651
|
|
652
|
Levi V, Gratton E. Exploring dynamics in living cells by tracking single particles. Cell Biochem Biophys 2007; 48:1-15. [PMID: 17703064 DOI: 10.1007/s12013-007-0010-0] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/19/2022]
Abstract
In the last years, significant advances in microscopy techniques and the introduction of a novel technology to label living cells with genetically encoded fluorescent proteins revolutionized the field of Cell Biology. Our understanding on cell dynamics built from snapshots on fixed specimens has evolved thanks to our actual capability to monitor in real time the evolution of processes in living cells. Among these new tools, single particle tracking techniques were developed to observe and follow individual particles. Hence, we are starting to unravel the mechanisms driving the motion of a wide variety of cellular components ranging from organelles to protein molecules by following their way through the cell. In this review, we introduce the single particle tracking technology to new users. We briefly describe the instrumentation and explain some of the algorithms commonly used to locate and track particles. Also, we present some common tools used to analyze trajectories and illustrate with some examples the applications of single particle tracking to study dynamics in living cells.
Collapse
Affiliation(s)
- Valeria Levi
- Laboratorio de Electrónica Cuántica, Departamento de Física, Universidad de Buenos Aires, Pabellón I Ciudad Universitaria, Buenos Aires, Argentina
| | | |
Collapse
|
653
|
Echarte MM, Bruno L, Arndt-Jovin DJ, Jovin TM, Pietrasanta LI. Quantitative single particle tracking of NGF-receptor complexes: transport is bidirectional but biased by longer retrograde run lengths. FEBS Lett 2007; 581:2905-13. [PMID: 17543952 DOI: 10.1016/j.febslet.2007.05.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 05/08/2007] [Accepted: 05/08/2007] [Indexed: 01/11/2023]
Abstract
The retrograde transport of nerve growth factor (NGF) in neurite-like processes of living differentiated PC12 cells was studied using streptavidin-quantum dots (QDs) coupled to monobiotin-NGF. These reagents were active in differentiation, binding, internalization, and transport. Ten-35% of the QD-NGF-receptor complexes were mobile. Quantitative single particle tracking revealed a bidirectional step-like motion, requiring intact microtubules, with a net retrograde velocity of 0.054+/-0.020 microm/s. Individual runs had a mean velocity of approximately 0.15 microm/s at room temperature, and the run times were exponentially distributed. The photostability and brightness of QDs permit extended real-time analysis of individual QDbNGF- receptor complexes trafficking within neurites.
Collapse
Affiliation(s)
- María M Echarte
- Centro de Microscopías Avanzadas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón I, Ciudad Universitaria, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
654
|
Gopalakrishnan G, Danelon C, Izewska P, Prummer M, Bolinger PY, Geissbühler I, Demurtas D, Dubochet J, Vogel H. Multifunctional lipid/quantum dot hybrid nanocontainers for controlled targeting of live cells. Angew Chem Int Ed Engl 2007; 45:5478-83. [PMID: 16847983 DOI: 10.1002/anie.200600545] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Gopakumar Gopalakrishnan
- Laboratoire de Chimie Physique des Polymères et Membranes, Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
655
|
Chen I, Choi YA, Ting AY. Phage display evolution of a peptide substrate for yeast biotin ligase and application to two-color quantum dot labeling of cell surface proteins. J Am Chem Soc 2007; 129:6619-25. [PMID: 17472384 PMCID: PMC2629800 DOI: 10.1021/ja071013g] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Site-specific protein labeling with Escherichia coli biotin ligase (BirA) has been used to introduce fluorophores, quantum dots (QDs), and photocross-linkers onto recombinant proteins fused to a 15-amino acid acceptor peptide (AP) substrate for BirA and expressed on the surface of living mammalian cells. Here, we used phage display to engineer a new and orthogonal biotin ligase-AP pair for site-specific protein labeling. Yeast biotin ligase (yBL) does not recognize the AP, but we discovered a new 15-amino acid substrate for yBL called the yeast acceptor peptide (yAP), using two generations of phage display selection from 15-mer peptide libraries. The yAP is not recognized by BirA, and thus, we were able to specifically label AP and yAP fusion proteins coexpressed in the same cell with differently colored QDs. We fused the yAP to a variety of recombinant proteins and demonstrated biotinylation by yBL at the N-terminus, C-terminus, and within a flexible internal region. yBL is extremely sequence-specific, as endogenous proteins on the surface of yeast and HeLa cells are not biotinylated. This new methodology expands the scope of biotin ligase labeling to two-color imaging and yeast-based applications.
Collapse
Affiliation(s)
- Irwin Chen
- Contribution from the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Yoon-Aa Choi
- Contribution from the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Alice Y. Ting
- Contribution from the Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
656
|
Siano S, Cupello A, Pellistri F, Robello M. A Quantum-Dot Nanocrystal Study of GABAA Receptor Subunits in Living Cerebellar Granule Cells in Culture. Neurochem Res 2007; 32:1024-7. [PMID: 17401675 DOI: 10.1007/s11064-006-9263-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 12/19/2006] [Indexed: 12/01/2022]
Abstract
Quantum dots (QDs) are semiconductor nanocrystals emerging as a new class of fluorescent labels with large brightness, multi color fluorescence emission and resistance against photobleaching. Here we have used QDs as biological markers in an immunofluorescence approach. In this work GABA(A )receptors of rat cerebellar granule cells have been studied and in particular we have visualized the beta(2/3) and delta subunits in live cells. The results obtained were compared to those gathered with conventional probes. The images of the delta subunit in living cells appear to correspond to those expected for a subunit part of GABA(A )receptors mediating tonic inhibition in the granules cell bodies.
Collapse
Affiliation(s)
- Silvia Siano
- Dipartimento di Fisica, Università di Genova, Genova, Italy
| | | | | | | |
Collapse
|
657
|
Bates IR, Wiseman PW, Hanrahan JW. Investigating membrane protein dynamics in living cells. Biochem Cell Biol 2007; 84:825-31. [PMID: 17215870 DOI: 10.1139/o06-189] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Live cell imaging is a powerful tool for understanding the function and regulation of membrane proteins. In this review, we briefly discuss 4 fluorescence-microscopy-based techniques for studying the transport dynamics of membrane proteins: fluorescence-correlation spectroscopy, image-correlation spectroscopy, fluorescence recovery after photobleaching, and single-particle and (or) molecule tracking. The advantages and limitations of each approach are illustrated using recent studies of an ion channel and cell adhesion molecules.
Collapse
Affiliation(s)
- Ian R Bates
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montréal, QC H3G 1Y6, Canada.
| | | | | |
Collapse
|
658
|
Selvan S, Patra P, Ang C, Ying J. Synthesis of Silica-Coated Semiconductor and Magnetic Quantum Dots and Their Use in the Imaging of Live Cells. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200604245] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
659
|
Selvan ST, Patra PK, Ang CY, Ying JY. Synthesis of Silica-Coated Semiconductor and Magnetic Quantum Dots and Their Use in the Imaging of Live Cells. Angew Chem Int Ed Engl 2007; 46:2448-52. [PMID: 17318931 DOI: 10.1002/anie.200604245] [Citation(s) in RCA: 299] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- S Tamil Selvan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | | | | | | |
Collapse
|
660
|
Abstract
The ability to sense and respond to the environment is a hallmark of living systems. These processes occur at the levels of the organism, cells and individual molecules. Sensing of extracellular changes could result in a structural or chemical alteration in a molecule, which could in turn trigger a cascade of intracellular signals or regulated trafficking of molecules at the cell surface. These and other such processes allow cells to sense and respond to environmental changes. Often, these changes and the responses to them are spatially and/or temporally localized, and visualization of such events necessitates the use of high-resolution imaging approaches. Here we discuss optical imaging approaches and tools for imaging individual events at the cell surface with improved speed and resolution.
Collapse
Affiliation(s)
- Jyoti K Jaiswal
- The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
661
|
Jackson H, Muhammad O, Daneshvar H, Nelms J, Popescu A, Vogelbaum MA, Bruchez M, Toms SA. Quantum dots are phagocytized by macrophages and colocalize with experimental gliomas. Neurosurgery 2007; 60:524-9; discussion 529-30. [PMID: 17327798 DOI: 10.1227/01.neu.0000255334.95532.dd] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The identification of neoplastic tissue within normal brain during biopsy and tumor resection remains a problem in the operative management of gliomas. A variety of nanoparticles are phagocytized by macrophages in vivo. This feature may allow optical nanoparticles, such as quantum dots, to colocalize with brain tumors and serve as an optical aid in the surgical resection or biopsy of brain tumors. METHODS Male Fisher rats (Charles River Labs, Wilmington, MA) were implanted intracranially with C6 gliosarcoma cell lines to establish tumors. Two weeks after the implantation of tumors, 705-nm emission Qdot ITK Amino(PEG) Quantum Dots (Quantum Dot Corp., Hayward, CA) were injected via the tail vein at doses of 3 to 17 nmol. The animals were sacrificed 24 hours after the injection of quantum dots and their tissues were examined. RESULTS Quantum dots are avidly phagocytized by macrophages and are taken up by the liver, spleen, and lymph nodes. A dose-response relationship was noted. At low doses, the majority of the quantum dots are sequestered in the liver, spleen, and lymph nodes. At higher doses, increasing quantities of quantum dots are noted within the experimental brain tumors. Macrophages and microglia colocalize with glioma cells, carrying the quantum dot and thereby optically outlining the tumor. Excitation with blue or ultraviolet wavelengths stimulates the quantum dots, which give off a deep red fluorescence detectable with charge-coupled device cameras, optical spectroscopy units, and in dark-field fluorescence microscopy. CONCLUSION Quantum dots are optical nanoparticles that, when delivered in nanomole doses, are phagocytized by the macrophages and microglia that infiltrate experimental gliomas. The optical signal may be detected, allowing for improved identification and visualization of tumors, potentially augmenting brain tumor biopsy and resection.
Collapse
Affiliation(s)
- Heather Jackson
- Brain Tumor Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
662
|
Abstract
Assessing malignant tumors for expression of multiple biomarkers provides data that are critical for patient management. Quantum dot-conjugated probes to specific biomarkers are powerful tools that can be applied in a multiplex manner to single tissue sections of biopsies to measure expression levels of multiple biomarkers.
Collapse
Affiliation(s)
- Lawrence D True
- Department of Pathology, University of Washington Medical Center, Room BB220, 1959 NE Pacific St., Box 356100, Seattle, WA 98195-6100, USA.
| | | |
Collapse
|
663
|
Popescu MA, Toms SA. In vivo optical imaging using quantum dots for the management of brain tumors. Expert Rev Mol Diagn 2007; 6:879-90. [PMID: 17140375 DOI: 10.1586/14737159.6.6.879] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The surgical management of brain tumors requires the precise localization of tumor tissues within normal brain parenchyma in order to achieve accurate diagnostic biopsy and complete surgical resection. Quantum dots are optical semiconductor nanocrystals that exhibit stable, bright fluorescence. The intravenous injection of quantum dots is accompanied by reticuloendothelial system and macrophage sequestration. Macrophages infiltrate brain tumors and phagocytize intravenously injected quantum dots, optically labeling the tumors. Macrophage-mediated delivery of quantum dots to brain tumors may represent a novel technique to label tumors preoperatively. Quantum dots within tumors may be detected with optical imaging and optical spectroscopy tools, providing the surgeon with real-time optical feedback during the resection and biopsy of brain tumors.
Collapse
Affiliation(s)
- Madalina Alexandra Popescu
- Brain Tumor Institute, Desk R20, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | |
Collapse
|
664
|
Duan H, Nie S. Etching Colloidal Gold Nanocrystals with Hyperbranched and Multivalent Polymers: A New Route to Fluorescent and Water-Soluble Atomic Clusters. J Am Chem Soc 2007; 129:2412-3. [PMID: 17295485 DOI: 10.1021/ja067727t] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongwei Duan
- Departments of Biomedical Engineering and Chemistry, Emory University and Georgia Institute of Technology, 101 Woodruff Circle, Atlanta, GA 30322, USA
| | | |
Collapse
|
665
|
WANG HONG, LI YANBIN, SLAVIK MICHAEL. RAPID DETECTION OF LISTERIA MONOCYTOGENES USING QUANTUM DOTS AND NANOBEADS-BASED OPTICAL BIOSENSOR. ACTA ACUST UNITED AC 2007. [DOI: 10.1111/j.1745-4581.2007.00075.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
666
|
Cho SJ, Maysinger D, Jain M, Röder B, Hackbarth S, Winnik FM. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:1974-80. [PMID: 17279683 DOI: 10.1021/la060093j] [Citation(s) in RCA: 404] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Several studies suggested that the cytotoxic effects of quantum dots (QDs) may be mediated by cadmium ions (Cd2+) released from the QDs cores. The objective of this work was to assess the intracellular Cd2+ concentration in human breast cancer MCF-7 cells treated with cadmium telluride (CdTe) and core/shell cadmium selenide/zinc sulfide (CdSe/ZnS) nanoparticles capped with mercaptopropionic acid (MPA), cysteamine (Cys), or N-acetylcysteine (NAC) conjugated to cysteamine. The Cd2+ concentration determined by a Cd2+-specific cellular assay was below the assay detection limit (<5 nM) in cells treated with CdSe/ZnS QDs, while in cells incubated with CdTe QDs, it ranged from approximately 30 to 150 nM, depending on the capping molecule. A cell viability assay revealed that CdSe/ZnS QDs were nontoxic, whereas the CdTe QDs were cytotoxic. However, for the various CdTe QD samples, there was no dose-dependent correlation between cell viability and intracellular [Cd2+], implying that their cytotoxicity cannot be attributed solely to the toxic effect of free Cd2+. Confocal laser scanning microscopy of CdTe QDs-treated cells imaged with organelle-specific dyes revealed significant lysosomal damage attributable to the presence of Cd2+ and of reactive oxygen species (ROS), which can be formed via Cd2+-specific cellular pathways and/or via CdTe-triggered photoxidative processes involving singlet oxygen or electron transfer from excited QDs to oxygen. In summary, CdTe QDs induce cell death via mechanisms involving both Cd2+ and ROS accompanied by lysosomal enlargement and intracellular redistribution.
Collapse
Affiliation(s)
- Sung Ju Cho
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC Canada
| | | | | | | | | | | |
Collapse
|
667
|
Tomasulo M, Yildiz I, Raymo FM. Nanoparticle-induced transition from positive to negative photochromism. Inorganica Chim Acta 2007. [DOI: 10.1016/j.ica.2006.07.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
668
|
Nanotechnological applications in medicine. Curr Opin Biotechnol 2007; 18:26-30. [PMID: 17254762 DOI: 10.1016/j.copbio.2007.01.006] [Citation(s) in RCA: 238] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 01/11/2007] [Accepted: 01/12/2007] [Indexed: 12/11/2022]
Abstract
Nanotechnology-based tools and techniques are rapidly emerging in the fields of medical imaging and targeted drug delivery. Employing constructs such as dendrimers, liposomes, nanoshells, nanotubes, emulsions and quantum dots, these advances lead toward the concept of personalized medicine and the potential for very early, even pre-symptomatic, diagnoses coupled with highly-effective targeted therapy. Highlighting clinically available and preclinical applications, this review explores the opportunities and issues surrounding nanomedicine.
Collapse
|
669
|
Abstract
Engineered nanoparticles are emerging as useful tools for different purposes in life sciences, medicine and agriculture. Nanomedicine, an emerging discipline, involves the application of nanotechnology (usually regarded within the size range of 1-1000 nm) in the design of systems and devices that can facilitate our understanding of disease pathophysiology, nano-imaging, nanomedicines and nano-diagnostics. Among the different nanomaterials used to construct nanoparticles, are organic polymers, co-polymers and metals. Some of these materials can self assemble, and depending on the conditions under which the self-assembly process occurs, a vast array of shapes can be formed. Frequently, the nanoparticle morphology is spherical or tubular, mimicking the shape, but thus far, not the functions of subcellular organelles. We discuss here several representative nanoparticles, made of block copolymers and metals, highlighting some of their current uses, advantages and limitations in medicine. Nano-oncology and nano-neurosciences will also be discussed in more detail in the context of the intracellular fate of nanoparticles and possible long-term consequences on cell functions.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir William Osler, Montreal, Canada
| |
Collapse
|
670
|
Abstract
Semiconductor quantum dots are inorganic nanoparticles with unique photophysical properties. In particular, their huge one- and two-photon absorption cross sections, tunable emission bands and excellent photobleaching resistances are stimulating the development of luminescent probes for biomedical imaging and sensing applications. Indeed, electron and energy transfer processes can be designed to switch the luminescence of semiconductor quantum dots in response to molecular recognition events. On the basis of these operating principles, the presence of target analytes can be transduced into detectable luminescence signals. In fact, luminescent chemosensors based on semiconductor quantum dots are starting to be developed to detect small molecules, monitor DNA hybridization, assess protein-ligand complementarities, test enzymatic activity and probe pH distributions. Although fundamental research is still very much needed to understand further the fundamental factors regulating the behavior of these systems and refine their performance, it is becoming apparent that sensitive probes based on semiconductor quantum dots will become invaluable analytical tools for a diversity of applications in biomedical research.
Collapse
Affiliation(s)
- Françisco M Raymo
- Center for Supramolecular Science, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431, USA.
| | | |
Collapse
|
671
|
Gao X, Dave SR. Quantum dots for cancer molecular imaging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 620:57-73. [PMID: 18217335 DOI: 10.1007/978-0-387-76713-0_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Quantum dots (QDs), tiny light-emitting particles on the nanometer scale, are emerging as a new class of fluorescent probes for biomolecular and cellular imaging. In comparison with organic dyes and fluorescent proteins, quantum dots have unique optical and electronic properties such as size-tunable light emission, improved signal brightness, resistance against photobleaching, and simultaneous excitation of multiple fluorescence colors. These properties are most promising for improving the sensitivity of molecular imaging and quantitative cellular analysis by 1-2 orders of magnitude. Recent advances have led to multifunctional nanoparticle probes that are highly bright and stable under complex in-vivo conditions. A new structural design involves encapsulating luminescent QDs with amphiphilic block copolymers, and linking the polymer coating to tumor-targeting ligands and drug-delivery functionalities. Polymer-encapsulated QDs are essentially nontoxic to cells and small animals, but their long-term in-vivo toxicity and degradation need more careful studies. Nonetheless, bioconjugated QDs have raised new possibilities for ultrasensitive and multiplexed imaging of molecular targets in living cells and animal models.
Collapse
Affiliation(s)
- Xiaohu Gao
- Department of Bioengineering, University of Washington, Seattle, WA 98195-5061, USA.
| | | |
Collapse
|
672
|
Lee DC, Smith DK, Heitsch AT, Korgel BA. Colloidal magnetic nanocrystals: synthesis, properties and applications. ACTA ACUST UNITED AC 2007. [DOI: 10.1039/b605630j] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
673
|
Aaron JS, Oh J, Larson TA, Kumar S, Milner TE, Sokolov KV. Increased optical contrast in imaging of epidermal growth factor receptor using magnetically actuated hybrid gold/iron oxide nanoparticles. OPTICS EXPRESS 2006; 14:12930-43. [PMID: 19532186 DOI: 10.1364/oe.14.012930] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We describe a new approach for optical imaging that combines the advantages of molecularly targeted plasmonic nanoparticles and magnetic actuation. This combination is achieved through hybrid nanoparticles with an iron oxide core surrounded by a gold layer. The nanoparticles are targeted in-vitro to epidermal growth factor receptor, a common cancer biomarker. The gold portion resonantly scatters visible light giving a strong optical signal and the superparamagnetic core provides a means to externally modulate the optical signal. The combination of bright plasmon resonance scattering and magnetic actuation produces a dramatic increase in contrast in optical imaging of cells labeled with hybrid gold/iron oxide nanoparticles.
Collapse
|
674
|
Li-Shishido S, Watanabe TM, Tada H, Higuchi H, Ohuchi N. Reduction in nonfluorescence state of quantum dots on an immunofluorescence staining. Biochem Biophys Res Commun 2006; 351:7-13. [PMID: 17055452 DOI: 10.1016/j.bbrc.2006.09.159] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2006] [Accepted: 09/22/2006] [Indexed: 11/21/2022]
Abstract
Fluorescence quantum dots are widely used in immunofluorescence staining because of their intense and stable fluorescence. However, the nonfluorescence state of the quantum dots is their disadvantage. Here, the nonfluorescence state of the dots labeled to cells and tissues was suppressed. Cells and tissues where the receptor HER2 had been overexpressed were fixed and then labeled with anti-HER2 crosslinked with the dots. The intensity of the dots increased with the illumination time. The majority of the single dots were in the nonfluorescence state at beginning of the illumination period and the number of fluorescence dots observed increased with the illumination time. Living cells were also labeled with the anti-HER2-Qdots. Blinking and bleaching of the Qdots was effectively suppressed by adding beta-mercaptoethanol and glutathione. Therefore, the movement of the Qdots bound to cell membrane could be observed for long periods of time.
Collapse
Affiliation(s)
- Songhua Li-Shishido
- Division of Surgical Oncology, Graduate School of Medicine, Tohoku University, Japan
| | | | | | | | | |
Collapse
|
675
|
Abstract
The emergence of synthesis strategies for the fabrication of nanosized contrast agents is anticipated to lead to advancements in understanding biological processes at the molecular level in addition to progress in the development of diagnostic tools and innovative therapies. Imaging agents such as fluorescent dye-doped silica nanoparticles, quantum dots and gold nanoparticles have overcome many of the limitations of conventional contrast agents (organic dyes) such as poor photostability, low quantum yield, insufficient in vitro and in vivo stability, etc. Such particulates are now being developed for absorbance and emission in the near infrared region, which is expected to allow for real time and deep tissue imaging via optical routes. Other efforts to facilitate deep tissue imaging with pre-existing technologies have lead to the development of multimodal nanoparticles which are both optical and MRI active. The main focus of this article is to provide an overview of properties and design of contrast agents such as dye-doped silica nanoparticles, quantum dots and gold nanoparticles for non-invasive bioimaging.
Collapse
Affiliation(s)
- Parvesh Sharma
- Particle Engineering Research Center and Material Science and Engineering, University of Florida, Gainesville 32611, USA
| | | | | | | | | |
Collapse
|
676
|
Patra CR, Bhattacharya R, Patra S, Basu S, Mukherjee P, Mukhopadhyay D. Inorganic phosphate nanorods are a novel fluorescent label in cell biology. J Nanobiotechnology 2006; 4:11. [PMID: 17074086 PMCID: PMC1636656 DOI: 10.1186/1477-3155-4-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Accepted: 10/30/2006] [Indexed: 01/11/2023] Open
Abstract
We report the first use of inorganic fluorescent lanthanide (europium and terbium) ortho phosphate [LnPO4.H2O, Ln = Eu and Tb] nanorods as a novel fluorescent label in cell biology. These nanorods, synthesized by the microwave technique, retain their fluorescent properties after internalization into human umbilical vein endothelial cells (HUVEC), 786-O cells, or renal carcinoma cells (RCC). The cellular internalization of these nanorods and their fluorescence properties were characterized by fluorescence spectroscopy (FS), differential interference contrast (DIC) microscopy, confocal microscopy, and transmission electron microscopy (TEM). At concentrations up to 50 microg/ml, the use of [3H]-thymidine incorporation assays, apoptosis assays (TUNEL), and trypan blue exclusion illustrated the non-toxic nature of these nanorods, a major advantage over traditional organic dyes.
Collapse
Affiliation(s)
- Chitta Ranjan Patra
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Resham Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Sujata Patra
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Sujit Basu
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Priyabrata Mukherjee
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic Cancer Center, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
677
|
Hua XF, Liu TC, Cao YC, Liu B, Wang HQ, Wang JH, Huang ZL, Zhao YD. Characterization of the coupling of quantum dots and immunoglobulin antibodies. Anal Bioanal Chem 2006; 386:1665-71. [PMID: 17033770 DOI: 10.1007/s00216-006-0807-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 08/22/2006] [Accepted: 08/28/2006] [Indexed: 10/24/2022]
Abstract
Water-soluble quantum dots (QDs) were used to label goat anti-human immunoglobulin antibodies (Abs), and the labeling process was characterized by column purification. The QDs obtained in organic solvent were modified with mercaptoacetic acid (MAA) and became water-soluble. These water-soluble QDs were linked to the antibodies using the coupling reagents ethyl-3-(dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS). The linking process was shown to be effective by ultra-filter centrifugation and column purification. After comparing the quantities of Abs and water-soluble QDs involved in the linking reaction via column purification, it was found that a molar Abs:QD ratio of >1.2 resulted in most of the water-soluble QDs becoming covalently linked to the Abs. The circular dichroism (CD) spectra of Abs and QD-Ab conjugates were very similar to each other, indicating that the secondary structure of Abs remained largely intact after the conjugation. Finally, antigen (Ag)-antibody (Ab) recognition reactions perfomed on the surface of a glass slide showed that the conjugate retained the activity of Abs. This work lends support to the idea of linking biomolecules to QDs, and thus should aid the application of QDs to the life sciences.
Collapse
Affiliation(s)
- Xiao-Feng Hua
- Key Laboratory of Biomedical Photonics of Ministry of Education-Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, HuBei, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
678
|
Garai K, Muralidhar M, Maiti S. Fiber-optic fluorescence correlation spectrometer. APPLIED OPTICS 2006; 45:7538-42. [PMID: 16983444 DOI: 10.1364/ao.45.007538] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Fluorescence correlation spectroscopy (FCS) is a sensitive technique used to probe size, concentration, flow velocity, and reaction kinetics in a dilute solution. Conventional FCS spectrometers achieve this sensitivity at the cost of using bulky optics. We demonstrate a technique that utilizes a single-mode optical fiber of 3.3 microm mode field diameter to perform FCS measurements. We demonstrate that the technique has adequate sensitivity to perform FCS measurements on fluorescent beads of 13 nm radius, and that the results agree with theoretical predictions. Our method potentially allows FCS to be extended to remote and in vivo applications.
Collapse
Affiliation(s)
- Kanchan Garai
- Tata Institute of Fundamental Research, Colaba, Mumbai, India
| | | | | |
Collapse
|
679
|
Aryal BP, Neupane KP, Sandros MG, Benson DE. Metallothioneins initiate semiconducting nanoparticle cellular toxicity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2006; 2:1159-63. [PMID: 17193582 DOI: 10.1002/smll.200500527] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- Baikuntha P Aryal
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
680
|
Cuenca AG, Jiang H, Hochwald SN, Delano M, Cance WG, Grobmyer SR. Emerging implications of nanotechnology on cancer diagnostics and therapeutics. Cancer 2006; 107:459-66. [PMID: 16795065 DOI: 10.1002/cncr.22035] [Citation(s) in RCA: 275] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nanotechnology is multidisciplinary field that involves the design and engineering of objects <500 nanometers (nm) in size. The National Cancer Institute has recognized that nanotechnology offers an extraordinary, paradigm-changing opportunity to make significant advances in cancer diagnosis and treatment. In the last several decades, nanotechnology has been studied and developed primarily for use in novel drug-delivery systems (e.g. liposomes, gelatin nanoparticles, micelles). A recent explosion in engineering and technology has led to 1) the development of many new nanoscale platforms, including quantum dots, nanoshells, gold nanoparticles, paramagnetic nanoparticles, and carbon nanotubes, and 2) improvements in traditional, lipid-based nanoscale platforms. The emerging implications of these platforms for advances in cancer diagnostics and therapeutics form the basis of this review. A widespread understanding of these new technologies is important, because they currently are being integrated into the clinical practice of oncology.
Collapse
Affiliation(s)
- Alex G Cuenca
- Division of Surgical Oncology, Department of Surgery, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
681
|
Abstract
Stem cell therapy is emerging as a promising approach to treat heart diseases. Considerable evidence from experimental studies and initial clinical trials suggests that stem cell transplantation promotes systolic function and prevent ventricular remodeling. However, the specific mechanisms by which stem cells improve heart function remain largely unknown. In addition, interpreting the long-term effects of stem cell therapy is difficult because of the limitations of conventional techniques. The recent development of molecular imaging techniques offers great potential to address these critical issues by noninvasively tracking the fate of the transplanted cells. This review offers a focused discussion on the use of stem cell therapy and imaging in the context of cardiology.
Collapse
Affiliation(s)
- Gwendolen Y Chang
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, Calif, USA
| | | | | |
Collapse
|
682
|
Kalchenko V, Shivtiel S, Malina V, Lapid K, Haramati S, Lapidot T, Brill A, Harmelin A. Use of lipophilic near-infrared dye in whole-body optical imaging of hematopoietic cell homing. JOURNAL OF BIOMEDICAL OPTICS 2006; 11:050507. [PMID: 17092148 DOI: 10.1117/1.2364903] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We develop an optical whole-body imaging technique for monitoring normal and leukemic hematopoietic cell homing in vivo. A recently developed near-infrared (NIR) lipophilic carbocyanine dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindotricarbocyanine iodide (DiR) is used to safely and directly label the membranes of human leukemic Pre-B ALL G2 cell lines as well as primary murine lymphocytes and erythrocytes. DiR has absorption and fluorescence maxima at 750 and 782 nm, respectively, which corresponds to low light absorption and autofluorescence in living tissues. This allows us to obtain a significant signal with very low background level. A charge-coupled device (CCD)-based imager is used for noninvasive whole-body imaging of DiR-labeled cell homing in intact animals. This powerful technique can potentially visualize any cell type without use of specific antibodies conjugated with NIR fluorescent tag or loading cells with transporter-delivered NIR fluorophores. Thus, in vivo imaging based on NIR lipophilic carbocyanine dyes in combination with advanced optical techniques may serve as a powerful alternative or complementation to other small animal imaging methods.
Collapse
|
683
|
Fountaine TJ, Wincovitch SM, Geho DH, Garfield SH, Pittaluga S. Multispectral imaging of clinically relevant cellular targets in tonsil and lymphoid tissue using semiconductor quantum dots. Mod Pathol 2006; 19:1181-91. [PMID: 16778828 DOI: 10.1038/modpathol.3800628] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Determination of the expression and spatial distribution of molecular epitopes, or antigens, in patient tissue specimens has substantially improved the pathologist's ability to classify disease processes. Certain disease pathophysiologies are marked by characteristic increased or decreased expression of developmentally controlled antigens, defined as Cluster of Differentiation markers, that currently form the foundation for understanding lymphoid malignancies. While chromogens and organic fluorophores have been utilitized for some time in immunohistochemical analyses, developments in synthetic, inorganic fluorophore semiconductors, namely quantum dots, offer a versatile alternative reporter system. Quantum dots are stable fluorophores, are resistant to photobleaching, and are attributed with wide excitation ranges and narrow emission spectra. To date, routinely processed, formalin-fixed tissues have only been probed with two quantum dot reporters simultaneously. In the present study, streptavidin-conjugated quantum dots with distinct emission spectra were tested for their utility in identifying a variety of differentially expressed antigens (surface, cytoplasmic, and nuclear). Slides were analyzed using confocal laser scanning microscopy, which enabled with a single excitation wavelength (488 nm argon laser) the detection of up to seven signals (streptavidin-conjugated quantum dots 525, 565, 585, 605, 655, 705 and 805 nm) plus the detection of 4'6-DiAmidino-2-PhenylIndole with an infra-red laser tuned to 760 nm for two photon excitation. Each of these signals was specific for the intended morphologic immunohistochemical target. In addition, five of the seven streptavidin-conjugated quantum dots tested (not streptavidin-conjugated quantum dots 585 or 805 nm) were used on the same tissue section and could be analyzed simultaneously on routinely processed formalin-fixed, paraffin-embedded sections. Application of this multiplexing method will enable investigators to explore the clinically relevant multidimensional cellular interactions that underlie diseases, simultaneously.
Collapse
Affiliation(s)
- Thomas J Fountaine
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
684
|
Yezhelyev MV, Gao X, Xing Y, Al-Hajj A, Nie S, O'Regan RM. Emerging use of nanoparticles in diagnosis and treatment of breast cancer. Lancet Oncol 2006; 7:657-67. [PMID: 16887483 DOI: 10.1016/s1470-2045(06)70793-8] [Citation(s) in RCA: 311] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The biological application of nanoparticles is a rapidly developing area of nanotechnology that raises new possibilities in the diagnosis and treatment of human cancers. In cancer diagnostics, fluorescent nanoparticles can be used for multiplex simultaneous profiling of tumour biomarkers and for detection of multiple genes and matrix RNA with fluorescent in-situ hybridisation. In breast cancer, three crucial biomarkers can be detected and accurately quantified in single tumour sections by use of nanoparticles conjugated to antibodies. In the near future, the use of conjugated nanoparticles will allow at least ten cancer-related proteins to be detected on tiny tumour sections, providing a new method of analysing the proteome of an individual tumour. Supermagnetic nanoparticles have exciting possibilities as contrast agents for cancer detection in vivo, and for monitoring the response to treatment. Several chemotherapy agents are available as nanoparticle formulations, and have at least equivalent efficacy and fewer toxic effects compared with conventional formulations. Ultimately, the use of nanoparticles will allow simultaneous tumour targeting and drug delivery in a unique manner. In this review, we give an overview of the use of clinically applicable nanoparticles in oncology, with particular focus on the diagnosis and treatment of breast cancer.
Collapse
|
685
|
Germain RN, Miller MJ, Dustin ML, Nussenzweig MC. Dynamic imaging of the immune system: progress, pitfalls and promise. Nat Rev Immunol 2006; 6:497-507. [PMID: 16799470 DOI: 10.1038/nri1884] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Both innate and adaptive immunity are dependent on the migratory capacity of myeloid and lymphoid cells. Effector cells of the innate immune system rapidly enter infected tissues, whereas sentinel dendritic cells in these sites mobilize and transit to lymph nodes. In these and other secondary lymphoid tissues, interactions among various cell types promote adaptive humoral and cell-mediated immune responses. Recent advances in light microscopy have allowed direct visualization of these events in living animals and tissue explants, which allows a new appreciation of the dynamics of immune-cell behaviour. In this article, we review the basic techniques and the tools used for in situ imaging, as well as the limitations and potential artefacts of these methods.
Collapse
Affiliation(s)
- Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
686
|
Gopalakrishnan G, Danelon C, Izewska P, Prummer M, Bolinger PY, Geissbühler I, Demurtas D, Dubochet J, Vogel H. Multifunctional Lipid/Quantum Dot Hybrid Nanocontainers for Controlled Targeting of Live Cells. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200600545] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
687
|
Yildiz I, Tomasulo M, Raymo FM. A mechanism to signal receptor-substrate interactions with luminescent quantum dots. Proc Natl Acad Sci U S A 2006; 103:11457-60. [PMID: 16861301 PMCID: PMC1544191 DOI: 10.1073/pnas.0602384103] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Indexed: 11/18/2022] Open
Abstract
Semiconductor quantum dots are becoming valuable analytical tools for biomedical applications. Indeed, their unique photophysical properties offer the opportunity to design luminescent probes for imaging and sensing with unprecedented performance. In this context, we have identified operating principles to transduce the supramolecular association of complementary receptor-substrate pairs into an enhancement in the luminescence of sensitive quantum dots. Our mechanism is based on the electrostatic adsorption of cationic quenchers on the surface of anionic quantum dots. The adsorbed quenchers suppress efficiently the emission character of the associated nanoparticles on the basis of photoinduced electron transfer. In the presence of target receptors able to bind the quenchers and prevent electron transfer, however, the luminescence of the quantum dots is restored. Thus, complementary receptor-substrate pairs can be identified with luminescence measurements relying on our design logic. In fact, we have demonstrated with a representative example that our protocol can be adapted to signal protein-ligand interactions.
Collapse
Affiliation(s)
- Ibrahim Yildiz
- Center for Supramolecular Science, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431
| | - Massimiliano Tomasulo
- Center for Supramolecular Science, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431
| | - Françisco M. Raymo
- Center for Supramolecular Science, Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146-0431
| |
Collapse
|
688
|
Abstract
Methods to visualize, track, measure and perturb proteins in living cells are central to biomedicine's efforts to characterize and understand the spatial and temporal underpinnings of life inside cells. Although fluorescent proteins have revolutionized such studies, they have shortcomings, which have spurred the creation of alternative approaches to chemically label proteins in live cells. In this review we highlight research questions that can be addressed using site-specific chemical labeling and present a comparison of the various labeling techniques that have been developed. We also provide a 'roadmap' for selection of appropriate labeling techniques(s) and outline generalized strategies to validate and troubleshoot chemical labeling experiments.
Collapse
Affiliation(s)
- Kevin M Marks
- Department of Microbiology and Immunology, Baxter Laboratory in Genetic Pharmacology, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
689
|
Yu G, Liang J, He Z, Sun M. Quantum dot-mediated detection of gamma-aminobutyric acid binding sites on the surface of living pollen protoplasts in tobacco. CHEMISTRY & BIOLOGY 2006; 13:723-31. [PMID: 16873020 DOI: 10.1016/j.chembiol.2006.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2006] [Revised: 04/06/2006] [Accepted: 05/08/2006] [Indexed: 10/24/2022]
Abstract
gamma-Aminobutyric acid (GABA) is an inhibitory transmitter in the central nervous system of mammals. Recent investigations showed that it also plays an important role in regulating pollen tube growth and orientation in plants. To determine whether GABA receptors are also present on the membrane of pollen protoplasts, a fluorescence probe of quantum dots (QDs) was constructed and applied. The water-soluble CdSe-ZnS (core-shell) QDs were first synthesized and verified to possess good optical properties. GABA was then bioconjugated to the QDs in the presence of 1-ethyl-3-(3)-dimethylaminopropyl carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to make the fluorescence probe. Using the probe, GABA binding sites were detected on the protoplast membrane of both pollen and somatic cells. Both the fluorescent signals on the surface of the protoplasts and the Ca(2+) oscillation assayed via the Ca(2+) probe Fluo-3/AM inside the protoplasts provided evidence that the potential GABA(B) receptors are present on the plant protoplast membrane.
Collapse
Affiliation(s)
- Guanghui Yu
- Key Laboratory of MOE for Plant Developmental Biology, College of Life Sciences, Wuhan University, China
| | | | | | | |
Collapse
|
690
|
Bates IR, Hébert B, Luo Y, Liao J, Bachir AI, Kolin DL, Wiseman PW, Hanrahan JW. Membrane lateral diffusion and capture of CFTR within transient confinement zones. Biophys J 2006; 91:1046-58. [PMID: 16714353 PMCID: PMC1563763 DOI: 10.1529/biophysj.106.084830] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cystic fibrosis transmembrane conductance regulator (CFTR) channel interacts with scaffolding and other proteins that are expected to restrict its lateral movement, yet previous studies have reported predominantly free diffusion. We examined the lateral mobility of CFTR channels on live baby hamster kidney cells using three complementary methods. Channels bearing an extracellular biotinylation target sequence were labeled with streptavidin conjugated with fluorescent dyes (Alexa Fluor 488 or 568) or quantum dots (qDot605). Fluorescence recovery after photobleaching and image correlation spectroscopy of the dye-labeled channels revealed a significant immobile population ( approximately 50%), which was confirmed by direct single particle tracking (SPT) of qDot605-labeled CFTR. Adding 10 histidine residues at the C-terminus of CFTR to mask the postsynaptic density 95, Discs large, ZO-1 (PDZ) binding motif abolished its association with EBP50/NHERF1, reduced the immobile fraction, and increased mobility. Other interactions that are not normally detected on this timescale became apparent when binding of PDZ domain proteins was disrupted. SPT revealed that CFTR(His-10) channels diffuse randomly, become immobilized for periods lasting up to 1 min, and in some instances are recaptured at the same location. The impact of transient confinement on the measured diffusion using the three fluorescence techniques were assessed using computer simulations of the biological experiments. Finally, the impact of endosomal CFTR on mobility measurements was assessed by fluorescence correlation spectroscopy. These results reveal unexpected features of CFTR dynamics which may influence its ion channel activity.
Collapse
Affiliation(s)
- Ian R Bates
- Department of Physiology, McGill University, Montréal, Québec, Canada H3G 1Y6
| | | | | | | | | | | | | | | |
Collapse
|
691
|
Shi L, Hernandez B, Selke M. Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites. J Am Chem Soc 2006; 128:6278-9. [PMID: 16683767 PMCID: PMC3164884 DOI: 10.1021/ja057959c] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Water-soluble quantum dot-organic dye nanocomposites have been prepared via electrostatic interaction. We used CdTe quantum dots with diameters up to 3.4 nm, 2-aminoethanethiol as a stabilizer, and meso-tetra(4-sulfonatophenyl)porphine dihydrochloride (TSPP) as an organic dye. The photophysical properties of the nanocomposite have been investigated. The fluorescence of the parent CdTe quantum dot is largely suppressed. Instead, indirect excitation of the TSPP moiety leads to production of singlet oxygen with a quantum yield of 0.43. The nanocomposite is sufficiently photostable for biological applications.
Collapse
Affiliation(s)
- Lixin Shi
- Department of Chemistry and Biochemistry, California State University, Los Angeles, California 90032-8202, USA
| | | | | |
Collapse
|
692
|
Shi W, Ma X. The detection application of CdS quantum dots in labeling DNA molecules. Biomed Mater 2006; 1:81-4. [DOI: 10.1088/1748-6041/1/2/005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
693
|
Srinivasan C, Lee J, Papadimitrakopoulos F, Silbart LK, Zhao M, Burgess DJ. Labeling and intracellular tracking of functionally active plasmid DNA with semiconductor quantum dots. Mol Ther 2006; 14:192-201. [PMID: 16698322 DOI: 10.1016/j.ymthe.2006.03.010] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Revised: 03/07/2006] [Accepted: 03/10/2006] [Indexed: 01/28/2023] Open
Abstract
Semiconductor nanocrystal quantum dots (QDs) allow long-term imaging in the cellular environment with high photostability. QD biolabeling techniques have previously been developed for tagging proteins and peptides as well as oligonucleotides. In this contribution, QD-decorated plasmid DNA was utilized for the first time for long-term intracellular and intranuclear tracking studies. Conjugation of plasmid DNA with phospholipid-coated QDs was accomplished using a peptide nucleic acid (PNA)-N-succinimidyl-3-(2-pyridylthio) propionate linker. Gel electrophoresis and confocal and atomic force microscopy (AFM) were used to confirm the structure of QD-DNA conjugates. AFM imaging also revealed that multiple QDs were attached in a cluster at the PNA-reactive site of the plasmid DNA. These QD-DNA conjugates were capable of expressing the reporter protein, enhanced green fluorescent protein, following transfection in Chinese hamster ovary (CHO-K1) cells with an efficiency of ca. 62%, which was comparable to the control (unconjugated) plasmid DNA.
Collapse
Affiliation(s)
- Charudharshini Srinivasan
- Department of Pharmaceutical Sciences, University of Connecticut, 69 North Eagleville Road, Unit 3092, Storrs, 06269, USA
| | | | | | | | | | | |
Collapse
|
694
|
Giepmans BNG, Adams SR, Ellisman MH, Tsien RY. The fluorescent toolbox for assessing protein location and function. Science 2006; 312:217-24. [PMID: 16614209 DOI: 10.1126/science.1124618] [Citation(s) in RCA: 1983] [Impact Index Per Article: 104.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Advances in molecular biology, organic chemistry, and materials science have recently created several new classes of fluorescent probes for imaging in cell biology. Here we review the characteristic benefits and limitations of fluorescent probes to study proteins. The focus is on protein detection in live versus fixed cells: determination of protein expression, localization, activity state, and the possibility for combination of fluorescent light microscopy with electron microscopy. Small organic fluorescent dyes, nanocrystals ("quantum dots"), autofluorescent proteins, small genetic encoded tags that can be complexed with fluorochromes, and combinations of these probes are highlighted.
Collapse
Affiliation(s)
- Ben N G Giepmans
- National Center for Microscopy and Imaging Research, Center for Research in Biological Systems, Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
695
|
Yu J, Parker D, Pal R, Poole RA, Cann MJ. A europium complex that selectively stains nucleoli of cells. J Am Chem Soc 2006; 128:2294-9. [PMID: 16478184 DOI: 10.1021/ja056303g] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A europium complex selectively staining the nucleolus of NIH 3T3, HeLa, and HDF cells is reported. This complex possesses not only the advantage of the long lifetime of europium emission (0.3 ms), but also a chromophore that allows excitation at a relatively long wavelength (lambda(max) = 384 nm) and gives rise to an acceptable quantum yield (9%). The complex can be used both in live cell and fixed cell imaging, giving an average intracellular concentration on the order of 0.5 microM. Strong binding to serum albumin has been demonstrated by examination of the analogous gadolinium complex, studying relaxivity changes with increasing protein concentration. The intracellular speciation of the complex has been examined by circularly polarized emission spectroscopy and is consistent with the presence of more than one europium species, possibly protein bound.
Collapse
Affiliation(s)
- Junhua Yu
- Department of Chemistry, School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | | | | | | | | |
Collapse
|
696
|
Schäferling M, Nagl S. Optical technologies for the read out and quality control of DNA and protein microarrays. Anal Bioanal Chem 2006; 385:500-17. [PMID: 16609845 DOI: 10.1007/s00216-006-0317-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 11/02/2005] [Accepted: 01/13/2006] [Indexed: 10/24/2022]
Abstract
Microarray formats have become an important tool for parallel (or multiplexed) monitoring of biomolecular interactions. Surface-immobilized probes like oligonucleotides, cDNA, proteins, or antibodies can be used for the screening of their complementary targets, covering different applications like gene or protein expression profiling, analysis of point mutations, or immunodiagnostics. Numerous reviews have appeared on this topic in recent years, documenting the intriguing progress of these miniaturized assay formats. Most of them highlight all aspects of microarray preparation, surface chemistry, and patterning, and try to give a systematic survey of the different kinds of applications of this new technique. This review places the emphasis on optical technologies for microarray analysis. As the fluorescent read out of microarrays is dominating the field, this topic will be the focus of the review. Basic principles of labeling and signal amplification techniques will be introduced. Recent developments in total internal reflection fluorescence, resonance energy transfer assays, and time-resolved imaging are addressed, as well as non-fluorescent imaging methods. Finally, some label-free detection modes are discussed, such as surface plasmon microscopy or ellipsometry, since these are particularly interesting for microarray development and quality control purposes.
Collapse
Affiliation(s)
- Michael Schäferling
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93040 Regensburg, Germany.
| | | |
Collapse
|
697
|
|
698
|
Abstract
Traditional screening paradigms often focus on single targets. To facilitate drug discovery in the more complex physiological environment of a cell or organism, powerful cellular imaging systems have been developed. The emergence of these detection technologies allows the quantitative analysis of cellular events and visualization of relevant cellular phenotypes. Cellular imaging facilitates the integration of complex biology into the screening process, and addresses both high-content and high-throughput needs. This review describes how cellular imaging technologies contribute to the drug discovery process.
Collapse
Affiliation(s)
- Paul Lang
- Department of Molecular Screening & Cellular Pharmacology, Serono Pharmaceutical Research Institute, 14 chemin des Aulx, 1228 Plan-les-Ouates, Switzerland.
| | | | | | | |
Collapse
|
699
|
Pinaud F, Michalet X, Bentolila LA, Tsay JM, Doose S, Li JJ, Iyer G, Weiss S. Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 2006; 27:1679-87. [PMID: 16318871 PMCID: PMC3073483 DOI: 10.1016/j.biomaterials.2005.11.018] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 11/11/2005] [Indexed: 10/25/2022]
Abstract
After much effort in surface chemistry development and optimization by several groups, fluorescent semiconductor nanocrystals probes, also known as quantum dots or qdots, are now entering the realm of biological applications with much to offer to biologists. The road to success has been paved with hurdles but from these efforts has stemmed a multitude of original surface chemistries that scientists in the biological fields can draw from for their specific biological applications. The ability to easily modulate the chemical nature of qdot surfaces by employing one or more of the recently developed qdot coatings, together with their exceptional photophysics have been key elements for qdots to acquire a status of revolutionary fluorescent bio-probes. Indeed, the unique properties of qdots not only give biologists the opportunity to explore advanced imaging techniques such as single molecule or lifetime imaging but also to revisit traditional fluorescence imaging methodologies and extract yet unobserved or inaccessible information in vitro or in vivo.
Collapse
Affiliation(s)
- Fabien Pinaud
- Department of Chemistry & Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Xavier Michalet
- Department of Chemistry & Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Laurent A. Bentolila
- Department of Chemistry & Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - James M. Tsay
- Department of Chemistry & Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | | | - Jack J. Li
- Department of Chemistry & Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Gopal Iyer
- Department of Chemistry & Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Shimon Weiss
- Department of Chemistry & Biochemistry, UCLA, 607 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|
700
|
van Vlerken LE, Amiji MM. Multi-functional polymeric nanoparticles for tumour-targeted drug delivery. Expert Opin Drug Deliv 2006; 3:205-16. [PMID: 16506948 DOI: 10.1517/17425247.3.2.205] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The use of nanoparticles as drug delivery vehicles for anticancer therapeutics has great potential to revolutionise the future of cancer therapy. As tumour architecture causes nanoparticles to preferentially accumulate at the tumour site, their use as drug delivery vectors results in the localisation of a greater amount of the drug load at the tumour site; thus improving cancer therapy and reducing the harmful nonspecific side effects of chemotherapeutics. In addition, formulation of these nanoparticles with imaging contrast agents provides a very efficient system for cancer diagnostics. Given the exhaustive possibilities available to polymeric nanoparticle chemistry, research has quickly been directed at multi-functional nanoparticles, combining tumour targeting, tumour therapy and tumour imaging in an all-in-one system, providing a useful multi-modal approach in the battle against cancer. This review will discuss the properties of nanoparticles that allow for such multiple functionality, as well as recent scientific advances in the area of multi-functional nanoparticles for cancer therapeutics.
Collapse
Affiliation(s)
- Lilian E van Vlerken
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | | |
Collapse
|