601
|
Mjos KD, Cawthray JF, Jamieson G, Fox JA, Orvig C. Iron(III)-binding of the anticancer agents doxorubicin and vosaroxin. Dalton Trans 2015; 44:2348-58. [PMID: 25534904 DOI: 10.1039/c4dt02934h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The Fe(iii)-binding constant of vosaroxin, an anticancer quinolone derivative, has been determined spectrophotometrically and compared with the analogous Fe(iii) complex formed with doxorubicin. The in vivo metabolic stability and iron coordination properties of the quinolones compared to the anthracylines may provide significant benefit to cardiovascular safety. The mechanism of action of both molecules target the topoisomerase II enzyme. Both doxorubicin (Hdox, log βFeL3 = 33.41, pM = 17.0) and vosaroxin (Hvox, log βFeL3 = 33.80(3), pM = 15.9) bind iron(iii) with comparable strength; at physiological pH however, [Fe(vox)3] is the predominant species in contrast to a mixture of species observed for the Fe:dox system. Iron(iii) nitrate and gallium(iii) nitrate at a 1 : 3 ratio with vosaroxin formed stable tris(vosaroxacino)-iron(iii) and tris(vosaroxino)gallium(iii) complexes that were isolated and characterized. Their redox behavior was studied by CV, and their stereochemistry was further explored in temperature dependent (1)H NMR studies. The molecular pharmacology of their interaction with iron(iii) may be one possible differentiation in the safety profile of quinolones compared to anthracyclines in relation to cardiotoxicity.
Collapse
Affiliation(s)
- Katja Dralle Mjos
- Medicinal Inorganic Chemistry Group, University of British Columbia, Department of Chemistry, 2036 Main Mall, Vancouver, British Columbia V6 T 1Z1, Canada
| | | | | | | | | |
Collapse
|
602
|
Mouli S, Nanayakkara G, AlAlasmari A, Eldoumani H, Fu X, Berlin A, Lohani M, Nie B, Arnold RD, Kavazis A, Smith F, Beyers R, Denney T, Dhanasekaran M, Zhong J, Quindry J, Amin R. The role of frataxin in doxorubicin-mediated cardiac hypertrophy. Am J Physiol Heart Circ Physiol 2015; 309:H844-59. [PMID: 26209053 DOI: 10.1152/ajpheart.00182.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/14/2015] [Indexed: 12/22/2022]
Abstract
Doxorubicin (DOX) is a highly effective anti-neoplastic agent; however, its cumulative dosing schedules are clinically limited by the development of cardiotoxicity. Previous studies have attributed the cause of DOX-mediated cardiotoxicity to mitochondrial iron accumulation and the ensuing reactive oxygen species (ROS) formation. The present study investigates the role of frataxin (FXN), a mitochondrial iron-sulfur biogenesis protein, and its role in development of DOX-mediated mitochondrial dysfunction. Athymic mice treated with DOX (5 mg/kg, 1 dose/wk with treatments, followed by 2-wk recovery) displayed left ventricular hypertrophy, as observed by impaired cardiac hemodynamic performance parameters. Furthermore, we also observed significant reduction in FXN expression in DOX-treated animals and H9C2 cardiomyoblast cell lines, resulting in increased mitochondrial iron accumulation and the ensuing ROS formation. This observation was paralleled in DOX-treated H9C2 cells by a significant reduction in the mitochondrial bioenergetics, as observed by the reduction of myocardial energy regulation. Surprisingly, similar results were observed in our FXN knockdown stable cell lines constructed by lentiviral technology using short hairpin RNA. To better understand the cardioprotective role of FXN against DOX, we constructed FXN overexpressing cardiomyoblasts, which displayed cardioprotection against mitochondrial iron accumulation, ROS formation, and reduction of mitochondrial bioenergetics. Lastly, our FXN overexpressing cardiomyoblasts were protected from DOX-mediated cardiac hypertrophy. Together, our findings reveal novel insights into the development of DOX-mediated cardiomyopathy.
Collapse
Affiliation(s)
- Shravanthi Mouli
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Gayani Nanayakkara
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Abdullah AlAlasmari
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Haitham Eldoumani
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Xiaoyu Fu
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Avery Berlin
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Madhukar Lohani
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Ben Nie
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Robert D Arnold
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | | | - Forrest Smith
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Ronald Beyers
- Auburn University MRI Research Center, Auburn, Alabama; and
| | - Thomas Denney
- Department of Electrical and Computer Engineering, Auburn University, Auburn, Alabama; Auburn University MRI Research Center, Auburn, Alabama; and
| | - Muralikrishnan Dhanasekaran
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Juming Zhong
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - John Quindry
- School of Kinesiology, Auburn University, Auburn, Alabama
| | - Rajesh Amin
- Department of Drug, Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama;
| |
Collapse
|
603
|
Chacko SM, Nevin KG, Dhanyakrishnan R, Kumar B. Protective effect of p-coumaric acid against doxorubicin induced toxicity in H9c2 cardiomyoblast cell lines. Toxicol Rep 2015; 2:1213-1221. [PMID: 28962464 PMCID: PMC5598262 DOI: 10.1016/j.toxrep.2015.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 07/23/2015] [Accepted: 08/06/2015] [Indexed: 12/28/2022] Open
Abstract
Doxorubicin (Dox) has been used for more than four decades to treat cancer, particularly solid tumours and haematological malignancies. However, the administration of this drug is a matter of concern in the clinical community, since Dox therapy is commonly associated with dose-dependent cardiotoxicity. Attempts at alleviating drug generated cardiac damage using naturally occurring compounds with radical scavenging property are a promising area of research. p-Coumaric acid (pCA) is one such compound which has significant antiradical scavenging effect. This study aims to investigate the effect of pre and co-administration of pCA on mitigating or preventing Dox induced cardiotoxicity in vitro using H9c2 cardiomyoblast cell lines. Addition of pCA and Dox were performed for both treatment and control sets on H9c2 cells. Sulphorhodamine B assay was used to study the cytotoxic effect of pCA and Dox. The effect of the drug on cell morphology, cell viability and nuclear damage was studied using AO/EB and DAPI staining. ROS production was studied using DCFH-DA staining. Mitochondrial membrane potential and intracellular calcium levels were assessed by rhodamine 123 and Fura 2AM staining. pCA showed strong ABTS cation radical scavenging activity and FRAP activity in a dose dependent manner. The results showed that Dox has significant cytotoxic effect in a dose dependent manner while pCA, even at higher concentrations did not display any significant cytotoxicity on H9c2 cells. Both pre treatment and co- administration of pCA reduced the drug induced toxic effects on cell morphology and enhanced the number of viable cells in comparison to the Dox treated cells as evident from the AO/EB and DAPI staining images. The Dox induced ROS production was found to be significantly reduced in pCA pre-treated and co-administered cells. Dox induced changes in mitochondrial membrane potential and intracellular calcium levels were remarkably improved following pre and co-treatment of H9c2 cells with pCA. These results clearly suggest that pre-treatment and co-administration of pCA is a promising therapeutic intervention in managing Dox mediated cardiotoxicity.
Collapse
Key Words
- ABTS, 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)
- Cytotoxicity
- DAPI, trypan blue, 4′,6-diamidino-2-phenylindole
- DCFH-DA, dichlorofluorescin diacetate
- DMEM, Dulbecco’s modified Eagle’s medium
- Dox, doxorubicin
- Doxorubicin
- FBS, foetal bovine serum
- H9c2 cells
- RNS, reactive nitrogen species
- ROS
- ROS, reactive oxygen species
- SRB, sulphorhodamine-B
- p-Coumaric acid
- pCA, p-coumaric acid
Collapse
|
604
|
Sawicki KT, Shang M, Wu R, Chang HC, Khechaduri A, Sato T, Kamide C, Liu T, Naga Prasad SV, Ardehali H. Increased Heme Levels in the Heart Lead to Exacerbated Ischemic Injury. J Am Heart Assoc 2015; 4:e002272. [PMID: 26231844 PMCID: PMC4599478 DOI: 10.1161/jaha.115.002272] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Heme is an essential iron-containing molecule for cardiovascular physiology, but in excess it may increase oxidative stress. Failing human hearts have increased heme levels, with upregulation of the rate-limiting enzyme in heme synthesis, δ-aminolevulinic acid synthase 2 (ALAS2), which is normally not expressed in cardiomyocytes. We hypothesized that increased heme accumulation (through cardiac overexpression of ALAS2) leads to increased oxidative stress and cell death in the heart. Methods and Results We first showed that ALAS2 and heme levels are increased in the hearts of mice subjected to coronary ligation. To determine the causative role of increased heme in the development of heart failure, we generated transgenic mice with cardiac-specific overexpression of ALAS2. While ALAS2 transgenic mice have normal cardiac function at baseline, their hearts display increased heme content, higher oxidative stress, exacerbated cell death, and worsened cardiac function after coronary ligation compared to nontransgenic littermates. We confirmed in cultured cardiomyoblasts that the increased oxidative stress and cell death observed with ALAS2 overexpression is mediated by increased heme accumulation. Furthermore, knockdown of ALAS2 in cultured cardiomyoblasts exposed to hypoxia reversed the increases in heme content and cell death. Administration of the mitochondrial antioxidant MitoTempo to ALAS2-overexpressing cardiomyoblasts normalized the elevated oxidative stress and cell death levels to baseline, indicating that the effects of increased ALAS2 and heme are through elevated mitochondrial oxidative stress. The clinical relevance of these findings was supported by the finding of increased ALAS2 induction and heme accumulation in failing human hearts from patients with ischemic cardiomyopathy compared to nonischemic cardiomyopathy. Conclusions Heme accumulation is detrimental to cardiac function under ischemic conditions, and reducing heme in the heart may be a novel approach for protection against the development of heart failure.
Collapse
Affiliation(s)
- Konrad Teodor Sawicki
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, IL (K.T.S., M.S., R.W., H.C.C., A.K., T.S., C.K., T.L., H.A.)
| | - Meng Shang
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, IL (K.T.S., M.S., R.W., H.C.C., A.K., T.S., C.K., T.L., H.A.)
| | - Rongxue Wu
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, IL (K.T.S., M.S., R.W., H.C.C., A.K., T.S., C.K., T.L., H.A.)
| | - Hsiang-Chun Chang
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, IL (K.T.S., M.S., R.W., H.C.C., A.K., T.S., C.K., T.L., H.A.)
| | - Arineh Khechaduri
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, IL (K.T.S., M.S., R.W., H.C.C., A.K., T.S., C.K., T.L., H.A.)
| | - Tatsuya Sato
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, IL (K.T.S., M.S., R.W., H.C.C., A.K., T.S., C.K., T.L., H.A.)
| | - Christine Kamide
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, IL (K.T.S., M.S., R.W., H.C.C., A.K., T.S., C.K., T.L., H.A.)
| | - Ting Liu
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, IL (K.T.S., M.S., R.W., H.C.C., A.K., T.S., C.K., T.L., H.A.)
| | - Sathyamangla V Naga Prasad
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH (S.V.N.P.)
| | - Hossein Ardehali
- Feinberg Cardiovascular Research Institute (FCVRI), Northwestern University, Chicago, IL (K.T.S., M.S., R.W., H.C.C., A.K., T.S., C.K., T.L., H.A.)
| |
Collapse
|
605
|
Dexrazoxane protects breast cancer patients with diabetes from chemotherapy-induced cardiotoxicity. Am J Med Sci 2015; 349:406-12. [PMID: 25723884 DOI: 10.1097/maj.0000000000000432] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND To evaluate the cardioprotective effect of dexrazoxane (DEX) on chemotherapy in patients with breast cancer with concurrent type 2 diabetes mellitus (DM2). METHODS Eighty female patients with breast cancer with DM2 were randomly assigned to receive chemotherapy only or chemotherapy plus DEX. All patients received 80 mg/m epirubicin and 500 mg/m cyclophosphamide by intravenous infusion every 3 weeks for a total of 6 cycles. The group assigned to receive chemotherapy alone received placebo 30 minutes before epirubicin administration. The group assigned to receive chemotherapy plus DEX received 800 mg/m DEX 30 minutes before epirubicin administration. Cardiac function and hematology before and after 6 cycles of chemotherapy were analyzed. RESULTS There was no difference in baseline systole or diastole function between the 2 DM2 groups. Patients receiving chemotherapy alone experienced significantly greater reductions in Ea and significantly greater elevations in E/Ea and Tei index in comparison with patients receiving chemotherapy plus DEX. After chemotherapy, superoxide dismutase was significantly reduced, and serum malondialdehyde (MDA) was significantly increased in patients with DM2. Serum superoxide dismutase levels were comparable between the 2 groups before and after chemotherapy, MDA levels were comparable between the 2 groups before chemotherapy, whereas serum MDA was significantly higher after chemotherapy in the chemotherapy alone group in comparison with the group that received DEX. CONCULSIONS DEX protects against cardiotoxicity induced by chemotherapy in patients with breast cancer with concurrent DM2.
Collapse
|
606
|
Gonzalez Y, Pokrzywinski KL, Rosen ET, Mog S, Aryal B, Chehab LM, Vijay V, Moland CL, Desai VG, Dickey JS, Rao VA. Reproductive hormone levels and differential mitochondria-related oxidative gene expression as potential mechanisms for gender differences in cardiosensitivity to Doxorubicin in tumor-bearing spontaneously hypertensive rats. Cancer Chemother Pharmacol 2015; 76:447-59. [PMID: 26108538 DOI: 10.1007/s00280-015-2786-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE Chemotherapy with doxorubicin (Dox) causes dose-limiting cardiotoxicity. We investigated the role that gender has on cardiosensitivity to Dox treatment by evaluating reproductive hormone levels in male, castrated male (c-male), female and ovariectomized female (o-female) adult spontaneously hypertensive rats (SHRs) and expression of mitochondria-related genes in male and female adult SHRs. METHODS SST-2 breast tumor-bearing SHRs were treated with saline, Dox, dexrazoxane (Drz) or both Dox and Drz and monitored for 14 days. Tumor size was used to monitor anticancer activity. Heart weight, cardiac lesion score and serum levels of cardiac troponin T (cTnT) were used to determine cardiotoxicity. Serum estradiol (E2) and testosterone were evaluated using electrochemiluminescence immunoassays. Expression of mitochondria-related genes was profiled in heart by MitoChip array analyses. RESULTS Dox significantly reduced tumor volume (±Drz) and increased heart weight in all genders (13-30% vs. control). Higher heart lesion scores were observed in reproductively normal animals (male 2.9, female 2.2) than in hormone-deficient animals (c-male 1.7, o-female 1.9). Lesion score and cTnT inversely correlated with hormone levels. Reduced levels of both sex hormones were observed after Dox treatment. Gene expression analyses of Dox-treated hearts showed significant differential expression of oxidative stress genes in male hearts and apoptotic genes in both male and female hearts. CONCLUSIONS Our results demonstrate that adult tumor-bearing male SHRs are more cardiosensitive to Dox than female or hormone-deficient animals. We provide evidence to suggest that reproductive hormones negatively regulate or are inhibited by Dox-induced cardiotoxicity and the selective cytotoxic mechanism likely functions through the greater activation of oxidative stress and apoptosis in male SHRs.
Collapse
Affiliation(s)
- Yanira Gonzalez
- Laboratory of Chemistry, Division of Therapeutic Proteins, Center for Drug Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Ave/Bldg 52/72 Rm 2212, Silver Spring, MD, 20993, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
607
|
Durrant DE, Das A, Dyer S, Tavallai S, Dent P, Kukreja RC. Targeted Inhibition of Phosphoinositide 3-Kinase/Mammalian Target of Rapamycin Sensitizes Pancreatic Cancer Cells to Doxorubicin without Exacerbating Cardiac Toxicity. Mol Pharmacol 2015; 88:512-23. [PMID: 26101222 DOI: 10.1124/mol.115.099143] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/16/2015] [Indexed: 12/22/2022] Open
Abstract
Pancreatic cancer has the lowest 5-year survival rate of all major cancers despite decades of effort to design and implement novel, more effective treatment options. In this study, we tested whether the dual phosphoinositide 3-kinase/mechanistic target of rapamycin inhibitor BEZ235 (BEZ) potentiates the antitumor effects of doxorubicin (DOX) against pancreatic cancer. Cotreatment of BEZ235 with DOX resulted in dose-dependent inhibition of the phosphoinositide 3-kinase/mechanistic target of rapamycin survival pathway, which corresponded with an increase in poly ADP ribose polymerase cleavage. Moreover, BEZ cotreatment significantly improved the effects of DOX toward both cell viability and cell death in part through reduced Bcl-2 expression and increased expression of the shorter, more cytotoxic forms of BIM. BEZ also facilitated intracellular accumulation of DOX, which led to enhanced DNA damage and reactive oxygen species generation. Furthermore, BEZ in combination with gemcitabine reduced MiaPaca2 cell proliferation but failed to increase reactive oxygen species generation or BIM expression, resulting in reduced necrosis and apoptosis. Treatment with BEZ and DOX in mice bearing tumor xenographs significantly repressed tumor growth as compared with BEZ, DOX, or gemcitabine. Additionally, in contrast to the enhanced expression seen in MiaPaca2 cells, BEZ and DOX cotreatment reduced BIM expression in H9C2 cardiomyocytes. Also, the Bcl-2/Bax ratio was increased, which was associated with a reduction in cell death. In vivo echocardiography showed decreased cardiac function with DOX treatment, which was not improved by combination treatment with BEZ. Thus, we propose that combining BEZ with DOX would be a better option for patients than current standard of care by providing a more effective tumor response without the associated increase in toxicity.
Collapse
Affiliation(s)
- David E Durrant
- Department of Biochemistry and Molecular Biology (D.E.D., S.T., P.D.), Department of Internal Medicine, Division of Cardiology, Pauley Heart Center (A.D., S.D., R.C.K.), and Department of Physiology and Biophysics (R.C.K.), Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Anindita Das
- Department of Biochemistry and Molecular Biology (D.E.D., S.T., P.D.), Department of Internal Medicine, Division of Cardiology, Pauley Heart Center (A.D., S.D., R.C.K.), and Department of Physiology and Biophysics (R.C.K.), Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Samya Dyer
- Department of Biochemistry and Molecular Biology (D.E.D., S.T., P.D.), Department of Internal Medicine, Division of Cardiology, Pauley Heart Center (A.D., S.D., R.C.K.), and Department of Physiology and Biophysics (R.C.K.), Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Seyedmehrad Tavallai
- Department of Biochemistry and Molecular Biology (D.E.D., S.T., P.D.), Department of Internal Medicine, Division of Cardiology, Pauley Heart Center (A.D., S.D., R.C.K.), and Department of Physiology and Biophysics (R.C.K.), Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Paul Dent
- Department of Biochemistry and Molecular Biology (D.E.D., S.T., P.D.), Department of Internal Medicine, Division of Cardiology, Pauley Heart Center (A.D., S.D., R.C.K.), and Department of Physiology and Biophysics (R.C.K.), Virginia Commonwealth University Medical Center, Richmond, Virginia
| | - Rakesh C Kukreja
- Department of Biochemistry and Molecular Biology (D.E.D., S.T., P.D.), Department of Internal Medicine, Division of Cardiology, Pauley Heart Center (A.D., S.D., R.C.K.), and Department of Physiology and Biophysics (R.C.K.), Virginia Commonwealth University Medical Center, Richmond, Virginia
| |
Collapse
|
608
|
Sewal RK, Saini VK, Medhi B. Forensic pharmacovigilance: Newer dimension of pharmacovigilance. J Forensic Leg Med 2015; 34:113-8. [PMID: 26165669 DOI: 10.1016/j.jflm.2015.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 03/25/2015] [Accepted: 05/29/2015] [Indexed: 12/24/2022]
Abstract
Drug safety for the patients is of paramount importance for a medical professional. Pharmacovigilance attempts to ensure the safety of patients by keeping a close vigil on the pattern of adverse events secondary to drug use. Number of medicolegal cases is at rise since last few years. Forensic sciences and pharmacovigilance need to work hand in hand to unlock the mystery of many criminal and civil proceedings. Pharmacovigilance offers its wide scope in forensic sciences by putting forward its expertise on adverse profile of drugs which may be instrumental in solving the cases and bringing the justice forth. It may range from as simple affairs as defining the adverse drug reaction on one hand to putting expert advice in critical criminal cases on the other one. Pharmacovigilance experts have to abide by the ethics of the practice while executing their duties as expert else it may tarnish the justice and loosen its dependability. As a budding discipline of science, it is confronted with several hurdles and challenges which include reluctance of medical professionals for being involved in court proceedings, extrapolations of facts and data and variations in law across the globe etc. These challenges and hurdles call the medical fraternity come forward to work towards the momentous application of pharmacovigilance in the forensic sciences. Evidence based practice e.g. testing the biological samples for the presence of drugs may prove to be pivotal in the success of this collaboration of sciences.
Collapse
Affiliation(s)
- Rakesh K Sewal
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Vikas K Saini
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
609
|
Kager L, Diakos C, Bielack S. Can pharmacogenomics help to improve therapy in patients with high-grade osteosarcoma? Expert Opin Drug Metab Toxicol 2015; 11:1025-8. [DOI: 10.1517/17425255.2015.1038237] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
610
|
Zhang Y, Chen L, Li F, Wang H, Yao Y, Shu J, Ying MZ. Cryptotanshinone protects against adriamycin-induced mitochondrial dysfunction in cardiomyocytes. PHARMACEUTICAL BIOLOGY 2015; 54:237-42. [PMID: 25858002 DOI: 10.3109/13880209.2015.1029052] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
CONTEXT The serious side effect of Adriamycin (ADR) is cardiomyopathy. Cryptotanshinone (CRY) is widely and safely used as antioxidant with MTD more than 5 mg/g in rats (p.o). OBJECTIVE The objective of this study is to study the protection effects of CRY against ADR-induced mitochondrial dysfunction in cardiomyocytes. MATERIALS AND METHODS The chemical administration lasted for 20 days with an effective dose of CRY (p.o.) at 50 mg/kg in rats. Mitochondrial respiratory chain complex activities, ATP generation, mitochondrial membrane potential (MMP), superoxide anion free radical, oxidative stress-relative enzymes, and mitochondrial biogenesis-relative factors in normal control, ADR (i.p., 1.25 mg/kg), and ADR (i.p., 1.25 mg/kg) + CYP (p.o., 50 mg/kg) groups were detected. RESULTS 50 mg/kg CRY significantly promoted the energy production of ATP (16.99 ± 2.38 nmol/g Pro) (Pro: Protein) by increasing the complexes activities except II (p > 0.05). After the treatment of CRY, the suppressed MMP was increased while superoxide anion free radical (0.57 ± 0.07/mg Pro) was inhibited markedly. Mitochondrial biogenesis-relative factors PGC-1α, NRF-1, and TFAM were also promoted. Remarkable augmentations of NO, inducible nitric oxide synthase (iNOS), and increased activity of GSH-PX (p < 0.05) were also detected after the treatment of CRY, while no obvious changes on the activity of nitric oxide synthase (cNOS; p > 0.05) were observed. DISCUSSION AND CONCLUSION These results suggest that CRY protects against ADR-induced mitochondrial dysfunction in cardiomyocytes. It could be an ideal potential drug of cardioprotection.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Cardiomyopathies/chemically induced
- Cardiomyopathies/metabolism
- Cardiomyopathies/prevention & control
- Cardiotoxicity/prevention & control
- Disease Models, Animal
- Doxorubicin/toxicity
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Male
- Membrane Potential, Mitochondrial/drug effects
- Mitochondria, Heart/drug effects
- Mitochondria, Heart/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Oxidative Stress/drug effects
- Phenanthrenes/isolation & purification
- Phenanthrenes/pharmacology
- Phenanthrenes/therapeutic use
- Rats, Wistar
- Salvia miltiorrhiza/chemistry
Collapse
Affiliation(s)
- Yanshan Zhang
- a Department of Tumor Surgery , Wuwei Tumor Hospital , Wuwei, Gansu PR China
| | - Liang Chen
- b Department of Paediatrics , Changhai Hospital, Second Military Medical University , Shanghai , PR China
| | - Fan Li
- c International Medical Center, Chinese PLA General Hospital , Beijing PR China
| | - Huijuan Wang
- d Department of Tumor Chemotherapy , Wuwei Tumor Hospital , Wuwei, Gansu , PR China
| | - Yunyi Yao
- e Research Center for Biochemistry and Molecular Biology, Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College , Xuzhou, Jiangsu , PR China , and
| | - Jiamei Shu
- f Department of Cardiology , The Second Affiliated Hospital of Soochow University , Suzhou, Jiangsu PR China
| | - Ming-Zhong Ying
- c International Medical Center, Chinese PLA General Hospital , Beijing PR China
| |
Collapse
|
611
|
Guenancia C, Li N, Hachet O, Rigal E, Cottin Y, Dutartre P, Rochette L, Vergely C. Paradoxically, iron overload does not potentiate doxorubicin-induced cardiotoxicity in vitro in cardiomyocytes and in vivo in mice. Toxicol Appl Pharmacol 2015; 284:152-62. [DOI: 10.1016/j.taap.2015.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 01/27/2015] [Accepted: 02/15/2015] [Indexed: 02/06/2023]
|
612
|
Iron-induced damage in cardiomyopathy: oxidative-dependent and independent mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:230182. [PMID: 25878762 PMCID: PMC4387903 DOI: 10.1155/2015/230182] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 03/06/2015] [Accepted: 03/15/2015] [Indexed: 02/08/2023]
Abstract
The high incidence of cardiomyopathy in patients with hemosiderosis, particularly in transfusional iron overload, strongly indicates that iron accumulation in the heart plays a major role in the process leading to heart failure. In this context, iron-mediated generation of noxious reactive oxygen species is believed to be the most important pathogenetic mechanism determining cardiomyocyte damage, the initiating event of a pathologic progression involving apoptosis, fibrosis, and ultimately cardiac dysfunction. However, recent findings suggest that additional mechanisms involving subcellular organelles and inflammatory mediators are important factors in the development of this disease. Moreover, excess iron can amplify the cardiotoxic effect of other agents or events. Finally, subcellular misdistribution of iron within cardiomyocytes may represent an additional pathway leading to cardiac injury. Recent advances in imaging techniques and chelators development remarkably improved cardiac iron overload detection and treatment, respectively. However, increased understanding of the pathogenic mechanisms of iron overload cardiomyopathy is needed to pave the way for the development of improved therapeutic strategies.
Collapse
|
613
|
Pol J, Vacchelli E, Aranda F, Castoldi F, Eggermont A, Cremer I, Sautès-Fridman C, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunogenic cell death inducers for anticancer chemotherapy. Oncoimmunology 2015; 4:e1008866. [PMID: 26137404 DOI: 10.1080/2162402x.2015.1008866] [Citation(s) in RCA: 221] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 01/14/2015] [Indexed: 02/06/2023] Open
Abstract
The term "immunogenic cell death" (ICD) is now employed to indicate a functionally peculiar form of apoptosis that is sufficient for immunocompetent hosts to mount an adaptive immune response against dead cell-associated antigens. Several drugs have been ascribed with the ability to provoke ICD when employed as standalone therapeutic interventions. These include various chemotherapeutics routinely employed in the clinic (e.g., doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin) as well as some anticancer agents that are still under preclinical or clinical development (e.g., some microtubular inhibitors of the epothilone family). In addition, a few drugs are able to convert otherwise non-immunogenic instances of cell death into bona fide ICD, and may therefore be employed as chemotherapeutic adjuvants within combinatorial regimens. This is the case of cardiac glycosides, like digoxin and digitoxin, and zoledronic acid. Here, we discuss recent developments on anticancer chemotherapy based on ICD inducers.
Collapse
Key Words
- ALL, acute lymphoblastic leukemia
- AML, acute myeloid leukemia
- CML, chronic myeloid leukemia
- DAMP, damage-associated molecular pattern
- EGFR, epidermal growth factor receptor
- EOX, epirubicin plus oxaliplatin plus capecitabine
- ER, endoplasmic reticulum
- FDA, Food and Drug Administration
- FOLFIRINOX, folinic acid plus 5-fluorouracil plus irinotecan plus oxaliplatin
- FOLFOX, folinic acid plus 5-fluorouracil plus oxaliplatin
- GEMOX, gemcitabine plus oxaliplatin
- GM-CSF, granulocyte-macrophage colony-stimulating factor
- HCC, hepatocellular carcinoma
- ICD, immunogenic cell death
- MM, multiple myeloma
- NHL, non-Hodgkin's lymphoma
- NSCLC, non-small cell lung carcinoma
- TACE, transcatheter arterial chemoembolization
- XELOX, capecitabine plus oxaliplatin
- antigen-presenting cell
- autophagy
- damage-associated molecular pattern
- dendritic cell
- endoplasmic reticulum stress
- mAb, monoclonal antibody
- type I interferon
Collapse
Affiliation(s)
- Jonathan Pol
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France
| | - Erika Vacchelli
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS)
| | - Francesca Castoldi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France ; Faculté de Medicine; Université Paris Sud/Paris XI ; Le Kremlin-Bicêtre, France ; Sotio a.c. ; Prague, Czech Republic
| | | | - Isabelle Cremer
- INSERM, U1138 ; Paris, France ; Equipe 13, Center de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Catherine Sautès-Fridman
- INSERM, U1138 ; Paris, France ; Equipe 13, Center de Recherche des Cordeliers ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France
| | - Jitka Fucikova
- Sotio a.c. ; Prague, Czech Republic ; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University ; Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138 ; Paris, France ; Université Pierre et Marie Curie/Paris VI ; Paris, France ; Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| | - Radek Spisek
- Sotio a.c. ; Prague, Czech Republic ; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University ; Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; INSERM , U970 ; Paris, France ; Paris-Cardiovascular Research Center (PARCC) ; Paris, France ; Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP); AP-HP ; Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1015; CICBT507 ; Villejuif, France
| | - Guido Kroemer
- INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France ; Pôle de Biologie, Hôpital Européen Georges Pompidou; AP-HP ; Paris, France ; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus ; Villejuif, France
| | - Lorenzo Galluzzi
- Gustave Roussy Cancer Campus ; Villejuif, France ; INSERM, U1138 ; Paris, France ; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers ; Paris, France ; Université Paris Descartes/Paris V; Sorbonne Paris Cité ; Paris, France
| |
Collapse
|
614
|
Min K, Kwon OS, Smuder AJ, Wiggs MP, Sollanek KJ, Christou DD, Yoo JK, Hwang MH, Szeto HH, Kavazis AN, Powers SK. Increased mitochondrial emission of reactive oxygen species and calpain activation are required for doxorubicin-induced cardiac and skeletal muscle myopathy. J Physiol 2015; 593:2017-36. [PMID: 25643692 DOI: 10.1113/jphysiol.2014.286518] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/20/2015] [Indexed: 11/08/2022] Open
Abstract
Although doxorubicin (DOX) is a highly effective anti-tumour agent used to treat a variety of cancers, DOX administration is associated with significant side effects, including myopathy of both cardiac and skeletal muscles. The mechanisms responsible for DOX-mediated myopathy remain a topic of debate. We tested the hypothesis that both increased mitochondrial reactive oxygen species (ROS) emission and activation of the cysteine protease calpain are required for DOX-induced myopathy in rat cardiac and skeletal muscle. Cause and effect was determined by administering a novel mitochondrial-targeted anti-oxidant to prevent DOX-induced increases in mitochondrial ROS emission, whereas a highly-selective pharmacological inhibitor was exploited to inhibit calpain activity. Our findings reveal that mitochondria are a major site of DOX-mediated ROS production in both cardiac and skeletal muscle fibres and the prevention of DOX-induced increases in mitochondrial ROS emission protects against fibre atrophy and contractile dysfunction in both cardiac and skeletal muscles. Furthermore, our results indicate that DOX-induced increases in mitochondrial ROS emission are required to activate calpain in heart and skeletal muscles and, importantly, calpain activation is a major contributor to DOX-induced myopathy. Taken together, these findings show that increased mitochondrial ROS production and calpain activation are significant contributors to the development of DOX-induced myopathy in both cardiac and skeletal muscle fibres.
Collapse
Affiliation(s)
- Kisuk Min
- Department of Applied Physiology & Kinesiology, University of Florida, Gainesville, FL, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
615
|
Hao E, Mukhopadhyay P, Cao Z, Erdélyi K, Holovac E, Liaudet L, Lee WS, Haskó G, Mechoulam R, Pacher P. Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis. Mol Med 2015; 21:38-45. [PMID: 25569804 DOI: 10.2119/molmed.2014.00261] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 11/06/2022] Open
Abstract
Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may contribute to its beneficial properties described in numerous other models of tissue injury.
Collapse
Affiliation(s)
- Enkui Hao
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America.,Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Partha Mukhopadhyay
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zongxian Cao
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katalin Erdélyi
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eileen Holovac
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lucas Liaudet
- Department of Intensive Care Medicine, BH 08-621 University Hospital Medical Center, Lausanne, Switzerland
| | - Wen-Shin Lee
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America.,Division of General Medicine, Department of Medicine, Taipei Veterans General Hospital, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - György Haskó
- Departments of Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
| | - Raphael Mechoulam
- Department for Medicinal Chemistry and Natural Products, Faculty of Medicine, Hebrew University of Jerusalem, Ein Kerem, Jerusalem, Israel
| | - Pál Pacher
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
616
|
Sun Y, Tan Z, Liang Z, Wang L, Shan L, Yu P, Lee SM, Wang Y. Synthesis and relationship of stability and biological activity of new DSS and TMP conjugates. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00448e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of novel conjugates of danshensu (DSS) and tetramethylpyrazine (TMP) were designed and synthesized.
Collapse
Affiliation(s)
- Yewei Sun
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine
- Jinan University College of Pharmacy
- Guangzhou
- China
| | - Zicheng Tan
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine
- Jinan University College of Pharmacy
- Guangzhou
- China
| | - Zhibin Liang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine
- Jinan University College of Pharmacy
- Guangzhou
- China
| | - Liang Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- University of Macau
- Macao SAR
- China
| | - Luchen Shan
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine
- Jinan University College of Pharmacy
- Guangzhou
- China
| | - Pei Yu
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine
- Jinan University College of Pharmacy
- Guangzhou
- China
| | - Simon MingYuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine
- University of Macau
- Macao SAR
- China
| | - Yuqiang Wang
- Institute of New Drug Research and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine
- Jinan University College of Pharmacy
- Guangzhou
- China
| |
Collapse
|
617
|
Zhang H, Xiong J, Guo L, Patel N, Guang X. Integrated traditional Chinese and western medicine modulator for overcoming the multidrug resistance with carbon nanotubes. RSC Adv 2015. [DOI: 10.1039/c5ra09627h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
GA/Dox/P-gp Ab-CNTs, integrated specific targeting, P-gp inhibitor and chemotherapeutic agent, could represent a promising modulator for overcoming tumor MDR.
Collapse
Affiliation(s)
- Haijun Zhang
- Department of Oncology
- Zhongda Hospital
- Medical School
- Southeast University
- Nanjing 210009
| | - Jian Xiong
- Department of Oncology
- Zhongda Hospital
- Medical School
- Southeast University
- Nanjing 210009
| | - Liting Guo
- Department of Oncology
- Zhongda Hospital
- Medical School
- Southeast University
- Nanjing 210009
| | - Nishant Patel
- Department of Oncology
- Zhongda Hospital
- Medical School
- Southeast University
- Nanjing 210009
| | - Xueneng Guang
- Jiangsu Integrated Traditional Chinese and Western Medicine Hospital
- Nanjing
- People's Republic of China
| |
Collapse
|
618
|
Moulin M, Piquereau J, Mateo P, Fortin D, Rucker-Martin C, Gressette M, Lefebvre F, Gresikova M, Solgadi A, Veksler V, Garnier A, Ventura-Clapier R. Sexual Dimorphism of Doxorubicin-Mediated Cardiotoxicity. Circ Heart Fail 2015; 8:98-108. [DOI: 10.1161/circheartfailure.114.001180] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background—
Cardiovascular diseases are the major cause of mortality among both men and women with a lower incidence in women before menopause. The clinical use of doxorubicin, widely used as an antineoplastic agent, is markedly hampered by severe cardiotoxicity. Even if there is a significant sex difference in incidence of cardiovascular disease at the adult stage, it is not known whether a difference in doxorubicin-related cardiotoxicity between men and women also exists. The objective of this work was to explore the cardiac side effects of doxorubicin in adult rats and decipher whether signaling pathways involved in cardiac toxicity differ between sexes.
Methods and Results—
After 7 weeks of doxorubicin (2 mg/kg per week), males developed major signs of cardiomyopathy with cardiac atrophy, reduced left ventricular ejection fraction and 50% mortality. In contrast, no female died and their left ventricular ejection fraction was only moderately affected. Surprisingly, neither global oxidation levels nor the antioxidant response nor the apoptosis signaling pathways were altered by doxorubicin. However, the level of total adenosine monophosphate–activated protein kinase was severely decreased only in males. Moreover, markers of mitochondrial biogenesis and cardiolipin content were strongly reduced only in males. To analyze the onset of the pathology, maximal oxygen consumption rate of left ventricular permeabilized fibers after 4 weeks of treatment was reduced only in doxorubicin-treated males.
Conclusions—
Altogether, these results clearly evidence sex differences in doxorubicin toxicity. Cardiac mitochondrial dysfunction and adenosine monophosphate–activated protein kinase seem as critical sites of sex differences in cardiotoxicity as evidenced by significant statistical interactions between sex and treatment effects.
Collapse
Affiliation(s)
- Maryline Moulin
- From the INSERM UMR-S 769, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., M.G., F.L., M.G., V.V., A.G., R.V.-C.); IPSIT-IFR141 Université de Paris-Sud, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., C.R.-M., M.G., F.L., M.G., A.S., V.V., A.G., R.V.-C.); INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (C.R.-M.); and IPSIT-IFR141 Service d’Analyse des Médicaments et Métabolites, Châtenay-Malabry, France (A.S.)
| | - Jérôme Piquereau
- From the INSERM UMR-S 769, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., M.G., F.L., M.G., V.V., A.G., R.V.-C.); IPSIT-IFR141 Université de Paris-Sud, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., C.R.-M., M.G., F.L., M.G., A.S., V.V., A.G., R.V.-C.); INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (C.R.-M.); and IPSIT-IFR141 Service d’Analyse des Médicaments et Métabolites, Châtenay-Malabry, France (A.S.)
| | - Philippe Mateo
- From the INSERM UMR-S 769, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., M.G., F.L., M.G., V.V., A.G., R.V.-C.); IPSIT-IFR141 Université de Paris-Sud, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., C.R.-M., M.G., F.L., M.G., A.S., V.V., A.G., R.V.-C.); INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (C.R.-M.); and IPSIT-IFR141 Service d’Analyse des Médicaments et Métabolites, Châtenay-Malabry, France (A.S.)
| | - Dominique Fortin
- From the INSERM UMR-S 769, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., M.G., F.L., M.G., V.V., A.G., R.V.-C.); IPSIT-IFR141 Université de Paris-Sud, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., C.R.-M., M.G., F.L., M.G., A.S., V.V., A.G., R.V.-C.); INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (C.R.-M.); and IPSIT-IFR141 Service d’Analyse des Médicaments et Métabolites, Châtenay-Malabry, France (A.S.)
| | - Catherine Rucker-Martin
- From the INSERM UMR-S 769, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., M.G., F.L., M.G., V.V., A.G., R.V.-C.); IPSIT-IFR141 Université de Paris-Sud, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., C.R.-M., M.G., F.L., M.G., A.S., V.V., A.G., R.V.-C.); INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (C.R.-M.); and IPSIT-IFR141 Service d’Analyse des Médicaments et Métabolites, Châtenay-Malabry, France (A.S.)
| | - Mélanie Gressette
- From the INSERM UMR-S 769, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., M.G., F.L., M.G., V.V., A.G., R.V.-C.); IPSIT-IFR141 Université de Paris-Sud, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., C.R.-M., M.G., F.L., M.G., A.S., V.V., A.G., R.V.-C.); INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (C.R.-M.); and IPSIT-IFR141 Service d’Analyse des Médicaments et Métabolites, Châtenay-Malabry, France (A.S.)
| | - Florence Lefebvre
- From the INSERM UMR-S 769, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., M.G., F.L., M.G., V.V., A.G., R.V.-C.); IPSIT-IFR141 Université de Paris-Sud, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., C.R.-M., M.G., F.L., M.G., A.S., V.V., A.G., R.V.-C.); INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (C.R.-M.); and IPSIT-IFR141 Service d’Analyse des Médicaments et Métabolites, Châtenay-Malabry, France (A.S.)
| | - Milada Gresikova
- From the INSERM UMR-S 769, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., M.G., F.L., M.G., V.V., A.G., R.V.-C.); IPSIT-IFR141 Université de Paris-Sud, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., C.R.-M., M.G., F.L., M.G., A.S., V.V., A.G., R.V.-C.); INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (C.R.-M.); and IPSIT-IFR141 Service d’Analyse des Médicaments et Métabolites, Châtenay-Malabry, France (A.S.)
| | - Audrey Solgadi
- From the INSERM UMR-S 769, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., M.G., F.L., M.G., V.V., A.G., R.V.-C.); IPSIT-IFR141 Université de Paris-Sud, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., C.R.-M., M.G., F.L., M.G., A.S., V.V., A.G., R.V.-C.); INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (C.R.-M.); and IPSIT-IFR141 Service d’Analyse des Médicaments et Métabolites, Châtenay-Malabry, France (A.S.)
| | - Vladimir Veksler
- From the INSERM UMR-S 769, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., M.G., F.L., M.G., V.V., A.G., R.V.-C.); IPSIT-IFR141 Université de Paris-Sud, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., C.R.-M., M.G., F.L., M.G., A.S., V.V., A.G., R.V.-C.); INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (C.R.-M.); and IPSIT-IFR141 Service d’Analyse des Médicaments et Métabolites, Châtenay-Malabry, France (A.S.)
| | - Anne Garnier
- From the INSERM UMR-S 769, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., M.G., F.L., M.G., V.V., A.G., R.V.-C.); IPSIT-IFR141 Université de Paris-Sud, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., C.R.-M., M.G., F.L., M.G., A.S., V.V., A.G., R.V.-C.); INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (C.R.-M.); and IPSIT-IFR141 Service d’Analyse des Médicaments et Métabolites, Châtenay-Malabry, France (A.S.)
| | - Renée Ventura-Clapier
- From the INSERM UMR-S 769, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., M.G., F.L., M.G., V.V., A.G., R.V.-C.); IPSIT-IFR141 Université de Paris-Sud, Châtenay-Malabry, France (M.M., J.P., P.M., D.F., C.R.-M., M.G., F.L., M.G., A.S., V.V., A.G., R.V.-C.); INSERM UMR-S 999, Hôpital Marie Lannelongue, Le Plessis Robinson, France (C.R.-M.); and IPSIT-IFR141 Service d’Analyse des Médicaments et Métabolites, Châtenay-Malabry, France (A.S.)
| |
Collapse
|
619
|
Chen H, Chan JYW, Yang X, Wyman IW, Bardelang D, Macartney DH, Lee SMY, Wang R. Developmental and organ-specific toxicity of cucurbit[7]uril: in vivo study on zebrafish models. RSC Adv 2015. [DOI: 10.1039/c5ra04335b] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The macrocyclic Cucurbit[7]uril was evaluated for its in vivo toxicity profile, including developmental toxicity and organ-specific toxicities using zebrafish models.
Collapse
Affiliation(s)
- Huanxian Chen
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Judy Y. W. Chan
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Xue Yang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Ian W. Wyman
- Department of Chemistry
- Queen's University
- Kingston
- Canada
| | - David Bardelang
- Aix-Marseille Université
- CNRS
- Institut de Chimie Radicalaire
- UMR 7273
- 13397 Marseille
| | | | - Simon M. Y. Lee
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| |
Collapse
|
620
|
Edwardson DW, Narendrula R, Chewchuk S, Mispel-Beyer K, Mapletoft JPJ, Parissenti AM. Role of Drug Metabolism in the Cytotoxicity and Clinical Efficacy of Anthracyclines. Curr Drug Metab 2015; 16:412-26. [PMID: 26321196 PMCID: PMC5398089 DOI: 10.2174/1389200216888150915112039] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/31/2015] [Accepted: 08/10/2015] [Indexed: 01/19/2023]
Abstract
Many clinical studies involving anti-tumor agents neglect to consider how these agents are metabolized within the host and whether the creation of specific metabolites alters drug therapeutic properties or toxic side effects. However, this is not the case for the anthracycline class of chemotherapy drugs. This review describes the various enzymes involved in the one electron (semi-quinone) or two electron (hydroxylation) reduction of anthracyclines, or in their reductive deglycosidation into deoxyaglycones. The effects of these reductions on drug antitumor efficacy and toxic side effects are also discussed. Current evidence suggests that the one electron reduction of anthracyclines augments both their tumor toxicity and their toxicity towards the host, in particular their cardiotoxicity. In contrast, the two electron reduction (hydroxylation) of anthracyclines strongly reduces their ability to kill tumor cells, while augmenting cardiotoxicity through their accumulation within cardiomyocytes and their direct effects on excitation/contraction coupling within the myocytes. The reductive deglycosidation of anthracyclines appears to inactivate the drug and only occurs under rare, anaerobic conditions. This knowledge has resulted in the identification of important new approaches to improve the therapeutic index of anthracyclines, in particular by inhibiting their cardiotoxicity. The true utility of these approaches in the management of cancer patients undergoing anthracycline-based chemotherapy remains unclear, although one such agent (the iron chelator dexrazoxane) has recently been approved for clinical use.
Collapse
Affiliation(s)
| | | | | | | | | | - Amadeo M Parissenti
- Dept. of Chemistry and Biochemistry, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
621
|
Zhao P, Chen L, Li LH, Wei ZF, Tong B, Jia YG, Kong LY, Xia YF, Dai Y. SC-III3, a novel scopoletin derivative, induces cytotoxicity in hepatocellular cancer cells through oxidative DNA damage and ataxia telangiectasia-mutated nuclear protein kinase activation. BMC Cancer 2014; 14:987. [PMID: 25527123 PMCID: PMC4320555 DOI: 10.1186/1471-2407-14-987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 12/11/2014] [Indexed: 11/16/2022] Open
Abstract
Background Natural products from plants have been proven to be important resources of antitumor agents. In this study, we exploited the antitumor activity of (E)-3-(4-chlorophenyl)-N-(7-hydroxy-6-methoxy-2-oxo-2H-chromen-3-yl) acrylamide (SC-III3), a newly synthesized derivative of scopoletin, by in vitro and in vivo experiments. Methods Human hepatocellular carcinoma cell line HepG2 cells and xenograft of HepG2 cells in BALB/c nude mice were used to investigate the effects of SC-III3 on hepatocellular cancers. Cell cycle arrest and apoptosis were analyzed by flow cytometry. Cell cycle arrest, apoptosis and ATM-Chk pathway-related proteins were characterized by western blot. Results SC-III3 selectively inhibited the viability of HepG2 cells without significant cytotoxicity against human normal liver cells LO2. In mouse xenograft model of HepG2 cells, SC-III3 showed a marked inhibition of tumor growth in a dose-dependent manner. Cell cycle analysis revealed that SC-III3 induced cells to accumulate in S phase, which was accompanied by a marked decrease of the expressions of cyclin A, cyclin B, cyclin E and Cdk2 proteins, the crucial regulators of S phase cell cycle. SC-III3 treatment resulted in DNA breaks in HepG2 cells, which might contribute to its S phase arrest. The S arrest and the activation of ATM-Chk1/Chk2-Cdc25A-Cdk2 pathways induced by SC-III3 in HepG2 cells could be efficiently abrogated by pretreatments of either Ku55933 (an inhibitor of ATM) or UCN-01 (an inhibitor of Chk1/Chk2). The activation of p53-p21 pathway by SC-III3 was also reversed by Ku55933 treatment. SC-III3 led to significant accumulation of intracellular reactive oxygen species (ROS), a breaker of DNA strand, in HepG2 cells but not LO2 cells. Pretreatment with N-acetyl-l-cysteine (NAC), a ROS scavenger, could reverse SC-III3-caused ROS accumulation, DNA damage, activation of signal pathways relevant to DNA damage, S phase arrest and cell viability decrease in HepG2 cells. Conclusion SC-III3 is able to efficiently inhibit the growth of hepatocellular carcinoma through inducing the generation of intracellular ROS, DNA damage and consequent S phase arrest, but lack of significant cytotoxicity against normal liver cells. This compound deserves further studies as a candidate of anticancer drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yu-Feng Xia
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China.
| | | |
Collapse
|
622
|
Liu Y, Asnani A, Zou L, Bentley VL, Yu M, Wang Y, Dellaire G, Sarkar KS, Dai M, Chen HH, Sosnovik DE, Shin JT, Haber DA, Berman JN, Chao W, Peterson RT. Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase. Sci Transl Med 2014; 6:266ra170. [PMID: 25504881 PMCID: PMC4360984 DOI: 10.1126/scitranslmed.3010189] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Doxorubicin is a highly effective anticancer chemotherapy agent, but its use is limited by its cardiotoxicity. To develop a drug that prevents this toxicity, we established a doxorubicin-induced cardiomyopathy model in zebrafish that recapitulates the cardiomyocyte apoptosis and contractility decline observed in patients. Using this model, we screened 3000 compounds and found that visnagin (VIS) and diphenylurea (DPU) rescue the cardiac performance and circulatory defects caused by doxorubicin in zebrafish. VIS and DPU reduced doxorubicin-induced apoptosis in cultured cardiomyocytes and in vivo in zebrafish and mouse hearts. VIS treatment improved cardiac contractility in doxorubicin-treated mice. Further, VIS and DPU did not reduce the chemotherapeutic efficacy of doxorubicin in several cultured tumor lines or in zebrafish and mouse xenograft models. Using affinity chromatography, we found that VIS binds to mitochondrial malate dehydrogenase (MDH2), a key enzyme in the tricarboxylic acid cycle. As with VIS, treatment with the MDH2 inhibitors mebendazole, thyroxine, and iodine prevented doxorubicin cardiotoxicity, as did treatment with malate itself, suggesting that modulation of MDH2 activity is responsible for VIS' cardioprotective effects. Thus, VIS and DPU are potent cardioprotective compounds, and MDH2 is a previously undescribed, druggable target for doxorubicin-induced cardiomyopathy.
Collapse
Affiliation(s)
- Yan Liu
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA. Broad Institute, Cambridge, MA 02142, USA
| | - Aarti Asnani
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA. Broad Institute, Cambridge, MA 02142, USA
| | - Lin Zou
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Victoria L Bentley
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Min Yu
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - You Wang
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA. Broad Institute, Cambridge, MA 02142, USA
| | - Graham Dellaire
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada. Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kumar S Sarkar
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA. Broad Institute, Cambridge, MA 02142, USA
| | - Matthew Dai
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Howard H Chen
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - David E Sosnovik
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Jordan T Shin
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA. Howard Hughes Medical Institute
| | - Jason N Berman
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada. Department of Pediatrics, Izaak Walton Killam Health Centre, Halifax, Nova Scotia B3K 6R8, Canada
| | - Wei Chao
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Randall T Peterson
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA. Broad Institute, Cambridge, MA 02142, USA.
| |
Collapse
|
623
|
Bnip3 mediates doxorubicin-induced cardiac myocyte necrosis and mortality through changes in mitochondrial signaling. Proc Natl Acad Sci U S A 2014; 111:E5537-44. [PMID: 25489073 DOI: 10.1073/pnas.1414665111] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Doxorubicin (DOX) is widely used for treating human cancers, but can induce heart failure through an undefined mechanism. Herein we describe a previously unidentified signaling pathway that couples DOX-induced mitochondrial respiratory chain defects and necrotic cell death to the BH3-only protein Bcl-2-like 19 kDa-interacting protein 3 (Bnip3). Cellular defects, including vacuolization and disrupted mitochondria, were observed in DOX-treated mice hearts. This coincided with mitochondrial localization of Bnip3, increased reactive oxygen species production, loss of mitochondrial membrane potential, mitochondrial permeability transition pore opening, and necrosis. Interestingly, a 3.1-fold decrease in maximal mitochondrial respiration was observed in cardiac mitochondria of mice treated with DOX. In vehicle-treated control cells undergoing normal respiration, the respiratory chain complex IV subunit 1 (COX1) was tightly bound to uncoupling protein 3 (UCP3), but this complex was disrupted in cells treated with DOX. Mitochondrial dysfunction induced by DOX was accompanied by contractile failure and necrotic cell death. Conversely, shRNA directed against Bnip3 or a mutant of Bnip3 defective for mitochondrial targeting abrogated DOX-induced loss of COX1-UCP3 complexes and respiratory chain defects. Finally, Bnip3(-/-) mice treated with DOX displayed relatively normal mitochondrial morphology, respiration, and mortality rates comparable to those of saline-treated WT mice, supporting the idea that Bnip3 underlies the cardiotoxic effects of DOX. These findings reveal a new signaling pathway in which DOX-induced mitochondrial respiratory chain defects and necrotic cell death are mutually dependent on and obligatorily linked to Bnip3 gene activation. Interventions that antagonize Bnip3 may prove beneficial in preventing mitochondrial injury and heart failure in cancer patients undergoing chemotherapy.
Collapse
|
624
|
Govender J, Loos B, Marais E, Engelbrecht AM. Mitochondrial catastrophe during doxorubicin-induced cardiotoxicity: a review of the protective role of melatonin. J Pineal Res 2014; 57:367-80. [PMID: 25230823 DOI: 10.1111/jpi.12176] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 09/12/2014] [Indexed: 12/18/2022]
Abstract
Anthracyclines, such as doxorubicin, are among the most valuable treatments for various cancers, but their clinical use is limited due to detrimental side effects such as cardiotoxicity. Doxorubicin-induced cardiotoxicity is emerging as a critical issue among cancer survivors and is an area of much significance to the field of cardio-oncology. Abnormalities in mitochondrial functions such as defects in the respiratory chain, decreased adenosine triphosphate production, mitochondrial DNA damage, modulation of mitochondrial sirtuin activity and free radical formation have all been suggested as the primary causative factors in the pathogenesis of doxorubicin-induced cardiotoxicity. Melatonin is a potent antioxidant, is nontoxic, and has been shown to influence mitochondrial homeostasis and function. Although a number of studies support the mitochondrial protective role of melatonin, the exact mechanisms by which melatonin confers mitochondrial protection in the context of doxorubicin-induced cardiotoxicity remain to be elucidated. This review focuses on the role of melatonin on doxorubicin-induced bioenergetic failure, free radical generation, and cell death. A further aim is to highlight other mitochondrial parameters such as mitophagy, autophagy, mitochondrial fission and fusion, and mitochondrial sirtuin activity, which lack evidence to support the role of melatonin in the context of cardiotoxicity.
Collapse
Affiliation(s)
- Jenelle Govender
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | | | | | | |
Collapse
|
625
|
Abstract
DMT1 (divalent metal transporter 1) is the main iron importer found in animals, and ferrous iron is taken up by cells via DMT1. Once ferrous iron reaches the cytosol, it is subjected to subcellular distribution and delivered to various sites where iron is required for a variety of biochemical reactions in the cell. Until now, the mechanism connecting the transporter and cytosolic distribution had not been clarified. In the present study, we have identified PCBP2 [poly(rC)-binding protein 2] as a DMT1-binding protein. The N-terminal cytoplasmic region of DMT1 is the binding domain for PCBP2. An interaction between DMT1 and PCBP1, which is known to be a paralogue of PCBP2, could not be demonstrated in vivo or in vitro. Iron uptake and subsequent ferritin expression were suppressed by either DMT1 or PCBP2 knockdown. Iron-associated DMT1 could interact with PCBP2 in vitro, whereas iron-chelated DMT1 could not. These results indicate that ferrous iron imported by DMT1 is transferred directly to PCBP2. Moreover, we demonstrated that PCBP2 could bind to ferroportin, which exports ferrous iron out of the cell. These findings suggest that PCBP2 can transfer ferrous iron from DMT1 to the appropriate intracellular sites or ferroportin and could function as an iron chaperone.
Collapse
|
626
|
Maccarinelli F, Gammella E, Asperti M, Regoni M, Biasiotto G, Turco E, Altruda F, Lonardi S, Cornaghi L, Donetti E, Recalcati S, Poli M, Finazzi D, Arosio P, Cairo G. Mice lacking mitochondrial ferritin are more sensitive to doxorubicin-mediated cardiotoxicity. J Mol Med (Berl) 2014; 92:859-69. [PMID: 24728422 PMCID: PMC4118045 DOI: 10.1007/s00109-014-1147-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 02/09/2014] [Accepted: 03/18/2014] [Indexed: 10/26/2022]
Abstract
UNLABELLED Mitochondrial ferritin is a functional ferritin that localizes in the mitochondria. It is expressed in the testis, heart, brain, and cells with active respiratory activity. Its overexpression in cultured cells protected against oxidative damage and reduced cytosolic iron availability. However, no overt phenotype was described in mice with inactivation of the FtMt gene. Here, we used the doxorubicin model of cardiac injury in a novel strain of FtMt-null mice to investigate the antioxidant role of FtMt. These mice did not show any evident phenotype, but after acute treatment to doxorubicin, they showed enhanced mortality and altered heart morphology with fibril disorganization and severe mitochondrial damage. Signs of mitochondrial damage were present also in mock-treated FtMt(-/-) mice. The hearts of saline- and doxorubicin-treated FtMt(-/-) mice had higher thiobarbituric acid reactive substance levels, heme oxygenase 1 expression, and protein oxidation, but did not differ from FtMt(+/+) in the cardiac damage marker B-type natriuretic peptide (BNP), ATP levels, and apoptosis. However, the autophagy marker LC3 was activated. The results show that the absence of FtMt, which is highly expressed in the heart, increases the sensitivity of heart mitochondria to the toxicity of doxorubicin. This study represents the first in vivo evidence of the antioxidant role of FtMt. KEY MESSAGE Mitochondrial ferritin (FtMt) expressed in the heart has a protective antioxidant role. Acute treatment with doxorubicin caused the death of all FtMt(-/-) and only of 60 % FtMt(+/+) mice. The hearts of FtMt(-/-) mice showed fibril disorganization and mitochondrial damage. Markers of oxidative damage and autophagy were increased in FtMt(-/-) hearts. This is the first in vivo evidence of the antioxidant role of FtMt.
Collapse
Affiliation(s)
- Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
627
|
Gammella E, Maccarinelli F, Buratti P, Recalcati S, Cairo G. The role of iron in anthracycline cardiotoxicity. Front Pharmacol 2014; 5:25. [PMID: 24616701 PMCID: PMC3935484 DOI: 10.3389/fphar.2014.00025] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/12/2014] [Indexed: 01/24/2023] Open
Abstract
The clinical use of the antitumor anthracycline Doxorubicin is limited by the risk of severe cardiotoxicity. The mechanisms underlying anthracycline-dependent cardiotoxicity are multiple and remain uncompletely understood, but many observations indicate that interactions with cellular iron metabolism are important. Convincing evidence showing that iron plays a role in Doxorubicin cardiotoxicity is provided by the protecting efficacy of iron chelation in patients and experimental models, and studies showing that iron overload exacerbates the cardiotoxic effects of the drug, but the underlying molecular mechanisms remain to be completely characterized. Since anthracyclines generate reactive oxygen species, increased iron-catalyzed formation of free radicals appears an obvious explanation for the aggravating role of iron in Doxorubicin cardiotoxicity, but antioxidants did not offer protection in clinical settings. Moreover, how the interaction between reactive oxygen species and iron damages heart cells exposed to Doxorubicin is still unclear. This review discusses the pathogenic role of the disruption of iron homeostasis in Doxorubicin-mediated cardiotoxicity in the context of current and future pharmacologic approaches to cardioprotection.
Collapse
Affiliation(s)
- Elena Gammella
- Department of Biomedical Sciences for Health, University of Milano Milano, Italy
| | - Federica Maccarinelli
- Department of Molecular and Translational Medicine, University of Brescia Brescia, Italy
| | - Paolo Buratti
- Department of Biomedical Sciences for Health, University of Milano Milano, Italy
| | - Stefania Recalcati
- Department of Biomedical Sciences for Health, University of Milano Milano, Italy
| | - Gaetano Cairo
- Department of Biomedical Sciences for Health, University of Milano Milano, Italy
| |
Collapse
|