601
|
Jin X, Pan Y, Wang L, Zhang L, Ravichandran R, Potts PR, Jiang J, Wu H, Huang H. MAGE-TRIM28 complex promotes the Warburg effect and hepatocellular carcinoma progression by targeting FBP1 for degradation. Oncogenesis 2017; 6:e312. [PMID: 28394358 PMCID: PMC5520498 DOI: 10.1038/oncsis.2017.21] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 01/25/2017] [Accepted: 02/27/2017] [Indexed: 01/16/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading cause of cancer death in the world. Fructose-1,6-biphosphatase (FBP1), a rate-limiting enzyme in gluconeogenesis, has been identified recently as a tumor suppressor in HCC and other cancer types. In this study, we demonstrated that the tripartite motif-containing protein 28 (TRIM28) binds directly to and promotes FBP1 for ubiquitination and degradation. MAGE-A3 and MAGE-C2, which are known to be overexpressed in HCC, can enhance TRIM28-dependent degradation of FBP1 by forming ubiquitin ligase complexes with TRIM28. We further showed that expression of TRIM28 increased glucose consumption and lactate production by promoting FBP1 degradation in HCC cells and that FBP1 is a key mediator of TRIM28-induced HCC growth in culture and in mice. Moreover, we demonstrated that FBP1 and TRIM28 protein levels inversely correlated in HCC patient specimens. Finally, we showed that the proteasome inhibitor bortezomib mitigated the Warburg effect by inhibiting FBP1 degradation in HCC. Collectively, our findings not only identify oncogenic MAGE-TRIM28 complex-mediated proteasome degradation of FBP1 as a key mechanism underlying downregulation of FBP1 proteins in HCC, but also reveal that MAGE-TRIM28-regulated reprogramming of cancer cell metabolism and HCC tumorigenesis is mediated, at least in part, through FBP1 degradation.
Collapse
Affiliation(s)
- X Jin
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Y Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - L Wang
- Department of Medical Informatics and Statistics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - L Zhang
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - R Ravichandran
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - P R Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - H Wu
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - H Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Department of Urology, Mayo Clinic College of Medicine, Rochester, MN, USA.,Mayo Clinic Cancer Center, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
602
|
Lin S, Hoffmann K, Gao C, Petrulionis M, Herr I, Schemmer P. Melatonin promotes sorafenib-induced apoptosis through synergistic activation of JNK/c-jun pathway in human hepatocellular carcinoma. J Pineal Res 2017; 62. [PMID: 28178378 DOI: 10.1111/jpi.12398] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/03/2017] [Indexed: 01/01/2023]
Abstract
Melatonin has been shown to exert anticancer activity on hepatocellular carcinoma (HCC) through its antiproliferative and pro-apoptotic effect in both experimental and clinical studies, and sorafenib is the only approved drug for the systemic treatment of HCC. Thus, this study was designed to investigate the combined effect of melatonin and sorafenib on proliferation, apoptosis, and its possible mechanism in human HCC. Here, we found that both melatonin and sorafenib resulted in a dose-dependent growth inhibition of HuH-7 cells after 48 hours treatment, and the combination of them enhanced the growth inhibition in a synergistic manner. Colony formation assay indicated that co-treatment of HuH-7 cells with melatonin and sorafenib significantly decreased the clonogenicity compared to the treatment with single agent. Furthermore, FACS and TUNEL assay confirmed that melatonin synergistically augmented the sorafenib-induced apoptosis after 48 hours incubation, which was in accordance with the activation of caspase-3 and the JNK/c-jun pathway. Inhibition of JNK/c-jun pathway with its inhibitor SP600125 reversed the phosphorylation of c-jun and the activation of caspase-3 induced by co-treatment of HuH-7 cells with melatonin and sorafenib in a dose-dependent manner. Furthermore, SP600125 exhibited protective effect against apoptosis induced by the combination of melatonin and sorafenib. This study demonstrates that melatonin in combination with sorafenib synergistically inhibits proliferation and induces apoptosis in human HCC cells; therefore, supplementation of sorafenib with melatonin may serve as a potential therapeutic choice for advanced HCC.
Collapse
Affiliation(s)
- Shibo Lin
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Katrin Hoffmann
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Chao Gao
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Marius Petrulionis
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Ingrid Herr
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schemmer
- Department of Surgery, Division of Transplant Surgery, Medical University of Graz, Austria
- Department of General, Visceral and Transplant Surgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
603
|
Inhibition of hepatic lipogenesis enhances liver tumorigenesis by increasing antioxidant defence and promoting cell survival. Nat Commun 2017; 8:14689. [PMID: 28290443 PMCID: PMC5424065 DOI: 10.1038/ncomms14689] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
The metabolic pathway of de novo lipogenesis is frequently upregulated in human liver tumours, and its upregulation is associated with poor prognosis. Blocking lipogenesis in cultured liver cancer cells is sufficient to decrease cell viability; however, it is not known whether blocking lipogenesis in vivo can prevent liver tumorigenesis. Herein, we inhibit hepatic lipogenesis in mice by liver-specific knockout of acetyl-CoA carboxylase (ACC) genes and treat the mice with the hepatocellular carcinogen diethylnitrosamine (DEN). Unexpectedly, mice lacking hepatic lipogenesis have a twofold increase in tumour incidence and multiplicity compared to controls. Metabolomics analysis of ACC-deficient liver identifies a marked increase in antioxidants including NADPH and reduced glutathione. Importantly, supplementing primary wild-type hepatocytes with glutathione precursors improves cell survival following DEN treatment to a level indistinguishable from ACC-deficient primary hepatocytes. This study shows that lipogenesis is dispensable for liver tumorigenesis in mice treated with DEN, and identifies an important role for ACC enzymes in redox regulation and cell survival.
Collapse
|
604
|
Kong FY, Zhu T, Li N, Cai YF, Zhou K, Wei X, Kou YB, You HJ, Zheng KY, Tang RX. Bioinformatics analysis of the proteins interacting with LASP-1 and their association with HBV-related hepatocellular carcinoma. Sci Rep 2017; 7:44017. [PMID: 28266596 PMCID: PMC5339786 DOI: 10.1038/srep44017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/02/2017] [Indexed: 12/11/2022] Open
Abstract
LIM and SH3 domain protein (LASP-1) is responsible for the development of several types of human cancers via the interaction with other proteins; however, the precise biological functions of proteins interacting with LASP-1 are not fully clarified. Although the role of LASP-1 in hepatocarcinogenesis has been reported, the implication of LASP-1 interactors in HBV-related hepatocellular carcinoma (HCC) is not clearly evaluated. We obtained information regarding LASP-1 interactors from public databases and published studies. Via bioinformatics analysis, we found that LASP-1 interactors were related to distinct molecular functions and associated with various biological processes. Through an integrated network analysis of the interaction and pathways of LASP-1 interactors, cross-talk between different proteins and associated pathways was found. In addition, LASP-1 and several its interactors are significantly altered in HBV-related HCC through microarray analysis and could form a complex co-expression network. In the disease, LASP-1 and its interactors were further predicted to be regulated by a complex interaction network composed of different transcription factors. Besides, numerous LASP-1 interactors were associated with various clinical factors and related to the survival and recurrence of HBV-related HCC. Taken together, these results could help enrich our understanding of LASP-1 interactors and their relationships with HBV-related HCC.
Collapse
Affiliation(s)
- Fan-Yun Kong
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ting Zhu
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nan Li
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yun-Fei Cai
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kai Zhou
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiao Wei
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan-Bo Kou
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong-Juan You
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kui-Yang Zheng
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ren-Xian Tang
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
605
|
Bian XL, Chen HZ, Yang PB, Li YP, Zhang FN, Zhang JY, Wang WJ, Zhao WX, Zhang S, Chen QT, Zheng Y, Sun XY, Wang XM, Chien KY, Wu Q. Nur77 suppresses hepatocellular carcinoma via switching glucose metabolism toward gluconeogenesis through attenuating phosphoenolpyruvate carboxykinase sumoylation. Nat Commun 2017; 8:14420. [PMID: 28240261 PMCID: PMC5333363 DOI: 10.1038/ncomms14420] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022] Open
Abstract
Gluconeogenesis, an essential metabolic process for hepatocytes, is downregulated in hepatocellular carcinoma (HCC). Here we show that the nuclear receptor Nur77 is a tumour suppressor for HCC that regulates gluconeogenesis. Low Nur77 expression in clinical HCC samples correlates with poor prognosis, and a Nur77 deficiency in mice promotes HCC development. Nur77 interacts with phosphoenolpyruvate carboxykinase (PEPCK1), the rate-limiting enzyme in gluconeogenesis, to increase gluconeogenesis and suppress glycolysis, resulting in ATP depletion and cell growth arrest. However, PEPCK1 becomes labile after sumoylation and is degraded via ubiquitination, which is augmented by the p300 acetylation of ubiquitin-conjugating enzyme 9 (Ubc9). Although Nur77 attenuates sumoylation and stabilizes PEPCK1 via impairing p300 activity and preventing the Ubc9-PEPCK1 interaction, Nur77 is silenced in HCC samples due to Snail-mediated DNA methylation of the Nur77 promoter. Our study reveals a unique mechanism to suppress HCC by switching from glycolysis to gluconeogenesis through Nur77 antagonism of PEPCK1 degradation.
Collapse
MESH Headings
- Acetylation
- Animals
- Carcinogenesis/pathology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Down-Regulation/genetics
- E1A-Associated p300 Protein/metabolism
- Enzyme Stability
- Gene Expression Regulation, Neoplastic
- Gluconeogenesis
- Glucose/metabolism
- Hep G2 Cells
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Methylation
- Mice, Inbred C57BL
- Mice, Knockout
- Models, Biological
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Phosphoenolpyruvate Carboxykinase (ATP)/metabolism
- Proteolysis
- Snail Family Transcription Factors/metabolism
- Sumoylation
- Tumor Suppressor Proteins/metabolism
- Ubiquitin-Conjugating Enzymes/metabolism
- Ubiquitin-Conjugating Enzyme UBC9
Collapse
Affiliation(s)
- Xue-li Bian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian Province, Xiamen 361102, China
| | - Hang-zi Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian Province, Xiamen 361102, China
| | - Peng-bo Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian Province, Xiamen 361102, China
| | - Ying-ping Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian Province, Xiamen 361102, China
| | - Fen-na Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian Province, Xiamen 361102, China
| | - Jia-yuan Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian Province, Xiamen 361102, China
| | - Wei-jia Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian Province, Xiamen 361102, China
| | - Wen-xiu Zhao
- Department of Hepatobiliary Surgery, Zhong Shan Hospital, Xiamen University, Fujian Province, Xiamen 361005, China
| | - Sheng Zhang
- Department of Hepatobiliary Surgery, Zhong Shan Hospital, Xiamen University, Fujian Province, Xiamen 361005, China
| | - Qi-tao Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian Province, Xiamen 361102, China
| | - Yu Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian Province, Xiamen 361102, China
| | - Xiao-yu Sun
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian Province, Xiamen 361102, China
| | - Xiao-min Wang
- Department of Hepatobiliary Surgery, Zhong Shan Hospital, Xiamen University, Fujian Province, Xiamen 361005, China
| | - Kun-Yi Chien
- Molecular Medicine Research Center, Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | - Qiao Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian Province, Xiamen 361102, China
| |
Collapse
|
606
|
Protein kinase D2 contributes to TNF-α-induced epithelial mesenchymal transition and invasion via the PI3K/GSK-3β/β-catenin pathway in hepatocellular carcinoma. Oncotarget 2017; 7:5327-41. [PMID: 26683365 PMCID: PMC4868689 DOI: 10.18632/oncotarget.6633] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 12/09/2015] [Indexed: 11/25/2022] Open
Abstract
Although protein kinase D (PKD) has been shown to contribute to invasion and metastasis in several types of cancer, the role of PKD in the epithelial mesenchymal transition (EMT) of hepatocellular carcinoma (HCC) has remained unclear. We found that PKD2 is up-regulated in HCC and is correlated with the metastasis of HCC. PKD2 positively regulated TNF-α-induced EMT and metastasis of HCC. Mechanistic studies revealed TNF-α-induced PKD2 activation is mediated by the formation of a TNFR1/TRAF2 complex. PKD2 bound directly to the p110α and p85 subunits of PI3K and promoted the PI3K/Akt/GSK-3β signaling cascade to stimulate EMT. In conclusion, our results have uncovered a novel role for the regulation of EMT and suggest inhibition of PKD2 as a potential therapeutic strategy for HCC.
Collapse
|
607
|
Hermanns C, Hampl V, Holzer K, Aigner A, Penkava J, Frank N, Martin DE, Maier KC, Waldburger N, Roessler S, Goppelt-Struebe M, Akrap I, Thavamani A, Singer S, Nordheim A, Gudermann T, Muehlich S. The novel MKL target gene myoferlin modulates expansion and senescence of hepatocellular carcinoma. Oncogene 2017; 36:3464-3476. [DOI: 10.1038/onc.2016.496] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/23/2016] [Accepted: 11/22/2016] [Indexed: 12/20/2022]
|
608
|
El Zeneini E, Kamel S, El-Meteini M, Amleh A. Knockdown of COBRA1 decreases the proliferation and migration of hepatocellular carcinoma cells. Oncol Rep 2017; 37:1896-1906. [PMID: 28112367 DOI: 10.3892/or.2017.5390] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 12/27/2016] [Indexed: 11/06/2022] Open
Abstract
Cofactor of BRCA1 (COBRA1) is one of the four subunits that make up the negative elongation factor (NELF) complex that is involved in the stalling of RNA polymerase II early during transcription elongation. As such, it regulates the expression of a substantial number of genes involved in cell cycle control, cellular metabolism and DNA repair. With no DNA binding domain, its capacity to modulate gene expression occurs via its ability to interact with different transcription factors. In the field of cancer, its role is not yet fully understood. In this study, we demonstrate the frequent overexpression of COBRA1 along with the remaining NELF subunits in hepatocellular carcinoma (HCC) tissues relative to non-cancerous liver tissues. To elucidate its biological significance in HCC, RNA interference was utilized to silence COBRA1 expression in the HCC cell line, HepG2. Interestingly, COBRA1 knockdown resulted in a significant decrease in cell proliferation and migration, accompanied by a concomitant reduction in the expression of the proliferation marker, Ki-67. Survivin, a proto-oncogene that is commonly upregulated in almost all human malignancies including HCC, was also significantly downregulated following COBRA1 silencing. This suggests that it might be one of the mechanisms by which COBRA1 mediates its role in HCC. Taken together, our data findings collectively highlight an important role for COBRA1 in supporting HCC proliferation and migration.
Collapse
Affiliation(s)
- Eman El Zeneini
- Biotechnology Department, The American University in Cairo, New Cairo 11835, Egypt
| | - Sarah Kamel
- Biotechnology Department, The American University in Cairo, New Cairo 11835, Egypt
| | - Mahmoud El-Meteini
- HPB and Liver Transplant Surgical Department, Faculty of Medicine, Ain Shams University, Cairo 11341, Egypt
| | - Asma Amleh
- Biotechnology Department, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
609
|
Saha SK, Choi HY, Kim BW, Dayem AA, Yang GM, Kim KS, Yin YF, Cho SG. KRT19 directly interacts with β-catenin/RAC1 complex to regulate NUMB-dependent NOTCH signaling pathway and breast cancer properties. Oncogene 2017; 36:332-349. [PMID: 27345400 PMCID: PMC5270332 DOI: 10.1038/onc.2016.221] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 04/19/2016] [Accepted: 05/15/2016] [Indexed: 12/21/2022]
Abstract
Studies have reported that interactions between keratins (KRTs) and other proteins initiate signaling cascades that regulate cell migration, invasion, and metastasis. In the current study, we found that expression of KRT19 was specifically high in breast cancers and significantly correlated with their invasiveness. Moreover, knockdown of KRT19 led to increased proliferation, migration, invasion, drug resistance, and sphere formation in breast cancer cells via an upregulated NOTCH signaling pathway. This was owing to reduced expression of NUMB, an inhibitory protein of the NOTCH signaling pathway. In addition, we found that KRT19 interacts with β-catenin/RAC1 complex and enhances the nuclear translocation of β-catenin. Concordantly, knockdown of KRT19 suppressed the nuclear translocation of β-catenin as well as β-catenin-mediated NUMB expression. Furthermore, modulation of KRT19-mediated regulation of NUMB and NOTCH1 expression led to the repression of the cancer stem cell properties of breast cancer patient-derived CD133high/CXCR4high/ALDH1high cancer stem-like cells (CSLCs), which showed very low KRT19 and high NOTCH1 expression. Taken together, our study suggests a novel function for KRT19 in the regulation of nuclear import of the β-catenin/RAC1 complex, thus modulating the NUMB-dependent NOTCH signaling pathway in breast cancers and CSLCs, which might bear potential clinical implications for cancer or CSLC treatment.
Collapse
Affiliation(s)
- S K Saha
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - H Y Choi
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - B W Kim
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - A A Dayem
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - G-M Yang
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - K S Kim
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - Y F Yin
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| | - S-G Cho
- Department of Animal Biotechnology, Stem Cell & Regenerative Biotechnology and Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
610
|
Luo C, Cheng Y, Liu Y, Chen L, Liu L, Wei N, Xie Z, Wu W, Feng Y. SRSF2 Regulates Alternative Splicing to Drive Hepatocellular Carcinoma Development. Cancer Res 2017; 77:1168-1178. [PMID: 28082404 DOI: 10.1158/0008-5472.can-16-1919] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 11/16/2022]
Abstract
Aberrant RNA splicing is recognized to contribute to cancer pathogenesis, but the underlying mechanisms remain mainly obscure. Here, we report that the splicing factor SRSF2 is upregulated frequently in human hepatocellular carcinoma (HCC), where this event is associated with poor prognosis in patients. RNA-seq and other molecular analyses were used to identify SRSF2-regulated alternative splicing events. SRSF2 binding within an alternative exon was associated with its inclusion in the RNA, whereas SRSF2 binding in a flanking constitutive exon was associated with exclusion of the alternative exon. Notably, cancer-associated splice variants upregulated by SRSF2 in clinical specimens of HCC were found to be crucial for pathogenesis and progression in hepatoma cells, where SRSF2 expression increased cell proliferation and tumorigenic potential by controlling expression of these variants. Our findings identify SRSF2 as a key regulator of RNA splicing dysregulation in cancer, with possible clinical implications as a candidate prognostic factor in patients with HCC. Cancer Res; 77(5); 1168-78. ©2017 AACR.
Collapse
Affiliation(s)
- Chunling Luo
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuanming Cheng
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuguo Liu
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Linlin Chen
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lina Liu
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ning Wei
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhiqin Xie
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenwu Wu
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China. .,The Nurturing Station for the State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Lin'an, China
| | - Ying Feng
- Institute for Nutritional Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
611
|
Inverse correlation between the metastasis suppressor RKIP and the metastasis inducer YY1: Contrasting roles in the regulation of chemo/immuno-resistance in cancer. Drug Resist Updat 2017; 30:28-38. [PMID: 28363333 DOI: 10.1016/j.drup.2017.01.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/28/2016] [Accepted: 01/04/2017] [Indexed: 02/06/2023]
Abstract
Several gene products have been postulated to mediate inherent and/or acquired anticancer drug resistance and tumor metastasis. Among these, the metastasis suppressor and chemo-immuno-sensitizing gene product, Raf Kinase Inhibitor Protein (RKIP), is poorly expressed in many cancers. In contrast, the metastasis inducer and chemo-immuno-resistant factor Yin Yang 1 (YY1) is overexpressed in many cancers. This inverse relationship between RKIP and YY1 expression suggests that these two gene products may be regulated via cross-talks of molecular signaling pathways, culminating in the expression of different phenotypes based on their targets. Analyses of the molecular regulation of the expression patterns of RKIP and YY1 as well as epigenetic, post-transcriptional, and post-translational regulation revealed the existence of several effector mechanisms and crosstalk pathways, of which five pathways of relevance have been identified and analyzed. The five examined cross-talk pathways include the following loops: RKIP/NF-κB/Snail/YY1, p38/MAPK/RKIP/GSK3β/Snail/YY1, RKIP/Smurf2/YY1/Snail, RKIP/MAPK/Myc/Let-7/HMGA2/Snail/YY1, as well as RKIP/GPCR/STAT3/miR-34/YY1. Each loop is comprised of multiple interactions and cascades that provide evidence for YY1's negative regulation of RKIP expression and vice versa. These loops elucidate potential prognostic motifs and targets for therapeutic intervention. Chiefly, these findings suggest that targeted inhibition of YY1 by specific small molecule inhibitors and/or the specific induction of RKIP expression and activity are potential therapeutic strategies to block tumor growth and metastasis in many cancers, as well as to overcome anticancer drug resistance. These strategies present potential alternatives for their synergistic uses in combination with low doses of conventional chemo-immunotherapeutics and hence, increasing survival, reducing toxicity, and improving quality of life.
Collapse
|
612
|
Shen S, Liu M, Li T, Lin S, Mo R. Recent progress in nanomedicine-based combination cancer therapy using a site-specific co-delivery strategy. Biomater Sci 2017; 5:1367-1381. [DOI: 10.1039/c7bm00297a] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review article highlights the recent progresses in nanomedicine-based combination cancer therapy via site-specific co-delivery strategies.
Collapse
Affiliation(s)
- Shiyang Shen
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Meng Liu
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Teng Li
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Shiqi Lin
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| | - Ran Mo
- State Key Laboratory of Natural Medicines
- Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of Advanced Pharmaceuticals and Biomaterials
- China Pharmaceutical University
- Nanjing 210009
| |
Collapse
|
613
|
Zhang F, Lin JD, Zuo XY, Zhuang YX, Hong CQ, Zhang GJ, Cui XJ, Cui YK. Elevated transcriptional levels of aldolase A (ALDOA) associates with cell cycle-related genes in patients with NSCLC and several solid tumors. BioData Min 2017; 10:6. [PMID: 28191039 PMCID: PMC5297095 DOI: 10.1186/s13040-016-0122-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 12/27/2016] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Aldolase A (ALDOA) is one of the glycolytic enzymes primarily found in the developing embryo and adult muscle. Recently, a new role of ALDOA in several cancers has been proposed. However, the underlying mechanism remains obscure and inconsistent. In this study, we tried to investigate ALDOA-associated (AA) genes using available microarray datasets to help elucidating the role of ALDOA in cancer. RESULTS In the dataset of patients with non-small-cell lung cancer (NSCLC, E-GEOD-19188), 3448 differentially expressed genes (DEGs) including ALDOA were identified, in which 710 AA genes were found to be positively associated with ALDOA. Then according to correlation coefficients between each pair of AA genes, ALDOA-associated gene co-expression network (GCN) was constructed including 182 nodes and 1619 edges. 11 clusters out of GCN were detected by ClusterOne plugin in Cytoscape, and only 3 of them have more than three nodes. These three clusters were functionally enriched. A great number of genes (43/79, 54.4%) in the biggest cluster (Cluster 1) primarily involved in biological process like cell cycle process (Pa = 6.76E-26), mitotic cell cycle (Pa = 4.09E-19), DNA repair (Pa = 1.13E-04), M phase of meiotic cell cycle (Pa = 0.006), positive regulation of ubiquitin-protein ligase activity during mitotic cell cycle (Pa = 0.014). AA genes with highest degree and betweenness were considered as hub genes of GCN, namely CDC20, MELK, PTTG1, CCNB2, CDC45, CCNB1, TK1 and PSMB2, which could distinguish cancer from normal controls with ALDOA. Their positive association with ALDOA remained after removing the effect of HK2 and PKM, the two rate limiting enzymes in glycolysis. Further, knocking down ALDOA blocked breast cancer cells in the G0/G1 phase under minimized glycolysis. All suggested that ALDOA might affect cell cycle progression independent of glycolysis. RT-qPCR detection confirmed the relationship of ALDOA with CDC45 and CCNB2 in breast tumors. High expression of the hub genes indicated poor outcome in NSCLC. ALDOA could improve their predictive power. CONCLUSIONS ALDOA could contribute to the progress of cancer, at least partially through its association with genes relevant to cell cycle independent of glycolysis. AA genes plus ALDOA represent a potential new signature for development and prognosis in several cancers.
Collapse
Affiliation(s)
- Fan Zhang
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, 515041 China
| | - Jie-Diao Lin
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, 515041 China
| | - Xiao-Yu Zuo
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060 China
| | - Yi-Xuan Zhuang
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, 515041 China
| | - Chao-Qun Hong
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, 515041 China
| | - Guo-Jun Zhang
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, 515041 China
| | - Xiao-Jiang Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - Yu-Kun Cui
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, 515041 China
| |
Collapse
|
614
|
Mo Z, Zheng S, Lv Z, Zhuang Y, Lan X, Wang F, Lu X, Zhao Y, Zhou S. Senescence marker protein 30 (SMP30) serves as a potential prognostic indicator in hepatocellular carcinoma. Sci Rep 2016; 6:39376. [PMID: 27991558 PMCID: PMC5171839 DOI: 10.1038/srep39376] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/23/2016] [Indexed: 11/09/2022] Open
Abstract
Senescence marker protein 30 (SMP30) has been identified as a tumor-related molecule of hepatocellular carcinoma (HCC). Its clinical significance and underlying mechanisms in HCC tissues, however, remain largely unexplored. We have demonstrated a preferentially expressed SMP30 in normal liver using a tissue microarray. By employing real-time quantitative PCR, two tissue microarrays and Oncomine database analysis, we have also shown that the SMP30 in HCC tissues has significantly reduced when compared with that in paired adjacent non-tumor tissues (P = 0.0037). The reduced expression of SMP30 is very noticeably related to larger tumor size (P = 0.012), enhanced TNM (P = 0.009) and worse survival (P < 0.0001) in HCC patients. The analyses using Cox regression have indicated that the decreased SMP30 expression is an independent risk to the reduced overall survival rate of HCC patients (P = 0.001), and the down-regulation of SMP30 in HCC might be mediated by DNA methylation. Moreover, genes co-expressed with SMP30 may affect the prognosis through apoptotic process, biological adhesion and blood coagulation by PANTHER analyses. Our studies have indicated that the SMP30 may serve as a candidate of HCC clinical prognostic marker and a potential therapeutic target.
Collapse
Affiliation(s)
- Zhijing Mo
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
| | - Shunxin Zheng
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
| | - Zhilue Lv
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
| | - Yuan Zhuang
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
| | - Xiuwan Lan
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
| | - Feng Wang
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China
| | - Xiaoling Lu
- Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Guangxi Medical University, Nanning 530021, China
| | - Yongxiang Zhao
- Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Guangxi Medical University, Nanning 530021, China
| | - Sufang Zhou
- Department of Biochemistry and Molecular Biology, Guangxi Medical University, Nanning 530021, China.,Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
615
|
The rs3957357C>T SNP in GSTA1 Is Associated with a Higher Risk of Occurrence of Hepatocellular Carcinoma in European Individuals. PLoS One 2016; 11:e0167543. [PMID: 27936036 PMCID: PMC5147914 DOI: 10.1371/journal.pone.0167543] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 11/16/2016] [Indexed: 01/08/2023] Open
Abstract
Glutathione S-transferases (GSTs) detoxify toxic molecules by conjugation with reduced glutathione and regulate cell signaling. Single nucleotide polymorphisms (SNPs) of GST genes have been suggested to affect GST functions and thus to increase the risk of human hepatocellular carcinoma (HCC). As GSTA1 is expressed in hepatocytes and the rs3957357C>T (TT) SNP is known to downregulate GSTA1 mRNA expression, the aims of this study were: (i) to explore the relationship between the TT SNP in GSTA1 and the occurrence of HCC; (ii) to measure GSTA1 mRNA expression in HCCs. For that purpose, we genotyped non-tumor-tissue-derived DNA from 48 HCC patients and white-blood-cell-derived DNA from 37 healthy individuals by restriction fragment length polymorphism (RFLP). In addition, expression of GSTA1 mRNA was assessed by real-time PCR in 18 matching pairs of HCCs and non-tumor livers. Survival analysis was performed on an annotated microarray dataset containing 247 HCC patients (GSE14520). The GSTA1 TT genotype was more frequent in HCC than in non-HCC patients (27% versus 5%, respectively), suggesting that individuals carrying this genotype could be associated with 2-fold higher risk of developing HCCs (odds ratio = 2.1; p = 0.02). Also, we found that GSTA1 mRNA expression was lower in HCCs than in non-tumor livers. HCCs expressing the highest GSTA1 mRNA levels were the smallest in size (R = -0.67; p = 0.007), expressed the highest levels of liver-enriched genes such as ALB (albumin, R = -0.67; p = 0.007) and COL18A1 (procollagen type XVIII, R = -0.50; p = 0.03) and showed the most favorable disease-free (OR = 0.54; p<0.001) and overall (OR = 0.56; p = 0.006) outcomes. Moreover, GSTA1 was found within a 263-gene network involved in well-differentiated hepatocyte functions. In conclusion, HCCs are characterized by two GSTA1 features: the TT SNP and reduced GSTA1 gene expression in a context of hepatocyte de-differentiation.
Collapse
|
616
|
Jin X, Tian S, Li P. Histone Acetyltransferase 1 Promotes Cell Proliferation and Induces Cisplatin Resistance in Hepatocellular Carcinoma. Oncol Res 2016; 25:939-946. [PMID: 27938492 PMCID: PMC7840994 DOI: 10.3727/096504016x14809827856524] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant diseases in the world. Mutations, overexpression, and improper recruitment of HATs can lead to tumorigenesis. HAT1 is the first histone acetyltransferase identified and is related with developing HCC, but the mechanism is still unclear. Interestingly, we found that HAT1 was upregulated in HCC patient specimens and showed that its upregulation facilitates HCC cell growth in vitro and in vivo. Moreover, we demonstrated that HAT1 promoted glycolysis in HCC cells and knockdown of HAT1 sensitized HCC cells to apoptotic death induced by cisplatin. Our results suggest that HAT1 might act as an oncogenic protein promoting cell proliferation and inducing cisplatin resistance in HCC, and targeting HAT1 represents a viable strategy for effective treatment of advanced HCC.
Collapse
|
617
|
Holzer K, Drucker E, Roessler S, Dauch D, Heinzmann F, Waldburger N, Eiteneuer EM, Herpel E, Breuhahn K, Zender L, Schirmacher P, Ori A, Singer S. Proteomic Analysis Reveals GMP Synthetase as p53 Repression Target in Liver Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:228-235. [PMID: 27939741 DOI: 10.1016/j.ajpath.2016.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 09/12/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
Disruption of the tumor-suppressive p53 network is a key event in human malignancies, including primary liver cancer. In response to different types of stress, p53 mediates several antiproliferative cellular outcomes, such as cell cycle arrest, apoptosis, and senescence, by activation or repression of its target genes. Metabolic alterations initiating or being part of the p53 response have become an actively studied research area in the p53 field, with several aspects that still remain to be elucidated. Herein, we identified GMP synthetase (GMPS), a key enzyme of de novo purine biosynthesis, as an important p53 repression target using a large-scale proteomics approach. This p53-mediated repression of GMPS could be validated by immunoblotting in Sk-Hep1, HepG2, and HuH6 cells. Moreover, we found GMPS transcriptionally repressed in a p21-dependent manner and its repression maintained in the context of p53-mediated cellular senescence. More important, direct knockdown of GMPS by RNA interference resulted in reduced cell viability and was sufficient to trigger cellular senescence. Finally, by comparing murine hepatocellular carcinomas, which developed in p53 wild-type (+/+) versus p53 null (-/-) mice, we observed higher GMPS expression in the latter, supporting the in vivo relevance of our findings. We conclude that repression of GMPS by p53 through p21 is a functionally relevant part of the p53-mediated senescence program limiting tumor cell growth in liver cancer.
Collapse
Affiliation(s)
- Kerstin Holzer
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Elisabeth Drucker
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniel Dauch
- Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, University of Tuebingen, Tuebingen, Germany
| | - Florian Heinzmann
- Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, University of Tuebingen, Tuebingen, Germany
| | - Nina Waldburger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Esther Herpel
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lars Zender
- Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, University of Tuebingen, Tuebingen, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Alessandro Ori
- Leibniz-Institute on Aging-Fritz-Lipmann-Institute, Jena, Germany
| | - Stephan Singer
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany; European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany.
| |
Collapse
|
618
|
Abstract
Acute intermittent porphyria (AIP) is an autosomal dominant metabolic disease caused by hepatic deficiency of hydroxymethylbilane synthase (HMBS), the third enzyme of the heme synthesis pathway. The dominant clinical feature is acute neurovisceral attack associated with high production of potentially neurotoxic porphyrin precursors due to increased hepatic heme consumption. Current Standard of Care is based on a down-regulation of hepatic heme synthesis using heme therapy. Recurrent hyper-activation of the hepatic heme synthesis pathway affects about 5% of patients and can be associated with neurological and metabolic manifestations and long-term complications including chronic kidney disease and increased risk of hepatocellular carcinoma. Prophylactic heme infusion is an effective strategy in some of these patients, but it induces tolerance and its frequent application may be associated with thromboembolic disease and hepatic siderosis. Orthotopic liver transplantation is the only curative treatment in patients with recurrent acute attacks. Emerging therapies including replacement enzyme therapy or gene therapies (HMBS-gene transfer and ALAS1-gene expression inhibition) are being developed to improve quality of life, reduce the significant morbidity associated with current therapies and prevent late complications such as hepatocellular cancer or kidney failure in HMBS mutation carriers with long-standing high production of noxious heme precursors. Herein, we provide a critical digest of the recent literature on the topic and a summary of recently developed approaches to AIP treatment and their clinical implications.
Collapse
|
619
|
Vymetalkova V, Pardini B, Rosa F, Jiraskova K, Di Gaetano C, Bendova P, Levy M, Veskrnova V, Buchler T, Vodickova L, Naccarati A, Vodicka P. Polymorphisms in microRNA binding sites of mucin genes as predictors of clinical outcome in colorectal cancer patients. Carcinogenesis 2016; 38:28-39. [PMID: 27803053 DOI: 10.1093/carcin/bgw114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 09/20/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022] Open
Abstract
Polymorphisms in microRNA (miRNA) binding sites may affect miRNA/target gene interaction, resulting in differential mRNA/protein expression and susceptibility to common diseases. Mucins have been identified as markers of adverse prognosis. We hypothesized that genetic variations in miRNA binding sites located in mucin genes may modulate signaling response and the maintenance of genomic stability ultimately affecting cancer susceptibility, efficacy of chemotherapy and survival. In this study, we analyzed the association of single nucleotide polymorphisms in predicted miRNA target sites (miRSNPs) of mucin genes with colorectal cancer (CRC) risk and clinical outcome. Thirteen miRSNPs in 9 genes were assessed in 1111 cases and 1469 controls. No strongly significant associations were observed in the case-control study. Patients carrying the CC genotype of rs886403 in MUC21 displayed a shorter survival and higher recurrence risk when compared with TT carriers [overall survival (OS): hazard ratios (HR) 1.69; 95% confidence intervals (CI) 1.13-2.46; P = 0.01 and event-free survival (EFS): HR 1.99; 95% CI 1.38-2.84; P = 0.0002, respectively]. The observed associations were more striking after stratification for tumor site (in patients with colon cancer, OS: HR 2.63; 95% CI 1.69-4.10; P < 0.0001 and EFS: HR 2.65; 95% CI 1.72-4.07; P < 0.0001). In contrast, rectal cancer cases carrying the CC genotype of rs4729655 in MUC17 displayed a longer survival (OS: HR 0.27; 95% CI 0.14-0.54; P = 0.0002) than those with the most common genotype. To our knowledge, this is the first study investigating miRSNPs potentially affecting miRNA binding to mucin genes and revealing their impact on CRC susceptibility or patient's survival.
Collapse
Affiliation(s)
- Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, 14200 Prague, Czech Republic, .,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 11000 Prague, Czech Republic
| | | | - Fabio Rosa
- Human Genetics Foundation, 10126 Turin, Italy
| | - Katerina Jiraskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, 14200 Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 11000 Prague, Czech Republic
| | - Cornelia Di Gaetano
- Human Genetics Foundation, 10126 Turin, Italy.,Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Petra Bendova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, 14200 Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 11000 Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Miloslav Levy
- Department of Surgery, First Faculty of Medicine, Charles University and Thomayer University Hospital, 14200 Prague, Czech Republic and
| | - Veronika Veskrnova
- Department of Oncology, Thomayer Hospital and First Faculty of Medicine, Charles University, 11000 Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, Thomayer Hospital and First Faculty of Medicine, Charles University, 11000 Prague, Czech Republic
| | - Ludmila Vodickova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, 14200 Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 11000 Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Alessio Naccarati
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, 14200 Prague, Czech Republic.,Human Genetics Foundation, 10126 Turin, Italy
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, 14200 Prague, Czech Republic.,Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, 11000 Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| |
Collapse
|
620
|
Wang Z, Ding Q, Li Y, Liu Q, Wu W, Wu L, Yu H. Reanalysis of microRNA expression profiles identifies novel biomarkers for hepatocellular carcinoma prognosis. Tumour Biol 2016; 37:14779-14787. [PMID: 27633066 DOI: 10.1007/s13277-016-5369-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 09/08/2016] [Indexed: 12/11/2022] Open
Abstract
The aim of our study is to identify microRNAs (miRNAs) that have significance in the prognosis and pathogenesis of hepatocellular carcinoma (HCC). The miRNAs differentially expressed in HCC were examined by using a human miRNA microarray dataset, and then the acquired candidates were screened by another microarray dataset. As a result, we got 25 miRNAs which were aberrantly expressed in cancer and meanwhile predicated distinct prognosis. Among them, miR-139-5p was down-regulated in HCC and its low expression in cancer tissue meant poor prognosis. Additionally, we demonstrated that its low expression was also related to several clinicopathologic characteristics such as vein invasion, BCLC stage, p-AKT expression, and pIGFR1 expression. In vitro, it has been discovered that treatment of HCC cells with a miR-139-5p mimic lead to inhibition of cell growth and migration. Moreover, luciferase assay showed that KPNA4 was not the direct target of miR-139-5p. Ectopic expression of miR-139-5p has not repressed the expression of KPNA4, but inhibited the nuclear import of NF-κB and phosphorylation of Akt. In conclusion, for the first time, we identify 25 deregulated miRNAs that are associated with prognosis and prove that miR-139-5p functions as a tumor suppressor in HCC and its low expression predicts poor prognosis.
Collapse
Affiliation(s)
- Zhengqiang Wang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Qianshan Ding
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Yanxia Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Qingqing Liu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Wei Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Lu Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Jiefang Road 238, Wuhan, 430060, China.
- Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, 430060, China.
| |
Collapse
|
621
|
Proteomic analysis and translational perspective of hepatocellular carcinoma: Identification of diagnostic protein biomarkers by an onco-proteogenomics approach. Kaohsiung J Med Sci 2016; 32:535-544. [DOI: 10.1016/j.kjms.2016.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023] Open
|
622
|
Komatsu H, Iguchi T, Masuda T, Hirata H, Ueda M, Kidogami S, Ogawa Y, Sato K, Hu Q, Nambara S, Saito T, Sakimura S, Uchi R, Ito S, Eguchi H, Sugimachi K, Eguchi H, Doki Y, Mori M, Mimori K. Attenuated RND1 Expression Confers Malignant Phenotype and Predicts Poor Prognosis in Hepatocellular Carcinoma. Ann Surg Oncol 2016; 24:850-859. [DOI: 10.1245/s10434-016-5573-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Indexed: 11/18/2022]
|
623
|
Eggert T, Wolter K, Ji J, Ma C, Yevsa T, Klotz S, Medina-Echeverz J, Longerich T, Forgues M, Reisinger F, Heikenwalder M, Wang XW, Zender L, Greten TF. Distinct Functions of Senescence-Associated Immune Responses in Liver Tumor Surveillance and Tumor Progression. Cancer Cell 2016; 30:533-547. [PMID: 27728804 PMCID: PMC7789819 DOI: 10.1016/j.ccell.2016.09.003] [Citation(s) in RCA: 439] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 03/28/2016] [Accepted: 09/12/2016] [Indexed: 02/08/2023]
Abstract
Oncogene-induced senescence causes hepatocytes to secrete cytokines, which induce their immune-mediated clearance to prevent tumor initiation, a process termed "senescence surveillance." However, senescent hepatocytes give rise to hepatocellular carcinomas (HCCs), if the senescence program is bypassed or if senescent cells are not cleared. Here, we show context-specific roles for CCR2+ myeloid cells in liver cancer. Senescence surveillance requires the recruitment and maturation of CCR2+ myeloid cells, and CCR2 ablation caused outgrowth of HCC. In contrast, HCC cells block the maturation of recruited myeloid precursors, which, through NK cell inhibition, promote growth of murine HCC and worsen the prognosis and survival of human HCC patients. Thus, while senescent hepatocyte-secreted chemokines suppress liver cancer initiation, they may accelerate the growth of fully established HCC.
Collapse
Affiliation(s)
- Tobias Eggert
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katharina Wolter
- Division of Gastrointestinal Oncology, Department of Internal Medicine I, University of Tübingen, 72076 Tübingen, Germany
| | - Juling Ji
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chi Ma
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tetyana Yevsa
- Division of Gastrointestinal Oncology, Department of Internal Medicine I, University of Tübingen, 72076 Tübingen, Germany
| | - Sabrina Klotz
- Division of Gastrointestinal Oncology, Department of Internal Medicine I, University of Tübingen, 72076 Tübingen, Germany
| | - José Medina-Echeverz
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Thomas Longerich
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Marshonna Forgues
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Florian Reisinger
- Institute of Virology, Technische Universität München and Helmholtz Zentrum München, 81675 Munich, Germany; Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mathias Heikenwalder
- Institute of Virology, Technische Universität München and Helmholtz Zentrum München, 81675 Munich, Germany; Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lars Zender
- Division of Gastrointestinal Oncology, Department of Internal Medicine I, University of Tübingen, 72076 Tübingen, Germany; Translational Gastrointestinal Oncology Group within the German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| | - Tim F Greten
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
624
|
Giannelli G, Koudelkova P, Dituri F, Mikulits W. Role of epithelial to mesenchymal transition in hepatocellular carcinoma. J Hepatol 2016; 65:798-808. [PMID: 27212245 DOI: 10.1016/j.jhep.2016.05.007] [Citation(s) in RCA: 458] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/20/2016] [Accepted: 05/03/2016] [Indexed: 12/13/2022]
Abstract
The epithelial to mesenchymal transition (EMT) is a multistep biological process whereby epithelial cells change in plasticity by transient de-differentiation into a mesenchymal phenotype. EMT and its reversal, mesenchymal to epithelial transition (MET), essentially occur during embryogenetic morphogenesis and have been increasingly described in fibrosis and cancer during the last decade. In carcinoma progression, EMT plays a crucial role in early steps of metastasis when cells lose cell-cell contacts due to ablation of E-cadherin and acquire increased motility to spread into surrounding or distant tissues. Epithelial plasticity has become a hot issue in hepatocellular carcinoma (HCC), as strong inducers of EMT such as transforming growth factor-β are able to orchestrate both fibrogenesis and carcinogenesis, showing rising cytokine levels in cirrhosis and late stage HCC. In this review, we consider the significance of EMT-MET in malignant hepatocytes as well as changes in the plasticity of hepatic stellate cells for cellular heterogeneity of HCC, and further aim at explaining the current limiting insights into EMT by snapshot analyses of HCC tissues. Recent advances in the identification of clinically relevant mechanisms that impinge on important EMT-transcription factors, as well as on miRNAs causing EMT signatures and HCC progression are highlighted. In addition, we draw particular attention to framing EMT in the context of potential clinical relevance for HCC patients. We conclude that some aspects of EMT are still elusive and further studies are required to better link the clinical management of HCC with biomarkers and targeted therapies related to EMT.
Collapse
Affiliation(s)
- Gianluigi Giannelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy.
| | - Petra Koudelkova
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Francesco Dituri
- Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy
| | - Wolfgang Mikulits
- Department of Medicine I, Division: Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Austria.
| |
Collapse
|
625
|
Chi HC, Chen SL, Tsai CY, Chuang WY, Huang YH, Tsai MM, Wu SM, Sun CP, Yeh CT, Lin KH. Thyroid hormone suppresses hepatocarcinogenesis via DAPK2 and SQSTM1-dependent selective autophagy. Autophagy 2016; 12:2271-2285. [PMID: 27653365 DOI: 10.1080/15548627.2016.1230583] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent studies have demonstrated a critical association between disruption of cellular thyroid hormone (TH) signaling and the incidence of hepatocellular carcinoma (HCC), but the underlying mechanisms remain largely elusive. Here, we showed that disruption of TH production results in a marked increase in progression of diethylnitrosamine (DEN)-induced HCC in a murine model, and conversely, TH administration suppresses the carcinogenic process via activation of autophagy. Inhibition of autophagy via treatment with chloroquine (CQ) or knockdown of ATG7 (autophagy-related 7) via adeno-associated virus (AAV) vectors, suppressed the protective effects of TH against DEN-induced hepatic damage and development of HCC. The involvement of autophagy in TH-mediated protection was further supported by data showing transcriptional activation of DAPK2 (death-associated protein kinase 2; a serine/threonine protein kinase), which enhanced the phosphorylation of SQSTM1/p62 (sequestosome 1) to promote selective autophagic clearance of protein aggregates. Ectopic expression of DAPK2 further attenuated DEN-induced hepatoxicity and DNA damage though enhanced autophagy, whereas, knockdown of DAPK2 displayed the opposite effect. The pathological significance of the TH-mediated hepatoprotective effect by DAPK2 was confirmed by the concomitant decrease in the expression of THRs and DAPK2 in matched HCC tumor tissues. Taken together, these findings indicate that TH promotes selective autophagy via induction of DAPK2-SQSTM1 cascade, which in turn protects hepatocytes from DEN-induced hepatotoxicity or carcinogenesis.
Collapse
Affiliation(s)
- Hsiang-Cheng Chi
- a Department of Biochemistry , College of Medicine, Chang-Gung University , Taoyuan , Taiwan
| | - Shen-Liang Chen
- b Department of Life Sciences , National Central University , Jhongli , Taiwan
| | - Chung-Ying Tsai
- a Department of Biochemistry , College of Medicine, Chang-Gung University , Taoyuan , Taiwan
| | - Wen-Yu Chuang
- c Department of Pathology , Chang Gung Memorial Hospital and Chang Gung University College of Medicine , Taoyuan , Taiwan
| | - Ya-Hui Huang
- d Liver Research Center, Chang Gung Memorial Hospital , Linkou, Taoyuan , Taiwan
| | - Ming-Ming Tsai
- e Department of Nursing , Chang-Gung University of Science and Technology , Taoyuan , Taiwan.,f Department of General Surgery , Chang Gung Memorial Hospital at Chiayi , Taiwan
| | - Sheng-Ming Wu
- a Department of Biochemistry , College of Medicine, Chang-Gung University , Taoyuan , Taiwan.,g Division of Pulmonary Medicine, Department of Internal Medicine , Shuang Ho Hospital, Taipei Medical University
| | - Cheng-Pu Sun
- h Institute of Biomedical Sciences, Academia Sinica , Taipei , Taiwan
| | - Chau-Ting Yeh
- d Liver Research Center, Chang Gung Memorial Hospital , Linkou, Taoyuan , Taiwan
| | - Kwang-Huei Lin
- a Department of Biochemistry , College of Medicine, Chang-Gung University , Taoyuan , Taiwan.,d Liver Research Center, Chang Gung Memorial Hospital , Linkou, Taoyuan , Taiwan
| |
Collapse
|
626
|
Asada K, Canestrari E, Paroo Z. A druggable target for rescuing microRNA defects. Bioorg Med Chem Lett 2016; 26:4942-4946. [PMID: 27641467 DOI: 10.1016/j.bmcl.2016.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/15/2016] [Accepted: 09/06/2016] [Indexed: 01/06/2023]
Abstract
Despite immense promise, development of microRNA (miRNA) therapeutics remains limited by pharmacodynamic challenges that have hindered progress of related oligonucleotide-based technologies. Recent discovery of enzymes that mediate miRNA metabolism represent potential pharmacological targets for directing miRNA function, circumventing barriers associated with oligonucleotides. We previously identified the Translin/Trax (TN/TX) ribonuclease complex as a pre-miRNA degrading enzyme that competes with pre-miRNA processing by Dicer. Here, we establish a high-throughput TN/TX assay and screened 2320 drug and natural product compounds for inhibitors of TN/TX. Secondary analyses demonstrate small molecule mediated inhibition of pre-miRNA degradation by TN/TX and enhanced miRNA processing by Dicer. This application of traditional enzyme-inhibitor pharmacology to the miRNA pathway establishes a druggable target for rescuing global miRNA defects, providing an important complement to current approaches towards miRNA therapeutics. More broadly, demonstrating feasibility of pharmacological targeting of the 'ribonucleome' is particularly important given emerging classes of regulatory RNA and growing understanding of their importance in health and disease.
Collapse
Affiliation(s)
- Ken Asada
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Emanuele Canestrari
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zain Paroo
- Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL 60612, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
627
|
Likhitrattanapisal S, Tipanee J, Janvilisri T. Meta-analysis of gene expression profiles identifies differential biomarkers for hepatocellular carcinoma and cholangiocarcinoma. Tumour Biol 2016; 37:12755-12766. [PMID: 27448818 DOI: 10.1007/s13277-016-5186-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/13/2016] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) are the members of hepatobiliary diseases. Both types of cancer often exert high levels of similarity in terms of phenotypic characteristics, thus leading to difficulties in HCC and CCA differential diagnoses. In this study, a transcriptome meta-analysis was performed on HCC and CCA microarray data to identify differential transcriptome networks and potential biomarkers for HCC and CCA. Raw data from nine gene expression profiling datasets, consisting of 1,185 samples in total, were methodologically compiled and analyzed. To evaluate differentially expressed (DE) genes in HCC and CCA, the levels of gene expression were compared between cancer and its normal counterparts (i.e., HCC versus normal liver and CCA versus normal bile duct) using t test (P < 0.05) and k-fold validation. A total of 226 DE genes were specific to HCC, 249 DE genes specific to CCA, and 41 DE genes in both HCC and CCA. Gene ontology and pathway enrichment analyses revealed different patterns between functional transcriptome networks of HCC and CCA. Cell cycle and glycolysis/gluconeogenesis pathways were exclusively dysregulated in HCC whereas complement and coagulation cascades as well as glycine, serine, and threonine metabolism were prodominantly differentially expressed in CCA. Our meta-analysis revealed distinct dysregulation in transcriptome networks between HCC and CCA. Certain genes in these networks were discussed in the context of HCC and CCA transition, unique characteristics of HCC and CCA, and their potentials as HCC and CCA differential biomarkers.
Collapse
Affiliation(s)
| | - Jaitip Tipanee
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
628
|
Ploeger C, Waldburger N, Fraas A, Goeppert B, Pusch S, Breuhahn K, Wang XW, Schirmacher P, Roessler S. Chromosome 8p tumor suppressor genes SH2D4A and SORBS3 cooperate to inhibit interleukin-6 signaling in hepatocellular carcinoma. Hepatology 2016; 64:828-42. [PMID: 27311882 PMCID: PMC5098049 DOI: 10.1002/hep.28684] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 06/03/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED Several chronic inflammatory liver diseases, e.g., chronic hepatitis B or C viral infection and steatohepatitis, have been shown to predispose to the development of hepatocellular carcinoma (HCC). In patients with chronic liver disease, interleukin-6 (IL-6) serum levels are elevated and increase even more when HCC develops. However, the impact and regulatory mechanisms of IL-6 signaling during hepatocarcinogenesis are still poorly defined. Here, we show that gene expression profiles of patients with chromosome 8p loss correlate with increased IL-6 signaling. In addition, the chromosome 8p tumor suppressor genes Src homology 2 domain containing 4A (SH2D4A) and Sorbin and Src homology 3 domain containing 3 (SORBS3) together exerted greater inhibition of cell growth and clonogenicity compared to a single gene. Overexpression of SH2D4A and SORBS3 in HCC cells led to decreased IL-6 target gene expression and reduced signal transducer and activator of transcription 3 (STAT3) signaling. In situ and in vitro coimmunoprecipitation assays revealed that SH2D4A directly interacts with STAT3, thereby retaining STAT3 in the cytoplasm and inhibiting STAT3 transcriptional activity. On the other hand, SORBS3 coactivated estrogen receptor α signaling, leading indirectly to repression of STAT3 signaling. In human HCC tissues, SH2D4A was positively associated with infiltrating regulatory and cytotoxic T-cell populations, suggesting distinct immunophenotypes in HCC subgroups with chromosome 8p loss. Thus, the genetically linked tumor suppressors SH2D4A and SORBS3 functionally cooperate to inhibit STAT3 signaling in HCC. CONCLUSION The chromosome 8p tumor suppressor genes SORBS3 and SH2D4A are physically and functionally linked and provide a molecular mechanism of inhibiting STAT3-mediated IL-6 signaling in HCC cells. (Hepatology 2016;64:828-842).
Collapse
Affiliation(s)
- Carolin Ploeger
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nina Waldburger
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Angelika Fraas
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Benjamin Goeppert
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Pusch
- Department of Neuropathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany,Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kai Breuhahn
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Peter Schirmacher
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Roessler
- Department of General Pathology, Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
629
|
LncSox4 promotes the self-renewal of liver tumour-initiating cells through Stat3-mediated Sox4 expression. Nat Commun 2016; 7:12598. [PMID: 27553854 PMCID: PMC4999516 DOI: 10.1038/ncomms12598] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 07/13/2016] [Indexed: 12/27/2022] Open
Abstract
Liver cancer has a tendency to develop asymptomatically in patients, so most patients are diagnosed at a later stage. Accumulating evidence implicates that liver tumour-initiating cells (TICs) as being responsible for liver cancer initiation and recurrence. However, the molecular mechanism of liver TIC self-renewal is poorly understood. Here we discover that a long noncoding RNA (lncRNA) termed LncSox4 is highly expressed in hepatocellular carcinoma (HCC) tissues and in liver TICs. We find that LncSox4 is required for liver TIC self-renewal and tumour initiation. LncSox4 interacts with and recruits Stat3 to the Sox4 promoter to initiate the expression of Sox4, which is highly expressed in liver TICs and required for liver TIC self-renewal. The expression level of Sox4 correlates with HCC development, clinical severity and prognosis of patients. Altogether, we find that LncSox4 is highly expressed in liver TICs and is required for their self-renewal. Liver tumour-initiating cells (TICs) may be responsible for liver cancer initiation and recurrence. In this article, the authors show that a previously unidentified lncRNA, LncSox4, is highly expressed in liver cancer TICs and regulates TIC self-renewal through the Stat3/SOX4 axis.
Collapse
|
630
|
Zhang MH, Shen QH, Qin ZM, Wang QL, Chen X. Systematic tracking of disrupted modules identifies significant genes and pathways in hepatocellular carcinoma. Oncol Lett 2016; 12:3285-3295. [PMID: 27899995 PMCID: PMC5103943 DOI: 10.3892/ol.2016.5039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/12/2016] [Indexed: 12/17/2022] Open
Abstract
The objective of the present study is to identify significant genes and pathways associated with hepatocellular carcinoma (HCC) by systematically tracking the dysregulated modules of re-weighted protein-protein interaction (PPI) networks. Firstly, normal and HCC PPI networks were inferred and re-weighted based on Pearson correlation coefficient. Next, modules in the PPI networks were explored by a clique-merging algorithm, and disrupted modules were identified utilizing a maximum weight bipartite matching in non-increasing order. Then, the gene compositions of the disrupted modules were studied and compared with differentially expressed (DE) genes, and pathway enrichment analysis for these genes was performed based on Expression Analysis Systematic Explorer. Finally, validations of significant genes in HCC were conducted using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The present study evaluated 394 disrupted module pairs, which comprised 236 dysregulated genes. When the dysregulated genes were compared with 211 DE genes, a total of 26 common genes [including phospholipase C beta 1, cytochrome P450 (CYP) 2C8 and CYP2B6] were obtained. Furthermore, 6 of these 26 common genes were validated by RT-qPCR. Pathway enrichment analysis of dysregulated genes demonstrated that neuroactive ligand-receptor interaction, purine and drug metabolism, and metabolism of xenobiotics mediated by CYP were significantly disrupted pathways. In conclusion, the present study greatly improved the understanding of HCC in a systematic manner and provided potential biomarkers for early detection and novel therapeutic methods.
Collapse
Affiliation(s)
- Meng-Hui Zhang
- Department of General Surgery, The Fourth Hospital of Jinan, Jinan, Shandong 250031, P.R. China
| | - Qin-Hai Shen
- Department of Medicine, Shandong Medical College, Jinan, Shandong 250002, P.R. China
| | - Zhao-Min Qin
- Department of Nursing, Shandong Medical College, Jinan, Shandong 250002, P.R. China
| | - Qiao-Ling Wang
- Department of Ophthalmology, The Second Hospital of Jinan, Jinan, Shandong 250022, P.R. China
| | - Xi Chen
- Department of Ophthalmology, The Ninth Hospital of Chongqing, Chongqing 400700, P.R. China
| |
Collapse
|
631
|
Désert R, Mebarki S, Desille M, Sicard M, Lavergne E, Renaud S, Bergeat D, Sulpice L, Perret C, Turlin B, Clément B, Musso O. "Fibrous nests" in human hepatocellular carcinoma express a Wnt-induced gene signature associated with poor clinical outcome. Int J Biochem Cell Biol 2016; 81:195-207. [PMID: 27545991 DOI: 10.1016/j.biocel.2016.08.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is the 3rd cause of cancer-related death worldwide. Most cases arise in a background of chronic inflammation, extracellular matrix (ECM) remodeling, severe fibrosis and stem/progenitor cell amplification. Although HCCs are soft cellular tumors, they may contain fibrous nests within the tumor mass. Thus, the aim of this study was to explore cancer cell phenotypes in fibrous nests. Combined anatomic pathology, tissue microarray and real-time PCR analyses revealed that HCCs (n=82) containing fibrous nests were poorly differentiated, expressed Wnt pathway components and target genes, as well as markers of stem/progenitor cells, such as CD44, LGR5 and SOX9. Consistently, in severe liver fibroses (n=66) and in HCCs containing fibrous nests, weighted correlation analysis revealed a gene network including the myofibroblast marker ACTA2, the basement membrane components COL4A1 and LAMC1, the Wnt pathway members FZD1; FZD7; WNT2; LEF1; DKK1 and the Secreted Frizzled Related Proteins (SFRPs) 1; 2 and 5. Moreover, unbiased random survival forest analysis of a transcriptomic dataset of 247 HCC patients revealed high DKK1, COL4A1, SFRP1 and LAMC1 to be associated with advanced tumor staging as well as with bad overall and disease-free survival. In vitro, these genes were upregulated in liver cancer stem/progenitor cells upon Wnt-induced mesenchymal commitment and myofibroblast differentiation. In conclusion, fibrous nests express Wnt target genes, as well as markers of cancer stem cells and mesenchymal commitment. Fibrous nests embody the specific microenvironment of the cancer stem cell niche and can be detected by routine anatomic pathology analyses.
Collapse
Affiliation(s)
- Romain Désert
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France.
| | - Sihem Mebarki
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France.
| | - Mireille Desille
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France; CHU Rennes, Centre de Ressources Biologiques Santé BB-0033-00056, Rennes, France.
| | - Marie Sicard
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France.
| | - Elise Lavergne
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France.
| | - Stéphanie Renaud
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France.
| | - Damien Bergeat
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France; CHU de Rennes, Dept. of Gastrointestinal and Hepatobiliary Surgery, Rennes, France.
| | - Laurent Sulpice
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France; CHU de Rennes, Dept. of Gastrointestinal and Hepatobiliary Surgery, Rennes, France.
| | - Christine Perret
- Inserm, U1016, Institut Cochin, Paris, France; Cnrs, UMR8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France.
| | - Bruno Turlin
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France; CHU Rennes, Centre de Ressources Biologiques Santé BB-0033-00056, Rennes, France.
| | - Bruno Clément
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France.
| | - Orlando Musso
- Inserm, UMR991, Liver Metabolisms and Cancer, Rennes, France; Université de Rennes 1, F-35043 Rennes, France.
| |
Collapse
|
632
|
ADRB2 signaling promotes HCC progression and sorafenib resistance by inhibiting autophagic degradation of HIF1α. J Hepatol 2016; 65:314-24. [PMID: 27154061 DOI: 10.1016/j.jhep.2016.04.019] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 03/31/2016] [Accepted: 04/20/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Considerable evidence suggests that adrenergic signaling played an essential role in tumor progression. However, its role in hepatocellular carcinoma (HCC) and the underlying mechanisms remain unknown. METHODS The effect of adrenaline in hepatocarcinogenesis was observed in a classical diethylnitrosamine-induced HCC mouse model. Effects of ADRB2 signaling inhibition in HCC cell lines were analyzed in proliferation, apoptosis, colony formation assays. Autophagy regulation by ADRB2 was assessed in immunoblotting, immunofluorescence and immunoprecipitation assays. In vivo tumorigenic properties and anticancer effects of sorafenib were examined in nude mice. Expression levels of ADRB2 and hypoxia-inducible factor-1α (HIF1α) in 150 human HCC samples were evaluated by immunohistochemistry. RESULTS We uncovered that adrenaline promoted DEN-induced hepatocarcinogenesis, which was reversed by the ADRB2 antagonist ICI118,551. ADRB2 signaling also played an essential role in sustaining HCC cell proliferation and survival. Notably, ADRB2 signaling negatively regulated autophagy by disrupting Beclin1/VPS34/Atg14 complex in an Akt-dependent manner, leading to HIF1α stabilization, reprogramming of HCC cells glucose metabolism, and the acquisition of resistance to sorafenib. Conversely, inhibition of ADRB2 signaling by ICI118,551, or knockdown ADRB2 expression, led to enhanced autophagy, HIF1α destabilization, tumor growth suppression, and improved anti-tumor activity of sorafenib. Consistently, ADRB2 expression correlated positively with HIF1α in HCC specimens and was associated with HCC outcomes. CONCLUSIONS Our results uncover an important role of ADRB2 signaling in regulating HCC progression. Given the efficacy of ADRB2 modulation on HCC inhibition and sorafenib resistance, adrenoceptor antagonist appears to be a putative novel treatment for HCC and chemoresistance. LAY SUMMARY ADRB2 signaling played an essential role in sustaining hepatocellular carcinoma cell proliferation and survival. ADRB2 signaling negatively regulated autophagy, leading to hypoxia-inducible factor-1α stabilization, reprogramming of hepatocellular carcinoma cells glucose metabolism, and the acquisition of resistance to sorafenib. Adrenoceptor antagonist appears to be a putative novel treatment for hepatocellular carcinoma and chemoresistance.
Collapse
|
633
|
Kong FY, Wei X, Zhou K, Hu W, Kou YB, You HJ, Liu XM, Zheng KY, Tang RX. Bioinformatics Analysis Reveals Distinct Molecular Characteristics of Hepatitis B-Related Hepatocellular Carcinomas from Very Early to Advanced Barcelona Clinic Liver Cancer Stages. PLoS One 2016; 11:e0158286. [PMID: 27454179 PMCID: PMC4959694 DOI: 10.1371/journal.pone.0158286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 06/13/2016] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC)is the fifth most common malignancy associated with high mortality. One of the risk factors for HCC is chronic hepatitis B virus (HBV) infection. The treatment strategy for the disease is dependent on the stage of HCC, and the Barcelona clinic liver cancer (BCLC) staging system is used in most HCC cases. However, the molecular characteristics of HBV-related HCC in different BCLC stages are still unknown. Using GSE14520 microarray data from HBV-related HCC cases with BCLC stages from 0 (very early stage) to C (advanced stage) in the gene expression omnibus (GEO) database, differentially expressed genes (DEGs), including common DEGs and unique DEGs in different BCLC stages, were identified. These DEGs were located on different chromosomes. The molecular functions and biology pathways of DEGs were identified by gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and the interactome networks of DEGs were constructed using the NetVenn online tool. The results revealed that both common DEGs and stage-specific DEGs were associated with various molecular functions and were involved in special biological pathways. In addition, several hub genes were found in the interactome networks of DEGs. The identified DEGs and hub genes promote our understanding of the molecular mechanisms underlying the development of HBV-related HCC through the different BCLC stages, and might be used as staging biomarkers or molecular targets for the treatment of HCC with HBV infection.
Collapse
Affiliation(s)
- Fan-Yun Kong
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, China
| | - Xiao Wei
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, China
| | - Kai Zhou
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, China
| | - Wei Hu
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, China
| | - Yan-Bo Kou
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, China
| | - Hong-Juan You
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, China
| | - Xiao-Mei Liu
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, China
| | - Kui-Yang Zheng
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, China
- * E-mail: (R-XT); (K-YZ)
| | - Ren-Xian Tang
- Department of Pathogenic Biology and Immunology, Laboratory of Infection and Immunity, Xuzhou Medical College, Xuzhou, Jiangsu, 221004, China
- * E-mail: (R-XT); (K-YZ)
| |
Collapse
|
634
|
Yuan S, Wang J, Yang Y, Zhang J, Liu H, Xiao J, Xu Q, Huang X, Xiang B, Zhu S, Li L, Liu J, Liu L, Zhou W. The Prediction of Clinical Outcome in Hepatocellular Carcinoma Based on a Six-Gene Metastasis Signature. Clin Cancer Res 2016; 23:289-297. [PMID: 27449498 DOI: 10.1158/1078-0432.ccr-16-0395] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/01/2016] [Accepted: 06/23/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Shengxian Yuan
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Jie Wang
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Yuan Yang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Jin Zhang
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Juanjuan Xiao
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qingguo Xu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China
| | - Xinhui Huang
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fujian, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi, China
| | - Shaoliang Zhu
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi, China
| | - Lequn Li
- Department of Hepatobiliary Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Guangxi, China.
| | - Jingfeng Liu
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fujian, China.
| | - Lei Liu
- Shanghai Public Health Clinical Center, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Weiping Zhou
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
635
|
Fleet T, Stashi E, Zhu B, Rajapakshe K, Marcelo KL, Kettner NM, Gorman BK, Coarfa C, Fu L, O'Malley BW, York B. Genetic and Environmental Models of Circadian Disruption Link SRC-2 Function to Hepatic Pathology. J Biol Rhythms 2016; 31:443-60. [PMID: 27432117 DOI: 10.1177/0748730416657921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Circadian rhythmicity is a fundamental process that synchronizes behavioral cues with metabolic homeostasis. Disruption of daily cycles due to jet lag or shift work results in severe physiological consequences including advanced aging, metabolic syndrome, and even cancer. Our understanding of the molecular clock, which is regulated by intricate positive feedforward and negative feedback loops, has expanded to include an important metabolic transcriptional coregulator, Steroid Receptor Coactivator-2 (SRC-2), that regulates both the central clock of the suprachiasmatic nucleus (SCN) and peripheral clocks including the liver. We hypothesized that an environmental uncoupling of the light-dark phases, termed chronic circadian disruption (CCD), would lead to pathology similar to the genetic circadian disruption observed with loss of SRC-2 We found that CCD and ablation of SRC-2 in mice led to a common comorbidity of metabolic syndrome also found in humans with circadian disruption, non-alcoholic fatty liver disease (NAFLD). The combination of SRC-2(-/-) and CCD results in a more robust phenotype that correlates with human non-alcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) gene signatures. Either CCD or SRC-2 ablation produces an advanced aging phenotype leading to increased mortality consistent with other circadian mutant mouse models. Collectively, our studies demonstrate that SRC-2 provides an essential link between the behavioral activities influenced by light cues and the metabolic homeostasis maintained by the liver.
Collapse
Affiliation(s)
- Tiffany Fleet
- Interdepartmental Department in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Erin Stashi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Bokai Zhu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Kimal Rajapakshe
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Kathrina L Marcelo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Nicole M Kettner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Blythe K Gorman
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas Weill Medical College, Cornell University, New York, New York
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Loning Fu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
636
|
Yuan M, Guo H, Li J, Sui C, Qin Y, Wang J, Khan YH, Ye L, Xie F, Wang H, Yuan L, Ye J. Slit2 and Robo1 induce opposing effects on metastasis of hepatocellular carcinoma Sk-hep-1 cells. Int J Oncol 2016; 49:305-15. [PMID: 27176045 DOI: 10.3892/ijo.2016.3506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/28/2016] [Indexed: 11/05/2022] Open
Abstract
The neural guidance molecular, Slit2, and its cognate receptor, Robo1, play critical roles in the development of the nervous system, nevertheless, their functions are not limited to this system. Numerous studies have shown decreased Slit2 expression in a wide variety of cancers, highlighting its potential as a tumor suppressor. However, the Slit2/Robo1 signaling axis was reported to induce either suppressive or stimulatory effects on tumor growth and metastasis, depending on cellular context. There is a paucity of information on the effects of the Slit2/Robo1 signaling axis on the growth and metastasis of human hepatocellular carcinoma (HCC). Large-scale data mining of the Oncomine database has revealed heterogeneous expression of Slit2 in HCC. We screened the Sk-hep-1, a cell line showing a relatively high level of Slit2, and low level of Robo1 expression. After Slit2 knockdown and Robo1 overexpression in these cells, we found Slit2 and Robo1 exerted opposing effects on tumor growth and metastasis both in in vitro and in vivo models. Slit2 knockdown and Robo1 overexpression in Sk-hep-1 cells promoted tumor growth and metastasis, suggesting a negative and positive role for Slit2 and Robo1, respectively, in tumor progression. Robo1 overexpression upregulated matrix metalloproteinase (MMP)2, -9 and membrane-type1 MMP (MT1-MMP) expression, stimulated MMP2, but not MMP9 activation, and downregulated expression of TIMP1 and 2. The PI3K/Akt signaling pathway is of importance in regulating MMP2 expression in Sk-hep-1 cells, since Robo1 overexpression stimulated phosphorylation of Akt while the PI3K inhibitor LY294002, significantly inhibited the upregulation of MMP2 and also the enhanced cell invasion induced by Robo1 overexpression. We postulate that Robo1 promotes tumor invasion partly by the upregulation of MMP2 after activation of PI3K/Akt signaling pathway. Notably, Slit2 knockdown caused the upregulation of Robo1 expression both at the mRNA and protein levels. Thus, the stimulatory effects of Slit2 knockdown on tumor progression can be ascribed, at least in part, to the upregulation of Robo1 and its positive role in tumor progression.
Collapse
Affiliation(s)
- Mingjing Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, P.R. China
| | - Hui Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, P.R. China
| | - Jing Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, P.R. China
| | - Chengzhi Sui
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, P.R. China
| | - Ying Qin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, P.R. China
| | - Jingjing Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, P.R. China
| | - Yasir Hayat Khan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, P.R. China
| | - Liying Ye
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, P.R. China
| | - Fuan Xie
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, P.R. China
| | - Heng Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, P.R. China
| | - Li Yuan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, P.R. China
| | - Jun Ye
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, P.R. China
| |
Collapse
|
637
|
Emma MR, Iovanna JL, Bachvarov D, Puleio R, Loria GR, Augello G, Candido S, Libra M, Gulino A, Cancila V, McCubrey JA, Montalto G, Cervello M. NUPR1, a new target in liver cancer: implication in controlling cell growth, migration, invasion and sorafenib resistance. Cell Death Dis 2016; 7:e2269. [PMID: 27336713 PMCID: PMC5143401 DOI: 10.1038/cddis.2016.175] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 01/11/2023]
Abstract
Sorafenib, an oral multikinase inhibitor, is the only approved agent for the treatment of advanced hepatocellular carcinoma (HCC). However, its benefits are modest, and as its mechanisms of action remain elusive, a better understanding of its anticancer effects is needed. Based on our previous study results, we investigated here the implication of the nuclear protein 1 (NUPR1) in HCC and its role in sorafenib treatment. NUPR1 is a stress-inducible protein that is overexpressed in various malignancies, but its role in HCC is not yet fully understood. We found that NUPR1 expression was significantly higher in primary human HCC samples than in the normal liver. Knockdown of NUPR1 significantly increased cell sensitivity to sorafenib and inhibited the cell growth, migration and invasion of HCC cells, both in vitro and in vivo. Moreover, NUPR1 silencing influenced the expression of RELB and IER3 genes. Unsurprisingly, RELB and IER3 knockdown also inhibited HCC cell viability, growth and migration. Using gene expression profiling of HCC cells following stable NUPR1 knockdown, we found that genes functionally involved in cell death and survival, cellular response to therapies, lipid metabolism, cell growth and proliferation, molecular transport and cellular movement were mostly suppressed. Network analysis of dynamic gene expression identified NF-κB and ERK as downregulated gene nodes, and several HCC-related oncogenes were also suppressed. We identified Runt-related transcription factor 2 (RUNX2) gene as a NUPR1-regulated gene and demonstrated that RUNX2 gene silencing inhibits HCC cell viability, growth, migration and increased cell sensitivity to sorafenib. We propose that the NUPR1/RELB/IER3/RUNX2 pathway has a pivotal role in hepatocarcinogenesis. The identification of the NUPR1/RELB/IER3/RUNX2 pathway as a potential therapeutic target may contribute to the development of new treatment strategies for HCC management.
Collapse
Affiliation(s)
- M R Emma
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy.,Biomedic Department of Internal Medicine and Specialties (DiBiMIS), University of Palermo, Palermo, Italy
| | - J L Iovanna
- INSERM UMR1068, Center of Research in Cancerology of Marseille (CRCM), Marseille, France
| | - D Bachvarov
- Cancer Research Centre, Hôpital L'Hotel-Dieu de Québec, Centre Hospitalier Universitaire de Québec, Quebec City (Quebec), Canada.,Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec City (Quebec), Canada
| | - R Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Histopathology and Immunohistochemistry Laboratory, Palermo, Italy
| | - G R Loria
- Istituto Zooprofilattico Sperimentale della Sicilia "A. Mirri", Histopathology and Immunohistochemistry Laboratory, Palermo, Italy
| | - G Augello
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy.,Biomedic Department of Internal Medicine and Specialties (DiBiMIS), University of Palermo, Palermo, Italy
| | - S Candido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - M Libra
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - A Gulino
- Tumor Immunology Unit, Department of Health Science, University of Palermo, Palermo, Italy
| | - V Cancila
- Tumor Immunology Unit, Department of Health Science, University of Palermo, Palermo, Italy
| | - J A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC, USA
| | - G Montalto
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy.,Biomedic Department of Internal Medicine and Specialties (DiBiMIS), University of Palermo, Palermo, Italy
| | - M Cervello
- Institute of Biomedicine and Molecular Immunology "Alberto Monroy", National Research Council (CNR), Palermo, Italy
| |
Collapse
|
638
|
Lin S, Zhou S, Jiang S, Liu X, Wang Y, Zheng X, Zhou H, Li X, Cai X. NEK2 regulates stem-like properties and predicts poor prognosis in hepatocellular carcinoma. Oncol Rep 2016; 36:853-62. [PMID: 27349376 DOI: 10.3892/or.2016.4896] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/21/2016] [Indexed: 11/06/2022] Open
Abstract
NEK2 has been estimated to play an important role in cancer progression. However, its relevance in hepatocellular carcinoma (HCC) has not yet been explored. Immunohistochemistry revealed NEK2 expression was upregulated in HCC. NEK2-positive hepatocellular carcinoma patients were associated with poor prognosis after surgery compared with NEK2-negative patients based on Kaplan-Meier curves. Deletion of NEK2 reduced self-renewal properties and chemotherapeutic resistance, and decreased the stemness associated genes in cell lines. NEK2 was associated with unfavorable outcomes in HCC patients, and was revealed to regulate self-renewal property by means of Wnt/β-catenin signaling, and chemotherapeutic resistance by preferential regulation of the expression of ABCG2 and ALDH1A1 in HCC cells.
Collapse
Affiliation(s)
- Shuang Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Senjun Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Shaojie Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Xiaolong Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Xueyong Zheng
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| | - Haimeng Zhou
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, P.R. China
| | - Xuhui Li
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, P.R. China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
639
|
Ramesh V, Ganesan K. Integrative functional genomic delineation of the cascades of transcriptional changes involved in hepatocellular carcinoma progression. Int J Cancer 2016; 139:1586-97. [PMID: 27194100 DOI: 10.1002/ijc.30195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 05/05/2016] [Accepted: 05/11/2016] [Indexed: 12/24/2022]
Abstract
Development of targeted therapeutics is still at its early stage for hepatocellular carcinoma (HCC) due to the incomplete understanding of the confounding regulations at signaling pathway level. In this investigation, gene co-expression-based networking and integrative functional genomic modeling of HCC mRNA profiles as signaling processes were employed to understand the complex signaling cascades involved in HCC development toward understanding the avenues for targeted therapeutics. Multiple sets of genes and molecular biological processes involved during HCC development were identified from this integrative analysis: (i) Loss of liver cellular features due to the reduced HNF4A & PPAR signaling in the early stages of HCC, (ii) activated inflammatory and stress signals in the cirrhosis stages and (iii) highly activated cellular proliferation with the activated E2F-MYC oncogenic signaling with the gain of embryonic liver stem cell-like features in the advanced stage tumors. Upon connecting these gene-sets with the established drug sensitivity-related gene signatures, targeted therapeutic strategies for the heterogeneous HCC conditions have been identified. PPAR agonist class of drugs for early stage HCC conditions, anti-inflammatory drugs for cirrhosis and topoisomerase inhibitors for the advanced HCC conditions were inferred. Integrative functional genomic analysis of HCC transcriptome profiles at the context of signaling pathways has defined the key molecular processes involved in HCC development. Further, the study highlights the stage-specific and pathway focused targeted therapeutics for HCC. These findings deserve extensive preclinical explorations toward the establishment of targeted therapeutics.
Collapse
Affiliation(s)
- Vignesh Ramesh
- Cancer Genetics Laboratory, Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - Kumaresan Ganesan
- Cancer Genetics Laboratory, Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
640
|
Lv X, Zhao F, Huo X, Tang W, Hu B, Gong X, Yang J, Shen Q, Qin W. Neuropeptide Y1 receptor inhibits cell growth through inactivating mitogen-activated protein kinase signal pathway in human hepatocellular carcinoma. Med Oncol 2016; 33:70. [PMID: 27262566 DOI: 10.1007/s12032-016-0785-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/26/2016] [Indexed: 12/31/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers, and its incidence is increasing worldwide. Neuropeptide Y (NPY) broadly expressed in the central and peripheral nervous system. It participates in multiple physiological and pathological processes through specific receptors. Evidences are accumulating that NPY is involved in development and progression in neuro- or endocrine-related cancers. However, little is known about the potential roles and underlying mechanisms of NPY receptors in HCC. In this study, we analyzed the expression of NPY receptors by real-time polymerase chain reaction, Western blot, and immunohistochemical staining. Correlation between NPY1R levels and clinicopathological characteristics, and survival of HCC patients were explored, respectively. Cell proliferation was researched by CCK-8 in vitro, and tumor growth was studied by nude mice xenografts in vivo. We found that mRNA and protein level of NPY receptor Y1 subtype (NPY1R) significantly decreased in HCC tissues. Low expression of NPY1R closely correlated with poor prognosis in HCC patients. Proliferation of HCC cells was significantly inhibited by recombinant NPY protein in vitro. This inhibitory effect could be blocked by selected NPY1R antagonist BIBP3226. Furthermore, overexpression of NPY1R could significantly inhibit HCC cell proliferation. Knockdown of NPY1R promoted cell multiplication in vitro and increased tumorigenicity and tumor growth in vivo. NPY1R was found to participate in the inhibition of cell proliferation via inactivating mitogen-activated protein kinase signal pathway in HCC cells. Collectively, NPY1R plays an inhibitory role in tumor growth and may be a promising therapeutic target for HCC.
Collapse
Affiliation(s)
- Xiufang Lv
- Basic Medical Research Centre in Medical College of Nantong University, Nantong, China
| | - Fengbo Zhao
- Basic Medical Research Centre in Medical College of Nantong University, Nantong, China
| | - Xisong Huo
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/2200, Xietu Road, Shanghai, 200032, China
| | - Weidong Tang
- Department of General Surgery, The Affiliated Hospital, Nantong University, Nantong, China
| | - Baoying Hu
- Basic Medical Research Centre in Medical College of Nantong University, Nantong, China
| | - Xiu Gong
- Basic Medical Research Centre in Medical College of Nantong University, Nantong, China
| | - Juan Yang
- Basic Medical Research Centre in Medical College of Nantong University, Nantong, China
| | - Qiujin Shen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/2200, Xietu Road, Shanghai, 200032, China
| | - Wenxin Qin
- Basic Medical Research Centre in Medical College of Nantong University, Nantong, China.
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, No. 25/2200, Xietu Road, Shanghai, 200032, China.
| |
Collapse
|
641
|
You W, Tan G, Sheng N, Gong J, Yan J, Chen D, Zhang H, Wang Z. Downregulation of myosin VI reduced cell growth and increased apoptosis in human colorectal cancer. Acta Biochim Biophys Sin (Shanghai) 2016; 48:430-6. [PMID: 27044563 DOI: 10.1093/abbs/gmw020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/25/2016] [Indexed: 12/19/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer worldwide, with the mortality increasing steadily over the last decade. Myosin VI (MYO6) expression is found to be elevated in some types of human carcinoma cell types, suggesting that it may be a sensitive biomarker for the diagnosis and follow-up. In this study, we first used the Oncomine database to explore the expression of MYO6 in CRC tissues, and then constructed a plasmid of RNA interference targeting MYO6 gene. After transfection of lentivirus targeting MYO6 into SW1116 cells, cell viability and proliferation were measured with 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and colony formation assay. Cell cycle distribution was assayed by flow cytometry and apoptosis was evaluated by Annexin V. MYO6 expression was detected by quantitative real-time polymerase chain reaction and western blot analysis. It was found that MYO6 mRNA was upregulated in CRC tissues using data mining of public Oncomine microarray datasets. Depletion of MYO6 significantly inhibited cell proliferation and colony formation. In addition, knockdown of MYO6 slightly arrested cell cycle in G0/G1 phase, but remarkably increased the proportion of the sub-G1 phase of cell with the increase of apoptotic cells. These results suggest that MYO6 may promote cell growth and may be used as a potential target for anticancer therapy of CRC.
Collapse
Affiliation(s)
- Weiqiang You
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Gewen Tan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Nengquan Sheng
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jianfeng Gong
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Jun Yan
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Di Chen
- National Key Laboratory of Science and Technology on Nano/Micro Fabrication Technology, Research Institute Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huizhen Zhang
- Department of Pathology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhigang Wang
- Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
642
|
Ding Q, He K, Luo T, Deng Y, Wang H, Liu H, Zhang J, Chen K, Xiao J, Duan X, Huang R, Xia Z, Zhou W, He J, Yu H, Jiao X, Xiang G. SSRP1 Contributes to the Malignancy of Hepatocellular Carcinoma and Is Negatively Regulated by miR-497. Mol Ther 2016; 24:903-914. [PMID: 26755331 PMCID: PMC4881782 DOI: 10.1038/mt.2016.9] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 01/03/2016] [Indexed: 02/08/2023] Open
Abstract
The aim of this study is to clarify the clinical implication and functional role of structure specific recognition protein 1 (SSRP1) in hepatocellular carcinoma (HCC) and explore the underlying mechanism of aberrant high expression of SSRP1 in cancers. In the present investigation, we validated that SSRP1 was upregulated in HCC samples. We also demonstrated that its upregulation was associated with several clinicopathologic features such as higher serum AFP level, larger tumor size, and higher T stage of HCC patients; and its high expression indicated shorter overall survival and faster recurrence. To investigate the role of SSRP1 in HCC progression, both loss- and gain-function models were established. We demonstrated that SSPR1 modulated both proliferation and metastasis of HCC cells in vitro and vivo. Furthermore, we demonstrated that SSRP1-modulated apoptosis process and its knockdown increased the sensitivity of HCC cells to doxorubicin, 5-Fluorouracil, and cisplatin. We also identified microRNA-497 (miR-497) as a posttranscriptional regulator of SSRP1. Ectopic expression of miR-497 inhibited 3'-untranslated-region-coupled luciferase activity and suppressed endogenous SSRP1 expression at both messenger RNA and protein levels. For the first time, we proved that SSRP1 upregulation contributed to HCC development and the tumor-suppressive miR-497 served as its negative regulator.
Collapse
Affiliation(s)
- Qianshan Ding
- Department of General Surgery, The Second People's Hospital of Guangdong Province, The 3rd Clinical Medicine School, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Institute for Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke He
- Department of General Surgery, The Second People's Hospital of Guangdong Province, The 3rd Clinical Medicine School, Southern Medical University, Guangzhou, China
| | - Tao Luo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yunchao Deng
- Department of Gastroenterology, Institute for Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hanning Wang
- Department of General Surgery, The Second People's Hospital of Guangdong Province, The 3rd Clinical Medicine School, Southern Medical University, Guangzhou, China
| | - Hao Liu
- Department of Vascular Surgery, Southern Hospital, Southern Medical University, Guangzhou, China
| | - Jinqian Zhang
- Department of General Surgery, The Second People's Hospital of Guangdong Province, The 3rd Clinical Medicine School, Southern Medical University, Guangzhou, China
| | - Kaiyun Chen
- Department of General Surgery, The Second People's Hospital of Guangdong Province, The 3rd Clinical Medicine School, Southern Medical University, Guangzhou, China
| | - Jinfeng Xiao
- Department of General Surgery, The Second People's Hospital of Guangdong Province, The 3rd Clinical Medicine School, Southern Medical University, Guangzhou, China
| | - Xiaopeng Duan
- Department of General Surgery, The Second People's Hospital of Guangdong Province, The 3rd Clinical Medicine School, Southern Medical University, Guangzhou, China
| | - Rui Huang
- Department of General Surgery, The Second People's Hospital of Guangdong Province, The 3rd Clinical Medicine School, Southern Medical University, Guangzhou, China
| | - Zhenglin Xia
- Department of General Surgery, The Second People's Hospital of Guangdong Province, The 3rd Clinical Medicine School, Southern Medical University, Guangzhou, China
| | - Wenjie Zhou
- Department of General Surgery, The Second People's Hospital of Guangdong Province, The 3rd Clinical Medicine School, Southern Medical University, Guangzhou, China
| | - Jinliang He
- Department of General Surgery, The Second People's Hospital of Guangdong Province, The 3rd Clinical Medicine School, Southern Medical University, Guangzhou, China
| | - Honggang Yu
- Department of Gastroenterology, Institute for Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xingyuan Jiao
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guoan Xiang
- Department of General Surgery, The Second People's Hospital of Guangdong Province, The 3rd Clinical Medicine School, Southern Medical University, Guangzhou, China
| |
Collapse
|
643
|
Dekervel J, Popovic D, van Malenstein H, Windmolders P, Heylen L, Libbrecht L, Bulle A, De Moor B, Van Cutsem E, Nevens F, Verslype C, van Pelt J. A Global Risk Score (GRS) to Simultaneously Predict Early and Late Tumor Recurrence Risk after Resection of Hepatocellular Carcinoma. Transl Oncol 2016; 9:139-146. [PMID: 27084430 PMCID: PMC4833966 DOI: 10.1016/j.tranon.2016.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/18/2016] [Accepted: 02/24/2016] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES: Recurrence of hepatocellular carcinoma can arise from the primary tumor (“early recurrence”) or de novo from tumor formation in a cirrhotic environment (“late recurrence”). We aimed to develop one simple gene expression score applicable in both the tumor and the surrounding liver that can predict the recurrence risk. METHODS: We determined differentially expressed genes in a cell model of cancer aggressiveness. These genes were first validated in three large published data sets of hepatocellular carcinoma from which we developed a seven-gene risk score. RESULTS: The gene score was applied on two independent large patient cohorts. In the first cohort, with only tumor data available, it could predict the recurrence risk at 3 years after resection (68 ± 10% vs 35 ± 7%, P = .03). In the second cohort, when applied on the tumor, this gene score predicted early recurrence (62 ± 5% vs 37 ± 4%, P < .001), and when applied on the surrounding liver tissue, the same genes also correlated with late recurrence. Four patient classes with each different time patterns and rates of recurrence could be identified based on combining tumor and liver scores. In a multivariate Cox regression analysis, our gene score remained significantly associated with recurrence, independent from other important cofactors such as disease stage (P = .007). CONCLUSIONS: We developed a Global Risk Score that is able to simultaneously predict the risk of early recurrence when applied on the tumor itself, as well as the risk of late recurrence when applied on the surrounding liver tissue.
Collapse
Affiliation(s)
- Jeroen Dekervel
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, University Hospitals Leuven & KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Dusan Popovic
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics/iMinds Medical IT, KU Leuven, Kasteelpark Arenberg 10, 3000, Leuven, Belgium
| | - Hannah van Malenstein
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, University Hospitals Leuven & KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Petra Windmolders
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, University Hospitals Leuven & KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Line Heylen
- Department of Nephrology and Renal Transplantation, University Hospitals Leuven & Department of Microbiology and Immunology, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Louis Libbrecht
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, University Hospitals Leuven & KU Leuven, Herestraat 49, 3000, Leuven, Belgium; Department of Pathology, University Hospital Ghent, De Pintelaan 185, 9000, Ghent, Belgium
| | - Ashenafi Bulle
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, University Hospitals Leuven & KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Bart De Moor
- Department of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics/iMinds Medical IT, KU Leuven, Kasteelpark Arenberg 10, 3000, Leuven, Belgium
| | - Eric Van Cutsem
- Department of Clinical Digestive Oncology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Frederik Nevens
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, University Hospitals Leuven & KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Chris Verslype
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, University Hospitals Leuven & KU Leuven, Herestraat 49, 3000, Leuven, Belgium; Department of Clinical Digestive Oncology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Jos van Pelt
- Laboratory of Hepatology, Department of Clinical and Experimental Medicine, University Hospitals Leuven & KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
644
|
Dropmann A, Dediulia T, Breitkopf-Heinlein K, Korhonen H, Janicot M, Weber SN, Thomas M, Piiper A, Bertran E, Fabregat I, Abshagen K, Hess J, Angel P, Coulouarn C, Dooley S, Meindl-Beinker NM. TGF-β1 and TGF-β2 abundance in liver diseases of mice and men. Oncotarget 2016; 7:19499-19518. [PMID: 26799667 PMCID: PMC4991397 DOI: 10.18632/oncotarget.6967] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/01/2016] [Indexed: 01/11/2023] Open
Abstract
TGF-β1 is a major player in chronic liver diseases promoting fibrogenesis and tumorigenesis through various mechanisms. The expression and function of TGF-β2 have not been investigated thoroughly in liver disease to date. In this paper, we provide evidence that TGF-β2 expression correlates with fibrogenesis and liver cancer development.Using quantitative realtime PCR and ELISA, we show that TGF-β2 mRNA expression and secretion increased in murine HSCs and hepatocytes over time in culture and were found in the human-derived HSC cell line LX-2. TGF-β2 stimulation of the LX-2 cells led to upregulation of the TGF-β receptors 1, 2, and 3, whereas TGF-β1 treatment did not alter or decrease their expression. In liver regeneration and fibrosis upon CCl4 challenge, the transient increase of TGF-β2 expression was accompanied by TGF-β1 and collagen expression. In bile duct ligation-induced fibrosis, TGF-β2 upregulation correlated with fibrotic markers and was more prominent than TGF-β1 expression. Accordingly, MDR2-KO mice showed significant TGF-β2 upregulation within 3 to 15 months but minor TGF-β1 expression changes. In 5 of 8 hepatocellular carcinoma (HCC)/hepatoblastoma cell lines, relatively high TGF-β2 expression and secretion were observed, with some cell lines even secreting more TGF-β2 than TGF-β1. TGF-β2 was also upregulated in tumors of TGFα/cMyc and DEN-treated mice. The analysis of publically available microarray data of 13 human HCC collectives revealed considerable upregulation of TGF-β2 as compared to normal liver.Our study demonstrates upregulation of TGF-β2 in liver disease and suggests TGF-β2 as a promising therapeutic target for tackling fibrosis and HCC.
Collapse
Affiliation(s)
- Anne Dropmann
- Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Tatjana Dediulia
- Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Katja Breitkopf-Heinlein
- Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | | | | | - Susanne N. Weber
- Department of Medicine II, Saarland University Medical Center, Homburg, Germany
| | - Maria Thomas
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Albrecht Piiper
- Medizinische Klinik 1, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | - Esther Bertran
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona. L'Hospitalet, Barcelona, Spain
| | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) and University of Barcelona. L'Hospitalet, Barcelona, Spain
| | - Kerstin Abshagen
- Institute for Experimental Surgery, Rostock University Medical Center, Rostock, Germany
| | - Jochen Hess
- Research Group Molecular Mechanisms of Head and Neck Tumors, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Section Experimental and Translational Head and Neck Oncology, Department of Otolaryngology, Head and Neck Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cédric Coulouarn
- Institut National de la Santé et de la Recherche Médicale UMR991, University of Rennes, Pontchaillou University Hospital, Rennes, France
| | - Steven Dooley
- Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Nadja M. Meindl-Beinker
- Molecular Hepatology, Department of Medicine II, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
645
|
Hirata H, Sugimachi K, Komatsu H, Ueda M, Masuda T, Uchi R, Sakimura S, Nambara S, Saito T, Shinden Y, Iguchi T, Eguchi H, Ito S, Terashima K, Sakamoto K, Hirakawa M, Honda H, Mimori K. Decreased Expression of Fructose-1,6-bisphosphatase Associates with Glucose Metabolism and Tumor Progression in Hepatocellular Carcinoma. Cancer Res 2016; 76:3265-76. [DOI: 10.1158/0008-5472.can-15-2601] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/31/2016] [Indexed: 11/16/2022]
|
646
|
Xu X, Zhou Y, Miao R, Chen W, Qu K, Pang Q, Liu C. Transcriptional modules related to hepatocellular carcinoma survival: coexpression network analysis. Front Med 2016; 10:183-90. [DOI: 10.1007/s11684-016-0440-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 02/06/2016] [Indexed: 12/21/2022]
|
647
|
Yin S, Fan Y, Zhang H, Zhao Z, Hao Y, Li J, Sun C, Yang J, Yang Z, Yang X, Lu J, Xi JJ. Differential TGFβ pathway targeting by miR-122 in humans and mice affects liver cancer metastasis. Nat Commun 2016; 7:11012. [PMID: 26987776 PMCID: PMC4802055 DOI: 10.1038/ncomms11012] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/10/2016] [Indexed: 02/06/2023] Open
Abstract
Downregulation of a predominantly hepatocyte-specific miR-122 is associated with human liver cancer metastasis, whereas miR-122-deficient mice display normal liver function. Here we show a functional conservation of miR-122 in the TGFβ pathway: miR-122 target site is present in the mouse but not human TGFβR1, whereas a noncanonical target site is present in the TGFβ1 5′UTR in humans and other primates. Experimental switch of the miR-122 target between the receptor TGFβR1 and the ligand TGFβ1 changes the metastatic properties of mouse and human liver cancer cells. High expression of TGFβ1 in human primary liver tumours is associated with poor survival. We identify over 50 other miRNAs orthogonally targeting ligand/receptor pairs in humans and mice, suggesting that these are evolutionarily common events. These results reveal an evolutionary mechanism for miRNA-mediated gene regulation underlying species-specific physiological or pathological phenotype and provide a potentially valuable strategy for treating liver-associated diseases. MiR-122 levels correlate with metastasis in human liver cancer but not in mouse models. Here the authors show that miR-122 targets TGFßR1 in mice but TGFß1 in humans, that swapping this specificity affects metastasis, and that many other receptor-ligand pairs are differentially targeted by miRNAs across species.
Collapse
Affiliation(s)
- Shenyi Yin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Yu Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Hanshuo Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhihua Zhao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yang Hao
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Juan Li
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Changhong Sun
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Junyu Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zhenjun Yang
- School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing 100071, China
| | - Jian Lu
- College of Life Science, Peking University, Beijing 100871, China
| | - Jianzhong Jeff Xi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.,State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| |
Collapse
|
648
|
Ouyang J, Sun Y, Li W, Zhang W, Wang D, Liu X, Lin Y, Lian B, Xie L. dbPHCC: a database of prognostic biomarkers for hepatocellular carcinoma that provides online prognostic modeling. Biochim Biophys Acta Gen Subj 2016; 1860:2688-95. [PMID: 26940364 DOI: 10.1016/j.bbagen.2016.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/27/2016] [Accepted: 02/26/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant cancers with a poor prognosis. For decades, more and more biomarkers were found to effect on HCC prognosis, but these studies were scattered and there were no unified identifiers. Therefore, we built the database of prognostic biomarkers and models for hepatocellular carcinoma (dbPHCC). METHODS dbPHCC focuses on biomarkers which were related to HCC prognosis by traditional experiments rather than high-throughput technology. All of the prognostic biomarkers came from literatures issued during 2002 to 2014 in PubMed and were manually selected. dbPHCC collects comprehensive information of candidate biomarkers and HCC prognosis. RESULTS dbPHCC mainly contains 567 biomarkers: 323 proteins, 154 genes, and 90 microRNAs. For each biomarker, the reference information, experimental conditions, and prognostic information are shown. Based on two available patient cohort data sets, an exemplified prognostic model was constructed using 15 phosphotransferases in dbPHCC. The web interface does not only provide a full range of browsing and searching, but also provides online analysis tools. dbPHCC is available at http://lifecenter.sgst.cn/dbphcc/ CONCLUSIONS dbPHCC provides a comprehensive and convenient search and analysis platform for HCC prognosis research. GENERAL SIGNIFICANCE dbPHCC is the first database to focus on experimentally verified individual biomarkers, which are related to HCC prognosis. Prognostic markers in dbPHCC have the potential to be therapeutic drug targets and may help in designing new treatments to improve survival of HCC patients. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
Affiliation(s)
- Jian Ouyang
- Biomedical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ying Sun
- Biomedical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Wei Li
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China
| | - Wen Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of People Libration Army General Hospital, Beijing 100048, China
| | - Dandan Wang
- Biomedical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiangqiong Liu
- Biomedical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yong Lin
- Biomedical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Baofeng Lian
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China; Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai 200240, China.
| | - Lu Xie
- Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, Shanghai 201203, China.
| |
Collapse
|
649
|
Ding Q, Kang J, Dai J, Tang M, Wang Q, Zhang H, Guo W, Sun R, Yu H. AGXT2L1 is down-regulated in heptocellular carcinoma and associated with abnormal lipogenesis. J Clin Pathol 2016; 69:215-220. [PMID: 26294768 DOI: 10.1136/jclinpath-2015-203042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/30/2015] [Indexed: 12/13/2022]
Abstract
AIMS To clarify the clinical implications and functional role of the alanine-glyoxylate aminotransferase 2-like 1 (AGXT2L1) gene in hepatocellular carcinoma (HCC). METHODS AND RESULTS We confirmed that AGXT2L1 was down-regulated in liver cancer samples by immunohistochemical (IHC) staining. We also demonstrated that this down-regulation was associated with several clinicopathological features such as alpha fetoprotein (AFP) serum level and T stage. Furthermore, we showed with Kaplan-Meier analysis that expression of AGXT2L1 in tumour samples was significantly correlated with patient prognosis. The bioinformatic tool indicated that AGXT2L1 plays a role in the lipid metabolic process of HCC tissue, while siRNA silenced the expression of AGXT2L1 in HCC 97H and LM3 cells, confirming that down-regulation of AGXT2L1 promotes the lipogenesis of cancer cells. CONCLUSIONS For the first time, we have shown that AGXT2L1 is down-regulated in HCC and its low expression indicates a poor prognosis. Our findings also demonstrated that AGXT2L1 is a crucial gene in the abnormal lipogenesis of HCC tissue.
Collapse
Affiliation(s)
- Qianshan Ding
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jian Kang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jinfen Dai
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Meng Tang
- Department of Immunology, School of Basic Medicine, Wuhan University, Wuhan, China
| | - Qi Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haotian Zhang
- Department of Math and Statistics, Liberal Arts College, Portland State University, Portland, OR, USA
| | - Wenyi Guo
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Rongze Sun
- Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Honggang Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
650
|
Samarin J, Laketa V, Malz M, Roessler S, Stein I, Horwitz E, Singer S, Dimou E, Cigliano A, Bissinger M, Falk CS, Chen X, Dooley S, Pikarsky E, Calvisi DF, Schultz C, Schirmacher P, Breuhahn K. PI3K/AKT/mTOR-dependent stabilization of oncogenic far-upstream element binding proteins in hepatocellular carcinoma cells. Hepatology 2016; 63:813-26. [PMID: 26901106 PMCID: PMC5262441 DOI: 10.1002/hep.28357] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/20/2015] [Indexed: 02/06/2023]
Abstract
UNLABELLED Transcription factors of the far-upstream element-binding protein (FBP) family represent cellular pathway hubs, and their overexpression in liver cancer (hepatocellular carcinoma [HCC]) stimulates tumor cell proliferation and correlates with poor prognosis. Here we determine the mode of oncogenic FBP overexpression in HCC cells. Using perturbation approaches (kinase inhibitors, small interfering RNAs) and a novel system for rapalog-dependent activation of AKT isoforms, we demonstrate that activity of the phosphatidylinositol-4,5-biphosphate 3-kinase/AKT pathway is involved in the enrichment of nuclear FBP1 and FBP2 in liver cancer cells. In human HCC tissues, phospho-AKT significantly correlates with nuclear FBP1/2 accumulation and expression of the proliferation marker KI67. Mechanistic target of rapamycin (mTOR) inhibition or blockade of its downstream effector eukaryotic translation initiation factor 4E activity equally reduced FBP1/2 concentrations. The mTORC1 inhibitor rapamycin diminishes FBP enrichment in liver tumors after hydrodynamic gene delivery of AKT plasmids. In addition, the multikinase inhibitor sorafenib significantly reduces FBP levels in HCC cells and in multidrug resistance 2-deficient mice that develop HCC due to severe inflammation. Both FBP1/2 messenger RNAs are highly stable, with FBP2 being more stable than FBP1. Importantly, inhibition of phosphatidylinositol-4,5-biphosphate 3-kinase/AKT/mTOR signaling significantly diminishes FBP1/2 protein stability in a caspase-3/-7-dependent manner. CONCLUSION These data provide insight into a transcription-independent mechanism of FBP protein enrichment in liver cancer; further studies will have to show whether this previously unknown interaction between phosphatidylinositol-4,5-biphosphate 3-kinase/AKT/mTOR pathway activity and caspase-mediated FBP stabilization allows the establishment of interventional strategies in FBP-positive HCCs.
Collapse
Affiliation(s)
- Jana Samarin
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Vibor Laketa
- Cell Biology and Cell Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mona Malz
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Ilan Stein
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Elad Horwitz
- Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Stephan Singer
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Eleni Dimou
- Cell Biology and Cell Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Antonio Cigliano
- Institute of Pathology, University Medicine Greifswald, Greifswald, Germany
| | - Michaela Bissinger
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA
| | - Steven Dooley
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eli Pikarsky
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Carsten Schultz
- Cell Biology and Cell Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|