601
|
Nakamachi Y, Kawano S, Takenokuchi M, Nishimura K, Sakai Y, Chin T, Saura R, Kurosaka M, Kumagai S. MicroRNA-124a is a key regulator of proliferation and monocyte chemoattractant protein 1 secretion in fibroblast-like synoviocytes from patients with rheumatoid arthritis. ACTA ACUST UNITED AC 2009; 60:1294-304. [PMID: 19404929 DOI: 10.1002/art.24475] [Citation(s) in RCA: 245] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To elucidate the role of microRNA (miRNA) in the pathogenesis of rheumatoid arthritis (RA), we analyzed synoviocytes from RA patients for their miRNA expression. METHODS Synoviocytes derived from surgical specimens obtained from RA patients were compared with those obtained from osteoarthritis (OA) patients for their expression of a panel of 156 miRNA with quantitative stem-loop reverse transcription-polymerase chain reaction. The miRNA whose expression decreased or increased in RA synoviocytes as compared with OA synoviocytes were identified, and their target genes were predicted by computer analysis. We used an in vitro system of enhancing the expression of specific miRNA by transfection of precursors into synoviocytes, and then we performed proliferation, cell cycle, and apoptosis assays, as well as enzyme-linked immunosorbent assays for cytokine production. The effects of transfection on predicted target protein and messenger RNA (mRNA) were then examined by Western blot analysis and luciferase reporter assay. RESULTS We found that miR-124a levels significantly decreased in RA synoviocytes as compared with OA synoviocytes. Transfection of precursor miR-124a into RA synoviocytes significantly suppressed their proliferation and arrested the cell cycle at the G1 phase. We identified a putative consensus site for miR-124a binding in the 3'-untranslated region of cyclin-dependent kinase 2 (CDK-2) and monocyte chemoattractant protein 1 (MCP-1) mRNA. Induction of miR-124a in RA synoviocytes significantly suppressed the production of the CDK-2 and MCP-1 proteins. Luciferase reporter assay demonstrated that miR-124a specifically suppressed the reporter activity driven by the 3'-untranslated regions of CDK-2 and MCP-1 mRNA. CONCLUSION The results of this study suggest that miR-124a is a key miRNA in the posttranscriptional regulatory mechanisms of RA synoviocytes.
Collapse
Affiliation(s)
- Yuji Nakamachi
- Department of Clinical Laboratory, Kobe University Hospital, and Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
602
|
Barros SP, Offenbacher S. Epigenetics: connecting environment and genotype to phenotype and disease. J Dent Res 2009; 88:400-8. [PMID: 19493882 DOI: 10.1177/0022034509335868] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Genetic information is encoded not only by the linear sequence of DNA, but also by epigenetic modifications of chromatin structure that include DNA methylation and covalent modifications of the proteins that bind DNA. These "epigenetic marks" alter the structure of chromatin to influence gene expression. Methylation occurs naturally on cytosine bases at CpG sequences and is involved in controlling the correct expression of genes. DNA methylation is usually associated with triggering histone deacetylation, chromatin condensation, and gene silencing. Differentially methylated cytosines give rise to distinct patterns specific for each tissue type and disease state. Such methylation-variable positions (MVPs) are not uniformly distributed throughout our genome, but are concentrated among genes that regulate transcription, growth, metabolism, differentiation, and oncogenesis. Alterations in MVP methylation status create epigenetic patterns that appear to regulate gene expression profiles during cell differentiation, growth, and development, as well as in cancer. Environmental stressors including toxins, as well as microbial and viral exposures, can change epigenetic patterns and thereby effect changes in gene activation and cell phenotype. Since DNA methylation is often retained following cell division, altered MVP patterns in tissues can accumulate over time and can lead to persistent alterations in steady-state cellular metabolism, responses to stimuli, or the retention of an abnormal phenotype, reflecting a molecular consequence of gene-environment interaction. Hence, DNA epigenetics constitutes the main and previously missing link among genetics, disease, and the environment. The challenge in oral biology will be to understand the mechanisms that modify MVPs in oral tissues and to identify those epigenetic patterns that modify disease pathogenesis or responses to therapy.
Collapse
Affiliation(s)
- S P Barros
- Center for Oral and Systemic Diseases, Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill, Room 222, CB 7455, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
603
|
Abstract
Bladder cancers comprise heterogeneous cell populations, and numerous factors are likely to be involved in dictating recurrence, progression and patient survival. While several molecular markers that are used to evaluate the development and prognosis of bladder cancer have been studied, the limited value of these established markers has created the need for new molecular indicators of bladder cancer prognosis. Of particular interest is the silencing of tumor-suppressor genes by epigenetic alteration. Recent progress in understanding epigenetic modification and gene silencing has led to new opportunities for the understanding, detection, treatment and prevention of cancer. Moreover, epigenetic silencing of tumor-suppressor genes is interesting from a clinical standpoint, because of the possibility of reversing epigenetic changes and restoring gene function in a cell. This review focuses on the prognostic relevance of epigenetic markers in bladder cancer.
Collapse
Affiliation(s)
- Wun-Jae Kim
- 62, Kaeshin-dong, Heungduk-ku, Cheongju, Chungbuk, 361-711, South Korea.
| | | |
Collapse
|
604
|
Differential regulation of cyclin-dependent kinase 4 (CDK4) and CDK6, evidence that CDK4 might not be activated by CDK7, and design of a CDK6 activating mutation. Mol Cell Biol 2009; 29:4188-200. [PMID: 19487459 DOI: 10.1128/mcb.01823-08] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The homologous cyclin-dependent kinases (CDK) CDK4 and CDK6 integrate mitogenic and oncogenic signaling cascades with the cell cycle. Their activation requires binding to a D-type cyclin and then T-loop phosphorylation at T172 and T177 (respectively) by the only CDK-activating kinase identified in animal cells, cyclin H-CDK7. At odds with the existing data showing the constitutive activity of CDK7, we have recently identified the T172 phosphorylation of cyclin D-bound CDK4 as a crucial cell cycle regulatory target. Here we show that T172 phosphorylation of CDK4 is conditioned by its unique proline 173 residue. In contrast to CDK4, CDK6 does not contain such a proline and, unexpectedly, remained poorly phosphorylated and active in a variety of cells. Mutations of proline 173 did not adversely affect CDK4 activation by CDK7, but in cells they abolished CDK4 T172 phosphorylation and activity. Conversely, substituting a proline for the corresponding residue of CDK6 enforced its complete, apparently cyclin-independent T177 phosphorylation and dramatically increased its activity. These results lead us to propose that CDK4 might not be phosphorylated by CDK7 in intact cells but is more likely phosphorylated by another, presumably proline-directed kinase(s). Moreover, they provide a new model of a potentially oncogenic activating mutation of a CDK.
Collapse
|
605
|
Tabarés-Seisdedos R, Rubenstein JLR. Chromosome 8p as a potential hub for developmental neuropsychiatric disorders: implications for schizophrenia, autism and cancer. Mol Psychiatry 2009; 14:563-89. [PMID: 19204725 DOI: 10.1038/mp.2009.2] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Defects in genetic and developmental processes are thought to contribute susceptibility to autism and schizophrenia. Presumably, owing to etiological complexity identifying susceptibility genes and abnormalities in the development has been difficult. However, the importance of genes within chromosomal 8p region for neuropsychiatric disorders and cancer is well established. There are 484 annotated genes located on 8p; many are most likely oncogenes and tumor-suppressor genes. Molecular genetics and developmental studies have identified 21 genes in this region (ADRA1A, ARHGEF10, CHRNA2, CHRNA6, CHRNB3, DKK4, DPYSL2, EGR3, FGF17, FGF20, FGFR1, FZD3, LDL, NAT2, NEF3, NRG1, PCM1, PLAT, PPP3CC, SFRP1 and VMAT1/SLC18A1) that are most likely to contribute to neuropsychiatric disorders (schizophrenia, autism, bipolar disorder and depression), neurodegenerative disorders (Parkinson's and Alzheimer's disease) and cancer. Furthermore, at least seven nonprotein-coding RNAs (microRNAs) are located at 8p. Structural variants on 8p, such as copy number variants, microdeletions or microduplications, might also contribute to autism, schizophrenia and other human diseases including cancer. In this review, we consider the current state of evidence from cytogenetic, linkage, association, gene expression and endophenotyping studies for the role of these 8p genes in neuropsychiatric disease. We also describe how a mutation in an 8p gene (Fgf17) results in a mouse with deficits in specific components of social behavior and a reduction in its dorsomedial prefrontal cortex. We finish by discussing the biological connections of 8p with respect to neuropsychiatric disorders and cancer, despite the shortcomings of this evidence.
Collapse
Affiliation(s)
- R Tabarés-Seisdedos
- Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, CIBER-SAM, University of Valencia, Valencia, Spain.
| | | |
Collapse
|
606
|
Agirre X, Vilas-Zornoza A, Jiménez-Velasco A, Martin-Subero JI, Cordeu L, Gárate L, San José-Eneriz E, Abizanda G, Rodríguez-Otero P, Fortes P, Rifón J, Bandrés E, Calasanz MJ, Martín V, Heiniger A, Torres A, Siebert R, Román-Gomez J, Prósper F. Epigenetic silencing of the tumor suppressor microRNA Hsa-miR-124a regulates CDK6 expression and confers a poor prognosis in acute lymphoblastic leukemia. Cancer Res 2009; 69:4443-53. [PMID: 19435910 DOI: 10.1158/0008-5472.can-08-4025] [Citation(s) in RCA: 241] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Whereas transcriptional silencing of genes due to epigenetic mechanisms is one of the most important alterations in acute lymphoblastic leukemia (ALL), some recent studies indicate that DNA methylation contributes to down-regulation of miRNAs during tumorigenesis. To explore the epigenetic alterations of miRNAs in ALL, we analyzed the methylation and chromatin status of the miR-124a loci in ALL. Expression of miR-124a was down-regulated in ALL by hypermethylation of the promoter and histone modifications including decreased levels of 3mk4H3 and AcH3 and increased levels of 2mK9H3, 3mK9H3, and 3mK27H3. Epigenetic down-regulation of miR-124a induced an up-regulation of its target, CDK6, and phosphorylation of retinoblastoma (Rb) and contributed to the abnormal proliferation of ALL cells both in vitro and in vivo. Cyclin-dependent kinase 6 (CDK6) inhibition by sodium butyrate or PD-0332991 decreased ALL cell growth in vitro, whereas overexpression of pre-miR124a led to decreased tumorigenicity in a xenogeneic in vivo Rag2(-/-)gammac(-/-) mouse model. The clinical implications of these findings were analyzed in a group of 353 patients diagnosed with ALL. Methylation of hsa-miR-124a was observed in 59% of the patients, which correlated with down-regulation of miR-124a (P < 0.001). Furthermore, hypermethylation of hsa-miR-124a was associated with higher relapse rate (P = 0.001) and mortality rate (P < 0.001), being an independent prognostic factor for disease-free survival (P < 0.001) and overall survival (P = 0.005) in the multivariate analysis. These results provide the grounds for new therapeutic strategies in ALL either targeting the epigenetic regulation of microRNAs and/or directly targeting the CDK6-Rb pathway.
Collapse
Affiliation(s)
- Xabier Agirre
- Hematology Department and Area of Cell Therapy, Clinica Universitaria and Division of Gene Therapy and Hepatology, Foundation for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
607
|
miR-124 is frequently down-regulated in medulloblastoma and is a negative regulator of SLC16A1. Hum Pathol 2009; 40:1234-43. [PMID: 19427019 DOI: 10.1016/j.humpath.2009.02.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 02/11/2009] [Accepted: 02/12/2009] [Indexed: 12/12/2022]
Abstract
Given that miR-124 is preferentially expressed in differentiating and mature neurons and external granule cells of cerebellum are thought to be cells-of-origins of medulloblastomas, we investigated if miR-124 played a role in the development of medulloblastomas. Quantitative expression analysis of 29 medulloblastomas demonstrated significant down-regulation of miR-124 in 21 (72%) tumors by at least 2-fold, with 11 of them exhibiting greater than 10-fold reduced level compared to normal cerebella (P < .01). Ectopic expression of miR-124 in medulloblastoma cell lines, ONS-76 and DAOY, inhibited cell proliferation. Using computational and expression analyses, solute carrier family 16, member 1 (SLC16A1) was identified as a candidate target of miR-124. Transfection of miR-124 resulted in down-regulation of SLC16A1 at both transcript and protein levels. Reporter assay with 3' untranslated region of SLC16A1 cloned downstream of the luciferase gene showed reduced luciferase activity in the presence of miR-124, providing strong evidence that miR-124 is a direct regulator of SLC16A1. Expression analysis further revealed that SLC16A1 transcript was elevated in 26 (90%) of 29 tumors examined. Knockdown of SLC16A1 by siRNA induced cell death in medulloblastoma cells. SLC16A1 functions to efflux lactic acid during aerobic glycolysis. We speculated that inhibition of SLC16A1 function resulted in a decrease of intracellular pH to a lethal level. In conclusion, our study demonstrates that miR-124 deregulation is common in medulloblastomas, and restoration of its function inhibits cell proliferation, suggesting that miR-124 may act as a growth suppressor. Our findings also raise the possibility that the miR-124/SLC16A1 pathway may represent a novel therapeutic target for treatment of malignant medulloblastomas.
Collapse
|
608
|
Fujii YR. Oncoviruses and Pathogenic MicroRNAs in Humans. Open Virol J 2009; 3:37-51. [PMID: 19920887 PMCID: PMC2778015 DOI: 10.2174/1874357900903010037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 03/19/2009] [Accepted: 03/24/2009] [Indexed: 12/19/2022] Open
Abstract
For disease prognosis, the functional significance of the oncoviral integration locus in oncogenesis has remained enigmatic. The locus encodes several transcripts without protein products, but microRNAs (miRNAs) have recently been identified from a common oncoviral integration locus. miRNA is an endogenous, non-coding small RNA by which gene expression is suppressed. Although miRNA genes, such as let-7 in the nematode, have orthologs among animals, the relationship between miRNAs and tumorigenesis or tumor suppression has been mainly discovered in several human cancers. On the contrary, this review clearly demonstrates the potential for human tumorigenesis of both miRNA genes from oncoviral integration sites and other cellular onco-microRNA genes, and we conclude that alteration of the miRNA profile of cells can be defined as tumorigenic or tumor suppressive. Thus, we explain here that virally-pathogenic miRNAs could also be partly responsible for oncogenesis or oncogene suppression to confirm' the RNA wave', with the miRNAs hypothesized as a mobile and functional genetic element.
Collapse
|
609
|
Negrini M, Nicoloso MS, Calin GA. MicroRNAs and cancer--new paradigms in molecular oncology. Curr Opin Cell Biol 2009; 21:470-9. [PMID: 19411171 DOI: 10.1016/j.ceb.2009.03.002] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 02/25/2009] [Accepted: 03/24/2009] [Indexed: 12/18/2022]
Abstract
The 'classic' view of molecular oncology indicates that cancer is a genetic disease involving tumor suppressor and oncogenic proteins. However, in the recent years, it has been demonstrated that small regulatory non-coding RNAs (ncRNAs) named microRNAs (miRNAs) are involved in human tumorigenesis, thus revealing a new layer in the molecular architecture of human cancer. Gene expression studies revealed that hundreds of miRNAs are deregulated in cancer cells and functional studies clarified that miRNAs are involved in all the molecular and biological processes that drive tumorigenesis. Here, we summarize the recent advances in miRNA involvement in human cancer and illustrate the benefits of using these knowledge for medical practice. New diagnostic classifiers based on miRNAs will soon be available for medical practitioners and, even more importantly, miRNAs may become novel anti-cancer tools.
Collapse
Affiliation(s)
- Massimo Negrini
- Department of Experimental and Diagnostic Medicine, Interdepartment Center for Cancer Research, University of Ferrara, Ferrara 44100, Italy.
| | | | | |
Collapse
|
610
|
DeVere White RW, Vinall RL, Tepper CG, Shi XB. MicroRNAs and their potential for translation in prostate cancer. Urol Oncol 2009; 27:307-11. [PMID: 19414119 PMCID: PMC2761743 DOI: 10.1016/j.urolonc.2009.01.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Patients die of prostate cancer (CaP) because predictably after a period of response to androgen withdrawal, their CaP becomes castrate resistant. In this paper, we discuss the role that microRNAs (miRNAs) may play in this process. METHODS miRNAs are a group of endogenous, small non-coding RNA molecules that are thought to be responsible for the regulation of up to 30% of gene expression. The miRNA expression profile between androgen responsive and castrate resistant CaP cell lines is compared. Functional studies were carried out to identify the importance of the miRNA targets in controlling this process. RESULTS There were 17 differentially expressed miRNAs found, 10 up-regulated and 7 down-regulated. Among these, miRNA-125b was found to have the ability of rendering LNCaP cells resistant to androgen withdrawal. It was found to be androgen regulated and one of its targets, BAK1, was identified as being involved in how these CaP cells undergo apoptosis functionally. CONCLUSION miRNA-125b, at least in the CaP cell lines tested, is involved in the development of castrate resistance. While clearly this miRNA is only part of the answer, miRNAs may lead us in a new direction in trying to solve the central problem in CaP.
Collapse
Affiliation(s)
- Ralph W DeVere White
- Department of Urology, University of California, Davis, School of Medicine, Sacramento, CA 95817, USA.
| | | | | | | |
Collapse
|
611
|
Klinge CM. Estrogen Regulation of MicroRNA Expression. Curr Genomics 2009; 10:169-83. [PMID: 19881910 PMCID: PMC2705850 DOI: 10.2174/138920209788185289] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 02/18/2009] [Accepted: 03/16/2009] [Indexed: 02/07/2023] Open
Abstract
Women outlive men, but life expectancy is not influenced by hormone replacement (estrogen + progestin) therapy. Estrogens appear to protect brain, cardiovascular tissues, and bone from aging. Estrogens regulate genes directly through binding to estrogen receptors alpha and beta (ERalpha and ERbeta) that are ligand-activated transcription factors and indirectly by activating plasma membrane-associated ER which, in turns, activates intracellular signaling cascades leading to altered gene expression. MicroRNAs (miRNAs) are short (19-25 nucleotides), naturally-occurring, non-coding RNA molecules that base-pair with the 3' untranslated region of target mRNAs. This interaction either blocks translation of the mRNA or targets the mRNA transcript to be degraded. The human genome contains ~ 700-1,200 miRNAs. Aberrant patterns of miRNA expression are implicated in human diseases including breast cancer. Recent studies have identified miRNAs regulated by estrogens in human breast cancer cells, human endometrial stromal and myometrial smooth muscle cells, rat mammary gland, and mouse uterus. The decline of estradiol levels in postmenopausal women has been implicated in various age-associated disorders. The role of estrogen-regulated miRNA expression, the target genes of these miRNAs, and the role of miRNAs in aging has yet to be explored.
Collapse
Affiliation(s)
- Carolyn M Klinge
- />Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| |
Collapse
|
612
|
Zhu Z, Gao W, Qian Z, Miao Y. Genetic variation of miRNA sequence in pancreatic cancer. Acta Biochim Biophys Sin (Shanghai) 2009; 41:407-13. [PMID: 19430705 DOI: 10.1093/abbs/gmp023] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs of 20-22 nucleotides (nts) and constitute a novel class of gene regulators that negatively regulate gene expression at the post-transcriptional level. The expression of miRNA is deregulated in many types of cancers. Alterations in miRNA expression may be an important contributor to the development of pancreatic carcinoma. We hypothesized that genetic variations in miRNA genes were associated with pancreatic carcinoma and analyzed genomic sequences coding for the precursors of eight miRNA genes in both pancreatic carcinoma tissues and cancer cell lines. Four novel mutations in primary miRNA transcripts were identified. TaqMan miRNA assays showed that miR-21 was significantly overexpressed in 20 pancreatic carcinomas and 6 cancer cell lines compared with paired benign tissues and normal pancreas. Two mutations of miR-21 did not notably alter the activity of the promoter of the miRNA gene. Although most of these mutations seem to have no effect on miRNA processing, an A-G mutation at 29-nt downstream of pre-miR-21 led to a conformational change of the secondary structure close to the stem reaching into the pre-miR-21 and a relative reduction of the mature miR-21 expression in vivo. These results suggested that miRNA might play an important role in pancreatic tumorigenesis, but the molecular mechanism underlying the particular sequence variations in miRNA that can cause aberrant expression remains to be determined.
Collapse
Affiliation(s)
- Zheng Zhu
- Department of General Surgery, The First Clinic Medical College of Nanjing Medical University, Nanjing, China
| | | | | | | |
Collapse
|
613
|
Lee KH, Lotterman C, Karikari C, Omura N, Feldmann G, Habbe N, Goggins MG, Mendell JT, Maitra A. Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 2009; 9:293-301. [PMID: 19407485 PMCID: PMC2835374 DOI: 10.1159/000186051] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Accepted: 12/04/2008] [Indexed: 12/11/2022]
Abstract
Aberrant expression of microRNAs (miRNAs) has emerged as an important hallmark of cancer. However, the putative mechanisms regulating miRNAs per se are only partially known. It is well established that many tumor suppressor genes in human cancers are silenced by chromatin alterations, including promoter methylation and histone deacetylation. We postulated that miRNAs undergo similar epigenetic inactivation in pancreatic cancer. Two human pancreatic cancer cell lines - MiaPACA-2 and PANC-1 - were treated with the demethylating agent, 5-aza-2'-deoxycytidine (5-Aza-dC) or the histone deacetylase inhibitor, trichostatin A, as well as the combination of the two. Expression of miRNAs in control and treated cell lines was assessed using a custom microarray platform. Fourteen miRNAs were upregulated two-fold or greater in each of the cell lines following exposure to both chromatin-modifying agents, including 5 that were in common (miR-107, miR-103, miR-29a, miR-29b, and miR-320) to both MiaPACA-2 and PANC-1. The differential overexpression of miR-107 in the treated cancer cell lines was confirmed by Northern blot assays. Methylation-specific PCR assays for assessment of CpG island methylation status in the 5' promoter region of the miR-107 primary transcript demonstrated complete loss of methylation upon exposure to 5-Aza-dC. Enforced expression of miR-107 in MiaPACA-2 and PANC-1 cells downregulated in vitro growth, and this was associated with repression of the putative miR-107 target, cyclin-dependent kinase 6, thereby providing a functional basis for the epigenetic inactivation of this miRNA in pancreatic cancer.
Collapse
Affiliation(s)
- Kwang-Hyuck Lee
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Gastroenterology, Sung Kyun Kwan University School of Medicine, Seoul, South Korea
| | - Craig Lotterman
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Pediatrics, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Collins Karikari
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Noriyuki Omura
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Georg Feldmann
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Nils Habbe
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Michael G. Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Joshua T. Mendell
- Department of Molecular Biology and Genetics, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| | - Anirban Maitra
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Md., USA
- Department of McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Md., USA
| |
Collapse
|
614
|
Ando T, Yoshida T, Enomoto S, Asada K, Tatematsu M, Ichinose M, Sugiyama T, Ushijima T. DNA methylation of microRNA genes in gastric mucosae of gastric cancer patients: its possible involvement in the formation of epigenetic field defect. Int J Cancer 2009; 124:2367-74. [PMID: 19165869 DOI: 10.1002/ijc.24219] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Accumulation of aberrant DNA methylation in normal-appearing gastric mucosae, mostly induced by H. pylori infection, is now known to be deeply involved in predisposition to gastric cancers (epigenetic field defect), and silencing of protein-coding genes has been analyzed so far. In this study, we aimed to clarify the involvement of microRNA (miRNA) gene silencing in the field defect. First, we selected three miRNA genes as methylation-silenced after analysis of six candidate "methylation-silenced" tumor-suppressor miRNA genes. Methylation levels of the three genes (miR-124a-1, miR-124a-2 and miR-124a-3) were quantified in 56 normal gastric mucosae of healthy volunteers (28 volunteers with H. pylori and 28 without), 45 noncancerous gastric mucosae of gastric cancer patients (29 patients with H. pylori and 16 without), and 28 gastric cancer tissues (13 intestinal and 15 diffuse types). Among the healthy volunteers, individuals with H. pylori had 7.8-13.1-fold higher methylation levels than those without (p < 0.001). Among individuals without H. pylori, noncancerous gastric mucosae of gastric cancer patients had 7.2-15.5-fold higher methylation levels than gastric mucosae of healthy volunteers (p < 0.005). Different from protein-coding genes, individuals with past H. pylori infection retained similar methylation levels to those with current infection. In cancer tissues, methylation levels were highly variable, and no difference was observed between intestinal and diffuse histological types. This strongly indicated that methylation-silencing of miRNA genes, in addition to that of protein-coding genes, contributed to the formation of a field defect for gastric cancers.
Collapse
Affiliation(s)
- Takayuki Ando
- Carcinogenesis Division, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
615
|
Abstract
There is emerging evidence of the production in human tumors of abnormal levels of microRNAs (miRNAs), which have been assigned oncogenic and/or tumor-suppressor functions. While some miRNAs commonly exhibit altered amounts across tumors, more often, different tumor types produce unique patterns of miRNAs, related to their tissue of origin. The role of miRNAs in tumorigenesis underscores their value as mechanism-based therapeutic targets in cancer. Similarly, unique patterns of altered levels of miRNA production provide fingerprints that may serve as molecular biomarkers for tumor diagnosis, classification, prognosis of disease-specific outcomes and prediction of therapeutic responses.
Collapse
Affiliation(s)
- Scott A. Waldman
- Departments of Pharmacology and Experimental Therapeutics and Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Andre Terzic
- Departments of Medicine, Molecular Pharmacology & Experimental Therapeutics, and Medical Genetics, Mayo Clinic, Rochester, MN
| |
Collapse
|
616
|
Abstract
BACKGROUND Personalized medicine is the provision of focused prevention, detection, prognostic, and therapeutic efforts according to an individual's genetic composition. The actualization of personalized medicine will require combining a patient's conventional clinical data with bioinformatics-based molecular-assessment profiles. This synergistic approach offers tangible benefits, such as heightened specificity in the molecular classification of cancer subtypes, improved prognostic accuracy, targeted development of new therapies, novel applications for old therapies, and tailored selection and delivery of chemotherapeutics. CONTENT Our ability to personalize cancer management is rapidly expanding through biotechnological advances in the postgenomic era. The platforms of genomics, proteomics, single-nucleotide polymorphism profiling and haplotype mapping, high-throughput genomic sequencing, and pharmacogenomics constitute the mechanisms for the molecular assessment of a patient's tumor. The complementary data derived during these assessments is processed through bioinformatics analysis to offer unique insights for linking expression profiles to disease detection, tumor response to chemotherapy, and patient survival. Together, these approaches permit improved physician capacity to assess risk, target therapies, and tailor a chemotherapeutic treatment course. SUMMARY Personalized medicine is poised for rapid growth as the insights provided by new bioinformatics models are integrated with current procedures for assessing and treating cancer patients. Integration of these biological platforms will require refinement of tissue-processing and analysis techniques, particularly in clinical pathology, to overcome obstacles in customizing our ability to treat cancer.
Collapse
Affiliation(s)
- Jonathan B. Overdevest
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, VA
| | - Dan Theodorescu
- Department of Molecular Physiology and Biological Physics, University of Virginia Health Sciences Center, Charlottesville, VA
| | - Jae K. Lee
- Department of Public Health Sciences, University of Virginia Health Sciences Center, Charlottesville, VA
| |
Collapse
|
617
|
Applying the molecular biology and epigenetics of head and neck cancer in everyday clinical practice. Oral Oncol 2009; 45:440-6. [DOI: 10.1016/j.oraloncology.2008.05.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
618
|
|
619
|
Zhang H, Chen Y. New insight into the role of miRNAs in leukemia. ACTA ACUST UNITED AC 2009; 52:224-31. [PMID: 19294347 DOI: 10.1007/s11427-009-0036-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 11/28/2008] [Indexed: 12/11/2022]
Abstract
Recent studies have shown that microRNAs(miRNAs) play an important role in cell differentiation, growth, and death, including the functional study of miRNAs in tumorigenesis. To date, miRNA expression profiles in many types of cancers have been identified and miRNA expression signatures associated with types and cytogenetics of leukemia have also been reported. Increasing evidence has shown that miRNAs could function as either tumor suppressors or oncogenes in cancers such as leukemia, while other miRNAs might be benefitcial for diagnosis and prognosis, predicted to be newly developed biomarkers. In this review, we summarize the recent progress about miRNAs in leukemia and present a miRNA-mediated network involved in differentiation, proliferation and apoptosis predicted to be the roles of miRNAs in the pathogenesis of leukemia.
Collapse
Affiliation(s)
- Hua Zhang
- Key Laboratory of Genetic Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, Sun Yan-Sen University, Guangzhou, 510275, China
| | | |
Collapse
|
620
|
Abstract
The reduced expression of nuclear factor of activated T cells-1 (NFAT1) protein in umbilical cord blood (UCB)-derived CD4+ T cells and the corresponding reduction in inflammatory cytokine secretion after stimulation in part underlies their phenotypic differences from adult blood (AB) CD4+ T cells. This muted response may contribute to the lower incidence and severity of high-grade acute graft-versus-host disease (aGVHD) exhibited by UCB grafts. Here we provide evidence that a specific microRNA, miR-184, inhibits NFAT1 protein expression elicited by UCB CD4+ T cells. Endogenous expression of miR-184 in UCB is 58.4-fold higher compared with AB CD4+ T cells, and miR-184 blocks production of NFAT1 protein through its complementary target sequence on the NFATc2 mRNA without transcript degradation. Furthermore, its negative effects on NFAT1 protein and downstream interleukin-2 (IL-2) transcription are reversed through antisense blocking in UCB and can be replicated via exogenous transfection of precursor miR-184 into AB CD4+ T cells. Our findings reveal a previously uncharacterized role for miR-184 in UCB CD4+ T cells and a novel function for microRNA in the early adaptive immune response.
Collapse
|
621
|
Wickramasinghe NS, Manavalan TT, Dougherty SM, Riggs KA, Li Y, Klinge CM. Estradiol downregulates miR-21 expression and increases miR-21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Res 2009; 37:2584-95. [PMID: 19264808 PMCID: PMC2677875 DOI: 10.1093/nar/gkp117] [Citation(s) in RCA: 287] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Select changes in microRNA (miRNA) expression correlate with estrogen receptor α (ERα) expression in breast tumors. miR-21 is higher in ERα positive than negative tumors, but no one has examined how estradiol (E2) regulates miR-21 in breast cancer cells. Here we report that E2 inhibits miR-21 expression in MCF-7 human breast cancer cells. The E2-induced reduction in miR-21 was inhibited by 4-hydroxytamoxifen (4-OHT), ICI 182 780 (Faslodex), and siRNA ERα indicating that the suppression is ERα-mediated. ERα and ERβ agonists PPT and DPN inhibited and 4-OHT increased miR-21 expression. E2 increased luciferase activity from reporters containing the miR-21 recognition elements from the 3′-UTRs of miR-21 target genes, corroborating that E2 represses miR-21 expression resulting in a loss of target gene suppression. The E2-mediated decrease in miR-21 correlated with increased protein expression of endogenous miR-21-targets Pdcd4, PTEN and Bcl-2. siRNA knockdown of ERα blocked the E2-induced increase in Pdcd4, PTEN and Bcl-2. Transfection of MCF-7 cells with antisense (AS) to miR-21 mimicked the E2-induced increase in Pdcd4, PTEN and Bcl-2. These results are the first to demonstrate that E2 represses the expression of an oncogenic miRNA, miR-21, by activating estrogen receptor in MCF-7 cells.
Collapse
Affiliation(s)
- Nalinie S Wickramasinghe
- Department of Biochemistry & Molecular Biology, Center for Genetics and Molecular Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | | | | | | | | | | |
Collapse
|
622
|
Suzuki M, Yoshino I. Identification of microRNAs caused by DNA methylation that induce metastasis. Future Oncol 2009; 4:775-7. [PMID: 19086843 DOI: 10.2217/14796694.4.6.775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Metastasis is a common feature in advanced cancers. To elucidate the mechanism underlying metastasis from analysis of primary disease would have substantial clinical benefit. MicroRNAs (miRNAs) have started a revolution in molecular biology, and emerged as key players in carcinogenesis. They have been identified in various tumor types, showing that different sets of miRNAs are usually deregulated in different cancers. Moreover, some miRNAs are aberrantly methylated and silenced, causing tumorigenesis. In the paper evaluated, the authors identified aberrantly methylated and silenced miRNAs that are cancer-specific using miRNA microarray techniques. Functional analyses for the selected genes proved that these miRNAs act on C-MYC, E2F3, CDK6 and TGIF2, resulting in metastasis through aberrant methylation of the miRNAs. These findings may have broad implications for mechanisms underlying metastasis in malignancies, and may be applicable to advance research in the clinical setting.
Collapse
Affiliation(s)
- Makoto Suzuki
- Department of Thoracic Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | | |
Collapse
|
623
|
Fernandez AF, Rosales C, Lopez-Nieva P, Graña O, Ballestar E, Ropero S, Espada J, Melo SA, Lujambio A, Fraga MF, Pino I, Javierre B, Carmona FJ, Acquadro F, Steenbergen RD, Snijders PJ, Meijer CJ, Pineau P, Dejean A, Lloveras B, Capella G, Quer J, Buti M, Esteban JI, Allende H, Rodriguez-Frias F, Castellsague X, Minarovits J, Ponce J, Capello D, Gaidano G, Cigudosa JC, Gomez-Lopez G, Pisano DG, Valencia A, Piris MA, Bosch FX, Cahir-McFarland E, Kieff E, Esteller M. The dynamic DNA methylomes of double-stranded DNA viruses associated with human cancer. Genes Dev 2009; 19:438-451. [PMID: 19208682 PMCID: PMC2661803 DOI: 10.1101/gr.083550.108] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 12/05/2008] [Indexed: 02/07/2023]
Abstract
The natural history of cancers associated with virus exposure is intriguing, since only a minority of human tissues infected with these viruses inevitably progress to cancer. However, the molecular reasons why the infection is controlled or instead progresses to subsequent stages of tumorigenesis are largely unknown. In this article, we provide the first complete DNA methylomes of double-stranded DNA viruses associated with human cancer that might provide important clues to help us understand the described process. Using bisulfite genomic sequencing of multiple clones, we have obtained the DNA methylation status of every CpG dinucleotide in the genome of the Human Papilloma Viruses 16 and 18 and Human Hepatitis B Virus, and in all the transcription start sites of the Epstein-Barr Virus. These viruses are associated with infectious diseases (such as hepatitis B and infectious mononucleosis) and the development of human tumors (cervical, hepatic, and nasopharyngeal cancers, and lymphoma), and are responsible for 1 million deaths worldwide every year. The DNA methylomes presented provide evidence of the dynamic nature of the epigenome in contrast to the genome. We observed that the DNA methylome of these viruses evolves from an unmethylated to a highly methylated genome in association with the progression of the disease, from asymptomatic healthy carriers, through chronically infected tissues and pre-malignant lesions, to the full-blown invasive tumor. The observed DNA methylation changes have a major functional impact on the biological behavior of the viruses.
Collapse
Affiliation(s)
- Agustin F. Fernandez
- Cancer Epigenetics Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
- Cancer Epigenetics and Biology Program, Bellvitge Institute for Biomedical Research-Catalan Institute of Oncology (IDIBELL-ICO), Barcelona, Catalonia 08907, Spain
| | - Cecilia Rosales
- Cancer Epigenetics Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Pilar Lopez-Nieva
- Cancer Epigenetics Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Osvaldo Graña
- Bioinformatics Unit and Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, Madrid E-28029, Spain
| | - Esteban Ballestar
- Cancer Epigenetics Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Santiago Ropero
- Cancer Epigenetics Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Jesus Espada
- Cancer Epigenetics Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Sonia A. Melo
- Cancer Epigenetics Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Amaia Lujambio
- Cancer Epigenetics Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Mario F. Fraga
- Cancer Epigenetics Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Irene Pino
- Cancer Epigenetics Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Biola Javierre
- Cancer Epigenetics Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
| | - Francisco J. Carmona
- Cancer Epigenetics Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
- Cancer Epigenetics and Biology Program, Bellvitge Institute for Biomedical Research-Catalan Institute of Oncology (IDIBELL-ICO), Barcelona, Catalonia 08907, Spain
| | - Francesco Acquadro
- Molecular Cytogenetics Group and CIBERER, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid E-28029, Spain
| | - Renske D.M. Steenbergen
- Department of Pathology, Unit of Molecular Pathology, Vrije Universiteit Medical Center, Amsterdam 1007 MB, The Netherlands
| | - Peter J.F. Snijders
- Department of Pathology, Unit of Molecular Pathology, Vrije Universiteit Medical Center, Amsterdam 1007 MB, The Netherlands
| | - Chris J. Meijer
- Department of Pathology, Unit of Molecular Pathology, Vrije Universiteit Medical Center, Amsterdam 1007 MB, The Netherlands
| | - Pascal Pineau
- Nuclear Organization and Oncogenesis Unit, INSERM U579, Pasteur Institute, Paris 75724, France
| | - Anne Dejean
- Nuclear Organization and Oncogenesis Unit, INSERM U579, Pasteur Institute, Paris 75724, France
| | - Belen Lloveras
- Translational Research Laboratory, Catalan Institute of Oncology (ICO), Barcelona, Catalonia 08907, Spain
| | - Gabriel Capella
- Translational Research Laboratory, Catalan Institute of Oncology (ICO), Barcelona, Catalonia 08907, Spain
| | - Josep Quer
- Liver Unit, Department of Medicine, Hospital Vall Hebron, and Universitat Autonoma Barcelona and CIBEREHD, Barcelona 08035, Spain
| | - Maria Buti
- Liver Unit, Department of Medicine, Hospital Vall Hebron, and Universitat Autonoma Barcelona and CIBEREHD, Barcelona 08035, Spain
| | - Juan-Ignacio Esteban
- Liver Unit, Department of Medicine, Hospital Vall Hebron, and Universitat Autonoma Barcelona and CIBEREHD, Barcelona 08035, Spain
| | - Helena Allende
- Pathology Department, Hospital Vall Hebron, Barcelona 08035, Spain
| | | | - Xavier Castellsague
- Service of Epidemiology and Cancer Register, Catalan Institute of Oncology (ICO), Barcelona, Catalonia 08907, Spain
| | - Janos Minarovits
- Microbiological Reseach Group, National Center for Epidemiology, Budapest 1529, Hungary
| | - Jordi Ponce
- Service of Gynecology, Hospital Universitari de Bellvitge, L'Hospitalet, Catalonia 08907, Spain
| | - Daniela Capello
- Division of Hematology, Department of Clinical and Experimental Medicine and Department of Oncology, Amedeo Avogadro University of Eastern Piedmont, Vercelli, Alessandria, Novara 13100, Italy
| | - Gianluca Gaidano
- Division of Hematology, Department of Clinical and Experimental Medicine and Department of Oncology, Amedeo Avogadro University of Eastern Piedmont, Vercelli, Alessandria, Novara 13100, Italy
| | - Juan Cruz Cigudosa
- Molecular Cytogenetics Group and CIBERER, Human Cancer Genetics Programme, Spanish National Cancer Research Centre, Madrid E-28029, Spain
| | - Gonzalo Gomez-Lopez
- Bioinformatics Unit and Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, Madrid E-28029, Spain
- Biomedical Foundation Complexo Hospitalario, Universitario de Vigo (CHUVI), Vigo 36211, Spain
| | - David G. Pisano
- Bioinformatics Unit and Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, Madrid E-28029, Spain
| | - Alfonso Valencia
- Bioinformatics Unit and Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre, Madrid E-28029, Spain
| | - Miguel Angel Piris
- Lymphoma Group, Molecular Pathology Programme, Spanish National Cancer Research Centre, Madrid E-28029, Spain
| | - Francesc X. Bosch
- Service of Epidemiology and Cancer Register, Catalan Institute of Oncology (ICO), Barcelona, Catalonia 08907, Spain
| | - Ellen Cahir-McFarland
- Departments of Medicine, Microbiology, and Molecular Genetics, Harvard University, Boston, Massachusetts 02115, USA
| | - Elliott Kieff
- Departments of Medicine, Microbiology, and Molecular Genetics, Harvard University, Boston, Massachusetts 02115, USA
- Infectious Disease Division, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Manel Esteller
- Cancer Epigenetics Group, Spanish National Cancer Research Centre (CNIO), Madrid E-28029, Spain
- Cancer Epigenetics and Biology Program, Bellvitge Institute for Biomedical Research-Catalan Institute of Oncology (IDIBELL-ICO), Barcelona, Catalonia 08907, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| |
Collapse
|
624
|
A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet 2009; 41:365-70. [PMID: 19219043 DOI: 10.1038/ng.317] [Citation(s) in RCA: 282] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 12/22/2008] [Indexed: 12/13/2022]
Abstract
microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression by targeting messenger RNA (mRNA) transcripts. Recently, a miRNA expression profile of human tumors has been characterized by an overall miRNA downregulation. Explanations for this observation include a failure of miRNA post-transcriptional regulation, transcriptional silencing associated with hypermethylation of CpG island promoters and miRNA transcriptional repression by oncogenic factors. Another possibility is that the enzymes and cofactors involved in miRNA processing pathways may themselves be targets of genetic disruption, further enhancing cellular transformation. However, no loss-of-function genetic alterations in the genes encoding these proteins have been reported. Here we have identified truncating mutations in TARBP2 (TAR RNA-binding protein 2), encoding an integral component of a DICER1-containing complex, in sporadic and hereditary carcinomas with microsatellite instability. The presence of TARBP2 frameshift mutations causes diminished TRBP protein expression and a defect in the processing of miRNAs. The reintroduction of TRBP in the deficient cells restores the efficient production of miRNAs and inhibits tumor growth. Most important, the TRBP impairment is associated with a destabilization of the DICER1 protein. These results provide, for a subset of human tumors, an explanation for the observed defects in the expression of mature miRNAs.
Collapse
|
625
|
Agirre X, Jiménez-Velasco A, San José-Enériz E, Garate L, Bandrés E, Cordeu L, Aparicio O, Saez B, Navarro G, Vilas-Zornoza A, Pérez-Roger I, García-Foncillas J, Torres A, Heiniger A, Calasanz MJ, Fortes P, Román-Gómez J, Prósper F. Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol Cancer Res 2009; 6:1830-40. [PMID: 19074828 DOI: 10.1158/1541-7786.mcr-08-0167] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
MicroRNAs (miRNA) are small noncoding, single-stranded RNAs that inhibit gene expression at a posttranscriptional level, whose abnormal expression has been described in different tumors. The aim of our study was to identify miRNAs potentially implicated in chronic myeloid leukemia (CML). We detected an abnormal miRNA expression profile in mononuclear and CD34(+) cells from patients with CML compared with healthy controls. Of 157 miRNAs tested, hsa-miR-10a, hsa-miR-150, and hsa-miR-151 were down-regulated, whereas hsa-miR-96 was up-regulated in CML cells. Down-regulation of hsa-miR-10a was not dependent on BCR-ABL1 activity and contributed to the increased cell growth of CML cells. We identified the upstream stimulatory factor 2 (USF2) as a potential target of hsa-miR-10a and showed that overexpression of USF2 also increases cell growth. The clinical relevance of these findings was shown in a group of 85 newly diagnosed patients with CML in which expression of hsa-miR-10a was down-regulated in 71% of the patients, whereas expression of USF2 was up-regulated in 60% of the CML patients, with overexpression of USF2 being significantly associated with decreased expression of hsa-miR-10a (P = 0.004). Our results indicate that down-regulation of hsa-miR-10a may increase USF2 and contribute to the increase in cell proliferation of CML implicating a miRNA in the abnormal behavior of CML.
Collapse
Affiliation(s)
- Xabier Agirre
- Foundation for Applied Medical Research, Division of Cancer, Clínica Universitaria, University of Navarre, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
626
|
Asirvatham AJ, Magner WJ, Tomasi TB. miRNA regulation of cytokine genes. Cytokine 2009; 45:58-69. [PMID: 19121586 PMCID: PMC3129852 DOI: 10.1016/j.cyto.2008.11.010] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 10/23/2008] [Accepted: 11/19/2008] [Indexed: 12/19/2022]
Abstract
In this review we discuss specific examples of regulation of cytokine genes and focus on a new mechanism involving post-transcriptional regulation via miRNAs. The post-transcriptional regulation of cytokine genes via the destabilizing activity of AU-rich elements [AREs] and miRNAs is a pre-requisite for regulating the half-life of many cytokines and achieving the temporal and spatial distributions required for regulation of these genes.
Collapse
Affiliation(s)
- Ananthi J. Asirvatham
- Roswell Park Cancer Institute, Laboratory of Molecular Medicine, Department of Immunology, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - William J. Magner
- Roswell Park Cancer Institute, Laboratory of Molecular Medicine, Department of Immunology, Elm & Carlton Streets, Buffalo, NY 14263, USA
| | - Thomas B. Tomasi
- Roswell Park Cancer Institute, Laboratory of Molecular Medicine, Department of Immunology, Elm & Carlton Streets, Buffalo, NY 14263, USA
- Departments of Medicine and Microbiology & Immunology, State University of New York, School of Medicine and Biomedical Sciences, Buffalo, NY 14214, USA
| |
Collapse
|
627
|
Affiliation(s)
- Ramiro Garzon
- Department of Medicine and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210
| | - George A. Calin
- Department of Experimental Therapeutics, University of Texas, MD Anderson Cancer Center, Houston, Texas 77020
| | - Carlo M. Croce
- Department of Molecular Virology, Immunology and Medical Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
628
|
Laurenzana A, Petruccelli LA, Pettersson F, Figueroa ME, Melnick A, Baldwin AS, Paoletti F, Miller WH. Inhibition of DNA methyltransferase activates tumor necrosis factor alpha-induced monocytic differentiation in acute myeloid leukemia cells. Cancer Res 2009; 69:55-64. [PMID: 19117987 DOI: 10.1158/0008-5472.can-08-0245] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcriptional silencing via promoter methylation of genes important for cell growth and differentiation plays a key role in myeloid leukemogenesis. We find that clinically achievable levels of 5-aza-2'-deoxycytidine (5-AZA-dC), a potent inhibitor of DNA methylation, can modify chromatin and restore the ability of tumor necrosis factor alpha (TNFalpha) to induce monocytic differentiation of the acute myeloid leukemia cells NB4 and U937. Although 5-AZA-dC cannot fully induce differentiation, we show that 5-AZA-dC acts directly on TNFalpha-responsive promoters to facilitate TNFalpha-induced transcriptional pathways leading to differentiation. 5-AZA-dC regulates the expression of Dif-2, a TNFalpha target gene, by deacetylating chromatin domains in a methylation-dependent manner. Chromatin immunoprecipitation analyses of the Dif-2 promoter show histone hyperacetylation and a recruitment of the nuclear factor-kappaB transcription factor in response to 5-AZA-dC. Furthermore, 5-AZA-dC plus TNFalpha enhances the level of phosphorylated RNA Pol II at the Dif-2 promoter via synergistic recruitment of TFIIH. We conclude that nonspecific changes in chromatin can allow a specific transcriptional inducer to overcome blocks in leukemic cell differentiation. Our results support the concept of low doses of 5-AZA-dC acting in combination with other agents to target epigenetic changes that drive malignant growth in leukemic cells. [Cancer Res 2009;69(1):55-64].
Collapse
Affiliation(s)
- Anna Laurenzana
- Segal Cancer Center and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, McGill University, 3755 Côte Ste-Catherine Road, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
629
|
Roman-Gomez J, Agirre X, Jiménez-Velasco A, Arqueros V, Vilas-Zornoza A, Rodriguez-Otero P, Martin-Subero I, Garate L, Cordeu L, San José-Eneriz E, Martin V, Castillejo JA, Bandrés E, Calasanz MJ, Siebert R, Heiniger A, Torres A, Prosper F. Epigenetic regulation of microRNAs in acute lymphoblastic leukemia. J Clin Oncol 2009; 27:1316-22. [PMID: 19164206 DOI: 10.1200/jco.2008.19.3441] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To identify microRNAs (miRNAs) epigenetically regulated in acute lymphoblastic leukemia (ALL). METHODS We first examined ALL-derived cell lines for the presence of abnormal levels of two different histone modifications (trimethylation of H3 lysine 4 [K4H3me3] and dimethylation of H3 lysine 9 [K9H3me2]) in the 5'UTR regions around CpG islands of 78 miRNAs by chromatin immunoprecipitation (ChIP)-on-ChIP analysis. Methylation status (methylation-specific polymerase chain reaction [PCR]) and expression (quantitative PCR) of miRNAs showing a pattern of histone modifications linked to a closed chromatin structure were analyzed in a panel of six ALL cell lines and in 353 ALL patients. RESULTS CpG islands around 13 miRNAs disclosed high levels of K9H3me2 and/or low levels of K4H3me3, a pattern of histone modifications underlying a closed chromatin structure associated with repressive gene expression. Complete consistency in the correlation between both histone marks, the presence of DNA methylation around these miRNAs, and their expression patterns was confirmed in the six ALL cell lines. Treatment with 5-Aza-2'-deoxycytidine upregulated the expression levels of these genes, suggesting that epigenetic mechanisms deregulate the expression of these miRNAs. A total of 65% of the ALL samples had at least one miRNA methylated (methylated group). Estimated disease-free survival (DFS) and overall survival (OS) at 14 years were 78% and 71% for nonmethylated patients and 24% and 28% for methylated patients (P = .00001 for both). Multivariate analysis demonstrated that methylation profile was an independent prognostic factor for predicting DFS (P = .0001) and OS (P = .0001). CONCLUSION Aberrant miRNA methylation is a common phenomenon in ALL that affects the clinical outcome of these patients.
Collapse
Affiliation(s)
- Jose Roman-Gomez
- Hematology Department. Reina Sofia Hospital. Avda. Menendez Pidal s/n. 14004 Cordoba. Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
630
|
Lleonart ME, Artero-Castro A, Kondoh H. Senescence induction; a possible cancer therapy. Mol Cancer 2009; 8:3. [PMID: 19133111 PMCID: PMC2631463 DOI: 10.1186/1476-4598-8-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 01/08/2009] [Indexed: 12/13/2022] Open
Abstract
Cellular immortalization is a crucial step during the development of human cancer. Primary mammalian cells reach replicative exhaustion after several passages in vitro, a process called replicative senescence. During such a state of permanent growth arrest, senescent cells are refractory to physiological proliferation stimuli: they have altered cell morphology and gene expression patterns, although they remain viable with preserved metabolic activity. Interestingly, senescent cells have also been detected in vivo in human tumors, particularly in benign lesions. Senescence is a mechanism that limits cellular lifespan and constitutes a barrier against cellular immortalization. During immortalization, cells acquire genetic alterations that override senescence. Tumor suppressor genes and oncogenes are closely involved in senescence, as their knockdown and ectopic expression confer immortality and senescence induction, respectively. By using high throughput genetic screening to search for genes involved in senescence, several candidate oncogenes and putative tumor suppressor genes have been recently isolated, including subtypes of micro-RNAs. These findings offer new perspectives in the modulation of senescence and open new approaches for cancer therapy.
Collapse
Affiliation(s)
- Matilde E Lleonart
- Pathology Department, Fundació Institut de Recerca Hospital Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain.
| | | | | |
Collapse
|
631
|
Bearfoot JL, Choong DYH, Gorringe KL, Campbell IG. Genetic analysis of cancer-implicated MicroRNA in ovarian cancer. Clin Cancer Res 2009; 14:7246-50. [PMID: 19010840 DOI: 10.1158/1078-0432.ccr-08-1348] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE There is accumulating evidence that microRNAs may function like classic tumor suppressor genes but little is known about their mechanism of inactivation in cancer cells. We investigated whether somatic mutations are a common mechanism of inactivation of microRNA genes in ovarian cancer. EXPERIMENTAL DESIGN Ten cancer-implicated microRNA genes were analyzed for somatic mutations in 90 ovarian epithelial cancers and matching normal DNA. High-resolution melt analysis and bidirectional sequencing was used to detect sequence variations. RESULTS High-resolution melt analysis and direct sequencing did not identify any somatic mutations but did reveal numerous novel and previously reported germ line base substitutions, deletions, and insertions surrounding the mature microRNA sequences. The majority of variants were detected in the same proportion of non-cancer control individuals suggesting that they do not represent ovarian cancer-predisposing alleles. CONCLUSION The absence of somatic mutations in any of the 10 cancer-implicated microRNAs in our large cohort of ovarian tumors suggests that this may be an uncommon mechanism of inactivation of microRNAs in ovarian cancer.
Collapse
Affiliation(s)
- Jennifer L Bearfoot
- VBCRC Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, East Melbourne, Australia
| | | | | | | |
Collapse
|
632
|
|
633
|
Sonkoly E, Pivarcsi A. Advances in microRNAs: implications for immunity and inflammatory diseases. J Cell Mol Med 2009; 13:24-38. [PMID: 19175698 PMCID: PMC3823034 DOI: 10.1111/j.1582-4934.2008.00534.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Accepted: 10/01/2008] [Indexed: 12/19/2022] Open
Abstract
Since their discovery in 1993 and the introduction of the term microRNA in 2001, it has become evident that microRNAs (miRNAs) involved in many biological processes, including development, differentiation, proliferation and apoptosis. The function of miRNA the control of protein production in cells by sequence-specific targeting of mRNAs for translational repression or mRNA degradati Interestingly, immune genes are apparently preferentially targeted by miRNAs compared to the average of the human genome, indicat the significance of miRNA-mediated regulation for normal immune responses. Here, we review what is known about the role of miRN in the pathogenesis of immune-related diseases such as chronic inflammatory skin diseases, autoimmunity and viral infections.
Collapse
Affiliation(s)
- E Sonkoly
- Department of Medicine, Unit of Dermatology and Venerology, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
634
|
Abstract
Within the past few years, studies on microRNA (miRNA) and cancer have burst onto the scene. Profiling of the miRNome (global miRNA expression levels) has become prevalent, and abundant miRNome data are currently available for various cancers. The pattern of miRNA expression can be correlated with cancer type, stage, and other clinical variables, so miRNA profiling can be used as a tool for cancer diagnosis and prognosis. miRNA expression analyses also suggest oncogenic (or tumor-suppressive) roles of miRNAs. miRNAs play roles in almost all aspects of cancer biology, such as proliferation, apoptosis, invasion/metastasis, and angiogenesis. Given that many miRNAs are deregulated in cancers but have not yet been further studied, it is expected that more miRNAs will emerge as players in the etiology and progression of cancer. Here we also discuss miRNAs as a tool for cancer therapy.
Collapse
Affiliation(s)
- Yong Sun Lee
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
635
|
Colorectal Carcinoma: Identification of MicroRNAs Using Real-Time Polymerase Chain Reaction. COLORECTAL CANCER 2009. [DOI: 10.1007/978-1-4020-9545-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
636
|
Saito Y, Friedman JM, Chihara Y, Egger G, Chuang JC, Liang G. Epigenetic therapy upregulates the tumor suppressor microRNA-126 and its host gene EGFL7 in human cancer cells. Biochem Biophys Res Commun 2008; 379:726-31. [PMID: 19116145 DOI: 10.1016/j.bbrc.2008.12.098] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 12/17/2008] [Indexed: 11/18/2022]
Abstract
Studies have shown that aberrant expression of miRNAs is involved in the initiation and progression of cancer, and several miRNAs have been characterized as tumor suppressors or oncogenes. Restoring the expression of tumor suppressor genes by epigenetic therapy has great potential in cancer treatment and it has been shown that some miRNAs can be directly regulated from their own promoters by epigenetic alterations in cancer cells. However, the majority of miRNAs are located within intronic regions of transcription units and it was unclear if intronic miRNAs can also be epigenetically regulated. Here we show that the tumor suppressor miR-126, which is located within an intron of the EGFL7 gene, is downregulated in cancer cell lines and in primary bladder and prostate tumors. Mature miR-126 can be generated from three different transcripts of EGFL7 with each one having its own promoter. Interestingly, miR-126 and one of the transcripts of EGFL7 that has a CpG island promoter are concomitantly upregulated in cancer cell lines by inhibitors of DNA methylation and histone deacetylation. These findings suggest that epigenetic changes can control the expression of tumor suppressor intronic miRNAs by directly controlling their host genes. Thus, epigenetic therapy not only directly activates miRNAs from their own promoters, but also activates intronic miRNAs together with their host genes. This reveals an additional mechanism and anticancer effect of epigenetic therapy.
Collapse
Affiliation(s)
- Yoshimasa Saito
- Department of Urology, Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089-9181, USA
| | | | | | | | | | | |
Collapse
|
637
|
Kadia TM, Garcia-Manero G. Role of epigenetic therapy in myelodysplastic syndrome. Expert Rev Hematol 2008; 1:161-74. [PMID: 21082921 PMCID: PMC3833719 DOI: 10.1586/17474086.1.2.161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Myelodysplastic syndrome, characterized by ineffective hematopoiesis and cytopenias, remains a lethal disease. Until recently, patients with myelodysplastic syndrome have been managed supportively with blood product transfusions and growth factors, until they succumb to infections, bleeding complications or transformation to acute leukemia. The discovery that epigenetic factors play an important role in cancer, and specifically in myelodysplastic syndrome, has led to the recent approval of several new therapies that will make a significant impact on this disease. Epigenetics refers to a number of biochemical modifications to chromatin that do not alter the primary DNA sequence, but play an important role in genomic regulation at the level of gene transcription. Epigenetic factors can be passed on from a cell to its progeny and can mimic traditional genetic lesions that are implicated in cancer. Unlike genetic abnormalities, however, epigenetic changes, such as DNA methylation or histone deacetylation, can be manipulated pharmacologically. Recently developed hypomethylating agents and histone deacetylase inhibitors have shown significant biological and clinical activity in myelodysplastic syndrome. These drugs have been well-tolerated by patients and have been shown to alter the course of this disease. In order to use these drugs optimally, however, we need to better understand the role of these epigenetic changes: how they contribute to the disease process, how we can use them to better select patients and how we can use combinations to target them more effectively.
Collapse
Affiliation(s)
- Tapan M Kadia
- Assistant Professor of Medicine, Department of Leukemia, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA, Tel.: +1 713 563 3534, Fax: +1 713 794 4297
| | - Guillermo Garcia-Manero
- Associate Professor of Medicine, Chief, Section of MDS, Department of Leukemia, University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA, Tel.: +1 713 745 3428, Fax: +1 713 794 4297
| |
Collapse
|
638
|
Iorio MV, Casalini P, Tagliabue E, Ménard S, Croce CM. MicroRNA profiling as a tool to understand prognosis, therapy response and resistance in breast cancer. Eur J Cancer 2008; 44:2753-9. [PMID: 19022662 DOI: 10.1016/j.ejca.2008.09.037] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Accepted: 09/25/2008] [Indexed: 12/19/2022]
Abstract
Despite advances in detection and therapies, breast cancer is still the leading cause of cancer death in women worldwide. The etiology of this neoplasm is complex, and both genetic and environmental factors contribute to the complicated scenario. Gene profiling studies have been extensively used over the past decades as a powerful tool in defining the signature of different cancers and in predicting outcome and response to therapies. More recently, a new class of small non-coding RNAs, microRNAs (miRNAs), able to regulate gene expression binding seed sequences on the 3'UTR of mRNA targets, has been linked to several human diseases, including cancer. An increasing amount of experimental evidence shows that miRNAs are aberrantly expressed in different tumour types, and that they can have a causal role in tumourigenesis. Here, we describe and discuss the evidence supporting the association between miRNAs and breast cancer, underlining their role in the development of this neoplasia, and the impact on putative innovative therapeutical approaches.
Collapse
Affiliation(s)
- Marilena V Iorio
- Molecular Biology Unit, Department of Experimental Oncology, Fondazione IRCCS, Istituto Nazionale Tumori, Milano, Italy
| | | | | | | | | |
Collapse
|
639
|
Havelange V, Heaphy CEA, Garzon R. MicroRNAs in the diagnosis, prognosis and treatment of cancer. Oncol Rev 2008. [DOI: 10.1007/s12156-008-0076-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
640
|
Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. miRecords: an integrated resource for microRNA-target interactions. Nucleic Acids Res 2008; 37:D105-10. [PMID: 18996891 PMCID: PMC2686554 DOI: 10.1093/nar/gkn851] [Citation(s) in RCA: 1115] [Impact Index Per Article: 65.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) are an important class of small noncoding RNAs capable of regulating other genes’ expression. Much progress has been made in computational target prediction of miRNAs in recent years. More than 10 miRNA target prediction programs have been established, yet, the prediction of animal miRNA targets remains a challenging task. We have developed miRecords, an integrated resource for animal miRNA–target interactions. The Validated Targets component of this resource hosts a large, high-quality manually curated database of experimentally validated miRNA–target interactions with systematic documentation of experimental support for each interaction. The current release of this database includes 1135 records of validated miRNA–target interactions between 301 miRNAs and 902 target genes in seven animal species. The Predicted Targets component of miRecords stores predicted miRNA targets produced by 11 established miRNA target prediction programs. miRecords is expected to serve as a useful resource not only for experimental miRNA researchers, but also for informatics scientists developing the next-generation miRNA target prediction programs. The miRecords is available at http://miRecords.umn.edu/miRecords.
Collapse
Affiliation(s)
- Feifei Xiao
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | |
Collapse
|
641
|
Ye Y, Wang KK, Gu J, Yang H, Lin J, Ajani JA, Wu X. Genetic variations in microRNA-related genes are novel susceptibility loci for esophageal cancer risk. Cancer Prev Res (Phila) 2008; 1:460-9. [PMID: 19138993 PMCID: PMC2768267 DOI: 10.1158/1940-6207.capr-08-0135] [Citation(s) in RCA: 181] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNA) can act as oncogenes or tumor suppressors and modulate the expression of approximately one third of all human genes. To test the hypothesis that adverse alleles in miRNA-related genes may increase the risk for esophageal cancer, we assessed the associations between esophageal cancer risk and 41 potentially functional single nucleotide polymorphisms (SNP) in 26 miRNA-related genes in a case-control study of 346 Caucasian esophageal cancer patients (85.5% with esophageal adenocarcinoma) and 346 frequency-matched (age, gender, and ethnicity) controls. Seven SNPs were significantly associated with esophageal cancer risk. The most notable finding was that the SNP rs6505162, which is located in the pre-mir423 region, was associated with a per-allele odds ratio of 0.64 [95% confidence interval (95% CI), 0.51-0.80; P for trend < 0.0001]. This association remained significant after we corrected for multiple comparisons. A common haplotype of the GEMIN4 gene was associated with a significantly reduced risk of esophageal cancer (odds ratio, 0.65; 95% CI, 0.42-0.99). We did a combined unfavorable genotype analysis to further evaluate the cumulative effects of the promising (risk associated) SNPs. In comparison with the low-risk group (fewer than three unfavorable genotypes), the medium-risk group (three unfavorable genotypes) had a 2.00-fold (95% CI, 1.31-3.08) increased risk and the high-risk group (more than three unfavorable genotypes) had a 3.14-fold (95% CI, 2.03-4.85) increased risk (P for trend < 0.0001). Results for the risk of esophageal adenocarcinoma were similar to the overall risk results. The present study provides the first evidence that miRNAs may affect esophageal cancer risk in general and that specific genetic variants in miRNA-related genes may affect esophageal cancer risk individually and jointly.
Collapse
Affiliation(s)
- Yuanqing Ye
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Kenneth K. Wang
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, 55905
| | - Jian Gu
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Hushan Yang
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Jie Lin
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Jaffer A. Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, 77030
| |
Collapse
|
642
|
Hu Z, Chen J, Tian T, Zhou X, Gu H, Xu L, Zeng Y, Miao R, Jin G, Ma H, Chen Y, Shen H. Genetic variants of miRNA sequences and non-small cell lung cancer survival. J Clin Invest 2008; 118:2600-8. [PMID: 18521189 DOI: 10.1172/jci34934] [Citation(s) in RCA: 286] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 04/16/2008] [Indexed: 12/22/2022] Open
Abstract
Recent evidence indicates that small noncoding RNA molecules known as microRNAs (miRNAs) can function as tumor suppressors and oncogenes. Mutation, misexpression, and altered mature miRNA processing are implicated in carcinogenesis and tumor progression. Because SNPs in pre-miRNAs could alter miRNA processing, expression, and/or binding to target mRNA, we conducted a systematic survey of common pre-miRNA SNPs and their surrounding regions and evaluated in detail the association of 4 of these SNPs with the survival of individuals with non-small cell lung cancer (NSCLC). When we assumed that disease susceptibility was inherited as a recessive phenotype, we found that the rs11614913 SNP in hsa-mir-196a2 was associated with survival in individuals with NSCLC. Specifically, survival was significantly decreased in individuals who were homozygous CC at SNP rs11614913. In the genotype-phenotype correlation analysis of 23 human lung cancer tissue samples, rs11614913 CC was associated with a statistically significant increase in mature hsa-mir-196a expression but not with changes in levels of the precursor, suggesting enhanced processing of the pre-miRNA to its mature form. Furthermore, binding assays revealed that the rs11614913 SNP can affect binding of mature hsa-mir-196a2-3p to its target mRNA. Therefore, the rs11614913 SNP in hsa-mir-196a2 may be a prognostic biomarker for NSCLC. Further characterization of miRNA SNPs may open new avenues for the study of cancer and therapeutic interventions.
Collapse
Affiliation(s)
- Zhibin Hu
- Department of Epidemiology and Biostatistics, Cancer Center of Nanjing Medical University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
643
|
Hirst M, Marra MA. Epigenetics and human disease. Int J Biochem Cell Biol 2008; 41:136-46. [PMID: 18852064 DOI: 10.1016/j.biocel.2008.09.011] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 09/13/2008] [Accepted: 09/16/2008] [Indexed: 01/29/2023]
Abstract
Changes to covalent modifications of DNA and histones can be induced via environmental stimuli such as nutrients, hormones and drugs. These changes can be both transient and heritable in nature and provide a framework in which to investigate how environment and lifestyle choices impact disease susceptibility and progression. Furthermore, these modifications are central to chromatin dynamics and, as such, play key roles in many biological processes involving chromatin, such as DNA replication and repair, transcription and development. In this review we provide an overview of recent advances in our understanding of the roles that DNA and histone modification play in the onset and progression of human disease.
Collapse
Affiliation(s)
- Martin Hirst
- Genome Sciences Centre, British Columbia Cancer Agency, Vancouver, British Columbia, Canada, V5Z 1L3
| | | |
Collapse
|
644
|
Guil S, Esteller M. DNA methylomes, histone codes and miRNAs: tying it all together. Int J Biochem Cell Biol 2008; 41:87-95. [PMID: 18834952 DOI: 10.1016/j.biocel.2008.09.005] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 12/12/2022]
Abstract
Our current knowledge of the deregulation that occurs during the onset and progression of cancer and other diseases leads us to recognize both genetic and epigenetic alterations as being at the core of the pathological state. The epigenetic landscape includes a variety of covalent modifications that affect the methylation status of DNA but also the post-translational modifications of histones, and determines the structural features of chromatin that ultimately control the transcriptional outcome of the cell to accommodate developmental, proliferative or environmental requirements. MicroRNAs are small non-coding RNAs that regulate the expression of complementary messenger RNAs and function as key controllers in a myriad of cellular processes, including proliferation, differentiation and apoptosis. In the last few years, increasing evidence has indicated that a substantial number of microRNA genes are subjected to epigenetic alterations, resulting in aberrant patterns of expression upon the occurrence of cancer. In this review we discuss microRNA genes that are epigenetically modified in cancer cells, and the role that microRNAs themselves can have as chromatin modifiers.
Collapse
Affiliation(s)
- Sònia Guil
- Institut d'Investigacio Biomedica de Bellvitge, 08907 L'Hospitalet, Barcelona, Catalonia, Spain
| | | |
Collapse
|
645
|
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs that can contribute to cancer development and progression by acting as oncogenes or tumor suppressor genes. Recent studies have also linked different sets of miRNAs to metastasis through either the promotion or suppression of this malignant process. Interestingly, epigenetic silencing of miRNAs with tumor suppressor features by CpG island hypermethylation is also emerging as a common hallmark of human tumors. Thus, we wondered whether there was a miRNA hypermethylation profile characteristic of human metastasis. We used a pharmacological and genomic approach to reveal this aberrant epigenetic silencing program by treating lymph node metastatic cancer cells with a DNA demethylating agent followed by hybridization to an expression microarray. Among the miRNAs that were reactivated upon drug treatment, miR-148a, miR-34b/c, and miR-9 were found to undergo specific hypermethylation-associated silencing in cancer cells compared with normal tissues. The reintroduction of miR-148a and miR-34b/c in cancer cells with epigenetic inactivation inhibited their motility, reduced tumor growth, and inhibited metastasis formation in xenograft models, with an associated down-regulation of the miRNA oncogenic target genes, such as C-MYC, E2F3, CDK6, and TGIF2. Most important, the involvement of miR-148a, miR-34b/c, and miR-9 hypermethylation in metastasis formation was also suggested in human primary malignancies (n = 207) because it was significantly associated with the appearance of lymph node metastasis. Our findings indicate that DNA methylation-associated silencing of tumor suppressor miRNAs contributes to the development of human cancer metastasis.
Collapse
|
646
|
Abstract
Transitional cell carcinomas of the urinary bladder have diverse biological and functional characteristics. Surveillance strategies for bladder cancer recurrence have historically relied on the diagnostic combination of cystoscopy and urinary cytology. However, the accuracy of both tests depends on subjective and operator-dependent interpretations of the visible findings. In contrast, promoter hypermethylation of CpG islands is strongly associated with tumor development and prognosis of bladder cancer. Detection of DNA methylation in voided urine may be feasible and more sensitive than conventional urine cytology. Ultimately, all types of urological cancers may be screened in urine using a candidate panel of hypermethylated genes. The epigenetic silencing of tumor suppressor genes is interest from a clinical point of view because it is possible to reverse epigenetic changes and restore gene function to a cell. Methylation markers might therefore be more useful than conventional molecular markers for the treatment and prevention of bladder cancer.
Collapse
Affiliation(s)
- Young Kyoon Kim
- Department of Urology, College of Medicine, Seoul National University, Seoul, Korea.
| | | |
Collapse
|
647
|
Toyota M, Suzuki H, Sasaki Y, Maruyama R, Imai K, Shinomura Y, Tokino T. Epigenetic silencing of microRNA-34b/c and B-cell translocation gene 4 is associated with CpG island methylation in colorectal cancer. Cancer Res 2008; 68:4123-32. [PMID: 18519671 DOI: 10.1158/0008-5472.can-08-0325] [Citation(s) in RCA: 497] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Altered expression of microRNA (miRNA) is strongly implicated in cancer, and recent studies have shown that, in cancer, expression of some miRNAs cells is silenced in association with CpG island hypermethylation. To identify epigenetically silenced miRNAs in colorectal cancer (CRC), we screened for miRNAs induced in CRC cells by 5-aza-2'-deoxycytidine (DAC) treatment or DNA methyltransferase knockout. We found that miRNA-34b (miR-34b) and miR-34c, two components of the p53 network, are epigenetically silenced in CRC; that this down-regulation of miR-34b/c is associated with hypermethylation of the neighboring CpG island; and that DAC treatment rapidly restores miR-34b/c expression. Methylation of the miR-34b/c CpG island was frequently observed in CRC cell lines (nine of nine, 100%) and in primary CRC tumors (101 of 111, 90%), but not in normal colonic mucosa. Transfection of precursor miR-34b or miR-34c into CRC cells induced dramatic changes in the gene expression profile, and there was significant overlap between the genes down-regulated by miR-34b/c and those down-regulated by DAC. We also found that the miR-34b/c CpG island is a bidirectional promoter which drives expression of both miR-34b/c and B-cell translocation gene 4 (BTG4); that methylation of the CpG island is also associated with transcriptional silencing of BTG4; and that ectopic expression of BTG4 suppresses colony formation by CRC cells. Our results suggest that miR-34b/c and BTG4 are novel tumor suppressors in CRC and that the miR-34b/c CpG island, which bidirectionally regulates miR-34b/c and BTG4, is a frequent target of epigenetic silencing in CRC.
Collapse
Affiliation(s)
- Minoru Toyota
- First Department of Internal Medicine, Cancer Research Institute, Sapporo Medical University, Sapporo, Japan
| | | | | | | | | | | | | |
Collapse
|
648
|
Rouhi A, Mager DL, Humphries RK, Kuchenbauer F. MiRNAs, epigenetics, and cancer. Mamm Genome 2008; 19:517-25. [PMID: 18688563 DOI: 10.1007/s00335-008-9133-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 07/09/2008] [Indexed: 12/26/2022]
Abstract
By virtue of having multiple targets, a microRNA (miRNA) can have variable effects on oncogenesis by acting as tumor suppressor or oncogene in a context-dependent manner. Genome-wide epigenetic changes that occur in various cancers affect the transcription of many genes. Since the transcriptional regulation of miRNAs remains an unexplored field, it is still unknown how epigenetic changes will affect the regulation of miRNAs. Many miRNAs are intron-bound within the body of a protein-coding gene. Any change to the transcription of the "host" gene affects the transcription and genesis of the resident miRNA. It is therefore reasonable to deduce that epigenetic changes brought on by transformation can potentially affect miRNA expression in both direct and indirect ways. We have reviewed the literature pertaining to the epigenetic regulation of miRNA genes in the context of various cancers and have speculated on the potential role of epigenetic modifications on the transcriptional regulation and expression of these genes.
Collapse
Affiliation(s)
- Arefeh Rouhi
- Terry Fox Laboratory, BC Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, BC, Canada V5Z 1L3
| | | | | | | |
Collapse
|
649
|
Ambs S, Prueitt RL, Yi M, Hudson RS, Howe TM, Petrocca F, Wallace TA, Liu CG, Volinia S, Calin GA, Yfantis HG, Stephens RM, Croce CM. Genomic profiling of microRNA and messenger RNA reveals deregulated microRNA expression in prostate cancer. Cancer Res 2008; 68:6162-70. [PMID: 18676839 PMCID: PMC2597340 DOI: 10.1158/0008-5472.can-08-0144] [Citation(s) in RCA: 567] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs are small noncoding RNAs that regulate the expression of protein-coding genes. To evaluate the involvement of microRNAs in prostate cancer, we determined genome-wide expression of microRNAs and mRNAs in 60 primary prostate tumors and 16 nontumor prostate tissues. The mRNA analysis revealed that key components of microRNA processing and several microRNA host genes, e.g., MCM7 and C9orf5, were significantly up-regulated in prostate tumors. Consistent with these findings, tumors expressed the miR-106b-25 cluster, which maps to intron 13 of MCM7, and miR-32, which maps to intron 14 of C9orf5, at significantly higher levels than nontumor prostate. The expression levels of other microRNAs, including a number of miR-106b-25 cluster homologues, were also altered in prostate tumors. Additional differences in microRNA abundance were found between organ-confined tumors and those with extraprostatic disease extension. Lastly, we found evidence that some microRNAs are androgen-regulated and that tumor microRNAs influence transcript abundance of protein-coding target genes in the cancerous prostate. In cell culture, E2F1 and p21/WAF1 were identified as targets of miR-106b, Bim of miR-32, and exportin-6 and protein tyrosine kinase 9 of miR-1. In summary, microRNA expression becomes altered with the development and progression of prostate cancer. Some of these microRNAs regulate the expression of cancer-related genes in prostate cancer cells.
Collapse
Affiliation(s)
- Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892-4258, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
650
|
Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. J Neurooncol 2008; 90:1-7. [PMID: 18607543 DOI: 10.1007/s11060-008-9624-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 05/28/2008] [Indexed: 12/15/2022]
Abstract
Despite recent advances in treatment medulloblastoma continues to remain a vexing problem. Recently increased expression of cyclin dependent kinase 6 (CDK6) was identified as an adverse prognostic marker in medulloblastoma. Genomic amplification accounts for some, but not all of the CDK6 over-expression. We hypothesized that CDK6 expression is also regulated by microRNAs in medulloblastoma. We identified putative miR sites in the CDK6 including microRNA 124a, a brain enriched microRNA. Expression of miR 124a was significantly decreased in medulloblastoma cells compared to normal adult cerebellum. Functional association between miR 124a and CDK6 in medulloblastoma was established using luciferase assays. Additionally, re-expression of miR 124a in medulloblastoma cells decreased expression of CDK6 protein. Transfection of miR 124 significantly decreases medulloblastoma cell growth but does not alter apoptosis. Furthermore, in patient samples expression of miR 124a is significantly decreased. Our data strongly indicate that CDK6 is regulated by microRNA 124 in medulloblastoma and that miR 124 modulates medulloblastoma cell growth.
Collapse
|