on muscle-specific gene expression. Later during myogenesis, endogenous expression of MKP-1 decreased. MKP-1 overexpression during differentiation prevented myotube formation despite appropriate expression of myosin heavy chain. This indicates that muscle-specific gene expression is necessary but not sufficient to commit differentiated myocytes to myotubes and suggests a function for the MAPKs during the early and late stages of skeletal muscle differentiation.
Collapse
Affiliation(s)
- A M Bennett
- Cold Spring Harbor Laboratory, Demerec Building, 1 Bungtown Road, Post Office Box 100, Cold Spring Harbor, NY 11724, USA
| | | |
Collapse
|
615
|
Giancotti FG. Integrin signaling: specificity and control of cell survival and cell cycle progression. Curr Opin Cell Biol 1997; 9:691-700. [PMID: 9330873 DOI: 10.1016/s0955-0674(97)80123-8] [Citation(s) in RCA: 347] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Integrin-mediated adhesion to the extracellular matrix plays an important role in regulating cell survival and proliferation. There is now increasing evidence that integrins activate shared as well as subgroup-specific signaling pathways. The signals from these adhesion receptors are integrated with those originating from growth factor and cytokine receptors in order to organize the cytoskeleton, stimulate mitogen-activated protein kinase cascades, and regulate immediate early gene expression. The repertoire of integrins and composition of the extracellular matrix appear to dictate whether a cell will survive, proliferate or exit the cell cycle and differentiate in response to soluble factors.
Collapse
Affiliation(s)
- F G Giancotti
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, Cornell University, New York, NY 10021, USA.
| |
Collapse
|
616
|
Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol 1997; 17:5598-611. [PMID: 9271435 PMCID: PMC232408 DOI: 10.1128/mcb.17.9.5598] [Citation(s) in RCA: 529] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Raf family of protein kinases display differences in their abilities to promote the entry of quiescent NIH 3T3 cells into the S phase of the cell cycle. Although conditional activation of deltaA-Raf:ER promoted cell cycle progression, activation of deltaRaf-1:ER and deltaB-Raf:ER elicited a G1 arrest that was not overcome by exogenously added growth factors. Activation of all three deltaRaf:ER kinases led to elevated expression of cyclin D1 and cyclin E and reduced expression of p27Kip1. However, activation of deltaB-Raf:ER and deltaRaf-1:ER induced the expression of p21Cip1, whereas activation of deltaA-Raf:ER did not. A catalytically potentiated form of deltaA-Raf:ER, generated by point mutation, strongly induced p21Cip1 expression and elicited cell cycle arrest similarly to deltaB-Raf:ER and deltaRaf-1:ER. These data suggested that the strength and duration of signaling by Raf kinases might influence the biological outcome of activation of this pathway. By titration of deltaB-Raf:ER activity we demonstrated that low levels of Raf activity led to activation of cyclin D1-cdk4 and cyclin E-cdk2 complexes and to cell cycle progression whereas higher Raf activity elicited cell cycle arrest correlating with p21Cip1 induction and inhibition of cyclin-cdk activity. Using green fluorescent protein-tagged forms of deltaRaf-1:ER in primary mouse embryo fibroblasts (MEFs) we demonstrated that p21Cip1 was induced by Raf in a p53-independent manner, leading to cell cycle arrest. By contrast, activation of Raf in p21Cip1(-/-) MEFs led to a robust mitogenic response that was similar to that observed in response to platelet-derived growth factor. These data indicate that, depending on the level of kinase activity, Raf can elicit either cell cycle progression or cell cycle arrest in mouse fibroblasts. The ability of Raf to elicit cell cycle arrest is strongly associated with its ability to induce the expression of the cyclin-dependent kinase inhibitor p21Cip1 in a manner that bears analogy to alpha-factor arrest in Saccharomyces cerevisiae. These data are consistent with a role for Raf kinases in both proliferation and differentiation of mammalian cells.
Collapse
Affiliation(s)
- D Woods
- Department of Cell Signaling, DNAX Research Institute, Palo Alto, California 94304, USA
| | | | | | | | | | | |
Collapse
|
617
|
Neuman E, Ladha MH, Lin N, Upton TM, Miller SJ, DiRenzo J, Pestell RG, Hinds PW, Dowdy SF, Brown M, Ewen ME. Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol Cell Biol 1997; 17:5338-47. [PMID: 9271411 PMCID: PMC232384 DOI: 10.1128/mcb.17.9.5338] [Citation(s) in RCA: 287] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cyclin D1 plays an important role in the development of breast cancer and is required for normal breast cell proliferation and differentiation associated with pregnancy. We show that ectopic expression of cyclin D1 can stimulate the transcriptional activity of the estrogen receptor in the absence of estradiol and that this activity can be inhibited by 4-hydroxytamoxifen and ICI 182,780. Cyclin D1 can form a specific complex with the estrogen receptor. Stimulation of the estrogen receptor by cyclin D1 is independent of cyclin-dependent kinase 4 activation. Cyclin D1 may manifest its oncogenic potential in breast cancer in part through binding to the estrogen receptor and activation of the transcriptional activity of the receptor.
Collapse
Affiliation(s)
- E Neuman
- The Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
618
|
Weber JD, Raben DM, Phillips PJ, Baldassare JJ. Sustained activation of extracellular-signal-regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochem J 1997; 326 ( Pt 1):61-8. [PMID: 9337851 PMCID: PMC1218637 DOI: 10.1042/bj3260061] [Citation(s) in RCA: 332] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In Chinese hamster embryo fibroblasts (IIC9 cells), platelet-derived growth factor (PDGF) stimulated mitogen-activated protein kinase/extracellular-signal-regulated kinase (MAP kinase/ERK) activity, but not that of c-jun N-terminal kinase (JNK), and induced G1 phase progression. ERK1 activation was biphasic and was sustained throughout the G1 phase of the cell cycle. PDGF induced cyclin D1 protein and mRNA levels in a time-dependent manner. Inhibition of PDGF-induced ERK1 activity by the addition of a selective inhibitor of MEK1 (MAP kinase kinase/ERK kinase 1) activation, PD98059, or transfection with a dominant-negative ERK1 (dnERK-) was correlated with growth arrest. In contrast, growth was unaffected by expression of dominant-negative JNK (dnJNK-). Interestingly, addition of PD98059 or dnERK-, but not dnJNK-, resulted in a dramatic decrease in cyclin D1 protein and mRNA levels, concomitant with a decrease in cyclin D1-cyclin-dependent kinase activity. To investigate the importance of sustained ERK1 activation, ERK1 activity was blocked by the addition of PD98059 throughout G1. Addition of PD98059 up to 4 h after PDGF treatment decreased ERK1 activity to the levels found in growth-arrested IIC9 cells. Loss of cyclin D1 mRNA and protein expression was observed within 1 h after inhibition of the second sustained phase of ERK1 activity. Disruption of sustained ERK1 activity also resulted in G1 growth arrest. These data provide evidence for a role for sustained ERK activity in controlling G1 progression through positive regulation of the continued expression of cyclin D1, a protein known to positively regulate G1 progression.
Collapse
Affiliation(s)
- J D Weber
- Department of Cell and Molecular Biology, St. Louis University School of Medicine, MO 63104, USA
| | | | | | | |
Collapse
|
619
|
Weber JD, Cheng J, Raben DM, Gardner A, Baldassare JJ. Ablation of Goalpha overrides G1 restriction point control through Ras/ERK/cyclin D1-CDK activities. J Biol Chem 1997; 272:17320-6. [PMID: 9211869 DOI: 10.1074/jbc.272.28.17320] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have generated stable IIC9 cell lines, Goa1 and Goa2, that overexpress full-length antisense Goalpha RNA. As shown previously, expression of antisense Goalpha RNA ablated the alpha subunit of the heterotrimeric G protein, Go, resulting in growth in the absence of mitogen. To better understand this change in IIC9 phenotype, we have characterized the signaling pathway and cell cycle events previously shown to be important in control of IIC9 G1/S phase progression. In this paper we clearly demonstrate that ablation of Goalpha results in growth, constitutively active Ras/ERK, elevated expression of cyclin D1, and constitutively active cyclin D1-CDK complexes, all in the absence of mitogen. Furthermore, these characteristics were abolished by the transient overexpression of the transducin heterotrimeric G protein alpha subunit strongly suggesting the transformation of Goalpha-ablated cells involves Gobetagamma subunits. This is the first study to implicate a heterotrimeric G protein in tumor suppression.
Collapse
Affiliation(s)
- J D Weber
- Department of Cell and Molecular Biology, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA
| | | | | | | | | |
Collapse
|
620
|
Monden N, Nishizaki K, Fukushima K, Masuda Y, Tsukuda K, Shimizu K. Quantitative analysis of cyclin D1 messenger RNA expression in head and neck squamous cell carcinomas. Jpn J Cancer Res 1997; 88:660-8. [PMID: 9310139 PMCID: PMC5921479 DOI: 10.1111/j.1349-7006.1997.tb00434.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Cyclin D1 is thought to play a critical role in the G1/S phase transition of the cell cycle. Amplification of this gene has been reported in several types of human neoplasms including breast, lung, esophageal, and head and neck tumors. In this study, we have analyzed the relative level of expression of cyclin D1 messenger RNA (mRNA) in fresh specimens of head and neck squamous cell carcinoma (HNSCC), and investigated the concordance of the overexpression of cyclin D1 mRNA with gene amplification. Levels of cyclin D1 mRNA were analyzed by a modified method of competitive reverse transcription-polymerase chain reaction and levels of cyclin D1 gene amplification were evaluated by Southern blot hybridization in a series of 23 matched normal mucosas and HNSCC. Overexpression of cyclin D1 mRNA was observed in 10 of 23 cases (43.5%) of HNSCC, ranging from 2 to 50-fold higher than the normal control. Twelve of 23 cases could be evaluated by Southern blot hybridization, and gene amplification was found in only 2 of 12 cases (16.7%). These findings suggest that cyclin D1 plays an important role in tumorigenesis of HNSCC, and gene amplification is not one of the major mechanisms for overexpression of cyclin D1.
Collapse
Affiliation(s)
- N Monden
- Department of Otolaryngology, Okayama University Medical School
| | | | | | | | | | | |
Collapse
|
621
|
Aktas H, Cai H, Cooper GM. Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27KIP1. Mol Cell Biol 1997; 17:3850-7. [PMID: 9199319 PMCID: PMC232237 DOI: 10.1128/mcb.17.7.3850] [Citation(s) in RCA: 318] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Activation of growth factor receptors by ligand binding initiates a cascade of events leading to cell growth and division. Progression through the cell cycle is controlled by cyclin-dependent protein kinases (Cdks), but the mechanisms that link growth factor signaling to the cell cycle machinery have not been established. We report here that Ras proteins play a key role in integrating mitogenic signals with cell cycle progression through G1. Ras is required for cell cycle progression and activation of both Cdk2 and Cdk4 until approximately 2 h before the G1/S transition, corresponding to the restriction point. Analysis of Cdk-cyclin complexes indicates that Ras signaling is required both for induction of cyclin D1 and for downregulation of the Cdk inhibitor p27KIP1. Constitutive expression of cyclin D1 circumvents the requirement for Ras signaling in cell proliferation, indicating that regulation of cyclin D1 is a critical target of the Ras signaling cascade.
Collapse
Affiliation(s)
- H Aktas
- Dana-Farber Cancer Institute, and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
622
|
Peeper DS, Bernards R. Communication between the extracellular environment, cytoplasmic signalling cascades and the nuclear cell-cycle machinery. FEBS Lett 1997; 410:11-6. [PMID: 9247113 DOI: 10.1016/s0014-5793(97)00319-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the past decade, we have gained considerable insight into the identities of various cytoplasmic signal transduction cascades and the manner in which they operate in response to changes in the extracellular environment. Moreover, we have begun to understand what the key players are in cell-cycle regulation and how they, in turn, function to promote cell division. A long-standing question, however, has been how communication between signalling routes and the cell-cycle machinery occurs. This review highlights some recent observations that provide possible links between signal transduction and the cell-cycle machinery.
Collapse
Affiliation(s)
- D S Peeper
- The Netherlands Cancer Institute, Division of Molecular Carcinogenesis, Amsterdam, The Netherlands
| | | |
Collapse
|
623
|
Suzuki-Yagawa Y, Guermah M, Roeder RG. The ts13 mutation in the TAF(II)250 subunit (CCG1) of TFIID directly affects transcription of D-type cyclin genes in cells arrested in G1 at the nonpermissive temperature. Mol Cell Biol 1997; 17:3284-94. [PMID: 9154827 PMCID: PMC232181 DOI: 10.1128/mcb.17.6.3284] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The general transcription initiation factor TFIID contains the TATA-binding protein (TBP) and TBP-associated factors (TAFs) implicated in the function of gene-specific activators. Previous studies have indicated that a hamster cell line (ts13) with a point mutation in the TAF(II)250/CCG1 (TAF(II)250) gene shows temperature-sensitive expression of a subset of genes and arrests in late G1 at 39.5 degrees C. Here, we report the identification of cell cycle-specific (G1-specific) genes that appear to be regulated directly through TAF(II)250 both in vivo and in vitro. Transcription rates of several cell cycle-regulatory genes were determined by run-on assays in nuclei from ts13 cells grown at permissive (33 degrees C) and nonpermissive (39.5 degrees C) temperatures. Temperature-dependent differences in transcription rates were observed for cyclin A, D1, and D3 genes. In transient-transfection assays, the human cyclin D1 promoter fused to a luciferase reporter showed a temperature-dependent reduction in activity in ts13 cells but not in parental BHK cells. In in vitro assays, upstream sequence-dependent transcription from the human cyclin D1 promoter was significantly reduced in ts13 nuclear extracts preincubated at 30 degrees C but not in similarly treated BHK nuclear extracts, and transcription in the ts13 extract was restored by addition of an affinity-purified human TFIID. Preincubation of the ts13 nuclear extracts did not affect the function of several GAL4-activation domain fusion proteins (GAL4-VP16, GAL4-p65, and GAL4-p53) on either the adenovirus major late or cyclin D1 core promoter bearing GAL4 sites, further indicating that the effect of the TAF(II)250 mutation is both core promoter and activator specific.
Collapse
Affiliation(s)
- Y Suzuki-Yagawa
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | |
Collapse
|
624
|
Kerkhoff E, Rapp UR. Induction of cell proliferation in quiescent NIH 3T3 cells by oncogenic c-Raf-1. Mol Cell Biol 1997; 17:2576-86. [PMID: 9111327 PMCID: PMC232107 DOI: 10.1128/mcb.17.5.2576] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The c-Raf-1 kinase is activated by different mitogenic stimuli and has been shown to be an important mediator of growth factor responses. Fusion of the catalytic domain of the c-Raf-1 kinase with the hormone binding domain of the estrogen receptor (deltaRaf-ER) provides a hormone-regulated form of oncogenic activated c-Raf-1. We have established NIH 3T3 cells stably expressing a c-Raf-1 deletion mutant-estrogen receptor fusion protein (c-Raf-1-BxB-ER) (N-BxB-ER cells). The transformed morphology of these cells is dependent on the presence of the estrogen antagonist 4-hydroxytamoxifen. Addition of 4-hydroxytamoxifen to N-BxB-ER cells arrested by density or serum starvation causes reentry of these cells into cell proliferation. Increases in the cell number are obvious by 24 h after activation of the oncogenic c-Raf-1 protein in confluent cells. The onset of proliferation in serum-starved cells is further delayed and takes about 48 h. In both cases, the proliferative response of the oncogenic c-Raf-1-induced cell proliferation is weaker than the one mediated by serum and does not lead to exponential growth. This is reflected in a markedly lower expression of the late-S- and G2/M-phase-specific cyclin B protein and a slightly lower expression of the cyclin A protein being induced at the G1/S transition. Oncogenic activation of c-Raf-1 induces the expression of the heparin binding epidermal growth factor. The Jnk1 kinase is putatively activated by the action of the autocrine growth factor. The kinetics of Jnk1 kinase activity is delayed and occurs by a time when we also detect DNA synthesis and the expression of the S-phase-specific cyclin A protein. This finding indicates that oncogenic activation of the c-Raf-1 protein can trigger the entry into the cell cycle without the action of the autocrine growth factor loop. The activation of the c-Raf-1-BxB-ER protein leads to an accumulation of high levels of cyclin D1 protein and a repression of the p27Kip1 cyclin-dependent kinase inhibitor under all culture conditions tested.
Collapse
Affiliation(s)
- E Kerkhoff
- Institut für Medizinische Strahlenkunde und Zellforschung, University of Würzburg, Germany
| | | |
Collapse
|
625
|
Prall OW, Sarcevic B, Musgrove EA, Watts CK, Sutherland RL. Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibitor association with cyclin E-Cdk2. J Biol Chem 1997; 272:10882-94. [PMID: 9099745 DOI: 10.1074/jbc.272.16.10882] [Citation(s) in RCA: 315] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Estrogens induce cell proliferation in target tissues by stimulating progression through G1 phase of the cell cycle, but the underlying molecular targets remain undefined. To determine the role of the cyclin/cyclin-dependent kinase (CDK)/retinoblastoma protein (pRB) pathway in this response we treated MCF-7 breast cancer cells with the pure estrogen antagonist ICI 182780 to inhibit estrogen-induced gene expression and induce G1 phase arrest. Subsequent treatment with 17beta-estradiol resulted in the synchronous entry of cells into S phase commencing at 12 h. The proportion of cells in S phase reached a maximum of 60% at 21-24 h. Cells subsequently completed mitosis and entered a second semisynchronous round of replication. Entry into S phase was preceded by increased activity of both Cdk4 and cyclin E-Cdk2 and hyperphosphorylation of pRB, all within the first 3-6 h of estradiol treatment. The increase in Cdk4 activity was accompanied by increases in cyclin D1 mRNA and protein, indicating that an initiating event in the activation of Cdk4 was increased cyclin D1 gene expression. In contrast, the levels of Cdk2 and the CDK inhibitors p21 (WAF1/CIP1/SDI1) and p27 (KIP1) in total cell lysates and in cyclin E immunoprecipitates were unaltered at these early time points. However, an inhibitory activity was present in antiestrogen-pretreated cell lysates toward recombinant cyclin E-Cdk2 and was relieved by estradiol treatment. This activity was attributable predominantly to p21. These apparently conflicting data were resolved by performing gel filtration chromatography, which revealed that only a minority of cyclin E-Cdk2 complexes were active following estradiol treatment. Active complexes eluted at a higher molecular weight than inactive complexes, were relatively deficient in both p21 and p27, and contained Cdk2 with increased threonine 160 phosphorylation, consistent with a mechanism of activation of cyclin E-Cdk2 involving both reduced CDK inhibitor association and CDK-activating kinase-mediated phosphorylation of Cdk2. These results provide an explanation for the early activation of both cyclin D1-Cdk4 and cyclin E-Cdk2 complexes that accompany G1-S phase progression in response to estradiol.
Collapse
Affiliation(s)
- O W Prall
- Cancer Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, New South Wales 2010, Australia
| | | | | | | | | |
Collapse
|
626
|
Peeper DS, Upton TM, Ladha MH, Neuman E, Zalvide J, Bernards R, DeCaprio JA, Ewen ME. Ras signalling linked to the cell-cycle machinery by the retinoblastoma protein. Nature 1997; 386:177-81. [PMID: 9062190 DOI: 10.1038/386177a0] [Citation(s) in RCA: 278] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Ras proto-oncogene is a central component of mitogenic signal-transduction pathways, and is essential for cells both to leave a quiescent state (G0) and to pass through the G1/S transition of the cell cycle. The mechanism by which Ras signalling regulates cell-cycle progression is unclear, however. Here we report that the retinoblastoma tumour-suppressor protein (Rb), a regulator of G1 exit, functionally links Ras to passage through the G1 phase. Inactivation of Ras in cycling cells caused a decline in cyclin D1 protein levels, accumulation of the hypophosphorylated, growth-suppressive form of Rb, and G1 arrest. When Rb was disrupted either genetically or biochemically, cells failed to arrest in G1 following Ras inactivation. In contrast, inactivation of Ras in quiescent cells prevented growth-factor induction of both immediate-early gene transcription and exit from G0 in an Rb-independent manner. These data suggest that Rb is an essential G1-specific mediator that links Ras-dependent mitogenic signalling to cell-cycle regulation.
Collapse
Affiliation(s)
- D S Peeper
- The Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
627
|
Westwick JK, Lambert QT, Clark GJ, Symons M, Van Aelst L, Pestell RG, Der CJ. Rac regulation of transformation, gene expression, and actin organization by multiple, PAK-independent pathways. Mol Cell Biol 1997; 17:1324-35. [PMID: 9032259 PMCID: PMC231857 DOI: 10.1128/mcb.17.3.1324] [Citation(s) in RCA: 355] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Rac1 and RhoA are members of the Rho family of Ras-related proteins and function as regulators of actin cytoskeletal organization, gene expression, and cell cycle progression. Constitutive activation of Rac1 and RhoA causes tumorigenic transformation of NIH 3T3 cells, and their functions may be required for full Ras transformation. The effectors by which Rac1 and RhoA mediate these diverse activities, as well as the interrelationship between these events, remain poorly understood. Rac1 is distinct from RhoA in its ability to bind and activate the p65 PAK serine/threonine kinase, to induce lamellipodia and membrane ruffling, and to activate the c-Jun NH2-terminal kinase (JNK). To assess the role of PAK in Rac1 function, we identified effector domain mutants of Rac1 and Rac1-RhoA chimeric proteins that no longer bound PAK. Surprisingly, PAK binding was dispensable for Rac1-induced transformation and lamellipodium formation, as well as activation of JNK, p38, and serum response factor (SRF). However, the ability of Rac1 to bind to and activate PAK correlated with its ability to stimulate transcription from the cyclin D1 promoter. Furthermore, Rac1 activation of JNK or SRF, or induction of lamellipodia, was neither necessary nor sufficient for Rac1 transforming activity. Finally, the signaling pathways that mediate Rac1 activation of SRF or JNK were distinct from those that mediate Rac1 induction of lamellipodia. Taken together, these observations suggest that Rac1 regulates at least four distinct effector-mediated functions and that multiple pathways may contribute to Rac1-induced cellular transformation.
Collapse
Affiliation(s)
- J K Westwick
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, 27599-7038, USA
| | | | | | | | | | | | | |
Collapse
|
628
|
Mitsui H, Takuwa N, Kurokawa K, Exton JH, Takuwa Y. Dependence of activated Galpha12-induced G1 to S phase cell cycle progression on both Ras/mitogen-activated protein kinase and Ras/Rac1/Jun N-terminal kinase cascades in NIH3T3 fibroblasts. J Biol Chem 1997; 272:4904-10. [PMID: 9030549 DOI: 10.1074/jbc.272.8.4904] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We evaluated the roles of mitogen-activated protein kinase (MAPK) and Jun N-terminal kinase (JNK) signaling cascades in Galpha12-induced G1 to S phase cell cycle progression in NIH3T3(M17) fibroblasts. Transient expression of a constitutively active mutant of Galpha12, Galpha12(R203C), resulted in a 2-fold increase in the number of bromodeoxyuridine-positive S phase cells over vector control level under serum-deprived conditions. Consistent with the ability of Galpha12(R203C) to induce G1/S transition, its expression led to a 2-fold increase in cyclin A promoter activity, which showed a marked synergism with a low concentration of serum, resulting in up to a 15-fold elevation over the basal level. In addition, Galpha12(R203C) caused a 2-fold stimulation in E2F-mediated transactivation. Wild type Galpha12 showed similar stimulatory effects on cyclin A promoter activity and E2F-mediated transactivation, although of lesser magnitude. We observed a modest but constitutive activation of MAPK in cells transfected with Galpha12(R203C), which was abolished by a dominant negative form of Ras. Galpha12(R203C) also induced a 3-fold increase in JNK activity, which was abolished by dominant negative forms of either Rac1 or Ras. The expression of dominant negative forms of Ras, MAPK, Rac1, or JNK inhibited Galpha12(R203C)-induced increases in bromodeoxyuridine-positive cells. Also, the dominant negative forms of Ras, MAPK, and JNK strongly inhibited Galpha12(R203C)-induced stimulation of cyclin A promoter activity. These results demonstrate that both the Ras/MAPK and Ras/Rac1/JNK pathways convey necessary, if not sufficient, mitogenic signals induced by Galpha12 activation.
Collapse
Affiliation(s)
- H Mitsui
- Department of Cardiovascular Biology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | |
Collapse
|
629
|
Joaquin M, Salvado C, Bellosillo B, Lange AJ, Gil J, Tauler A. Effect of growth factors on the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in Rat-1 fibroblasts. J Biol Chem 1997; 272:2846-51. [PMID: 9006927 DOI: 10.1074/jbc.272.5.2846] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The activation of glycolytic flux is a biochemical characteristic of growing cells. Several reports have demonstrated the role of fructose 2,6-bisphosphate in this process. In this paper we show that the levels of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (6PF2K/Fru-2,6-P2ase) mRNA are modulated in response to serum and growth factors and this effect is due to regulation of its transcription rate. The modulation of the expression of this enzyme by growth factors differs according their mitogenic effect; both lysophosphatidic acid and epidermal growth factor, when added alone, increased the mRNA levels, but endothelin had no effect. Furthermore, cAMP, which acts as an antimitogenic signal in Rat-1 fibroblasts, produced a decrease in 6PF2K/Fru-2, 6-P2ase mRNA and inhibited the effects of lysophosphatidic acid and epidermal growth factor on 6PF2K/Fru-2,6-P2ase expression. PD 098059, a specific inhibitor of the activation of the mitogen-activated protein kinase, was able to prevent the effect of EGF on 6PF2K/Fru-2, 6-P2ase gene expression. These results imply that activation of mitogen-activated protein kinase is required for the stimulation of the transcription of 6PF2K/Fru-2,6-P2ase by EGF.
Collapse
Affiliation(s)
- M Joaquin
- Unitat de Bioquímica, Departament de Ciències Fisiològiques Humanes i de la Nutriciò, Universitat de Barcelona, Avinguda Diagonal 643, Barcelona 08028, Catalunya, Spain
| | | | | | | | | | | |
Collapse
|
630
|
Ras-mediated cell proliferation and cell death: some clues from the interleukin-2 receptor system. Apoptosis 1996. [DOI: 10.1007/bf01321100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
631
|
Assoian RK, Marcantonio EE. The extracellular matrix as a cell cycle control element in atherosclerosis and restenosis. J Clin Invest 1996; 98:2436-9. [PMID: 8958203 PMCID: PMC507698 DOI: 10.1172/jci119059] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- R K Assoian
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, Florida 33101, USA.
| | | |
Collapse
|
632
|
Watanabe G, Howe A, Lee RJ, Albanese C, Shu IW, Karnezis AN, Zon L, Kyriakis J, Rundell K, Pestell RG. Induction of cyclin D1 by simian virus 40 small tumor antigen. Proc Natl Acad Sci U S A 1996; 93:12861-6. [PMID: 8917510 PMCID: PMC24011 DOI: 10.1073/pnas.93.23.12861] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cell-cycle progression is mediated by a co-ordinated interaction between cyclin-dependent kinases and their target proteins including the pRB and E2F/DP-1 complexes. Immunoneutralization and antisense experiments have established that the abundance of cyclin D1, a regulatory subunit of the cyclin-dependent kinases, may be rate-limiting for G1 phase progression of the cell cycle. Simian virus 40 (SV40) small tumor (t) antigen is capable of promoting G1 phase progression and augments substantially the efficiency of SV40 transformation through several distinct domains. In these studies, small t antigen stimulated cyclin D1 promoter activity 7-fold, primarily through an AP-1 binding site at -954 with additional contributions from a CRE site at -57. The cyclin D1 AP-1 and CRE sites were sufficient for activation by small t antigen when linked to an heterologous promoter. Point mutations of small t antigen between residues 97-103 that reduced PP2A binding were partially defective in the induction of the cyclin D1 promoter. These mutations also reduced activation of MEK1 and two distinct members of the mitogen-activated protein kinase family, the ERKs (extracellular signal regulated kinases) and the SAPKs (stress-activated protein kinases), in transfected cells. Dominant negative mutants of either MEK1, ERK or SEK1, reduced small t-dependent induction of the cyclin D1 promoter. SV40 small t induction of the cyclin D1 promoter involves both the ERK and SAPK pathways that together may contribute to the proliferative and transformation enhancing activity of small t antigen.
Collapse
Affiliation(s)
- G Watanabe
- Department of Medicine, Lurie Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
633
|
Watanabe G, Lee RJ, Albanese C, Rainey WE, Batlle D, Pestell RG. Angiotensin II activation of cyclin D1-dependent kinase activity. J Biol Chem 1996; 271:22570-7. [PMID: 8798425 DOI: 10.1074/jbc.271.37.22570] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Angiotensin II (AII) binds to specific G protein-coupled receptors and is mitogenic in adrenal, liver epithelial, and vascular smooth muscle cells. Since the cyclin D1 gene encodes the regulatory subunit of the cyclin D1-dependent kinase (CD1K) required for phosphorylation of the retinoblastoma protein (pRB), an essential and rate-limiting step in G1 phase progression of the cell cycle, we examined the effect of AII on cyclin D1 expression and CD1K activity in the human adrenal cell line H295R. AII (10(-6) M) stimulated G1 phase progression within 12 h, with a maximal effect after 72 h. This action was antedated by the induction of cyclin D1 mRNA (3-fold), cyclin D1 nuclear protein abundance (4-fold), and CD1K activity (4-fold). AII induced cyclin D1 promoter activity 4-fold, via the AT1 receptor through an enhancer sequence at -954 base pairs. c-Fos and c-Jun bound the cyclin D1 -954 enhancer sequence, and the abundance of c-Fos within this complex was increased by AII treatment. AII induced extracellular signal-regulated kinase (ERK) activity 7-fold, and dominant-negative mutants of either p21(ras) or ERK reduced AII-stimulated cyclin D1 promoter activity. These findings suggest that AII may stimulate mitogenesis by increasing CD1K activity through a p21(ras)/ERK/activator protein 1 pathway.
Collapse
Affiliation(s)
- G Watanabe
- Department of Medicine, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
634
|
Lavoie JN, L'Allemain G, Brunet A, Müller R, Pouysségur J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 1996; 271:20608-16. [PMID: 8702807 DOI: 10.1074/jbc.271.34.20608] [Citation(s) in RCA: 977] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We have previously shown that the persistent activation of p42/p44(MAPK) is required to pass the G1 restriction point in fibroblasts (Pagès, G., Lenormand, P., L'Allemain, G., Chambard, J. C., Meloche, S., and Pouysségur, J. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 8319-8323) and postulated that MAPKs control the activation of G1 cyclin-dependent complexes. We examined the mitogen-dependent induction of cyclin D1 expression, one of the earliest cell cycle-related events to occur during the G0/G1 to S-phase transition, as a potential target of MAPK regulation. Effects exerted either by the p42/p44(MAPK) or the p38/HOGMAPK cascade on the regulation of cyclin D1 promoter activity or cyclin D1 expression were compared in CCL39 cells, using a co-transfection procedure. We found that inhibition of the p42/p44(MAPK) signaling by expression of dominant-negative forms of either mitogen-activated protein kinase kinase 1 (MKK1) or p44(MAPK), or by expression of the MAP kinase phosphatase, MKP-1, strongly inhibited expression of a reporter gene driven by the human cyclin D1 promoter as well as the endogenous cyclin D1 protein. Conversely, activation of this signaling pathway by expression of a constitutively active MKK1 mutant dramatically increased cyclin D1 promoter activity and cyclin D1 protein expression, in a growth factor-independent manner. Moreover, the use of a CCL39-derived cell line that stably expresses an inducible chimera of the estrogen receptor fused to a constitutively active Raf-1 mutant (DeltaRaf-1:ER) revealed that in absence of growth factors, activation of the Raf > MKK1 > p42/p44MAPK cascade is sufficient to fully induce cyclin D1. In marked contrast, the p38(MAPK) cascade showed an opposite effect on the regulation of cyclin D1 expression. In cells co-expressing high levels of the p38(MAPK) kinase (MKK3) together with the p38(MAPK), a significant inhibition of mitogen-induced cyclin D1 expression was observed. Furthermore, inhibition of p38(MAPK) activity with the specific inhibitor, SB203580, enhanced cyclin D1 transcription and protein level. Altogether, these results support the notion that MAPK cascades drive specific cell cycle responses to extracellular stimuli, at least in part, through the modulation of cyclin D1 expression and associated cdk activities.
Collapse
Affiliation(s)
- J N Lavoie
- Centre de Biochimie, CNRS-UMR 134, Faculté des Sciences, Parc Valrose, 06108 Nice Cedex 02, France
| | | | | | | | | |
Collapse
|
635
|
Agrawal D, Hauser P, McPherson F, Dong F, Garcia A, Pledger WJ. Repression of p27kip1 synthesis by platelet-derived growth factor in BALB/c 3T3 cells. Mol Cell Biol 1996; 16:4327-36. [PMID: 8754833 PMCID: PMC231431 DOI: 10.1128/mcb.16.8.4327] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have investigated the regulation of p27kip1, a cyclin-dependent kinase inhibitor, in BALB/c 3T3 cells during growth factor-stimulated transition from quiescence (G0) to a proliferative (G1) state. The level of p27kip1 protein falls dramatically after mitogenic stimulation and is accompanied by a decrease in cyclin E associated p27kip1, as well as a transient increase in cyclin D1-associated p27kip1 that later declines concomitantly with the loss of total p27kip1. Analysis of metabolically labelled cells revealed that cyclin D2, cyclin D3, and cdk4 were also partnered with p27kip1 in quiescent BALB/c 3T3 cells and that this association decreased after platelet-derived growth factor (PDGF) treatment. Furthermore, the decline in p27kip1 and reduced association with cyclin D3, initiated by the addition of PDGF but not plasma-derived factors, suggested that these changes are involved in competence, the first step in the exit from G0. Synthesis of p27kip1 as determined by incorporation of [35S]methionine was repressed upon mitogenic stimulation, and PDGF was sufficient to elicit this repression within 2 to 3 h. Pulse-chase experiments demonstrated the reduced rate of synthesis was not the result of an increased rate of degradation. Full repression of p27kip1 synthesis required the continued presence of PDGF and failed to occur in the presence of the RNA polymerase inhibitor 5,6-dichlorobenzimidazole riboside. These characteristics demonstrate that repression was a late effect of PDGF and was consistent with our finding that conditional expression of activated H-ras did not affect synthesis of p27kip1. Northern (RNA) analysis of p27kip1 mRNA revealed that the repression was not accompanied by a corresponding decrease in p27kip1 mRNA, suggesting that the PDGF-regulated decrease in p27kip1 expression occurred through a translational mechanism.
Collapse
Affiliation(s)
- D Agrawal
- H. Lee Moffitt Cancer Center and Research Institute, University of South Florida, Tampa 33612, USA
| | | | | | | | | | | |
Collapse
|
636
|
Latham KM, Eastman SW, Wong A, Hinds PW. Inhibition of p53-mediated growth arrest by overexpression of cyclin-dependent kinases. Mol Cell Biol 1996; 16:4445-55. [PMID: 8754845 PMCID: PMC231443 DOI: 10.1128/mcb.16.8.4445] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Rat fibroblasts transformed by a temperature-sensitive mutant of murine p53 undergo a reversible growth arrest in G1 at 32.5 degrees C, the temperature at which p53 adopts a wild-type conformation. The arrested cells contain inactive cyclin-dependent kinase 2 (cdk2) despite the presence of high levels of cyclin E and cdk-activating kinase activity. This is due in part to p53-dependent expression of the p2l cdk inhibitor. Upon shift to 39 degrees C, wild-type p53 is lost and cdk2 activation and pRb phosphorylation occur concomitantly with loss of p2l. This p53-mediated growth arrest can be abrogated by overexpression of cdk4 and cdk6 but not cdk2 or cyclins, leading to continuous proliferation of transfected cells in the presence of wild-type p53 and p2l. Kinase-inactive counterparts of cdk4 and cdk6 also rescue these cells from growth arrest, implicating a noncatalytic role for cdk4 and cdk6 in this resistance to p53-mediated growth arrest. Aberrant expression of these cell cycle kinases may thus result in an oncogenic interference with inhibitors of cell cycle progression.
Collapse
Affiliation(s)
- K M Latham
- Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
637
|
Brunet A, Pouysségur J. Identification of MAP kinase domains by redirecting stress signals into growth factor responses. Science 1996; 272:1652-5. [PMID: 8658140 DOI: 10.1126/science.272.5268.1652] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades, termed MAPK modules, channel extracellular signals into specific cellular responses. Chimeric molecules were constructed between p38 and p44 MAPKs, which transduce stress and growth factor signals, respectively. A discrete region of 40 residues located in the amono-terminal p38MAPK lobe directed the specificity of response to extracellular signals, whereas the p44MAPK chimera, expressed in vivo, redirected stress signals into early mitogenic responses, demonstrating the functional independence of these domains.
Collapse
Affiliation(s)
- A Brunet
- Centre de Biochemie-CNRS, UMR134, Parc Valrose, Faculté des Sciences, Nice, France
| | | |
Collapse
|
638
|
Hitomi M, Shu J, Strom D, Hiebert SW, Harter ML, Stacey DW. Prostaglandin A2 blocks the activation of G1 phase cyclin-dependent kinase without altering mitogen-activated protein kinase stimulation. J Biol Chem 1996; 271:9376-83. [PMID: 8621603 DOI: 10.1074/jbc.271.16.9376] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Prostaglandin A2 (PGA2) reversibly blocked the cell cycle progression of NIH 3T3 cells at G1 and G2/M phase. When it was applied to cells synchronized in G0 or S phase, cells were blocked at G1 and G2/M, respectively. The G2/M blockage was transient. Microinjected oncogenic leucine 61 Ras protein could not override the PGA2 induced G1 blockage, nor could previous transformation with the v-raf oncogene. The serum-induced activation of mitogen-activated protein kinase was not inhibited by PGA2 treatment. These data suggest that PGA2 blocks cell cycle progression without interfering with the cytosolic proliferative signaling pathway. Combined microinjection of E2F-1 and DP-1 proteins or microinjected adenovirus E1A protein, however, could induce S phase in cells arrested in G1 by PGA2, indicating that PGA2 does not directly inhibit the process of DNA synthesis. In quiescent cells, PGA2 blocked the normal hyperphosphorylation of the retinoblastoma susceptible gene product and the activation of cyclin-dependent kinase (CDK) 2 and CDK4, in response to serum stimulation. PGA2 treatment elevated the p21Waf1/Cip1/Sdi1 protein expression level. These data indicate that PGA2 may arrest the cell cycle in G1 by interfering with the activation of G1 phase CDKs.
Collapse
Affiliation(s)
- M Hitomi
- Department of Molecular Biology, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
639
|
Brooks AR, Shiffman D, Chan CS, Brooks EE, Milner PG. Functional analysis of the human cyclin D2 and cyclin D3 promoters. J Biol Chem 1996; 271:9090-9. [PMID: 8621559 DOI: 10.1074/jbc.271.15.9090] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The D-type cyclins promote progression through the G1 phase of the cell cycle and may provide a link between growth factors and the cell cycle machinery. We determined the nucleotide sequence of the 5'-flanking region of the human cyclin D2 and cyclin D3 genes and identified the transcription start sites. Analysis of the upstream sequences required for transcription of the cyclin D2 and cyclin D3 genes in continuously dividing cells revealed marked differences in their regulatory elements. In the cyclin D2 gene positive elements were localized between positions -306 and -114 relative to the ATG codon at +1. Additional positive elements were localized between -444 and -345, whereas sequences that reduced transcription were identified between nucleotides -1624 and -892. In the cyclin D3 gene all of the positive elements required for maximal transcription were localized between nucleotides -366 and -167, and no negative elements were found. The activities of a reporter gene linked to the upstream regulatory sequences of the cyclin D2 gene but not the cyclin D3 gene were induced when starved cells were serum stimulated. This suggests that although the abundance of both the cyclin D2 and cyclin D3 mRNAs is increased by serum stimulation, only the cyclin D2 gene is up-regulated at the transcriptional level. Sequences between nucleotides -306 and -1624 of the cyclin D2 gene were necessary for serum inducibility.
Collapse
Affiliation(s)
- A R Brooks
- CV Therapeutics, Palo Alto, California 94304, USA
| | | | | | | | | |
Collapse
|