601
|
Mager PP, Reinhardt R, Fischer K. Molecular Simulation to Aid in the Understanding of the Aβ(1–42) Peptide of Alzheimer's Disease. MOLECULAR SIMULATION 2001. [DOI: 10.1080/08927020108024511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
602
|
Martin-Ruiz C, Court J, Lee M, Piggott M, Johnson M, Ballard C, Kalaria R, Perry R, Perry E. Nicotinic receptors in dementia of Alzheimer, Lewy body and vascular types. ACTA NEUROLOGICA SCANDINAVICA. SUPPLEMENTUM 2001; 176:34-41. [PMID: 11261803 DOI: 10.1034/j.1600-0404.2000.00305.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Comparisons were made of nicotinic receptors in 3 major forms of dementia in old age. Although it is well established the involvement of nicotinic receptors in Alzheimer's disease (AD), their status in the other two main causes of dementia in old age-dementia with Lewy bodies (DLB) and vascular dementia (VaD) is not widely reported. METHODS Temporal cortex was examined for epibatidine and alpha-bungarotoxin binding, and immunoreactivity of alpha4 and alpha7 nAChR subunits. RESULTS There were selective abnormalities in nicotinic receptor subtypes in the disorders examined. In AD there is a loss of high affinity receptor binding, reflecting a selective loss of alpha4 subunit, but no change in alpha7 subunits. Similar abnormalities in ligand binding are also apparent in DLB. In the VaD series, there was no overall loss of epibatidine binding or immunoreactivity for alpha4 or alpha7 subunits. CONCLUSIONS Loss of cortical receptor alpha4 subunit appears to be a characteristic feature of neurodegenerative dementia but not dementia of vascular origin. Since nicotinic receptors control cerebral vasodilation, the relative integrity of the receptors in VaD may auger well for nicotinic therapy in this disorder in which there is a cholinergic abnormality, to judge by the loss of the presynaptic enzyme.
Collapse
Affiliation(s)
- C Martin-Ruiz
- Joint MRC-Newcastle University Development in Clinical Brain Aging, Newcastle General Hospital, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
603
|
Kihara T, Shimohama S, Sawada H, Honda K, Nakamizo T, Shibasaki H, Kume T, Akaike A. alpha 7 nicotinic receptor transduces signals to phosphatidylinositol 3-kinase to block A beta-amyloid-induced neurotoxicity. J Biol Chem 2001; 276:13541-6. [PMID: 11278378 DOI: 10.1074/jbc.m008035200] [Citation(s) in RCA: 329] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple lines of evidence, from molecular and cellular to epidemiological, have implicated nicotinic transmission in the pathogenesis of Alzheimer's disease (AD). Here we show the signal transduction mechanism involved in nicotinic receptor-mediated protection against beta-amyloid-enhanced glutamate neurotoxicity. Nicotine-induced protection was suppressed by an alpha7 nicotinic receptor antagonist (alpha-bungarotoxin), a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002 and wortmannin), and a Src inhibitor (PP2). Levels of phosphorylated Akt, an effector of PI3K, and Bcl-2 were increased by nicotine. The alpha7 nicotinic receptor was physically associated with the PI3K p85 subunit and Fyn. These findings indicate that the alpha7 nicotinic receptor transduces signals to PI3K in a cascade, which ultimately contributes to a neuroprotective effect. This might form the basis of a new treatment for AD.
Collapse
Affiliation(s)
- T Kihara
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
604
|
Liu Q, Kawai H, Berg DK. beta -Amyloid peptide blocks the response of alpha 7-containing nicotinic receptors on hippocampal neurons. Proc Natl Acad Sci U S A 2001; 98:4734-9. [PMID: 11274373 PMCID: PMC31903 DOI: 10.1073/pnas.081553598] [Citation(s) in RCA: 243] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2000] [Indexed: 11/18/2022] Open
Abstract
Alzheimer's disease produces a devastating decline in mental function, with profound effects on learning and memory. Early consequences of the disease include the specific loss of cholinergic neurons in brain, diminished cholinergic signaling, and the accumulation of beta-amyloid peptide in neuritic plaques. Of the nicotinic acetylcholine receptors at risk, the most critical may be those containing the alpha7 gene product (alpha7-nAChRs), because they are widespread, have a high relative permeability to calcium, and regulate numerous cellular events in the nervous system. With the use of whole-cell patch-clamp recording we show here that nanomolar concentrations of beta-amyloid peptides specifically and reversibly block alpha7-nAChRs on rat hippocampal neurons in culture. The block is noncompetitive, voltage-independent, and use-independent and is mediated through the N-terminal extracellular domain of the receptor. It does not appear to require either calcium influx or G protein activation. beta-Amyloid blockade is likely to be a common feature of alpha7-nAChRs because it applies to the receptors at both somato-dendritic and presynaptic locations on rat hippocampal neurons and extends to homologous receptors on chick ciliary ganglion neurons as well. Because alpha7-nAChRs in the central nervous system are thought to have numerous functions and recently have been implicated in learning and memory, impaired receptor function in this case may contribute to cognitive deficits associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Q Liu
- Neurobiology Section, Division of Biology, University of California at San Diego, La Jolla, CA 92093-0357, USA
| | | | | |
Collapse
|
605
|
D'Andrea MR, Nagele RG, Wang HY, Peterson PA, Lee DH. Evidence that neurones accumulating amyloid can undergo lysis to form amyloid plaques in Alzheimer's disease. Histopathology 2001; 38:120-34. [PMID: 11207825 DOI: 10.1046/j.1365-2559.2001.01082.x] [Citation(s) in RCA: 280] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS Amyloid has recently been shown to accumulate intracellularly in the brains of patients with Alzheimer's disease (AD), yet amyloid plaques are generally thought to arise from gradual extracellular amyloid deposition. We have investigated the possibility of a link between these two apparently conflicting observations. METHODS AND RESULTS Immunohistochemistry and digital image analysis was used to examine the detailed localization of beta-amyloid(42) (A beta 42), a major component of amyloid plaques, in the entorhinal cortex and hippocampus of AD brains. A beta 42 first selectively accumulates in the perikaryon of pyramidal cells as discrete, granules that appear to be cathepsin D-positive, suggesting that they may represent lysosomes or lysosome-derived structures. AD brain regions abundantly populated with pyramidal neurones exhibiting excessive A beta 42 accumulations also contained evidence of neuronal lysis. Lysis of these A beta 42-burdened neurones apparently resulted in a local, radial dispersion of their cytoplasmic contents, including A beta 42 and lysosomal enzymes, into the surrounding extracellular space. A nuclear remnant was found at the dense core of many amyloid plaques, strengthening the idea that each amyloid plaque represents the end product of a single neuronal cell lysis. The inverse relationship between the amyloid plaque density and pyramidal cell density in the AD brain regions also supports this possibility, as does the close correlation between plaque size and the size of local pyramidal cells. CONCLUSIONS Our findings suggest that excessive intracellular accumulation of A beta 42-positive material in pyramidal cells can result in cell lysis, and that cell lysis is an important source of amyloid plaques and neuronal loss in AD brains.
Collapse
Affiliation(s)
- M R D'Andrea
- The R W Johnson Pharmaceutical Research Institute, Spring House, Pennsylvania 19477, USA.
| | | | | | | | | |
Collapse
|
606
|
Seo J, Kim S, Kim H, Park CH, Jeong S, Lee J, Choi SH, Chang K, Rah J, Koo J, Kim E, Suh Y. Effects of nicotine on APP secretion and Abeta- or CT(105)-induced toxicity. Biol Psychiatry 2001; 49:240-7. [PMID: 11230875 DOI: 10.1016/s0006-3223(00)01124-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several lines of evidence indicated that overexpression or aberrant processing of amyloid precursor protein (APP) is causally related to Alzheimer's disease (AD). Amyloid precursor protein is principally cleaved within the amyloid beta protein domain to release a large soluble ectodomain (APPs), known to have a wide range of trophic functions. The central hypothesis guiding this review is that nicotine may play an important role in APP secretion and protection against toxicity induced by APP metabolic fragments (beta-amyloid [Abeta], carboxyl terminal [CT]). Findings from our experiments have shown that nicotine enhances the release of APPs, which has neurotrophic and neuroprotective activities in concentration-dependent (>50 micromol/L) and time-dependent (>2 hours) manners. In addition, pretreatment of nicotine (>10 micromol/L for 24 hours) partially prevented Abeta or CT(105)-induced cytotoxicity in primary cultured neuron cells, and the effects of nicotine-induced protection were inhibited by the pretreatment with a nicotine alpha-bungarotoxin. Nicotine (>10 micromol/L for 24 hours) partially inhibited CT(105)-induced cytotoxicity when PC12 cells was transfected with CT(105). From these results, we proposed that nicotine or nicotinic receptor agonist treatment might improve the cognitive functions not only by supplementation of cholinergic neurotransmission, but also by protecting Abeta- or CT(105)-induced neurotoxicity probably through the increased release of APPs and the activation of nicotinic receptors.
Collapse
Affiliation(s)
- J Seo
- Department of Pharmacology, College of Medicine, National Creative Research Initiative Centre for Alzheimer's Proteins and Neuroscience Research Institute, Medical Research Centre, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
607
|
Abstract
Alzheimer's disease is a complex disorder affecting multiple neurotransmitters. In particular, the degenerative progression is associated with loss within the cholinergic systems. It should be anticipated that both muscarinic and nicotinic mechanisms are affected as cholinergic neurons are lost. This review focuses on the basic roles of neuronal nicotinic receptors, some subtypes of which decrease during Alzheimer's disease. Nicotinic acetylcholine receptors belong to a superfamily of ligand-gated ion channels that play key roles in synaptic transmission throughout the central nervous system. Neuronal nicotinic receptors, however, are not a single entity, but rather there are many different subtypes constructed from a variety of nicotinic subunit combinations. This structural diversity and the presynaptic, axonal, and postsynaptic locations of nicotinic receptors contribute to the varied roles these receptors play in the central nervous system. Presynaptic and preterminal nicotinic receptors enhance neurotransmitter release, and postsynaptic nicotinic receptors mediate a small minority of fast excitatory transmission. In addition, some nicotinic receptor subtypes have roles in synaptic plasticity and development. Nicotinic receptors are distributed to influence many neurotransmitter systems at more than one location, and the broad, but sparse, cholinergic innervation throughout the brain ensures that nicotinic acetylcholine receptors are important modulators of neuronal excitability.
Collapse
Affiliation(s)
- J A Dani
- Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030-3498, USA
| |
Collapse
|
608
|
Court J, Martin-Ruiz C, Piggott M, Spurden D, Griffiths M, Perry E. Nicotinic receptor abnormalities in Alzheimer's disease. Biol Psychiatry 2001; 49:175-84. [PMID: 11230868 DOI: 10.1016/s0006-3223(00)01116-1] [Citation(s) in RCA: 179] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Loss of cortical nicotinic acetylcholine receptors with high affinity for agonists (20-50%) in patients with Alzheimer's disease is a common finding. Recent immunochemical analyses indicate that this deficit is predominantly associated with the loss of alpha4 subunits (30-50%), although modest reductions of alpha3 may occur in some individuals (25-29%). No reduction of beta2 subunit protein expression or levels of alpha3 and alpha4 messenger RNA has been reported. Decline in cortical [(125)I]alpha-bungarotoxin binding and alpha7 protein expression does not appear to be as extensive or widespread as the loss of alpha4 (0-40%), with no reduction in messenger RNA expression. In the thalamus, there was a trend for reduced [(3)H]nicotine binding in the majority of nuclei (0-20%) in Alzheimer's disease; however, there was a significant decline in [(125)I]alpha-bungarotoxin binding in the reticular nucleus. In the striatum [(3)H]nicotine binding was reduced in Alzheimer's disease, and although neuroleptic medication accentuated this change, it occurred in those free of neuroleptics. Changes in nicotinic acetylcholine receptors in Alzheimer's disease are distinct from those in normal aging and are likely to contribute to clinical features and possibly neuropathology.
Collapse
Affiliation(s)
- J Court
- Joint MRC Newcastle University Centre Development in Clinical Brain Aging, Institute for the Health of the Elderly, Newcastle General Hospital, Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | |
Collapse
|
609
|
Zeng H, Zhang Y, Peng L, Shao H, Menon NK, Yang J, Salomon AR, Freidland RP, Zagorski MG. Nicotine and amyloid formation. Biol Psychiatry 2001; 49:248-57. [PMID: 11230876 DOI: 10.1016/s0006-3223(00)01111-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The major protein constituents of amyloid deposits in Alzheimer's disease (AD) are the 40-residue beta-amyloid (Abeta) (1-40) peptide and the 42-residue Abeta(1-42) peptide. The Abeta(1-42) is more pathogenic and produced in greater quantities in familial forms of AD. A major goal of research is to uncover a suitable inhibitor that either slows down or inhibits Abeta formation (beta-amyloidosis). During beta-amyloidosis, structural changes associated with the conversion of monomeric Abeta peptide building blocks into the aggregated fibrillar beta-sheet structures occur (alpha-helix-->beta-sheet or random, extended chain-->beta-sheet). In previous work, we and others established that nicotine, a major component of cigarette smoke, inhibits beta-amyloidosis of the Abeta(1-42), which may result from nicotine binding to the alpha-helical structure. These conclusions were based on solution nuclear magnetic resonance (NMR) spectroscopic studies with the nonnative 28-residue Abeta(1-28). This information suggests that, when administered therapeutically to AD patients, nicotine may not only affect cholinergic activation, but could also conceivably alter amyloid deposition. In this report, NMR studies were augmented with the naturally occurring Abeta(1-42), under conditions where the peptide folds into a predominantly alpha-helical or random, extended chain structure. The major result is that nicotine shows only modest binding to these conformations, indicating that the nicotine inhibition to beta-amyloidosis probably results from binding to a small, soluble beta-sheet aggregate that is NMR invisible.
Collapse
Affiliation(s)
- H Zeng
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106-7078, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
610
|
Maelicke A, Samochocki M, Jostock R, Fehrenbacher A, Ludwig J, Albuquerque EX, Zerlin M. Allosteric sensitization of nicotinic receptors by galantamine, a new treatment strategy for Alzheimer's disease. Biol Psychiatry 2001; 49:279-88. [PMID: 11230879 DOI: 10.1016/s0006-3223(00)01109-4] [Citation(s) in RCA: 210] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cholinesterase inhibitors are the only approved drug treatment for patients with mild to moderately severe Alzheimer's disease. Interestingly, the clinical potency of these drugs does not correlate well with their activity as cholinesterase inhibitors, nor is their action as short lived as would be expected from purely symptomatic treatment. A few cholinesterase inhibitors, including galantamine, produce beneficial effects even after drug treatment has been terminated. These effects assume modes of action other than mere esterase inhibition and are capable of inducing systemic changes. We have recently discovered a mechanism that could account, at least in part, for the above-mentioned unexpected properties of some cholinesterase inhibitors. We have found that a subgroup of cholinesterase inhibitors, including galantamine but excluding tacrine, directly interacts with nicotinic acetylcholine receptors. These compounds, named allosterically potentiating ligands, sensitize nicotinic receptors by increasing the probability of channel opening induced by acetylcholine and nicotinic agonists and by slowing down receptor desensitization. The allosterically potentiating ligand action, which is not necessarily associated with cholinesterase inhibition, has been demonstrated by whole-cell patch-clamp recordings to occur in natural murine and human neurons and in murine and human cell lines expressing various subtypes of neuronal nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- A Maelicke
- Laboratory of Molecular Neurobiology, Institute of Physiological Chemistry and Pathobiochemistry, Johannes-Gutenberg University Medical School, Mainz, Germany
| | | | | | | | | | | | | |
Collapse
|
611
|
Freedman R, Adams CE, Leonard S. The alpha7-nicotinic acetylcholine receptor and the pathology of hippocampal interneurons in schizophrenia. J Chem Neuroanat 2000; 20:299-306. [PMID: 11207427 DOI: 10.1016/s0891-0618(00)00109-5] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
This paper is a review of a recent findings on the pathology of hippocampal interneurons in schizophrenia, with specific emphasis on a protein expressed by these cells, the alpha7-nicotinic acetylcholine receptor subunit. Convergent information indicates that interneurons in the hippocampus and other forebrain structures are decreased in number and function in subjects with schizophrenia. Among the neurochemical markers that are decreased in the hippocampus are synapsin I, cholecystokinin, somatostatin, glutamic acid decarboxylase, and nitric oxide synthase. GABA uptake sites and the GABA synthetic enzyme glutamic acid decarboxylase are also diminished. Included among these findings is decreased binding of alpha-bungarotoxin, which binds to low-affinity nicotinic acetylcholine receptors, such as the alpha7-nicotinic receptor. Co-labeling experiments in rodents indicate that these markers are expressed on overlapping populations of hippocampal interneurons. Thus, the finding of decreased neurochemical function of hippocampal interneurons is a widely replicated finding, with different groups reporting markedly similar findings using independent post mortem samples and different neurochemical strategies. Decreased alpha-bungarotoxin binding or decreased alpha7-nicotinic receptor immunoreactivity has also been found in the frontal cortex and in the nucleus reticularis thalami of schizophrenic subjects. The alpha7-nicotinic receptor subunit gene on chromosome 15q14 is a site of heritability for schizophrenia and bipolar affective disorder, and in, particular, for a deficit in inhibitory neuronal function associated with these illnesses. Thus, the post mortem data are further supported by psychophysiologic and genetic investigations that indicate a deficit in inhibitory interneuronal function, involving the alpha7-nicotinic receptor. The alpha7-receptor is a ligand-gated ion channel that admits calcium ions into cells, and it has been proposed to have various developmental roles. Its malfunction may be part of the developmental pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- R Freedman
- Departments of Psychiatry and Pharmacology, University of Colorado Health Sciences Center and Denver VA Medical Center, Campus Box C-268-71, Room 3F10, 4200 East Ninth Avenue, Denver, CO 80262, USA.
| | | | | |
Collapse
|
612
|
Kumar VB, Farr SA, Flood JF, Kamlesh V, Franko M, Banks WA, Morley JE. Site-directed antisense oligonucleotide decreases the expression of amyloid precursor protein and reverses deficits in learning and memory in aged SAMP8 mice. Peptides 2000; 21:1769-75. [PMID: 11150636 DOI: 10.1016/s0196-9781(00)00339-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
beta amyloid protein (Abeta) is a 40-43 amino acid peptide derived from amyloid precursor protein (APP). Abeta has been implicated as a cause of Alzheimer's disease (AD). Mice with spontaneous or transgenic overexpression of APP show the histologic hallmarks of AD and have impairments in learning and memory. We tested whether antisense phosphorothiolated oligonucleotides (AO) directed at the Abeta region of the APP gene given with or without antibody directed at Abeta could reverse the elevated protein levels of APP and the behavioral impairments seen in SAMP8 mice, a strain which spontaneously overexpresses APP. We found that intracerebroventricular (ICV) administration of antibody with either of two AOs directed at the midregion of Abeta improved acquisition and retention in a footshock avoidance paradigm, whereas two AOs directed more toward the C-terminal, a random AO, and vehicle were without effect. Three injections of the more potent AO given without antibody reduced APP protein levels by 43-68% in the amygdala, septum, and hippocampus. These results show that AO directed at the Abeta region of APP can reduce APP levels in the brain and reverse deficits in learning and memory.
Collapse
Affiliation(s)
- V B Kumar
- Geriatric Research, Education and Clinical Center, St. Louis VA Medical Center, St. Louis, MO, USA
| | | | | | | | | | | | | |
Collapse
|
613
|
Dajas-Bailador FA, Lima PA, Wonnacott S. The alpha7 nicotinic acetylcholine receptor subtype mediates nicotine protection against NMDA excitotoxicity in primary hippocampal cultures through a Ca(2+) dependent mechanism. Neuropharmacology 2000; 39:2799-807. [PMID: 11044750 DOI: 10.1016/s0028-3908(00)00127-1] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChR) have been suggested to play a role in a variety of modulatory and regulatory processes, including neuroprotection. Here we have characterized the neuroprotective effects of nicotine against an excitotoxic insult in primary hippocampal cultures. Exposure of hippocampal neurons to 200 microM NMDA for 1 h decreased cell viability by 25+/-5%, an effect blocked by NMDA receptor antagonists. Nicotine (10 microM) counteracted the NMDA-induced cell death when co-incubated with NMDA or when present subsequent to the NMDA treatment. Nicotine protection was prevented by 1 microM MLA, confirming that it was mediated by nAChR, and by 1 microM alpha-bungarotoxin, demonstrating that the alpha7 nAChR subtype was responsible. Both the NMDA evoked neurotoxicity and nicotine neuroprotection were Ca(2+)-dependent. In Fura-2-loaded hippocampal neurons, nicotine (10 microM) and NMDA (200 microM) acutely increased intracellular resting Ca(2+) from 70 nM to 200 and 500 nM, respectively. Responses to NMDA were unaffected by the presence of nicotine. (45)Ca(2+) uptake after a 1 h exposure to nicotine or NMDA also demonstrated quantitative differences between the two drugs. This study demonstrates that the alpha7 subtype of nAChR can support neuronal survival after an excitotoxic stimulus, through a Ca(2+) dependent mechanism that operates downstream of NMDA receptor activation.
Collapse
Affiliation(s)
- F A Dajas-Bailador
- Department of Biology and Biochemistry, University of Bath, BA2 7AY, Bath, UK
| | | | | |
Collapse
|
614
|
Wang HY, Lee DH, Davis CB, Shank RP. Amyloid peptide Abeta(1-42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochem 2000; 75:1155-61. [PMID: 10936198 DOI: 10.1046/j.1471-4159.2000.0751155.x] [Citation(s) in RCA: 322] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have recently reported evidence that a very high affinity interaction between the beta-amyloid peptide Abeta(1-42) and the alpha7 nicotinic acetylcholine receptor (alpha7nAChR) may be a precipitating event in the formation of amyloid plaques in Alzheimer's disease. In the present study, the kinetics for the binding of Abeta(1-42) to alpha7nAChR and alpha4beta2nAChR were determined using the subtype-selective nicotinic receptor ligands [(3)H]methyllycaconitine and [(3)H]cytisine. Synaptic membranes prepared from rat and guinea pig cerebral cortex and hippocampus were used as the source of receptors. Abeta(1-42) bound to the alpha7nAChR with exceptionally high affinity, as indicated by K(i) values of 4.1 and 5.0 pM for rat and guinea pig receptors, respectively. When compared with the alpha7nAChR, the affinity of Abeta(1-42) for the alpha4beta2nAChR was approximately 5,000-fold lower, as indicated by corresponding K(i) values of 30 and 23nM. The results of this study support the concept that an exceptionally high affinity interaction between Abeta(1-42) and alpha7nAChR could serve as a precipitating factor in the formation of amyloid plaques and thereby contribute to the selective degeneration of cholinergic neurons that originate in the basal forebrain and project to the cortex and hippocampus.
Collapse
Affiliation(s)
- H Y Wang
- R. W. Johnson Pharmaceutical Research Institute, Spring House, PA 19477-0776, USA.
| | | | | | | |
Collapse
|
615
|
Schmitt JD, Bencherif M. Chapter 5. Targeting nicotinic acetylcholine receptors: Advances in molecular design and therapies. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2000. [DOI: 10.1016/s0065-7743(00)35006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|