601
|
Pernodet JL, Gourmelen A, Blondelet-Rouault MH, Cundliffe E. Dispensable ribosomal resistance to spiramycin conferred by srmA in the spiramycin producer Streptomyces ambofaciens. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 9):2355-2364. [PMID: 10517588 DOI: 10.1099/00221287-145-9-2355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptomyces ambofaciens produces the macrolide antibiotic spiramycin, an inhibitor of protein synthesis, and possesses multiple resistance mechanisms to the produced antibiotic. Several resistance determinants have been isolated from S. ambofaciens and studies with one of them, srmA, which hybridized with ermE (the erythromycin-resistance gene from Saccharopolyspora erythraea), are detailed here. The nucleotide sequence of srmA was determined and the mechanism by which its product confers resistance was characterized. The SrmA protein is a methyltransferase which introduces a single methyl group into A-2058 (Escherichia coli numbering scheme) in the large rRNA, thereby conferring an MLS (macrolide-lincosamide-streptogramin type B) type I resistance phenotype. A mutant of S. ambofaciens in which srmA was inactivated was viable and still produced spiramycin, indicating that srmA is dispensable, at least in the presence of the other resistance determinants.
Collapse
Affiliation(s)
- Jean-Luc Pernodet
- Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 400, Université Paris-Sud XI, F-91405 Orsay Cedex, France1
| | - Anne Gourmelen
- Institut de Génétique et Microbiologie, UMR CNRS 8621, Bât. 400, Université Paris-Sud XI, F-91405 Orsay Cedex, France1
| | | | - Eric Cundliffe
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, UK2
| |
Collapse
|
602
|
Latini L, Ronchetti MP, Merolla R, Merolla R, Guglielmi F, Bajaksouzian S, Villa MP, Jacobs MR, Ronchetti R. Prevalence of mefE, erm and tet(M) genes in Streptococcus pneumoniae strains from Central Italy. Int J Antimicrob Agents 1999; 13:29-33. [PMID: 10563402 DOI: 10.1016/s0924-8579(99)00097-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
One hundred and seventy-three Streptococcus pneumoniae strains isolated from surveillance studies conducted in daycare centres were studied. The mefE, erm and tet(M) genes were detected in 16.2, 45.1 and 47.4% of isolates respectively. Agreement between PCR results and antibiotic susceptibility patterns was 100%. Macrolide resistance was due to the presence of erm in 73.6% of strains and to the presence of mefE in the remaining 26.4%. All tetracycline resistant strains carried the tet(M) gene. erm was associated with tet(M) in 98.7% of strains, whereas no isolate carrying mefE carried tet(M). A significant association was found between mefE and serogroup 6 (P < 0.0005) and between erm and tet(M) and serogroup 19 (P < 0.00001).
Collapse
Affiliation(s)
- L Latini
- Department of Pediatrics, University of Rome La Sapienza, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
603
|
de Azavedo JC, Trpeski L, Pong-Porter S, Matsumura S, Low DE. In vitro activities of fluoroquinolones against antibiotic-resistant blood culture isolates of viridans group streptococci from across Canada. Antimicrob Agents Chemother 1999; 43:2299-301. [PMID: 10471583 PMCID: PMC89465 DOI: 10.1128/aac.43.9.2299] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among 418 blood culture isolates of viridans group streptococci obtained between 1995 and 1997, the in vitro rates of nonsusceptibility to penicillin, erythromycin, tetracycline, and trimethoprim-sulfamethoxazole were 28, 29, 24, and 14%, respectively. The most prevalent group (125 strains) was Streptococcus mitis, followed by Streptococcus sanguis (56 strains). For 236 (56%) strains resistant to one or more antibiotics, the ciprofloxacin MIC at which 90% of the isolates were inhibited (MIC(90)) was 4 microg/ml, whereas the MIC(90)s of trovafloxacin, grepafloxacin, and gatifloxacin were 0.25 microg/ml.
Collapse
Affiliation(s)
- J C de Azavedo
- Department of Microbiology, Mount Sinai and Princess Margaret Hospitals, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | |
Collapse
|
604
|
Schwarz S, Noble W. Aspects of bacterial resistance to antimicrobials used in veterinary dermatological practice. Vet Dermatol 1999; 10:163-176. [DOI: 10.1046/j.1365-3164.1999.00170.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
605
|
Nielsen AK, Douthwaite S, Vester B. Negative in vitro selection identifies the rRNA recognition motif for ErmE methyltransferase. RNA (NEW YORK, N.Y.) 1999; 5:1034-1041. [PMID: 10445878 PMCID: PMC1369827 DOI: 10.1017/s1355838299990349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Erm methyltransferases modify bacterial 23S ribosomal RNA at adenosine 2058 (A2058, Escherichia coli numbering) conferring resistance to macrolide, lincosamide, and streptogramin B (MLS) antibiotics. The motif that is recognized by Erm methyltransferases is contained within helix 73 of 23S rRNA and the adjacent single-stranded region around A2058. An RNA transcript of 72 nt that displays this motif functions as an efficient substrate for the ErmE methyltransferase. Pools of degenerate RNAs were formed by doping 34-nt positions that extend over and beyond the putative Erm recognition motif within the 72-mer RNA. The RNAs were passed through a series of rounds of methylation with ErmE. After each round, RNAs were selected that had partially or completely lost their ability to be methylated. After several rounds of methylation/selection, 187 subclones were analyzed. Forty-three of the subclones contained substitutions at single sites, and these are confined to 12 nucleotide positions. These nucleotides, corresponding to A2051-A2060, C2611, and A2614 in 23S rRNA, presumably comprise the RNA recognition motif for ErmE methyltransferase. The structure formed by these nucleotides is highly conserved throughout bacterial rRNAs, and is proposed to constitute the motif that is recognized by all the Erm methyltransferases.
Collapse
Affiliation(s)
- A K Nielsen
- Department of Molecular Biology, University of Odense, Denmark
| | | | | |
Collapse
|
606
|
Abstract
Recognized since 1883 as a common cause of infection, Staphylococcus aureus' preantimicrobial-era bacteremia mortality rate was 82%. The mortality of that era threatens to return as evidence of growing vancomycin resistance undermines the utility of vancomycin therapy. Successful treatment of S. aureus infections requires knowledge of its antimicrobial resistance capacity.
Collapse
Affiliation(s)
- T L Smith
- Hospital Infections Program, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | | |
Collapse
|
607
|
Giovanetti E, Montanari MP, Mingoia M, Varaldo PE. Phenotypes and genotypes of erythromycin-resistant Streptococcus pyogenes strains in Italy and heterogeneity of inducibly resistant strains. Antimicrob Agents Chemother 1999; 43:1935-40. [PMID: 10428916 PMCID: PMC89394 DOI: 10.1128/aac.43.8.1935] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A total of 387 clinical strains of erythromycin-resistant (MIC, >/=1 microg/ml) Streptococcus pyogenes, all isolated in Italian laboratories from 1995 to 1998, were examined. By the erythromycin-clindamycin double-disk test, 203 (52.5%) strains were assigned to the recently described M phenotype, 120 (31.0%) were assigned to the inducible macrolide, lincosamide, and streptogramin B resistance (iMLS) phenotype, and 64 (16.5%) were assigned to the constitutive MLS resistance (cMLS) phenotype. The inducible character of the resistance of the iMLS strains was confirmed by comparing the clindamycin MICs determined under normal testing conditions and those determined after induction by pregrowth in 0.05 microg of erythromycin per ml. The MICs of erythromycin, clarithromycin, azithromycin, josamycin, spiramycin, and the ketolide HMR3004 were then determined and compared. Homogeneous susceptibility patterns were observed for the isolates of the cMLS phenotype (for all but one of the strains, HMR3004 MICs were 0.5 to 8 microg/ml and the MICs of the other drugs were >128 microg/ml) and those of the M phenotype (resistance only to the 14- and 15-membered macrolides was recorded, with MICs of 2 to 32 microg/ml). Conversely, heterogeneous susceptibility patterns were observed in the isolates of the iMLS phenotype, which were subdivided into three distinct subtypes designated iMLS-A, iMLS-B, and iMLS-C. The iMLS-A strains (n = 84) were highly resistant to the 14-, 15-, and 16-membered macrolides and demonstrated reduced susceptibility to low-level resistance to HMR3004. The iMLS-B strains (n = 12) were highly resistant to the 14- and 15-membered macrolides, susceptible to the 16-membered macrolides (but highly resistant to josamycin after induction), and susceptible to HMR3004 (but intermediate or resistant after induction). The iMLS-C strains (n = 24) had lower levels of resistance to the 14- and 15-membered macrolides (with erythromycin MICs increasing two to four times after induction), were susceptible to the 16-membered macrolides (but resistant to josamycin after induction), and remained susceptible to HMR3004, also after induction. The erythromycin resistance genes in 100 isolates of the different groups were investigated by PCR. All cMLS and iMLS-A isolates tested had the ermAM (ermB) gene, whereas all iMLS-B and iMLS-C isolates had the ermTR gene (neither methylase gene was found in isolates of other groups). The M isolates had only the macrolide efflux (mefA) gene, which was also found in variable proportions of cMLS, iMLS-A, iMLS-B, and iMLS-C isolates. The three iMLS subtypes were easily differentiated by a triple-disk test set up by adding a josamycin disk to the erythromycin and clindamycin disks of the conventional double-disk test. Tetracycline resistance was not detected in any isolate of the iMLS-A subtype, whereas it was observed in over 90% of both iMLS-B and iMLS-C isolates.
Collapse
Affiliation(s)
- E Giovanetti
- Institute of Microbiology, University of Ancona Medical School, 60131 Ancona, Italy
| | | | | | | |
Collapse
|
608
|
Luna VA, Coates P, Eady EA, Cove JH, Nguyen TT, Roberts MC. A variety of gram-positive bacteria carry mobile mef genes. J Antimicrob Chemother 1999; 44:19-25. [PMID: 10459806 DOI: 10.1093/jac/44.1.19] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mefE gene codes for a membrane bound efflux protein, which confers resistance to macrolides, and has been identified in Streptococcus pneumoniae. A variety of gram-positive organisms were examined. Twenty-six isolates of S. pneumoniae carried mefE and were resistant to erythromycin (MIC of 2-16 mg/L). Two additional isolates of Emr S. pneumoniae carried both ermB and mefE(MIC of 16-128 mg/L). One Micrococcus luteus, one Corynebacterium jeikeium, three Corynebacterium spp., two viridans streptococci and seven Enterocccus spp. also carried mef genes. It was possible to move the mef gene from all 11 S. pneumoniae tested to susceptible S. pneumoniae and/or Enterococcus faecalis recipients. The addition of DNase (1 g/L) did not affect the gene transfer. It was also possible to move the mef gene from donor Enterococcus spp., viridans streptococci, M. luteus, C. jeikeium and Corynebacterium spp. to E. faecalis recipients. Transconjugant isolates were resistant to erythromycin (MIC = 16 mg/L). Hybridization with a labelled mef oligonucleotide probe against Southern blots and bacterial dot blots confirmed the presence of the mef genes. This is the first time that a mobile mef gene has been identified in four different genera, from three distinct geographical locations.
Collapse
Affiliation(s)
- V A Luna
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle 98195-7238, USA
| | | | | | | | | | | |
Collapse
|
609
|
DesRosiers A, Dolcé P, Jutras P, Jetté LP. Susceptibility of group A beta-hemolytic streptococci in the lower St Lawrence region, Quebec. Can J Infect Dis 1999; 10:279-85. [PMID: 22346387 PMCID: PMC3250706 DOI: 10.1155/1999/212549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/1998] [Accepted: 12/10/1998] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To determine the susceptibility of group A beta-hemolytic streptococci (GABHS) in the lower St Lawrence region, Quebec to different antibiotics, particularly macrolides, and to compare different antibiogram methods (disk diffusion, E-test and microdilution) and incubation atmospheres (ambient air and 5% carbon dioxide). METHODS A total of 384 strains of GABHS isolated from 377 patients (throat 335; other sites 49) from three hospitals in the lower St Lawrence region were analyzed for their susceptibility to erythromycin, clarithromycin, azithromycin, penicillin, clindamycin, cephalothin, rifampin and vancomycin by disk diffusion on Mueller-Hinton (MH) agar supplemented with 5% defibrinated sheep blood (MHB) at 35ºC in 5% carbon dioxide. Strains that were found to be intermediately resistant or resistant to one of the antibiotics by disc diffusion, strains from sites other than throat, and a sample of 97 pharyngeal strains were evaluated by E-test on MHB (35ºC, 5% carbon dioxide) for their susceptibility to the antibiotics erythromycin, clarithromycin, azithromycin, penicillin, clindamycin and ceftriaxone. In addition, minimum inhibitory concentrations (MICs) were determined for erythromycin and azithromycin by broth microdilution using MH broth supplemented with 2.5 % of lysed horse blood (35ºC, ambient air) on strains that were resistant or intermediately resistant to the macrolides (erythromycin, clarithromycin, azithromycin). An evaluation was also carried out on these strains to determine the influence of the incubating atmosphere (ambient air versus 5% carbon dioxide) on susceptibility results obtained by disk diffusion (erythromycin, clarithromycin and azithromycin) and E-test (erythromycin and azithromycin) methods. RESULTS Nine strains (2%) from nine patients (throat eight, pus one) were resistant to all macrolides as tested by three different techniques (disk diffusion, E-test and microdilution). All strains were susceptible to all the other antibiotics tested. For the strains intermediately resistant or resistant to macrolides, incubation in a 5% carbon dioxide atmosphere was associated with a reduction in the diameter of inhibition determined by disk diffusion (P<0.001) with frequent minor variations in interpretation, and with an increase in the MIC by E-test (P<0.001), which had no impact on interpretation. CONCLUSIONS Resistance of GABHS to macrolides was not common (2%) in the lower St Lawrence Region. GABHS susceptibility to erythromycin seemed to predict the susceptibility to the other macrolides. Significant variation in antibiogram results (disk diffusion and E-test) of GABHS susceptibility to macrolides was related to the incubation atmosphere and may have an impact on the interpretation of disk diffusion results.
Collapse
Affiliation(s)
- Annie DesRosiers
- Centre Hospitalier Régional de Rimouski, Department of Medical Microbiology and Infectious Diseases, Rimouski, Québec
| | - Patrick Dolcé
- Centre Hospitalier Régional de Rimouski, Department of Medical Microbiology and Infectious Diseases, Rimouski, Québec
| | - Philippe Jutras
- Centre Hospitalier Régional de Rimouski, Department of Medical Microbiology and Infectious Diseases, Rimouski, Québec
| | - Louise P Jetté
- Laboratoire de Santé Publique du Québec, Sainte-Anne-de-Bellevue, Québec
| |
Collapse
|
610
|
Werckenthin C, Schwarz S, Westh H. Structural alterations in the translational attenuator of constitutively expressed ermC genes. Antimicrob Agents Chemother 1999; 43:1681-5. [PMID: 10390222 PMCID: PMC89343 DOI: 10.1128/aac.43.7.1681] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sequence deletions of 16, 59, and 111 bp as well as a tandem duplication of 272 bp with respect to the corresponding sequence of pT48 were identified in the regulatory regions of constitutively expressed ermC genes. Constitutive ermC gene expression as a consequence of these structural alterations is based on either the prevention of the formation of mRNA secondary structures in the translational attenuator or the preferential formation of those mRNA secondary structures which do not interfere with the translation of the ermC transcripts. A model for the development of sequence deletions in the ermC translational attenuator by homologous recombination is presented and experimentally tested by in vitro selection of constitutively expressed mutants in staphylococcal strains deficient and proficient in homologous recombination.
Collapse
Affiliation(s)
- C Werckenthin
- Institut für Tierzucht und Tierverhalten der Bundesforschungsanstalt für Landwirtschaft Braunschweig (FAL), 29223 Celle, Germany
| | | | | |
Collapse
|
611
|
van Doorn LJ, Debets-Ossenkopp YJ, Marais A, Sanna R, Mégraud F, Kusters JG, Quint WG. Rapid detection, by PCR and reverse hybridization, of mutations in the Helicobacter pylori 23S rRNA gene, associated with macrolide resistance. Antimicrob Agents Chemother 1999; 43:1779-82. [PMID: 10390244 PMCID: PMC89365 DOI: 10.1128/aac.43.7.1779] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A PCR-based reverse hybridization system (research prototype kit INNO-LiPA for H. pylori resistance) was developed and evaluated for simultaneous detection of 23S ribosomal DNA point mutations, associated with macrolide resistance in Helicobacter pylori. Fifty-seven H. pylori strains (51 natural, 6 laboratory-derived artificial, 52 resistant, and 5 susceptible strains) were tested by PCR-LiPA (detecting mutations A2115-->G, G2141-->A, A2142-->G, A2142-->C, A2143-->G, A2143-->C, and A2143-->T), DNA sequencing, restriction fragment length polymorphism, and/or hybridization to oligonucleotide probes. Results were highly concordant, but PCR-LiPA appears to be more sensitive for the simultaneous detection of multiple mutants.
Collapse
Affiliation(s)
- L J van Doorn
- Delft Diagnostic Laboratory, Delft, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
612
|
Gregory ST, Dahlberg AE. Erythromycin resistance mutations in ribosomal proteins L22 and L4 perturb the higher order structure of 23 S ribosomal RNA. J Mol Biol 1999; 289:827-34. [PMID: 10369764 DOI: 10.1006/jmbi.1999.2839] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have used chemical modification to examine the conformation of 23 S rRNA in Escherichia coli ribosomes bearing erythromycin resistance mutations in ribosomal proteins L22 and L4. Changes in reactivity to chemical probes were observed at several nucleotide positions scattered throughout 23 S rRNA. The L4 mutation affects the reactivity of G799 and U1255 in domain II and that of A2572 in domain V. The L22 mutation influences modification in domain II at positions m5U747, G748, and A1268, as well as at A1614 in domain III and G2351 in domain V. The reactivity of A789 is weakly enhanced by both the L22 and L4 mutations. None of these nucleotide positions has previously been associated with macrolide antibiotic resistance. Interestingly, neither of the ribosomal protein mutations produces any detectable effects at or within the vicinity of A2058 in domain V, the site most frequently shown to confer macrolide resistance when altered by methylation or mutation. Thus, while L22 and L4 bind primarily to domain I of 23 S rRNA, erythromycin resistance mutations in these ribosomal proteins perturb the conformation of residues in domains II, III and V and affect the action of antibiotics known to interact with nucleotide residues in the peptidyl transferase center of domain V. These results support the hypothesis that ribosomal proteins interact with rRNA at multiple sites to establish its functionally active three-dimensional structure, and suggest that these antibiotic resistance mutations act by perturbing the conformation of rRNA.
Collapse
Affiliation(s)
- S T Gregory
- J. W. Wilson Laboratory Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, 02912, USA.
| | | |
Collapse
|
613
|
Schluckebier G, Zhong P, Stewart KD, Kavanaugh TJ, Abad-Zapatero C. The 2.2 A structure of the rRNA methyltransferase ErmC' and its complexes with cofactor and cofactor analogs: implications for the reaction mechanism. J Mol Biol 1999; 289:277-91. [PMID: 10366505 DOI: 10.1006/jmbi.1999.2788] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rRNA methyltransferase ErmC' transfers methyl groups from S -adenosyl-l-methionine to atom N6 of an adenine base within the peptidyltransferase loop of 23 S rRNA, thus conferring antibiotic resistance against a number of macrolide antibiotics. The crystal structures of ErmC' and of its complexes with the cofactor S -adenosyl-l-methionine, the reaction product S-adenosyl-l-homocysteine and the methyltransferase inhibitor Sinefungin, respectively, show that the enzyme undergoes small conformational changes upon ligand binding. Overall, the ligand molecules bind to the protein in a similar mode as observed for other methyltransferases. Small differences between the binding of the amino acid parts of the different ligands are correlated with differences in their chemical structure. A model for the transition-state based on the atomic details of the active site is consistent with a one-step methyl-transfer mechanism and might serve as a first step towards the design of potent Erm inhibitors.
Collapse
Affiliation(s)
- G Schluckebier
- Abbott Laboratories, D46Y-AP 10, 100 Abbott Park Road, Abbott Park, IL, 60064, USA.
| | | | | | | | | |
Collapse
|
614
|
Nakajima Y. Mechanisms of bacterial resistance to macrolide antibiotics. J Infect Chemother 1999; 5:61-74. [PMID: 11810493 DOI: 10.1007/s101560050011] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/1999] [Accepted: 02/25/1999] [Indexed: 11/24/2022]
Abstract
Macrolides have been used in the treatment of infectious diseases since the late 1950s. Since that time, a finding of antagonistic action between erythromycin and spiramycin in clinical isolates1 led to evidence of the biochemical mechanism and to the current understanding of inducible or constitutive resistance to macrolides mediated by erm genes containing, respectively, the functional regulation mechanism or constitutively mutated regulatory region. These resistant mechanisms to macrolides are recognized in clinically isolated bacteria. (1) A methylase encoded by the erm gene can transform an adenine residue at 2058 (Escherichia coli equivalent) position of 23S rRNA into an 6N, 6N-dimethyladenine. Position 2058 is known to reside either in peptidyltransferase or in the vicinity of the enzyme region of domain V. Dimethylation renders the ribosome resistant to macrolides (MLS). Moreover, another finding adduced as evidence is that a mutation in the domain plays an important role in MLS resistance: one of several mutations (transition and transversion) such as A2058G, A2058C or U, and A2059G, is usually associated with MLS resistance in a few genera of bacteria. (2) M (macrolide antibiotics)- and MS (macrolide and streptogramin type B antibiotics)- or PMS (partial macrolide and streptogramin type B antibiotics)-phenotype resistant bacteria cause decreased accumulation of macrolides, occasionally including streptogramin type B antibiotics. The decreased accumulation, probably via enhanced efflux, is usually inferred from two findings: (i) the extent of the accumulated drug in a resistant cell increases as much as that in a susceptible cell in the presence of an uncoupling agent such as carbonylcyanide-m-chlorophenylhydrazone (CCCP), 2,4-dinitrophenol (DNP), and arsenate; (ii) transporter proteins, in M-type resistants, have mutual similarity to the 12-transmembrane domain present in efflux protein driven by proton-motive force, and in MS- or PMS-type resistants, transporter proteins have mutual homology to one or two ATP-binding segments in efflux protein driven by ATP. (3) Two major macrolide mechanisms based on antibiotic inactivation are dealt with here: degradation due to hydrolysis of the macrolide lactone ring by an esterase encoded by the ere gene; and modification due to macrolide phosphorylation and lincosamide nucleotidylation mediated by the mph and lin genes, respectively. But enzymatic mechanisms that hydrolyze or modify macrolide and lincosamide antibiotics appear to be relatively rare in clinically isolated bacteria at present. (4) Important developments in macrolide antibiotics are briefly featured. On the basis of information obtained from extensive references and studies of resistance mechanisms to macrolide antibiotics, the mode of action of the drugs, as effectors, and a hypothetical explanation of the regulation of the mechanism with regard to induction of macrolide resistance are discussed.
Collapse
Affiliation(s)
- Yoshinori Nakajima
- Division of Microbiology, Hokkaido College of Pharmacy, 7-1 Katsuraoka-cho, Otaru, Hokkaido 047-0264, Japan.
| |
Collapse
|
615
|
Martin PK, Li T, Sun D, Biek DP, Schmid MB. Role in cell permeability of an essential two-component system in Staphylococcus aureus. J Bacteriol 1999; 181:3666-73. [PMID: 10368139 PMCID: PMC93842 DOI: 10.1128/jb.181.12.3666-3673.1999] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A temperature-sensitive lethal mutant of Staphylococcus aureus was found to harbor a mutation in the uncharacterized two-component histidine kinase (HK)-response regulator (RR) pair encoded by yycFG; orthologues of yycFG could be identified in the genomes of Bacillus subtilis and other gram-positive bacteria. Sequence analysis of the mutant revealed a point mutation resulting in a nonconservative change (Glu to Lys) in the regulator domain of the RR at position 63. To confirm that this signal transduction system was essential, a disrupted copy of either the RR (yycF) or the HK (yycG) was constructed with a set of suicide vectors and used to generate tandem duplications in the chromosome. Resolution of the duplications, leaving an insertion in either the yycF or the yycG coding region, was achieved only in the presence of an additional wild-type copy of the two open reading frames. Phenotypic characterization of the conditional lethal mutant showed that at permissive growth conditions, the mutant was hypersusceptible to macrolide and lincosamide antibiotics, even in the presence of the ermB resistance determinant. Other mutant phenotypes, including hypersensitivity to unsaturated long-chain fatty acids and suppression of the conditional lethal phenotype by high sucrose and NaCl concentrations, suggest that the role of the two-component system includes the proper regulation of bacterial cell wall or membrane composition. The effects of this point mutation are strongly bactericidal at the nonpermissive temperature, indicating that this pathway provides an excellent target for the identification of novel antibiotics.
Collapse
Affiliation(s)
- P K Martin
- Microcide Pharmaceuticals, Inc., Mountain View, California 94043, USA.
| | | | | | | | | |
Collapse
|
616
|
Bozdogan B, Berrezouga L, Kuo MS, Yurek DA, Farley KA, Stockman BJ, Leclercq R. A new resistance gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. Antimicrob Agents Chemother 1999; 43:925-9. [PMID: 10103201 PMCID: PMC89227 DOI: 10.1128/aac.43.4.925] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Resistance to lincomycin and clindamycin in the clinical isolate Enterococcus faecium HM1025 is due to a ribosomal methylase encoded by an ermAM-like gene and the plasmid-mediated inactivation of these antibiotics. We have cloned and determined the nucleotide sequence of the gene responsible for the inactivation of lincosamides, linB. This gene encodes a 267-amino-acid lincosamide nucleotidyltransferase. The enzyme catalyzes 3(5'-adenylation) (the adenylation of the hydroxyl group in position 3 of the molecules) of lincomycin and clindamycin. Expression of linB was observed in both Escherichia coli and Staphylococcus aureus. The deduced amino acid sequence of the enzyme did not display any significant homology with staphylococcal nucleotidyltransferases encoded by linA and linA' genes. Sequences homologous to linB were found in 14 other clinical isolates of E. faecium, indicating the spread of the resistance trait in this species.
Collapse
Affiliation(s)
- B Bozdogan
- Service de Bactériologie-Virologie, Hôpital Henri Mondor-Université Paris XII, Créteil, France
| | | | | | | | | | | | | |
Collapse
|
617
|
Marais A, Monteiro L, Occhialini A, Pina M, Lamouliatte H, Mégraud F. Direct detection of Helicobacter pylori resistance to macrolides by a polymerase chain reaction/DNA enzyme immunoassay in gastric biopsy specimens. Gut 1999; 44:463-7. [PMID: 10075951 PMCID: PMC1727470 DOI: 10.1136/gut.44.4.463] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND The increasing use of macrolides especially in the treatment of Helicobacter pylori infection has led to an increase in resistant strains. The resistance of H pylori to macrolides, especially clarithromycin, is one of the major causes of eradication failure. In H pylori, clarithromycin resistance is due to point mutations localised in domain V of 23S rRNA. AIM To develop a molecular technique based on amplification of a relevant fragment of the 23S rRNA and colorimetric hybridisation in liquid phase to detect directly in biopsy specimens the type of mutation associated with resistance of H pylori to clarithromycin. METHODS Gastric biopsy samples from 61 patients were submitted to this test. The results were compared with standard methods (determination of minimal inhibition concentration, polymerase chain reaction/restriction fragment length polymorphism, and/or DNA sequencing) in order to evaluate the test and to define the cut off values, specificity, and sensitivity. RESULTS The 14 biopsy samples in which H pylori was not detected did not give a positive result in any assay, and the 14 samples harbouring strains susceptible to clarithromycin gave a positive result with the wild type probe as expected. The 33 biopsy specimens containing resistant strains always gave a positive signal with one of the probes detecting resistant organisms, but in eight cases they also reacted with the wild type probe, indicating that a mixture of resistant and susceptible organisms was present. CONCLUSION The importance of this new assay is that it allows the detection of multiple genotypes corresponding to either heterogeneous genotypes or mixed infections. Moreover, it allows in a single step not only the detection of H pylori but also the determination of its susceptibility to clarithromycin directly in biopsy specimens without the need for culture.
Collapse
Affiliation(s)
- A Marais
- Laboratoire de Bactériologie, Université Victor Ségalen Bordeaux 2 et Hôpital Pellegrin, 33076 Bordeaux cedex, France
| | | | | | | | | | | |
Collapse
|
618
|
Rosato A, Vicarini H, Leclercq R. Inducible or constitutive expression of resistance in clinical isolates of streptococci and enterococci cross-resistant to erythromycin and lincomycin. J Antimicrob Chemother 1999; 43:559-62. [PMID: 10350387 DOI: 10.1093/jac/43.4.559] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thirty-five of 40 clinical isolates of enterococci and streptococci cross-resistant to erythromycin and lincomycin and harbouring erm genes were inducibly resistant to these drugs, suggesting that ribosomal methylation is predominantly inducibly expressed in these bacterial genera. Regulatory regions located upstream of the erm genes of four inducible and three constitutive strains were amplified and sequenced. Expression of constitutive resistance in two strains of Streptococcus pneumoniae and Enterococcus faecalis could be accounted for by a large deletion or a DNA duplication within the regulatory regions, respectively.
Collapse
Affiliation(s)
- A Rosato
- Service de Bactériologie-Virologie, Hôpital Henri Mondor-Université Paris XII, Créteil, France
| | | | | |
Collapse
|
619
|
Arpin C, Daube H, Tessier F, Quentin C. Presence of mefA and mefE genes in Streptococcus agalactiae. Antimicrob Agents Chemother 1999; 43:944-6. [PMID: 10103205 PMCID: PMC89231 DOI: 10.1128/aac.43.4.944] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eighteen unrelated clinical isolates of Streptococcus agalactiae with the M phenotype harbored an mef gene. DNA sequencing showed that one of nine strains contained mefA (producing one amino acid substitution), whereas the remaining eight carried mefE (identity, 100%). Restriction analysis of PCR products indicated that the nine other strains also contained mefE.
Collapse
Affiliation(s)
- C Arpin
- Laboratoire de Microbiologie, Université Victor Segalen Bordeaux 2, France.
| | | | | | | |
Collapse
|
620
|
Karlsson M, Fellström C, Heldtander MU, Johansson KE, Franklin A. Genetic basis of macrolide and lincosamide resistance in Brachyspira (Serpulina) hyodysenteriae. FEMS Microbiol Lett 1999; 172:255-60. [PMID: 10188254 DOI: 10.1111/j.1574-6968.1999.tb13476.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Macrolide antibiotic resistance is widespread among Brachyspira hyodysenteriae (formerly Serpulina hyodysenteriae) isolates. The genetic basis of macrolide and lincosamide resistance in B. hyodysenteriae was elucidated. Resistance to tylosin, erythromycin and clindamycin in B. hyodysenteriae was associated with an A-->T transversion mutation in the nucleotide position homologous with position 2058 of the Escherichia coli 23S rRNA gene. The nucleotide sequences of the peptidyl transferase region of the 23S rDNA from seven macrolide and lincosamide resistant and seven susceptible strains of Brachyspira spp. were determined. None of the susceptible strains were mutated whereas all the resistant strains had a mutation in position 2058. Susceptible strains became resistant in vitro after subculturing on agar containing 4 micrograms ml-1 of tylosin. Sequencing of these strains revealed an A-->G transition mutation in position 2058.
Collapse
Affiliation(s)
- M Karlsson
- National Veterinary Institute, Uppsala, Sweden.
| | | | | | | | | |
Collapse
|
621
|
Villsen ID, Vester B, Douthwaite S. ErmE methyltransferase recognizes features of the primary and secondary structure in a motif within domain V of 23 S rRNA. J Mol Biol 1999; 286:365-74. [PMID: 9973557 DOI: 10.1006/jmbi.1998.2504] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Erm methyltransferases confer resistance to macrolide, lincosamide and streptogramin B (MLS) antibiotics by methylation of a single adenosine base within bacterial 23 S ribosomal RNA. The ErmE methyltransferase, from the macrolide-producing bacterium Saccharopolyspora erythraea, recognizes a motif within domain V of the rRNA that specifically targets adenosine 2058 (A2058) for methylation. Here, we define the structure of the RNA motif by a combination of molecular genetics and biochemical probing. The core of the motif has the primary sequence 2056-GGAHA-2060, where H is any nucleotide except guanosine, and ErmE methylates at the adenosine in bold. For efficient recognition by ErmE, this sequence must be displayed within a particular secondary structure. An irregular stem (helix 73) is required immediately 5' to A2058, with an unpaired nucleotide, preferably a cytidine residue, at position 2055. Nucleotides 2611 to 2616 are collectively required to form part of the 3'-side of helix 73, but there is little or no restriction on the identities of individual nucleotides here. There are minor preferences in the identities of nucleotides 2051 to 2055 that are adjacent to the motif core, although their main role is in maintaining the irregular secondary structure. The essential elements of the ErmE motif are conserved in bacterial 23 S rRNAs, and thus presumably also form the recognition motif for other Erm methyltransferases.
Collapse
MESH Headings
- Adenosine/chemistry
- Anti-Bacterial Agents/pharmacology
- Bacterial Proteins/metabolism
- Drug Resistance, Microbial
- Escherichia coli/chemistry
- Macrolides
- Methylation
- Methyltransferases/metabolism
- Nucleic Acid Conformation
- Peptide Chain Elongation, Translational/drug effects
- Point Mutation
- RNA, Bacterial/chemistry
- RNA, Bacterial/drug effects
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/drug effects
- RNA, Ribosomal, 23S/metabolism
- Ribosomes/drug effects
- Substrate Specificity
Collapse
Affiliation(s)
- I D Villsen
- Department of Molecular Biology, Odense University, Campusvej 55, Odense M, DK-5230, Denmark
| | | | | |
Collapse
|
622
|
García-Arata MI, Baquero F, de Rafael L, Martín de Argila C, Gisbert JP, Bermejo F, Boixeda D, Cantón R. Mutations in 23S rRNA in Helicobacter pylori conferring resistance to erythromycin do not always confer resistance to clarithromycin. Antimicrob Agents Chemother 1999; 43:374-6. [PMID: 9925537 PMCID: PMC89082 DOI: 10.1128/aac.43.2.374] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mutations conferring resistance to erythromycin or clarithromycin in Helicobacter pylori were studied. Mutation A2142G was consistently associated with clarithromycin MIC of > 256 micrograms/ml, whereas mutants carrying A2143G had MICs ranging from < or = 0.016 to > 256 micrograms/ml, suggesting that additional factors account for the observed multiple levels of resistance to clarithromycin.
Collapse
|
623
|
Hansen LH, Mauvais P, Douthwaite S. The macrolide-ketolide antibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA. Mol Microbiol 1999; 31:623-31. [PMID: 10027978 DOI: 10.1046/j.1365-2958.1999.01202.x] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The macrolide antibiotic erythromycin interacts with bacterial 23S ribosomal RNA (rRNA) making contacts that are limited to hairpin 35 in domain II of the rRNA and to the peptidyl transferase loop in domain V. These two regions are probably folded close together in the 23S rRNA tertiary structure and form a binding pocket for macrolides and other drug types. Erythromycin has been derivatized by replacing the L-cladinose moiety at position 3 by a keto group (forming the ketolide antibiotics) and by an alkyl-aryl extension at positions 11/12 of the lactone ring. All the drugs footprint identically within the peptidyl transferase loop, giving protection against chemical modification at A2058, A2059 and G2505, and enhancing the accessibility of A2062. However, the ketolide derivatives bind to ribosomes with widely varying affinities compared with erythromycin. This variation correlates with differences in the hairpin 35 footprints. Erythromycin enhances the modification at position A752. Removal of cladinose lowers drug binding 70-fold, with concomitant loss of the A752 footprint. However, the 11/12 extension strengthens binding 10-fold, and position A752 becomes protected. These findings indicate how drug derivatization can improve the inhibition of bacteria that have macrolide resistance conferred by changes in the peptidyl transferase loop.
Collapse
Affiliation(s)
- L H Hansen
- Department of Molecular Biology, Odense University, Denmark
| | | | | |
Collapse
|
624
|
Hansen LH, Vester B, Douthwaite S. Core sequence in the RNA motif recognized by the ErmE methyltransferase revealed by relaxing the fidelity of the enzyme for its target. RNA (NEW YORK, N.Y.) 1999; 5:93-101. [PMID: 9917069 PMCID: PMC1369742 DOI: 10.1017/s1355838299981451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Under physiological conditions, the ErmE methyltransferase specifically modifies a single adenosine within ribosomal RNA (rRNA), and thereby confers resistance to multiple antibiotics. The adenosine (A2058 in Escherichia coli 23S rRNA) lies within a highly conserved structure, and is methylated efficiently, and with equally high fidelity, in rRNAs from phylogenetically diverse bacteria. However, the fidelity of ErmE is reduced when magnesium is removed, and over twenty new sites of ErmE methylation appear in E. coli 16S and 23S rRNAs. These sites show widely different degrees of reactivity to ErmE. The canonical A2058 site is largely unaffected by magnesium depletion and remains the most reactive site in the rRNA. This suggests that methylation at the new sites results from changes in the RNA substrate rather than the methyltransferase. Chemical probing confirms that the rRNA structure opens upon magnesium depletion, exposing potential new interaction sites to the enzyme. The new ErmE sites show homology with the canonical A2058 site, and have the consensus sequence aNNNcgGAHAg (ErmE methylation occurs exclusively at adenosines (underlined); these are preceded by a guanosine, equivalent to G2057; there is a high preference for the adenosine equivalent to A2060; H is any nucleotide except G; N is any nucleotide; and there are slight preferences for the nucleotides shown in lower case). This consensus is believed to represent the core of the motif that Erm methyltransferases recognize at their canonical A2058 site. The data also reveal constraints on the higher order structure of the motif that affect methyltransferase recognition.
Collapse
Affiliation(s)
- L H Hansen
- Department of Molecular Biology, Odense University, Denmark
| | | | | |
Collapse
|
625
|
Jensen LB, Frimodt-Møller N, Aarestrup FM. Presence of erm gene classes in gram-positive bacteria of animal and human origin in Denmark. FEMS Microbiol Lett 1999; 170:151-8. [PMID: 9919664 DOI: 10.1111/j.1574-6968.1999.tb13368.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
A classification of the different erm gene classes based on published sequences was performed, and specific primers to detect some of these classes designed. The presence of ermA (Tn554), ermB (class IV) and ermC (class VI) was determined by PCR in a total of 113 enterococcal, 77 streptococcal and 68 staphylococcal erythromycin resistant isolates of animal and human origin. At least one of these genes was detected in 88% of the isolates. Four isolates contained more than one erm gene. ermB dominated among the enterococci (88%) and streptococci (90%) and ermC among staphylococci (75%) with ermA (Tn554) present in some isolates (16%). Variations in the presence of the different genes when comparing staphylococcal isolates of human and animal origin were observed.
Collapse
Affiliation(s)
- L B Jensen
- Danish Veterinary Laboratory, Copenhagen, Denmark.
| | | | | |
Collapse
|
626
|
Chung WO, Werckenthin C, Schwarz S, Roberts MC. Host range of the ermF rRNA methylase gene in bacteria of human and animal origin. J Antimicrob Chemother 1999; 43:5-14. [PMID: 10381095 DOI: 10.1093/jac/43.1.5] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We screened 183 different clinical anaerobic and aerobic bacteria isolated from humans and other animals for the presence of the ermF gene using a polymerase chain reaction (PCR) assay. The ermF gene was detected in 107 (58%) clinical isolates, including 42 (61%) of 69 gram-positive bacteria and 65 (57%) of 114 gram-negative bacteria. Twenty-five ATCC isolates were also tested; 20 (80%) carried the ermF gene. The gene products from the ermF PCR from four isolates were sequenced and showed 95-99% nucleotide homology with the ermF gene and 98-99% amino acid homology with the gene product. Eleven (58%) of the 19 gram-negative donors tested were able to transfer the ermF gene. All nine (100%) of the gram-positive donors tested transferred the ermF gene, using either Enterococcus faecalis or Haemophilus influenzae as the recipients.
Collapse
Affiliation(s)
- W O Chung
- Department of Pathobiology, University of Washington, Seattle, USA
| | | | | | | |
Collapse
|
627
|
Xiong L, Shah S, Mauvais P, Mankin AS. A ketolide resistance mutation in domain II of 23S rRNA reveals the proximity of hairpin 35 to the peptidyl transferase centre. Mol Microbiol 1999; 31:633-9. [PMID: 10027979 DOI: 10.1046/j.1365-2958.1999.01203.x] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ketolides represent a new generation of macrolide antibiotics. In order to identify the ketolide-binding site on the ribosome, a library of Escherichia coli clones, transformed with a plasmid carrying randomly mutagenized rRNA operon, was screened for mutants exhibiting resistance to the ketolide HMR3647. Sequencing of the plasmid isolated from one of the resistant clones and fragment exchange demonstrated that a single U754A mutation in hairpin 35 of domain II of the E. coli 23S rRNA was sufficient to confer resistance to low concentrations of the ketolide. The same mutation also conferred erythromycin resistance. Both the ketolide and erythromycin protected A2058 and A2059 in domain V of 23S rRNA from modification with dimethyl sulphate, whereas, in domain II, the ketolide protected, while erythromycin enhanced, modification of A752 in the loop of the hairpin 35. Thus, mutational and footprinting results strongly suggest that the hairpin 35 constitutes part of the macrolide binding site on the ribosome. Strong interaction of ketolides with the hairpin 35 in 23S rRNA may account for the high activity of ketolides against erythromycin-resistant strains containing rRNA methylated at A2058. The existence of macrolide resistance mutations in the central loop of domain V and in hairpin 35 in domain II together with antibiotic footprinting data suggest that these rRNA segments may be in close proximity in the ribosome and that hairpin 35 may be a constituent part of the ribosomal peptidyl transferase centre.
Collapse
Affiliation(s)
- L Xiong
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago 60607, USA
| | | | | | | |
Collapse
|
628
|
Jensen LB, Hammerum AM, Aerestrup FM, van den Bogaard AE, Stobberingh EE. Occurrence of satA and vgb genes in streptogramin-resistant Enterococcus faecium isolates of animal and human origins in the Netherlands. Antimicrob Agents Chemother 1998; 42:3330-1. [PMID: 10049241 PMCID: PMC106050 DOI: 10.1128/aac.42.12.3330] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
629
|
Roberts MC. Antibiotic resistance in oral/respiratory bacteria. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1998; 9:522-40. [PMID: 9825225 DOI: 10.1177/10454411980090040801] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the last 20 years, changes in world technology have occurred which have allowed for the rapid transport of people, food, and goods. Unfortunately, antibiotic residues and antibiotic-resistant bacteria have been transported as well. Over the past 20 years, the rise in antibiotic-resistant gene carriage in virtually every species of bacteria, not just oral/respiratory bacteria, has been documented. In this review, the main mechanisms of resistance to the important antibiotics used for treatment of disease caused by oral/respiratory bacteria--including beta-lactams, tetracycline, and metronidazole--are discussed in detail. Mechanisms of resistance for macrolides, lincosamides, streptogramins, trimethoprim, sulfonamides, aminoglycosides, and chloramphenicol are also discussed, along with the possible role that mercury resistance may play in the bacterial ecology.
Collapse
Affiliation(s)
- M C Roberts
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle 98195-7238, USA
| |
Collapse
|
630
|
Nicola FG, McDougal LK, Biddle JW, Tenover FC. Characterization of erythromycin-resistant isolates of Staphylococcus aureus recovered in the United States from 1958 through 1969. Antimicrob Agents Chemother 1998; 42:3024-7. [PMID: 9797248 PMCID: PMC105988 DOI: 10.1128/aac.42.11.3024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We tested 16 erythromycin-resistant clinical isolates of S. aureus, recovered from patients hospitalized in the United States from 1958 to 1969, for the presence of ermA, ermB, and ermC by using PCR. Fifteen of 16 isolates contained at least one copy of ermA; the remaining isolate, which was also clindamycin resistant, contained ermB. Eight of the 15 isolates harboring ermA, all of which were inducible, contained a single copy of the gene in the chromosome, while the remaining seven isolates had two copies of the gene. ermB was plasmid encoded and mediated constitutive resistance to erythromycin.
Collapse
Affiliation(s)
- F G Nicola
- Hospital Infections Program, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | |
Collapse
|
631
|
Gourmelen A, Blondelet-Rouault MH, Pernodet JL. Characterization of a glycosyl transferase inactivating macrolides, encoded by gimA from Streptomyces ambofaciens. Antimicrob Agents Chemother 1998; 42:2612-9. [PMID: 9756764 PMCID: PMC105906 DOI: 10.1128/aac.42.10.2612] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Streptomyces ambofaciens, the producer of the macrolide antibiotic spiramycin, an open reading frame (ORF) was found downstream of srmA, a gene conferring resistance to spiramycin. The deduced product of this ORF had high degrees of similarity to Streptomyces lividans glycosyl transferase, which inactivates macrolides, and this ORF was called gimA. The cloned gimA gene was expressed in a susceptible host mutant of S. lividans devoid of any background macrolide-inactivating glycosyl transferase activity. In the presence of UDP-glucose, cell extracts from this strain could inactivate various macrolides by glycosylation. Spiramycin was not inactivated but forocidin, a spiramycin precursor, was modified. In vivo studies showed that gimA could confer low levels of resistance to some macrolides. The spectrum of this resistance differs from the one conferred by a rRNA monomethylase, such as SrmA. In S. ambofaciens, gimA was inactivated by gene replacement, without any deleterious effect on the survival of the strain, even under spiramycin-producing conditions. But the overexpression of gimA led to a marked decrease in spiramycin production. Studies with extracts from wild-type and gimA-null mutant strains revealed the existence of another macrolide-inactivating glycosyl transferase activity with a different substrate specificity. This activity might compensate for the effect of gimA inactivation.
Collapse
Affiliation(s)
- A Gourmelen
- Institut de Génétique et Microbiologie, UMR 2225, Université Paris-Sud XI, Orsay, France
| | | | | |
Collapse
|
632
|
Vester B, Nielsen AK, Hansen LH, Douthwaite S. ErmE methyltransferase recognition elements in RNA substrates. J Mol Biol 1998; 282:255-64. [PMID: 9735285 DOI: 10.1006/jmbi.1998.2024] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dimethylation by Erm methyltransferases at the N-6 position of adenine 2058 (A2058, Escherichia coli numbering) in domain V of bacterial 23 S rRNA confers resistance to the macrolide-lincosamide-streptogramin B (MLS) group of antibiotics. The ErmE methyltransferase from Saccharopolyspora erythraea methylates a 625 nucleotide transcript of domain V as efficiently as it methylates intact 23 S rRNA. By progressively truncating domain V, the motif required for specific recognition by the enzyme has been localized to a helix and single-stranded region adjacent to A2058. The smallest RNA transcript that shows methyl-accepting activity is a 27-nucleotide stem-loop, corresponding to the 23 S rRNA sequences 2048 to 2063 and 2610 to 2620 (helix 73), with A2058 situated within the hairpin loop. Methylation of A2058 in the truncated RNAs is optimal in the absence of magnesium, and the efficiency of methylation is halved by the presence of 2 to 3 mM magnesium. Magnesium serves to stabilize a conformation in the truncated RNA that prevents efficient methylation. This contrasts to the intact domain V RNA, where 2 mM magnesium ions support a conformation at A2058 that is most readily recognized by ErmE. Methylation of domain V RNA is generally far less susceptible to ionic conditions than the truncated RNAs. The effects of monovalent cations on the methylation of truncated transcripts suggest that RNA structures outside helix 73 support the ErmE interaction. However, interaction with these structures is not essential for specific ErmE recognition of A2058.
Collapse
Affiliation(s)
- B Vester
- RNA Regulation Centre Department of Molecular Biology, University of Copenhagen, Denmark
| | | | | | | |
Collapse
|
633
|
Johnston NJ, De Azavedo JC, Kellner JD, Low DE. Prevalence and characterization of the mechanisms of macrolide, lincosamide, and streptogramin resistance in isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 1998; 42:2425-6. [PMID: 9736575 PMCID: PMC105845 DOI: 10.1128/aac.42.9.2425] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Of a total of 147 erythromycin-resistant Streptococcus pneumoniae isolates, 64 (43.5%) were resistant to erythromycin, clindamycin, and streptogramin B (MLSB phenotype), 57 of which possessed the ermB gene. Eighty-two (55.8%) were resistant to erythromycin alone (M phenotype), 81 of which possessed the mefE gene. One was erythromycin and streptogramin B resistant but susceptible to clindamycin (MS phenotype) and possessed neither the erm gene nor the mefE gene.
Collapse
Affiliation(s)
- N J Johnston
- Department of Microbiology, Mount Sinai and Princess Margaret Hospitals, and the University of Toronto, Ontario
| | | | | | | |
Collapse
|
634
|
Low DE. Resistance issues and treatment implications: pneumococcus, Staphylococcus aureus, and gram-negative rods. Infect Dis Clin North Am 1998; 12:613-30, viii. [PMID: 9779381 DOI: 10.1016/s0891-5520(05)70201-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
During the last decade there has been an unexpectedly rapid evolution of antimicrobial resistance in the respiratory pathogens for community- and hospital-acquired pneumonia. In order to choose the most optimal therapy for their patients, it is essential that physicians be aware of the prevalence and mechanisms of resistance and their implications on the effectiveness of the various antimicrobials.
Collapse
Affiliation(s)
- D E Low
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| |
Collapse
|
635
|
McDougal LK, Tenover FC, Lee LN, Rasheed JK, Patterson JE, Jorgensen JH, LeBlanc DJ. Detection of Tn917-like sequences within a Tn916-like conjugative transposon (Tn3872) in erythromycin-resistant isolates of Streptococcus pneumoniae. Antimicrob Agents Chemother 1998; 42:2312-8. [PMID: 9736555 PMCID: PMC105825 DOI: 10.1128/aac.42.9.2312] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of macrolide-lincosamide-streptogramin B (MLS)-resistant pneumococcal isolates of a variety of serotypes was examined and was found to contain Tn917-like elements by DNA-DNA hybridization. Like Tn1545, Tn917 also encodes an ermAM gene but does not mediate resistance to other antimicrobial agents. Furthermore, nucleotide sequence analyses of the DNAs flanking three of the Tn917-like elements revealed that they were inserted into orf9 of a Tn916-like element in a composite transposon-like structure (Tn3872). Other MLS-resistant strains appeared to contain Tn1545-like elements that had suffered a deletion of sequences including the aphA-3 sequences responsible for kanamycin resistance. Thus, the MLS resistance phenotype in pneumococci appears to be mediated by the ermAM present on a much wider variety of genetic elements than was previously appreciated.
Collapse
Affiliation(s)
- L K McDougal
- Hospital Infections Program, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA
| | | | | | | | | | | | | |
Collapse
|
636
|
Affiliation(s)
- R Leclercq
- Service de Microbiologie, Hôpital Côte de Nacre, Caen, France
| | | |
Collapse
|
637
|
Abstract
Clones expressing pentapeptides conferring resistance to a ketolide antibiotic, HMR3004, were selected from a random pentapeptide mini-gene library. The pentapeptide MRFFV conferred the highest level of resistance and was encoded in three different mini-genes. Comparison of amino acid sequences of peptides conferring resistance to a ketolide with those conferring resistance to erythromycin reveals a correspondence between the peptide sequence and the chemical structure of macrolide antibiotic, indicating possible interaction between the peptide and the drug on the ribosome. Based on these observations, a "bottle brush" model of action of macrolide resistance peptides is proposed, in which newly translated peptide interacts with the macrolide molecule on the ribosome and actively displaces it from its binding site. Temporal "cleaning" of the ribosome from the bound antibiotic may be sufficient to allow continuation of protein synthesis even despite the presence of the drug in the medium.
Collapse
Affiliation(s)
- S Tripathi
- Center for Pharmaceutical Biotechnology, University of Illinois, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
638
|
Wang G, Taylor DE. Site-specific mutations in the 23S rRNA gene of Helicobacter pylori confer two types of resistance to macrolide-lincosamide-streptogramin B antibiotics. Antimicrob Agents Chemother 1998; 42:1952-8. [PMID: 9687389 PMCID: PMC105715 DOI: 10.1128/aac.42.8.1952] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/1997] [Accepted: 05/28/1998] [Indexed: 02/08/2023] Open
Abstract
Clarithromycin resistance in Helicobacter pylori is mainly due to A-to-G mutations within the peptidyltransferase region of the 23S rRNA. In the present study, cross-resistance to macrolide, lincosamide, and streptogramin B (MLS) antibiotics (MLS phenotypes) has been investigated for several clinical isolates of H. pylori. Two major types of MLS resistance were identified and correlated with specific point mutations in the 23S rRNA gene. The A2142G mutation was linked with high-level cross-resistance to all MLS antibiotics (type I), and the A2143G mutation gave rise to an intermediate level of resistance to clarithromycin and clindamycin but no resistance to streptogramin B (type II). In addition, streptogramin A and streptogramin B were demonstrated to have a synergistic effect on both MLS-sensitive and MLS-resistant H. pylori strains. To further understand the mechanism of MLS resistance in H. pylori, we performed in vitro site-directed mutagenesis (substitution of G, C, or T for A at either position 2142 or 2143 of the 23S rRNA gene). The site-directed point mutations were introduced into a clarithromycin-susceptible strain, H. pylori UA802, by natural transformation followed by characterization of their effects on MLS resistance in an isogenic background. Strains with A-to-G and A-to-C mutations at the same position within the 23S rRNA gene had similar levels of clarithromycin resistance, and this level of resistance was higher than that for strains with the A-to-T mutation. Mutations at position 2142 conferred a higher level of clarithromycin resistance than mutations at position 2143. All mutations at position 2142 conferred cross-resistance to all MLS antibiotics, which corresponds to the type I MLS phenotype, whereas mutations at position 2143 were associated with a type II MLS phenotype with no resistance to streptogramin B. To explain that A-to-G transitions were predominantly observed in clarithromycin-resistant clinical isolates, we propose a possible mechanism by which A-to-G mutations are preferentially produced in H. pylori.
Collapse
Affiliation(s)
- G Wang
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
639
|
Beyer D, Vannuffel P, Pepper K. Quinupristin (RP 57669): a new tool to investigate ribosome-group B streptogramin interactions. Biol Chem 1998; 379:841-6. [PMID: 9705147 DOI: 10.1515/bchm.1998.379.7.841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Streptogramin antibiotics consist of two types of molecules, group A and group B. The group B molecule quinupristin (RP 57669) and the group A molecule dalfopristin (RP 54476) constitute the first water-soluble semisynthetic streptogramin, quinupristin/dalfopristin (RP 59500). When group B molecules bind to 50S subunits or to tightly coupled ribosomes, there is an increase in their fluorescence intensity, which is proportional to the concentration of the antibiotic-ribosome complex formed. We found here that the background fluorescence of unbound quinupristin is 10-fold lower than that of unbound virginiamycin S, a natural group B molecule often used experimentally. The association constants were found (i) to be similar for the binding of the two group B molecules to tightly coupled 70S ribosomes in the absence of the group A molecules (quinupristin: 3.5 x 10(7) M(-1); virginiamycin S: 2.8 x 10(7) M(-1)) and (ii) to similarly increase about 20-fold in the presence of the corresponding group A molecule (quinupristin + dalfopristin: 69 x 10(7) M(-1); virginiamycin S + virginiamycin M: 60 x 10(7) M(-1)). Similar results were obtained with 50S ribosomal subunits. Additionally, we provide evidence that the failure of the group B molecules to inhibit poly(Phe) synthesis is due to the displacement of the group B molecule during poly(Phe) polymerization on the ribosome, indicating that the artificial poly(Phe) peptide competes with the binding of the group B molecule.
Collapse
Affiliation(s)
- D Beyer
- Rhône-Poulenc Rorer S.A., Centre de Recherche, Vitry sur Seine, France
| | | | | |
Collapse
|
640
|
Aarestrup FM, Bager F, Jensen NE, Madsen M, Meyling A, Wegener HC. Surveillance of antimicrobial resistance in bacteria isolated from food animals to antimicrobial growth promoters and related therapeutic agents in Denmark. APMIS 1998; 106:606-22. [PMID: 9725794 DOI: 10.1111/j.1699-0463.1998.tb01391.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study was conducted to describe the occurrence of acquired resistance to antimicrobials used for growth promotion among bacteria isolated from swine, cattle and poultry in Denmark. Resistance to structurally related therapeutic agents was also examined. Three categories of bacteria were tested: 1) indicator bacteria (Escherichia coli, Enterococcus faecalis, Enterococcus faecium), 2) zoonotic bacteria (Campylobacter, Salmonella, Yersinia enterocolitica), and 3) animal pathogens (E. coli, Staphylococcus aureus, coagulase-negative staphylococci (CNS), Staphylococcus hyicus, Actinobacillus pleuropneumoniae). All antimicrobials used as growth promoters in Denmark and some structurally related therapeutic agents (in brackets) were included: Avilamycin, avoparcin (vancomycin), bacitracin, carbadox, flavomycin, monensin, olaquindox, salinomycin, spiramycin (erythromycin, lincomycin), tylosin (erythromycin, lincomycin), and virginiamycin (pristinamycin). Bacterial species intrinsically resistant to an antimicrobial were not tested towards that antimicrobial. Breakpoints for growth promoters were established by population distribution of the bacteria tested. A total of 2,372 bacterial isolates collected during October 1995 to September 1996 were included in the study. Acquired resistance to all currently used growth promoting antimicrobials was found. A frequent occurrence of resistance were observed to avilamycin, avoparcin, bacitracin, flavomycin, spiramycin, tylosin and virginiamycin, whereas resistance to carbadox, monensin, olaquindox and salinomycin was less frequent. The occurrence of resistance varied by animal origin and bacterial species. The highest levels of resistance was observed among enterococci, whereas less resistance was observed among zoonotic bacteria and bacteria pathogenic to animals. The association between the occurrence of resistance and the consumption of the antimicrobial is discussed. The results show the present level of resistance to growth promoters in bacteria from food animals in Denmark. They will form the baseline for comparison with future prospective studies, thereby enabling the determination of trends over time.
Collapse
|
641
|
Rosato A, Vicarini H, Bonnefoy A, Chantot JF, Leclercq R. A new ketolide, HMR 3004, active against streptococci inducibly resistant to erythromycin. Antimicrob Agents Chemother 1998; 42:1392-6. [PMID: 9624482 PMCID: PMC105610 DOI: 10.1128/aac.42.6.1392] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
HMR 3004 is a new hydrazono ketolide characterized by a 3-keto function instead of the cladinose moiety. The effect of this antimicrobial agent on inducible and constitutive macrolide-lincosamide-streptogramin B (MLSB) resistance was tested in a lacZ reporter system under control of several ermAM-like attenuator variants. For one constitutively resistant Streptococcus agalactiae strain, three inducibly resistant Streptococcus pneumoniae strains, and one inducibly resistant Enterococcus faecalis strain, the attenuators fused with lacZ were cloned into the shuttle plasmid pJIM2246 and the plasmid was introduced into Staphylococcus aureus RN4220. For the wild-type attenuators, HMR 3004 was a very weak inducer, unlike its cladinose counterpart RU 6652 and erythromycin. As expected, for the fusion originating from the constitutively resistant S. agalactiae strain, the level of uninduced beta-galactosidase synthesis was high. For one S. pneumoniae attenuator, mutations in the 3' end of the attenuator that weakened the stem-loop structure that sequesters the ribosome-binding site and start codon for ermAM methylase could explain the high level of uninduced beta-galactosidase produced. For streptococci, the activity of HMR 3004 correlated with the basal level of beta-galactosidase synthesized. The weak inducer activity of HMR 3004 explained its activity against inducibly MLSB-resistant S. pneumoniae but did not correlate with the moderate activity of the antibiotic against inducibly resistant E. faecalis.
Collapse
Affiliation(s)
- A Rosato
- Service de Bactériologie-Virologie, Hôpital Henri Mondor-Université Paris XII, Créteil, France
| | | | | | | | | |
Collapse
|
642
|
Roberts MC. Antibiotic resistance mechanisms in bacteria of oral and upper respiratory origin. Int J Antimicrob Agents 1998; 9:255-67. [PMID: 9573495 DOI: 10.1016/s0924-8579(98)00005-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past 20 years, antibiotic resistance has increased in virtually every species of bacteria examined. In this paper, the main mechanisms of antibiotic resistance currently known for antibiotics used for treatment of disease caused by oral and upper respiratory bacteria will be reviewed, with an emphasis on the most commonly used antibiotics. The possible role that mercury, which is released from silver amalgams, plays in the oral/respiratory bacterial ecology is also discussed, as it relates to possible selection of antibiotic resistant bacteria.
Collapse
Affiliation(s)
- M C Roberts
- Department of Pathobiology, School of Public Health and Community Medicine, University of Washington, Seattle 98195-7238, USA.
| |
Collapse
|
643
|
Seppälä H, Skurnik M, Soini H, Roberts MC, Huovinen P. A novel erythromycin resistance methylase gene (ermTR) in Streptococcus pyogenes. Antimicrob Agents Chemother 1998; 42:257-62. [PMID: 9527769 PMCID: PMC105397 DOI: 10.1128/aac.42.2.257] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Erythromycin resistance among streptococci is commonly due to target site modification by an rRNA-methylating enzyme, which results in coresistance to macrolide, lincosamide, and streptogramin B antibiotics (MLSB resistance). Genes belonging to the ermAM (ermB) gene class are the only erythromycin resistance methylase (erm) genes in Streptococcus pyogenes with MLSB resistance that have been sequenced so far. We identified a novel erm gene, designated ermTR, from an erythromycin-resistant clinical strain of S. pyogenes (strain A200) with an inducible type of MLSB resistance. The nucleotide sequence of ermTR is 82.5% identical to ermA, previously found, for example, in Staphylococcus aureus and coagulase-negative staphylococci. Our finding provides the first sequence of an erm gene other than ermAM that mediates MLSB resistance in S. pyogenes.
Collapse
Affiliation(s)
- H Seppälä
- Antimicrobial Research Laboratory, National Public Health Institute, Turku, Finland.
| | | | | | | | | |
Collapse
|
644
|
Widdowson CA, Klugman KP. Emergence of the M phenotype of erythromycin-resistant pneumococci in South Africa. Emerg Infect Dis 1998; 4:277-81. [PMID: 9621199 PMCID: PMC2640124 DOI: 10.3201/eid0402.980216] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Erythromycin-resistant pneumococci have been isolated in South Africa since 1978; however, from 1987 to 1996, resistance to macrolides was only detected in 270 (2.7%) of 9,868 blood or cerebrospinal fluid (CSF) pneumococcal isolates, most of which were obtained from the public sector. In South Africa, macrolide use in the public sector is estimated at 56% of that in the private sector. Most erythromycin-resistant strains (89%) exhibited resistance to erythromycin and clindamycin (macrolide-lincosamide-streptogramin B phenotype). In the United States, most erythromycin-resistant pneumococci exhibit the newly described M phenotype (resistance to erythromycin alone), associated with the mefE gene. The M phenotype in South Africa increased significantly in the last 10 years, from 1 of 5,115 to 28 of 4,735 of blood and CSF isolates received from 1987 to 1991 compared with 1992 to 1996 (p = 5 x 10(-7)). These data suggest that, although macrolide resistance in pneumococci remains low in the public sector, the mefE gene is rapidly emerging in South Africa.
Collapse
Affiliation(s)
- C A Widdowson
- South African Institute for Medical Research, Johannesburg, South Africa.
| | | |
Collapse
|
645
|
Antimicrobial Potentiation Approaches: Targets and Inhibitors. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 1998. [DOI: 10.1016/s0065-7743(08)61077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
646
|
Davies J. Aspects of the Molecular Genetics of Antibiotics. Mol Microbiol 1998. [DOI: 10.1007/978-3-642-72071-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
647
|
Abstract
Helicobacter pylori resistance to antimicrobial agents is of particular concern because it is a major determinant in the failure of eradication regimens. Antimicrobial drug resistance has been reported to occur for nitroimidazoles, macrolides, fluoroquinolones, rifampin and tetracyclines. Resistance to nitroimidazoles is the most common, in the range of 30-40% on the average in Europe while the overall prevalence rate of resistance to macrolides is lower, probably ranging between 2-10% in most countries. Development of secondary (acquired) resistance to nitroimidazoles and to the macrolides usually occurs as a rule (> 70-100%) in case of failed eradication therapy. Data available from several centres seems however to indicate that a significant shift towards increasing resistance to metronidazole and to the macrolides might have possibly occurred in many countries over the last years. Resistances to both metronidazole and to clarithromycin are the most significant ones because they influence the success of the treatments although this seems to be less marked and more dependent on the treatment regimens considered in the case of metronidazole resistance than in the setting of clarithromycin resistance. These differences may in part relate to methodological variations and to the inherent difficulties in assessing the susceptibility of H. pylori to metronidazole. It is possible that different resistance cut-off might also have to be considered for metronidazole depending on the treatment regimens administered. The mechanisms of resistance have been well defined for the macrolides and are beginning to be unraveled for the nitroimidazoles. In all cases, resistance of H. pylori to antimicrobial agent seems to be due to the development of single mutational events in chromosomal genes rather than to the acquisition of exogenous resistance genes. Owing to the restricted ability of microbiology laboratories with expertise in H. pylori culture and the lack of standardised methodology for susceptibility testing, H. pylori culture is not often performed routinely. It should however be considered after documented treatment failure or in patients from a geographic area or of an ethnic origin with higher likelihood of antimicrobial drug resistance. Likewise it is deemed very important to institute national and regional surveillance programs to follow the evolution of H. pylori resistance and to better adapt treatment regimens to changes in resistance patterns.
Collapse
|
648
|
Occhialini A, Urdaci M, Doucet-Populaire F, Bébéar CM, Lamouliatte H, Mégraud F. Macrolide resistance in Helicobacter pylori: rapid detection of point mutations and assays of macrolide binding to ribosomes. Antimicrob Agents Chemother 1997; 41:2724-8. [PMID: 9420046 PMCID: PMC164196 DOI: 10.1128/aac.41.12.2724] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Resistance of Helicobacter pylori to macrolides is a major cause of failure of eradication therapies. Single base substitutions in the H. pylori 23S rRNA genes have been associated with macrolide resistance in the United States. Our goal was to extend this work to European strains, to determine the consequence of this mutation on erythromycin binding to H. pylori ribosomes, and to find a quick method to detect the mutation. Seven pairs of H. pylori strains were used, the parent strain being naturally susceptible to macrolides and the second strain having acquired an in vivo resistance during a treatment regimen that included clarithromycin. The identity of the strains was confirmed by random amplified polymorphic DNA testing with two different primers, indicating that resistance was the result of the selection of variants of the infecting strain. All resistant strains were found to have point mutations at position 2143 (three cases) or 2144 (four cases) but never on the opposite DNA fragment of domain V of the 23S rRNA gene. The mutation was A-->G in all cases except one (A-->C) at position 2143. Using BsaI and BbsI restriction enzymes on the amplified products, we confirmed the mutations of A-->G at positions 2144 and 2143, respectively. Macrolide binding was tested on purified ribosomes isolated from four pairs of strains with [14C]erythromycin. Erythromycin binding increased in a dose-dependent manner for the susceptible strain but not for the resistant one. In conclusion we suggest that the limited disruption of the peptidyltransferase loop conformation, caused by a point mutation, reduces drug binding and consequently confers resistance to macrolides. Finally, the macrolide resistance could be detected without sequencing by performing restriction fragment length polymorphism with appropriate restriction enzymes.
Collapse
Affiliation(s)
- A Occhialini
- Laboratoire de Bactériologie, Hôpital Pellegrin, and Université de Bordeaux 2, France
| | | | | | | | | | | |
Collapse
|
649
|
Bull JJ, Badgett MR, Wichman HA, Huelsenbeck JP, Hillis DM, Gulati A, Ho C, Molineux IJ. Exceptional convergent evolution in a virus. Genetics 1997; 147:1497-507. [PMID: 9409816 PMCID: PMC1208326 DOI: 10.1093/genetics/147.4.1497] [Citation(s) in RCA: 274] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Replicate lineages of the bacteriophage phiX 174 adapted to growth at high temperature on either of two hosts exhibited high rates of identical, independent substitutions. Typically, a dozen or more substitutions accumulated in the 5.4-kilobase genome during propagation. Across the entire data set of nine lineages, 119 independent substitutions occurred at 68 nucleotide sites. Over half of these substitutions, accounting for one third of the sites, were identical with substitutions in other lineages. Some convergent substitutions were specific to the host used for phage propagation, but others occurred across both hosts. Continued adaptation of an evolved phage at high temperature, but on the other host, led to additional changes that included reversions of previous substitutions. Phylogenetic reconstruction using the complete genome sequence not only failed to recover the correct evolutionary history because of these convergent changes, but the true history was rejected as being a significantly inferior fit to the data. Replicate lineages subjected to similar environmental challenges showed similar rates of substitution and similar rates of fitness improvement across corresponding times of adaptation. Substitution rates and fitness improvements were higher during the initial period of adaptation than during a later period, except when the host was changed.
Collapse
Affiliation(s)
- J J Bull
- Department of Zoology, Institute of Cellular and Molecular Biology, University of Texas, Austin 78712, USA.
| | | | | | | | | | | | | | | |
Collapse
|
650
|
Clancy J, Dib-Hajj F, Petitpas JW, Yuan W. Cloning and characterization of a novel macrolide efflux gene, mreA, from Streptococcus agalactiae. Antimicrob Agents Chemother 1997; 41:2719-23. [PMID: 9420045 PMCID: PMC164195 DOI: 10.1128/aac.41.12.2719] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A strain of Streptococcus agalactiae displayed resistance to 14-, 15-, and 16-membered macrolides. In PCR assays, total genomic DNA from this strain contained neither erm nor mef genes. EcoRI-digested genomic DNA from this strain was cloned into lambda Zap II to construct a library of S. agalactiae genomic DNA. A clone, pAES63, expressing resistance to erythromycin, azithromycin, and spiramycin in Escherichia coli was recovered. Deletion derivatives of pAES63 which defined a functional region on this clone that encoded resistance to 14- and 15-membered, but not 16-membered, macrolides were produced. Studies that determined the levels of incorporation of radiolabelled erythromycin into E. coli were consistent with the presence of a macrolide efflux determinant. This putative efflux determinant was distinct from the recently described Mef pump in Streptococcus pyogenes and Streptococcus pneumoniae and from the multicomponent MsrA pump in Staphylococcus aureus and coagulase-negative staphylococci. Its gene has been designated mreA (for macrolide resistance efflux).
Collapse
Affiliation(s)
- J Clancy
- Central Research Division, Pfizer, Inc., Groton, Connecticut 06340, USA
| | | | | | | |
Collapse
|