651
|
Suzuki D, Yamada A, Amano T, Yasuhara R, Kimura A, Sakahara M, Tsumaki N, Takeda S, Tamura M, Nakamura M, Wada N, Nohno T, Shiroishi T, Aiba A, Kamijo R. Essential mesenchymal role of small GTPase Rac1 in interdigital programmed cell death during limb development. Dev Biol 2009; 335:396-406. [PMID: 19766620 DOI: 10.1016/j.ydbio.2009.09.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 09/10/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022]
Abstract
Developing vertebrate limbs are often utilized as a model for studying pattern formation and morphogenetic cell death. Herein, we report that conditional deletion of Rac1, a member of the Rho family of proteins, in mouse limb bud mesenchyme led to skeletal deformities in the autopod and soft tissue syndactyly, with the latter caused by a complete absence of interdigital programmed cell death. Furthermore, the lack of interdigital programmed cell death and associated syndactyly was related to down-regulated gene expression of Bmp2, Bmp7, Msx1, and Msx2, which are known to promote apoptosis in the interdigital mesenchyme. Our findings from Rac1 conditional mutants indicate crucial roles for Rac1 in limb bud morphogenesis, especially interdigital programmed cell death.
Collapse
Affiliation(s)
- Dai Suzuki
- Department of Biochemistry, Showa University, Hatanodai, Shinagawa, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
652
|
Extracellular signal-regulated kinase 1 (ERK1) and ERK2 play essential roles in osteoblast differentiation and in supporting osteoclastogenesis. Mol Cell Biol 2009; 29:5843-57. [PMID: 19737917 DOI: 10.1128/mcb.01549-08] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Osteoblasts and chondrocytes arise from common osteo-chondroprogenitor cells. We show here that inactivation of ERK1 and ERK2 in osteo-chondroprogenitor cells causes a block in osteoblast differentiation and leads to ectopic chondrogenic differentiation in the bone-forming region in the perichondrium. Furthermore, increased mitogen-activated protein kinase signaling in mesenchymal cells enhances osteoblast differentiation and inhibits chondrocyte differentiation. These observations indicate that extracellular signal-regulated kinase 1 (ERK1) and ERK2 play essential roles in the lineage specification of mesenchymal cells. The inactivation of ERK1 and ERK2 resulted in reduced beta-catenin expression, suggesting a role for canonical Wnt signaling in ERK1 and ERK2 regulation of skeletal lineage specification. Furthermore, inactivation of ERK1 and ERK2 significantly reduced RANKL expression, accounting for a delay in osteoclast formation. Thus, our results indicate that ERK1 and ERK2 not only play essential roles in the lineage specification of osteo-chondroprogenitor cells but also support osteoclast formation in vivo.
Collapse
|
653
|
Yan Y, Tang D, Chen M, Huang J, Xie R, Jonason JH, Tan X, Hou W, Reynolds D, Hsu W, Harris SE, Puzas JE, Awad H, O'Keefe RJ, Boyce BF, Chen D. Axin2 controls bone remodeling through the beta-catenin-BMP signaling pathway in adult mice. J Cell Sci 2009; 122:3566-78. [PMID: 19737815 DOI: 10.1242/jcs.051904] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
To investigate the role of Wnt-beta-catenin signaling in bone remodeling, we analyzed the bone phenotype of female Axin2-lacZ knockout (KO) mice. We found that trabecular bone mass was significantly increased in 6- and 12-month-old Axin2 KO mice and that bone formation rates were also significantly increased in 6-month-old Axin2 KO mice compared with wild-type (WT) littermates. In vitro studies were performed using bone marrow stromal (BMS) cells isolated from 6-month-old WT and Axin2 KO mice. Osteoblast proliferation and differentiation were significantly increased and osteoclast formation was significantly reduced in Axin2 KO mice. Nuclear beta-catenin protein levels were significantly increased in BMS cells derived from Axin2 KO mice. In vitro deletion of the beta-catenin gene under Axin2 KO background significantly reversed the increased alkaline phosphatase activity and the expression of osteoblast marker genes observed in Axin2 KO BMS cells. We also found that mRNA expression of Bmp2 and Bmp4 and phosphorylated Smad1/5 protein levels were significantly increased in BMS cells derived from Axin2 KO mice. The chemical compound BIO, an inhibitor of glycogen synthase kinase 3beta, was utilized for in vitro signaling studies in which upregulated Bmp2 and Bmp4 expression was measured in primary calvarial osteoblasts. Primary calvarial osteoblasts were isolated from Bmp2(fx/fx);Bmp4(fx/fx) mice and infected with adenovirus-expressing Cre recombinase. BIO induced Osx, Col1, Alp and Oc mRNA expression in WT cells and these effects were significantly inhibited in Bmp2/4-deleted osteoblasts, suggesting that BIO-induced Osx and marker gene expression were Bmp2/4-dependent. We further demonstrated that BIO-induced osteoblast marker gene expression was significantly inhibited by Osx siRNA. Taken together, our findings demonstrate that Axin2 is a key negative regulator in bone remodeling in adult mice and regulates osteoblast differentiation through the beta-catenin-BMP2/4-Osx signaling pathway in osteoblasts.
Collapse
Affiliation(s)
- Ying Yan
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
654
|
Choo MK, Yeo H, Zayzafoon M. NFATc1 mediates HDAC-dependent transcriptional repression of osteocalcin expression during osteoblast differentiation. Bone 2009; 45:579-89. [PMID: 19463978 PMCID: PMC2732115 DOI: 10.1016/j.bone.2009.05.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2008] [Revised: 05/06/2009] [Accepted: 05/12/2009] [Indexed: 12/12/2022]
Abstract
We previously reported that the in vivo and in vitro suppression of Nuclear Factor of Activated T Cells (NFAT) signaling increases osteoblast differentiation and bone formation. To investigate the mechanism by which NFATc1 regulates osteoblast differentiation, we established an osteoblast cell line that overexpresses a constitutively active NFATc1 (ca-NFATc1). The activation of NFATc1 significantly inhibits osteoblast differentiation and function, demonstrated by inhibition of alkaline phosphatase activity and mineralization as well as a decrease in gene expression of early and late markers of osteoblast differentiation such as osterix and osteocalcin, respectively. By focusing on the specific role of NFATc1 during late differentiation, we discovered that the inhibition of osteocalcin gene expression by NFATc1 was associated with a repression of the osteocalcin promoter activity, and a decrease in TCF/LEF transactivation. Also, overexpression of NFATc1 completely blocked the decrease in total histone deacetylase (HDAC) activity during osteoblast differentiation and prevented the hyperacetylation of histones H3 and H4. Mechanistically, we show by Chromatin Immunoprecipitation (ChIP) assay that the overexpression of NFATc1 sustains the binding of HDAC3 on the proximal region of the osteocalcin promoter, resulting in complete hypoacetylation of histones H3 and H4 when compared to GFP-expressing osteoblasts. In contrast, the inhibition of NFATc1 nuclear translocation either by cyclosporin or by using primary mouse osteoblasts with deleted calcineurin b1 prevents HDAC3 from associating with the proximal regulatory site of the osteocalcin promoter. These preliminary results suggest that NFATc1 acts as a transcriptional co-repressor of osteocalcin promoter, possibly in an HDAC-dependent manner.
Collapse
Affiliation(s)
- Min-Kyung Choo
- Department of Pathology, University of Alabama at Birmingham, 813 Shelby Biomedical Research Building, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Hyeonju Yeo
- Skin Research Institute, R&D Center, Amorepacific Corporation, Gyeonggi-do, South Korea
| | - Majd Zayzafoon
- Department of Pathology, University of Alabama at Birmingham, 813 Shelby Biomedical Research Building, 1825 University Boulevard, Birmingham, AL 35294, USA
| |
Collapse
|
655
|
Matushansky I, Charytonowicz E, Mills J, Siddiqi S, Hricik T, Cordon-Cardo C. MFH classification: differentiating undifferentiated pleomorphic sarcoma in the 21st Century. Expert Rev Anticancer Ther 2009; 9:1135-44. [PMID: 19671033 PMCID: PMC3000413 DOI: 10.1586/era.09.76] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The essence and origin of malignant fibrous histiocytoma (MFH) have been debated for now close to five decades. Originally characterized as a morphologically unique soft-tissue sarcoma subtype of unclear etiology in 1963, with a following 15 years of research only to conclude that "the issue of histogenesis [of MFH] is largely unresolvable"; it is "now regarded as synonymous with [high grade] undifferentiated pleomorphic sarcoma and essentially represents a diagnosis of exclusion". Yet despite this apparent lack of progress, the first decade of the 21st century has seen some significant progress in terms of defining the origins of MFH. Perhaps more importantly these origins might also pave the way for novel therapies. This manuscript will highlight MFH's troubled history, discuss recent advances, and comment as to what the coming years may promise and what further needs to be done to make sure that progress continues.
Collapse
Affiliation(s)
- Igor Matushansky
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
656
|
Kim SH, Cho KW, Choi HS, Park SJ, Rhee Y, Jung HS, Lim SK. The forkhead transcription factor Foxc2 stimulates osteoblast differentiation. Biochem Biophys Res Commun 2009; 386:532-6. [DOI: 10.1016/j.bbrc.2009.06.071] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 06/15/2009] [Indexed: 11/26/2022]
|
657
|
Tang N, Song WX, Luo J, Luo X, Chen J, Sharff KA, Bi Y, He BC, Huang JY, Zhu GH, Su YX, Jiang W, Tang M, He Y, Wang Y, Chen L, Zuo GW, Shen J, Pan X, Reid RR, Luu HH, Haydon RC, He TC. BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signalling. J Cell Mol Med 2009; 13:2448-2464. [PMID: 19175684 PMCID: PMC4940786 DOI: 10.1111/j.1582-4934.2008.00569.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 10/21/2008] [Indexed: 12/17/2022] Open
Abstract
Bone morphogenetic protein 9 (BMP-9) is a member of the transforming growth factor (TGF)-beta/BMP superfamily, and we have demonstrated that it is one of the most potent BMPs to induce osteoblast differentiation of mesenchymal stem cells (MSCs). Here, we sought to investigate if canonical Wnt/beta-catenin signalling plays an important role in BMP-9-induced osteogenic differentiation of MSCs. Wnt3A and BMP-9 enhanced each other's ability to induce alkaline phosphatase (ALP) in MSCs and mouse embryonic fibroblasts (MEFs). Wnt antagonist FrzB was shown to inhibit BMP-9-induced ALP activity more effectively than Dkk1, whereas a secreted form of LPR-5 or low-density lipoprotein receptor-related protein (LRP)-6 exerted no inhibitory effect on BMP-9-induced ALP activity. beta-Catenin knockdown in MSCs and MEFs diminished BMP-9-induced ALP activity, and led to a decrease in BMP-9-induced osteocalcin reporter activity and BMP-9-induced expression of late osteogenic markers. Furthermore, beta-catenin knockdown or FrzB overexpression inhibited BMP-9-induced mineralization in vitro and ectopic bone formation in vivo, resulting in immature osteogenesis and the formation of chondrogenic matrix. Chromatin immunoprecipitation (ChIP) analysis indicated that BMP-9 induced recruitment of both Runx2 and beta-catenin to the osteocalcin promoter. Thus, we have demonstrated that canonical Wnt signalling, possibly through interactions between beta-catenin and Runx2, plays an important role in BMP-9-induced osteogenic differentiation of MSCs.
Collapse
Affiliation(s)
- Ni Tang
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Wen-Xin Song
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jinyong Luo
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Xiaoji Luo
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jin Chen
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Katie A Sharff
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Yang Bi
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Bai-Cheng He
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jia-Yi Huang
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Gao-Hui Zhu
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Yu-Xi Su
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Wei Jiang
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Min Tang
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
| | - Yun He
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Yi Wang
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Liang Chen
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Guo-Wei Zuo
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Jikun Shen
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Xiaochuan Pan
- Department of Radiology, The University of Chicago Medical Center, Chicago, IL, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| | - Tong-Chuan He
- The Second Affiliated Hospital and the Key Laboratory of Diagnostic Medicine designated by the Chinese Ministry of Education, Chongqing Medical University, Chongqing, China
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, Chicago, IL, USA
| |
Collapse
|
658
|
Nemeth MJ, Mak KK, Yang Y, Bodine DM. beta-Catenin expression in the bone marrow microenvironment is required for long-term maintenance of primitive hematopoietic cells. Stem Cells 2009; 27:1109-19. [PMID: 19415781 DOI: 10.1002/stem.32] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hematopoiesis is dependent upon the bone marrow microenvironment, which is comprised of multiple mesenchymal cell types, including fibroblasts, endothelial cells, osteoblasts, and stroma progenitors. The canonical Wnt signaling pathway, which relies on the beta-catenin protein to mediate its signal, is necessary for the normal development of mesenchymal tissue. We hypothesized that canonical Wnt signaling regulates the cellular composition and function of the bone marrow microenvironment. We observed that a beta-catenin-deficient bone marrow microenvironment maintained hematopoietic stem cells but exhibited a decreased capacity to support primitive hematopoietic cells. These results correlated with decreased numbers of osteoblasts and with decreased production of basic fibroblast growth factor, stem cell factor, and vascular cell adhesion molecule-1. From these data, we propose a model in which beta-catenin in the microenvironment is required noncell autonomously for long-term maintenance of hematopoietic progenitors.
Collapse
Affiliation(s)
- Michael J Nemeth
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892-4442, USA
| | | | | | | |
Collapse
|
659
|
Railo A, Pajunen A, Itäranta P, Naillat F, Vuoristo J, Kilpeläinen P, Vainio S. Genomic response to Wnt signalling is highly context-dependent--evidence from DNA microarray and chromatin immunoprecipitation screens of Wnt/TCF targets. Exp Cell Res 2009; 315:2690-704. [PMID: 19563800 DOI: 10.1016/j.yexcr.2009.06.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Revised: 05/15/2009] [Accepted: 06/22/2009] [Indexed: 11/27/2022]
Abstract
Wnt proteins are important regulators of embryonic development, and dysregulated Wnt signalling is involved in the oncogenesis of several human cancers. Our knowledge of the downstream target genes is limited, however. We used a chromatin immunoprecipitation-based assay to isolate and characterize the actual gene segments through which Wnt-activatable transcription factors, TCFs, regulate transcription and an Affymetrix microarray analysis to study the global transcriptional response to the Wnt3a ligand. The anti-beta-catenin immunoprecipitation of DNA-protein complexes from mouse NIH3T3 fibroblasts expressing a fusion protein of beta-catenin and TCF7 resulted in the identification of 92 genes as putative TCF targets. GeneChip assays of gene expression performed on NIH3T3 cells and the rat pheochromocytoma cell line PC12 revealed 355 genes in NIH3T3 and 129 genes in the PC12 cells with marked changes in expression after Wnt3a stimulus. Only 2 Wnt-regulated genes were shared by both cell lines. Surprisingly, Disabled-2 was the only gene identified by the chromatin immunoprecipitation approach that displayed a marked change in expression in the GeneChip assay. Taken together, our approaches give an insight into the complex context-dependent nature of Wnt pathway transcriptional responses and identify Disabled-2 as a potential new direct target for Wnt signalling.
Collapse
Affiliation(s)
- Antti Railo
- Oulu Centre for Cell Matrix Research, Biocenter Oulu, Laboratory of Developmental Biology and Department of Medical Biochemistry and Molecular Biology, FIN-90014, University of Oulu, P. O. Box 5000, Finland
| | | | | | | | | | | | | |
Collapse
|
660
|
Hoeppner LH, Secreto FJ, Westendorf JJ. Wnt signaling as a therapeutic target for bone diseases. Expert Opin Ther Targets 2009; 13:485-96. [PMID: 19335070 DOI: 10.1517/14728220902841961] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND There is a need to develop new bone anabolic agents because current bone regeneration regimens have limitations. The Wingless-type MMTV integration site (Wnt) pathway has emerged as a regulator of bone formation and regeneration. OBJECTIVE To review the molecular basis for Wnt pathway modulation and discuss strategies that target it and improve bone mass. METHODS Data in peer-reviewed reports and meeting abstracts are discussed. RESULTS/CONCLUSIONS Neutralizing inhibitors of Wnt signaling have emerged as promising strategies. Small-molecule inhibitors of glycogen synthase kinase 3beta increase bone mass, lower adiposity and reduce fracture risk. Neutralizing antibodies to Dickkopf 1, secreted Frizzled-related protein 1 and sclerostin produce similar outcomes in animal models. These drugs are exciting breakthroughs but are not without risks. The challenges include tissue-specific targeting and consequently, long-term safety.
Collapse
Affiliation(s)
- Luke H Hoeppner
- Graduate Program in Microbiology, Immunology and Cancer Biology, University of Minnesota, Minneapolis, MN, USA
| | | | | |
Collapse
|
661
|
Abstract
Embryo movement and muscle contraction affect joint formation, but their precise roles have remained elusive. In this issue of Developmental Cell, Joy Kahn and coworkers now demonstrate that these processes are essential for joint formation. They find that joint progenitor cells are unable to remain committed to their specified cell fate in mutant mice with defects in either muscle formation or contraction.
Collapse
Affiliation(s)
- Hideyo Yasuda
- Department of Genetics, Unit 1006, M.D. Anderson Cancer Center, University of Texas, Houston, TX 77030, USA
| | | |
Collapse
|
662
|
Smurf2 induces degradation of GSK-3beta and upregulates beta-catenin in chondrocytes: a potential mechanism for Smurf2-induced degeneration of articular cartilage. Exp Cell Res 2009; 315:2386-98. [PMID: 19481076 DOI: 10.1016/j.yexcr.2009.05.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 05/19/2009] [Accepted: 05/20/2009] [Indexed: 01/17/2023]
Abstract
We have previously demonstrated that Smurf2 is highly expressed in human osteoarthritis (OA) tissue, and overexpression of Smurf2 under the control of the type II collagen promoter (Col2a1) induces an OA-like phenotype in aged Col2a1-Smurf2 transgenic mice, suggesting that Smurf2 is located upstream of a signal cascade which initiates OA development. However, the factors downstream of Smurf2 in this signal cascade and how Smurf2-induced OA is initiated are largely unknown. In this study, we further characterized the phenotypic changes in Col2a1-Smurf2 transgenic and WT articular cartilage from the postnatal stage to adulthood. We found that the articular cartilage degeneration occurring at the cartilage surface in 6 month-old Col2a1-Smurf2 transgenic mice progressed from an expanded hypertrophic domain in the basal layer of the deep articular cartilage at 2.5 weeks of age, which may lead to an accelerated calcification and ectopic ossification of this region at 1 month of age, and aggregation and maturation of articular chondrocytes in the middle and deep zones at 2 months and 4.5 months of age, respectively. Furthermore, we discovered that ectopically expressed Smurf2 interacted with GSK-3beta and induced its ubiquitination and subsequent proteasomal degradation, and hence upregulated beta-catenin in Col2a1-Smurf2 transgenic chondrocytes ex vivo. It is therefore likely that Smurf2-mediated upregulation of beta-catenin through induction of proteasomal degradation of GSK-beta in chondrocytes may activate articular chondrocyte maturation and associated alteration of gene expression, the early events of OA.
Collapse
|
663
|
Liu G, Vijayakumar S, Grumolato L, Arroyave R, Qiao H, Akiri G, Aaronson SA. Canonical Wnts function as potent regulators of osteogenesis by human mesenchymal stem cells. ACTA ACUST UNITED AC 2009; 185:67-75. [PMID: 19349579 PMCID: PMC2700509 DOI: 10.1083/jcb.200810137] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genetic evidence indicates that Wnt signaling is critically involved in bone homeostasis. In this study, we investigated the functions of canonical Wnts on differentiation of adult multipotent human mesenchymal stem cells (hMSCs) in vitro and in vivo. We observe differential sensitivities of hMSCs to Wnt inhibition of osteogenesis versus adipogenesis, which favors osteoblastic commitment under binary in vitro differentiation conditions. Wnt inhibition of osteogenesis is associated with decreased expression of osteoblastic transcription factors and inhibition of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation, which are involved in osteogenic differentiation. An hMSC subpopulation exhibits high endogenous Wnt signaling, the inhibition of which enhances osteogenic and adipogenic differentiation in vitro. In an in vivo bone formation model, high levels of Wnt signaling inhibit de novo bone formation by hMSCs. However, hMSCs with exogenous expression of Wnt1 but not stabilized β-catenin markedly stimulate bone formation by naive hMSCs, arguing for an important role of a canonical Wnt gradient in hMSC osteogenesis in vivo.
Collapse
Affiliation(s)
- Guizhong Liu
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | |
Collapse
|
664
|
Gaur T, Wixted JJ, Hussain S, O'Connell SL, Morgan EF, Ayers DC, Komm BS, Bodine PV, Stein GS, Lian JB. Secreted frizzled related protein 1 is a target to improve fracture healing. J Cell Physiol 2009; 220:174-81. [PMID: 19301255 DOI: 10.1002/jcp.21747] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genetic studies have identified a high bone mass of phenotype in both human and mouse when canonical Wnt signaling is increased. Secreted frizzled related protein 1 (sFRP1) is one of several Wnt antagonists and among the loss-of-function mouse models in which 32-week-old mice exhibit a high bone mass phenotype. Here we show that impact fracture healing is enhanced in this mouse model of increased Wnt signaling at a physiologic level in young (8 weeks) sFRP1(-/-) mice which do not yet exhibit significant increases in BMD. In vivo deletion of sFRP1 function improves fracture repair by promoting early bone union without adverse effects on the quality of bone tissue reflected by increased mechanical strength. We observe a dramatic reduction of the cartilage callous, increased intramembranous bone formation with bone bridging by 14 days, and early bone remodeling during the 28-day fracture repair process in the sFRP1(-/-) mice. Our molecular analyses of gene markers indicate that the effect of sFRP1 loss-of-function during fracture repair is to accelerate bone healing after formation of the initial hematoma by directing mesenchymal stem cells into the osteoblast lineage via the canonical pathway. Further evidence to support this conclusion is the observation of maximal sFRP1 levels in the cartilaginous callus of a WT mouse. Hence sFRP1(-/-) mouse progenitor cells are shifted directly into the osteoblast lineage. Thus, developing an antagonist to specifically inhibit sFRP1 represents a safe target for stimulating fracture repair and bone formation in metabolic bone disorders, osteoporosis and aging.
Collapse
Affiliation(s)
- Tripti Gaur
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
665
|
Zhou H, Mak W, Kalak R, Street J, Fong-Yee C, Zheng Y, Dunstan CR, Seibel MJ. Glucocorticoid-dependent Wnt signaling by mature osteoblasts is a key regulator of cranial skeletal development in mice. Development 2009; 136:427-36. [PMID: 19141672 DOI: 10.1242/dev.027706] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glucocorticoids are important regulators of bone cell differentiation and mesenchymal lineage commitment. Using a cell-specific approach of osteoblast-targeted transgenic disruption of intracellular glucocorticoid signaling, we discovered a novel molecular pathway by which glucocorticoids, mainly through the mature osteoblast, regulate the cellular mechanisms that govern cranial skeleton development. Embryonic and neonatal transgenic mice revealed a distinct phenotype characterized by hypoplasia and osteopenia of the cranial skeleton; disorganized frontal, parietal and interparietal bones; increased suture patency; ectopic differentiation of cartilage in the sagittal suture; and disturbed postnatal removal of parietal cartilage. Concurrently, expression of Mmp14, an enzyme essential for calvarial cartilage removal, was markedly reduced in parietal bone and cartilage of transgenic animals. Expression of Wnt9a and Wnt10b was significantly reduced in osteoblasts with disrupted glucocorticoid signaling, and accumulation of beta-catenin, the upstream regulator of Mmp14 expression, was decreased in osteoblasts, chondrocytes and mesenchymal progenitors of transgenic mice. Supracalvarial injection of Wnt3a protein rescued the transgenic cranial phenotype. These results define novel roles for glucocorticoids in skeletal development and delineate how osteoblasts--under steroid hormone control--orchestrate the intricate process of intramembranous bone formation by directing mesenchymal cell commitment towards osteoblastic differentiation while simultaneously initiating and controlling cartilage dissolution in the postnatal mouse.
Collapse
Affiliation(s)
- Hong Zhou
- Bone Research Program, ANZAC Research Institute, The University of Sydney, Sydney, NSW 2139, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
666
|
Noh T, Gabet Y, Cogan J, Shi Y, Tank A, Sasaki T, Criswell B, Dixon A, Lee C, Tam J, Kohler T, Segev E, Kockeritz L, Woodgett J, Müller R, Chai Y, Smith E, Bab I, Frenkel B. Lef1 haploinsufficient mice display a low turnover and low bone mass phenotype in a gender- and age-specific manner. PLoS One 2009; 4:e5438. [PMID: 19412553 PMCID: PMC2673053 DOI: 10.1371/journal.pone.0005438] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 04/02/2009] [Indexed: 12/13/2022] Open
Abstract
We investigated the role of Lef1, one of the four transcription factors that transmit Wnt signaling to the genome, in the regulation of bone mass. Microcomputed tomographic analysis of 13- and 17-week-old mice revealed significantly reduced trabecular bone mass in Lef1(+/-) females compared to littermate wild-type females. This was attributable to decreased osteoblast activity and bone formation as indicated by histomorphometric analysis of bone remodeling. In contrast to females, bone mass was unaffected by Lef1 haploinsufficiency in males. Similarly, females were substantially more responsive than males to haploinsufficiency in Gsk3beta, a negative regulator of the Wnt pathway, displaying in this case a high bone mass phenotype. Lef1 haploinsufficiency also led to low bone mass in males lacking functional androgen receptor (AR) (tfm mutants). The protective skeletal effect of AR against Wnt-related low bone mass is not necessarily a result of direct interaction between the AR and Wnt signaling pathways, because Lef1(+/-) female mice had normal bone mass at the age of 34 weeks. Thus, our results indicate an age- and gender-dependent role for Lef1 in regulating bone formation and bone mass in vivo. The resistance to Lef1 haploinsufficiency in males with active AR and in old females could be due to the reduced bone turnover in these mice.
Collapse
Affiliation(s)
- Tommy Noh
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Yankel Gabet
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Jon Cogan
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Yunfan Shi
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Archana Tank
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Tomoyo Sasaki
- Center for Craniofacial Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Braden Criswell
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Alexis Dixon
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Christopher Lee
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Joseph Tam
- Bone Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Thomas Kohler
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Eran Segev
- Bone Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lisa Kockeritz
- Ontario Cancer Institute/Princess Margaret Hospital, Toronto, Ontario, Canada
| | - James Woodgett
- Ontario Cancer Institute/Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Ralph Müller
- Institute for Biomechanics, ETH Zürich, Zürich, Switzerland
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Elisheva Smith
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Itai Bab
- Bone Laboratory, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Baruch Frenkel
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
667
|
|
668
|
Mauney J, Volloch V. Collagen I matrix contributes to determination of adult human stem cell lineage via differential, structural conformation-specific elicitation of cellular stress response. Matrix Biol 2009; 28:251-62. [PMID: 19375506 DOI: 10.1016/j.matbio.2009.04.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 02/17/2009] [Accepted: 04/08/2009] [Indexed: 01/08/2023]
Abstract
Previously, we reported that the conformational transition of collagen I matrix plays, along with differentiation stimuli, a regulatory role in determination of differentiation lineage of bone marrow stromal sells via distinct signaling pathways specific for the structural state of the matrix. The present study addresses mechanisms underlying differential structural conformation-specific effects of collagen matrices on differentiation into diverse lineages. The results obtained suggest that the pivotal player in the observed matrix conformation-mediated regulation is a differential cellular stress response elicited by the exposure to native but not to denatured collagen I matrix. The stress causing such a response appears to be generated by matrix contraction and mediated by Alpha2Beta1 integrins engaged on native but not on denatured collagen I matrix. The principal facet of the observed phenomenon is not the nature of a stress but general stress response: when cells on denatured collagen I matrix are subjected to thermal stress, osteogenic pathway shifts to that seen on native collagen I matrix. Importantly, cellular stress response might be commonly involved in determination of differentiation lineage. Indeed, distinct components of cellular stress response machinery appear to regulate differentiation into diverse lineages. Thus, augmentation of Hsp90 levels enables the operation of efficient Alpha1Beta1/Alpha2Beta1 integrin-driven ERK activation pathways hence facilitating osteogenesis and suppressing adipogenesis, whereas myogenesis of satellite stem cells appears to be promoted by native collagen I matrix-elicited activation and nuclear translocation of another stress response component, Beta-catenin, shown to be essential for skeletal myogenesis, and chondrogenesis may involve stress-mediated elevation of yet another stress response constituent, Hsp70, shown to be an interactive partner of the chondrogenic transcription factor SOX9. The proposed concept of the integral role of cellular stress response in tissue generation and maintenance suggests new therapeutic approaches and indicates novel tissue engineering strategies.
Collapse
|
669
|
Miclea RL, Karperien M, Bosch CA, van der Horst G, van der Valk MA, Kobayashi T, Kronenberg HM, Rawadi G, Akçakaya P, Löwik CW, Fodde R, Wit JM, Robanus-Maandag EC. Adenomatous polyposis coli-mediated control of beta-catenin is essential for both chondrogenic and osteogenic differentiation of skeletal precursors. BMC DEVELOPMENTAL BIOLOGY 2009; 9:26. [PMID: 19356224 PMCID: PMC2678105 DOI: 10.1186/1471-213x-9-26] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 04/08/2009] [Indexed: 12/31/2022]
Abstract
Background During skeletogenesis, protein levels of β-catenin in the canonical Wnt signaling pathway determine lineage commitment of skeletal precursor cells to osteoblasts and chondrocytes. Adenomatous polyposis coli (Apc) is a key controller of β-catenin turnover by down-regulating intracellular levels of β-catenin. Results To investigate whether Apc is involved in lineage commitment of skeletal precursor cells, we generated conditional knockout mice lacking functional Apc in Col2a1-expressing cells. In contrast to other models in which an oncogenic variant of β-catenin was used, our approach resulted in the accumulation of wild type β-catenin protein due to functional loss of Apc. Conditional homozygous Apc mutant mice died perinatally showing greatly impaired skeletogenesis. All endochondral bones were misshaped and lacked structural integrity. Lack of functional Apc resulted in a pleiotropic skeletal cell phenotype. The majority of the precursor cells lacking Apc failed to differentiate into chondrocytes or osteoblasts. However, skeletal precursor cells in the proximal ribs were able to escape the noxious effect of functional loss of Apc resulting in formation of highly active osteoblasts. Inactivation of Apc in chondrocytes was associated with dedifferentiation of these cells. Conclusion Our data indicate that a tight Apc-mediated control of β-catenin levels is essential for differentiation of skeletal precursors as well as for the maintenance of a chondrocytic phenotype in a spatio-temporal regulated manner.
Collapse
Affiliation(s)
- Razvan L Miclea
- Department of Tissue Regeneration, Institute for Biomedical Technology, University of Twente, Enschede, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
670
|
Luyten FP, Tylzanowski P, Lories RJ. Wnt signaling and osteoarthritis. Bone 2009; 44:522-7. [PMID: 19136083 DOI: 10.1016/j.bone.2008.12.006] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 11/27/2008] [Accepted: 12/04/2008] [Indexed: 12/17/2022]
Abstract
Osteoarthritis is a common disease, clinically manifested by joint pain, swelling and progressive loss of function. The severity of disease manifestations can vary but most of the patients only need intermittent symptom relief without major interventions. However, there is a group of patients that shows fast progression of the disease process leading to disability and ultimately joint replacement. Apart from symptom relief, no treatments have been identified that arrest or reverse the disease process. Therefore, there has been increasing attention devoted to the understanding of the mechanisms that are driving the disease process. Among these mechanisms, the biology of the cartilage-subchondral bone unit has been highlighted as key in osteoarthritis, and pathways that involve both cartilage and bone formation and turnover have become prime targets for modulation, and thus therapeutic intervention. Studies in developmental, genetic and joint disease models indicate that Wnt signaling is critically involved in these processes. Consequently, targeting Wnt signaling in a selective and tissue specific manner is an exciting opportunity for the development of disease modifying drugs for osteoarthritis.
Collapse
Affiliation(s)
- Frank P Luyten
- Laboratory of Skeletal Development and Joint Disorders, Division of Rheumatology, Department of Musculoskeletal Sciences, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium.
| | | | | |
Collapse
|
671
|
Abstract
Fracture repair is a complex regenerative process initiated in response to injury, resulting in optimal restoration of skeletal function. Although histology characteristics at various phases of fracture repair are clear and well established, much remains to be understood about the process of bone healing, particularly at the molecular signaling level. During the past decade, secreted signaling molecules of the Wnt family have been widely investigated and found to play a central role in controlling embryonic development processes. Wnt signaling pathway also plays a pivotal role in the regulation of bone mass. Recent published data reveal that Wnt signaling pathway is activated during postnatal bone regenerative events, such as ectopic endochondral bone formation and fracture repair. Dysregulation of this pathway greatly inhibits bone formation and healing process. Interestingly, activation of Wnt pathway has potential to improve bone healing, but only utilized after mesenchymal cells have become committed to the osteoblast lineage. These advances suggest an essential role of Wnt pathway in bone regeneration.
Collapse
Affiliation(s)
- Yan Chen
- Program in Developmental & Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
672
|
Soltanoff CS, Yang S, Chen W, Li YP. Signaling networks that control the lineage commitment and differentiation of bone cells. Crit Rev Eukaryot Gene Expr 2009; 19:1-46. [PMID: 19191755 DOI: 10.1615/critreveukargeneexpr.v19.i1.10] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Osteoblasts and osteoclasts are the two major bone cells involved in the bone remodeling process. Osteoblasts are responsible for bone formation while osteoclasts are the bone-resorbing cells. The major event that triggers osteogenesis and bone remodeling is the transition of mesenchymal stem cells into differentiating osteoblast cells and monocyte/macrophage precursors into differentiating osteoclasts. Imbalance in differentiation and function of these two cell types will result in skeletal diseases such as osteoporosis, Paget's disease, rheumatoid arthritis, osteopetrosis, periodontal disease, and bone cancer metastases. Osteoblast and osteoclast commitment and differentiation are controlled by complex activities involving signal transduction and transcriptional regulation of gene expression. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of the multiple factors and signaling networks that control the differentiation process at a molecular level. This review summarizes recent advances in studies of signaling transduction pathways and transcriptional regulation of osteoblast and osteoclast cell lineage commitment and differentiation. Understanding the signaling networks that control the commitment and differentiation of bone cells will not only expand our basic understanding of the molecular mechanisms of skeletal development but will also aid our ability to develop therapeutic means of intervention in skeletal diseases.
Collapse
Affiliation(s)
- Carrie S Soltanoff
- Department of Cytokine Biology, The Forsyth Institute, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
673
|
|
674
|
Alman BA, Wunder JS. Parathyroid hormone-related protein regulates glioma-associated oncogene transcriptional activation: lessons learned from bone development and cartilage neoplasia. Ann N Y Acad Sci 2009; 1144:36-41. [PMID: 19076361 DOI: 10.1196/annals.1418.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hedgehog and parathyroid hormone-related protein (PTHrP) signaling play important roles regulating the differentiation of chondrocytes, which form the template for growing bone. By studying the interaction of the pathways in normal and neoplastic growth-plate chondrocytes (from enchondromas, a benign cartilage tumor), an unexpected direct regulation of hedgehog-mediated transcriptional activation by parathyroid hormone-related protein was uncovered. This regulation acts through the processing of the hedgehog-activated transcription factor, glioma-associated oncogene-three (Gli3). When PTHrP activates its receptor, Gli3 is processed to its repressor form though a protein kinase A (PKA) -dependent mechanism. Thus, activation of a G protein-coupled receptor can negatively regulate hedgehog-mediated transcription independent of hedgehog ligand activity, raising intriguing therapeutic possibilities.
Collapse
Affiliation(s)
- Benjamin A Alman
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
675
|
Li Y, Dudley AT. Noncanonical frizzled signaling regulates cell polarity of growth plate chondrocytes. Development 2009; 136:1083-92. [PMID: 19224985 DOI: 10.1242/dev.023820] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bone growth is driven by cell proliferation and the subsequent hypertrophy of chondrocytes arranged in columns of discoid cells that resemble stacks of coins. However, the molecular mechanisms that direct column formation and the importance of columnar organization to bone morphogenesis are not known. Here, we show in chick that discoid proliferative chondrocytes orient the division plane to generate daughter cells that are initially displaced laterally and then intercalate into the column. Downregulation of frizzled (Fzd) signaling alters the dimensions of long bones and produces cell-autonomous changes in proliferative chondrocyte organization characterized by arbitrary division planes and altered cell stacking. These defects are phenocopied by disruption of noncanonical effector pathways but not by inhibitors of canonical Fzd signaling. These findings demonstrate that the regulation of cell polarity and cell arrangement by noncanonical Fzd signaling plays important roles in generating the unique morphological characteristics that shape individual cartilage elements.
Collapse
Affiliation(s)
- Yuwei Li
- Department of Biochemistry, Northwestern University, Evanston, IL 60208, USA
| | | |
Collapse
|
676
|
Speer MY, Yang HY, Brabb T, Leaf E, Look A, Lin WL, Frutkin A, Dichek D, Giachelli CM. Smooth muscle cells give rise to osteochondrogenic precursors and chondrocytes in calcifying arteries. Circ Res 2009; 104:733-41. [PMID: 19197075 DOI: 10.1161/circresaha.108.183053] [Citation(s) in RCA: 440] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Vascular calcification is a major risk factor for cardiovascular morbidity and mortality. To develop appropriate prevention and/or therapeutic strategies for vascular calcification, it is important to understand the origins of the cells that participate in this process. In this report, we used the SM22-Cre recombinase and Rosa26-LacZ alleles to genetically trace cells derived from smooth muscle. We found that smooth muscle cells (SMCs) gave rise to osteochondrogenic precursor- and chondrocyte-like cells in calcified blood vessels of matrix Gla protein deficient (MGP(-/-)) mice. This lineage reprogramming of SMCs occurred before calcium deposition and was associated with an early onset of Runx2/Cbfa1 expression and the downregulation of myocardin and Msx2. There was no change in the constitutive expression of Sox9 or bone morphogenetic protein 2. Osterix, Wnt3a, and Wnt7a mRNAs were not detected in either calcified MGP(-/-) or noncalcified wild-type (MGP(+/+)) vessels. Finally, mechanistic studies in vitro suggest that Erk signaling might be required for SMC transdifferentiation under calcifying conditions. These results provide strong support for the hypothesis that adult SMCs can transdifferentiate and that SMC transdifferentiation is an important process driving vascular calcification and the appearance of skeletal elements in calcified vascular lesions.
Collapse
Affiliation(s)
- Mei Y Speer
- Department of Bioengineering, University of Washington, Box 355061, 1705 NE Pacific St Foege N330L, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
677
|
Bortezomib induces osteoblast differentiation via Wnt-independent activation of beta-catenin/TCF signaling. Blood 2009; 113:4319-30. [PMID: 19196662 DOI: 10.1182/blood-2008-08-174300] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Inhibition of Wnt/beta-catenin/T-cell factor (TCF) signaling induces proliferation of mesenchymal stem cells and/or suppresses their differentiation into osteoblasts (OBs). Osteolysis in multiple myeloma (MM) is related to the suppression of canonical Wnt signaling caused by DKK1, a soluble inhibitor of this pathway secreted by MM cells. Bortezomib (Bzb) can induce OB differentiation in vitro and in vivo and its anti-MM efficacy linked to bone anabolic effects. However, the molecular basis of the action of Bzb on bone is not completely understood. In the present study, we show that Bzb promotes matrix mineralization and calcium deposition by osteoprogenitor cells and primary mesenchymal stem cells via Wnt-independent activation of beta-catenin/TCF signaling. Using affinity pull-down assays with immunoblotting and immunofluorescence, we found that Bzb induced stabilization of beta-catenin. Nuclear translocation of stabilized beta-catenin was associated with beta-catenin/TCF transcriptional activity that was independent of the effects of Wnt ligand-receptor-induced signaling or GSK3beta activation. Blocking the activation of beta-catenin/TCF signaling by dominant negative TCF attenuated Bzb-induced matrix mineralization. These results provide evidence that Bzb induces OB differentiation via Wnt-independent activation of beta-catenin/TCF pathway and suggest that proteasome inhibition therapy in MM may function in part by subverting tumor-induced suppression of canonical Wnt signaling in the bone microenvironment.
Collapse
|
678
|
Williams BO, Insogna KL. Where Wnts went: the exploding field of Lrp5 and Lrp6 signaling in bone. J Bone Miner Res 2009; 24:171-8. [PMID: 19072724 PMCID: PMC3276354 DOI: 10.1359/jbmr.081235] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 12/07/2008] [Accepted: 12/11/2008] [Indexed: 11/29/2022]
Abstract
Wnt signaling has emerged as a central regulator of skeletal modeling and remodeling. Loss- or gain-of-function mutations in two Wnt co-receptors, Lrp5 and (more recently) Lrp6, have drawn attention to the importance of the Wnt pathway in bone biology. This review summarizes our current understanding of how the Wnt pathway operates on bone and the implications this has for skeletal physiology and drug discovery. Over the past 9 yr, rapid advances have been made in our understanding of the cellular targets for Wnt signaling and of the important regulatory molecules in this metabolic pathway. Both canonical and noncanonical signaling pathways seem to be important for mediating the effects of Wnt in bone. A rapidly expanding catalog of genetically engineered mice has been used to establish the importance of downstream effector molecules (such as beta-catenin) in the Wnt pathway, as well as the critical role of endogenous inhibitors of Wnt signaling (such as Dkk1 and sclerostin) in bone metabolism. Indeed, regulation of sclerostin in osteocytes is emerging as an important final pathway for regulating bone anabolism in response to diverse trophic stimuli, from mechnotransduction to the anabolic actions of PTH. From the outset, it had been assumed that the effects of Wnt signaling in bone were caused by direct actions in osteoblast precursors, osteoblasts, and osteocytes. However, startling recent findings have challenged this view and suggest that a key target, at least in mice, is the duodenal enterochromaffin cell. There, Wnt signaling transduced by Lrp5 regulates serotonin synthesis, which acts in an endocrine fashion to regulate bone cell metabolism. It will take time to reconcile this new information with the considerable body of information we already have regarding the actions of Wnt in bone. The Wnt pathway has rapidly emerged as a therapeutic target for drug discovery. Neutralizing antibodies and small-molecule inhibitors of endogenous Wnt inhibitors have shown early promise as bone anabolic agents. However, given the central role of the Wnt pathway in regulating growth and development in extraskeletal tissues, as well as our still rudimentary understanding of how this signaling cascade actually affects bone metabolism, considerable work will be needed to ensure the safety of these new therapies.
Collapse
Affiliation(s)
- Bart O Williams
- Van Andel Research Institute, Grand Rapids, Michigan 49503, USA.
| | | |
Collapse
|
679
|
ten Berge D, Brugmann SA, Helms JA, Nusse R. Wnt and FGF signals interact to coordinate growth with cell fate specification during limb development. Development 2009; 135:3247-57. [PMID: 18776145 DOI: 10.1242/dev.023176] [Citation(s) in RCA: 217] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A fundamental question in developmental biology is how does an undifferentiated field of cells acquire spatial pattern and undergo coordinated differentiation? The development of the vertebrate limb is an important paradigm for understanding these processes. The skeletal and connective tissues of the developing limb all derive from a population of multipotent progenitor cells located in its distal tip. During limb outgrowth, these progenitors segregate into a chondrogenic lineage, located in the center of the limb bud, and soft connective tissue lineages located in its periphery. We report that the interplay of two families of signaling proteins, fibroblast growth factors (FGFs) and Wnts, coordinate the growth of the multipotent progenitor cells with their simultaneous segregation into these lineages. FGF and Wnt signals act together to synergistically promote proliferation while maintaining the cells in an undifferentiated, multipotent state, but act separately to determine cell lineage specification. Withdrawal of both signals results in cell cycle withdrawal and chondrogenic differentiation. Continued exposure to Wnt, however, maintains proliferation and re-specifies the cells towards the soft connective tissue lineages. We have identified target genes that are synergistically regulated by Wnts and FGFs, and show how these factors actively suppress differentiation and promote growth. Finally, we show how the spatial restriction of Wnt and FGF signals to the limb ectoderm, and to a specialized region of it, the apical ectodermal ridge, controls the distribution of cell behaviors within the growing limb, and guides the proper spatial organization of the differentiating tissues.
Collapse
Affiliation(s)
- Derk ten Berge
- Howard Hughes Medical Institute, Department of Developmental Biology, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
680
|
Amantea CM, Kim WK, Meliton V, Tetradis S, Parhami F. Oxysterol-induced osteogenic differentiation of marrow stromal cells is regulated by Dkk-1 inhibitable and PI3-kinase mediated signaling. J Cell Biochem 2009; 105:424-36. [PMID: 18613030 DOI: 10.1002/jcb.21840] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Osteoporosis and its complications cause morbidity and mortality in the aging population, and result from increased bone resorption by osteoclasts in parallel with decreased bone formation by osteoblasts. A widely accepted strategy for improving bone health is targeting osteoprogenitor cells in order to stimulate their osteogenic differentiation and bone forming properties through the use of osteoinductive/anabolic factors. We previously reported that specific naturally occurring oxysterols have potent osteoinductive properties, mediated in part through activation of hedgehog signaling in osteoprogenitor cells. In the present report, we further demonstrate the molecular mechanism(s) by which oxysterols induce osteogenesis. In addition to activating the hedgehog signaling pathway, oxysterol-induced osteogenic differentiation is mediated through a Wnt signaling-related, Dkk-1-inhibitable mechanism. Bone marrow stromal cells (MSC) treated with oxysterols demonstrated increased expression of osteogenic differentiation markers, along with selective induced expression of Wnt target genes. These oxysterol effects, which occurred in the absence of beta-catenin accumulation or TCF/Lef activation, were inhibited by the hedgehog pathway inhibitor, cyclopamine, and/or by the Wnt pathway inhibitor, Dkk-1. Furthermore, the inhibitors of PI3-Kinase signaling, LY 294002 and wortmanin, inhibited oxysterol-induced osteogenic differentiation and induction of Wnt signaling target genes. Finally, activators of canonical Wnt signaling, Wnt3a and Wnt1, inhibited spontaneous, oxysterol-, and Shh-induced osteogenic differentiation of bone marrow stromal cells, suggesting the involvement of a non-canonical Wnt pathway in pro-osteogenic differentiation events. Osteogenic oxysterols are, therefore, important small molecule modulators of critical signaling pathways in pluripotent mesenchymal cells that regulate numerous developmental and post-developmental processes.
Collapse
Affiliation(s)
- Christopher M Amantea
- Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
681
|
Abstract
Major advances in the molecular genetics, paleobiology, and the evolutionary developmental biology of vertebrate skeletogenesis have improved our understanding of the early evolution and development of the vertebrate skeleton. These studies have involved genetic analysis of model organisms, human genetics, comparative developmental studies of basal vertebrates and nonvertebrate chordates, and both cladistic and histological analyses of fossil vertebrates. Integration of these studies has led to renaissance in the area of skeletal development and evolution. Among the major findings that have emerged is the discovery of an unexpectedly deep origin of the gene network that regulates chondrogenesis. In this chapter, we discuss recent progress in each these areas and identify a number of questions that need to be addressed in order to fill key gaps in our knowledge of early skeletal evolution.
Collapse
|
682
|
Kubota T, Michigami T, Ozono K. Wnt signaling in bone metabolism. J Bone Miner Metab 2009; 27:265-71. [PMID: 19333681 DOI: 10.1007/s00774-009-0064-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Accepted: 11/17/2008] [Indexed: 12/17/2022]
Abstract
A variety of in vivo models have increased understanding of the role of Wnt signaling in bone since mutations in the LRP5 gene were found in human bone disorders. Canonical Wnt signaling encourages mesenchymal progenitor cells to differentiate into osteoblasts. In osteoblasts, Wnt pathway also promotes proliferation and mineralization, while blocks apoptosis and osteoclastogenesis by increasing the OPG/RANKL ratio. Lrp6-mediated signaling in osteoblasts may regulate osteoclastogenesis. However, the role of canonical Wnt signaling in osteoclasts remains unknown, and our understanding of the role of non-canonical Wnt signaling in bone biology is also not sufficient. As to pharmacological intervention, many levels may be considered to target in Wnt signaling pathway, although tumorigenicity and toxicity to other tissues are important. Mesd might be one of target molecules to increase the quantity of LRP5/6 in the plasma membrane. Since sclerostin is almost exclusively expressed in osteocytes, abrogating sclerostin is the most promising design.
Collapse
Affiliation(s)
- Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan.
| | | | | |
Collapse
|
683
|
Regulation of Osteoblast Differentiation by Runx2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 658:43-9. [DOI: 10.1007/978-1-4419-1050-9_5] [Citation(s) in RCA: 308] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
684
|
Activation of beta-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult beta-catenin conditional activation mice. J Bone Miner Res 2009; 24:12-21. [PMID: 18767925 PMCID: PMC2640321 DOI: 10.1359/jbmr.080901] [Citation(s) in RCA: 366] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease, and the mechanism of its pathogenesis is poorly understood. Recent human genetic association studies showed that mutations in the Frzb gene predispose patients to OA, suggesting that the Wnt/beta-catenin signaling may be the key pathway to the development of OA. However, direct genetic evidence for beta-catenin in this disease has not been reported. Because tissue-specific activation of the beta-catenin gene (targeted by Col2a1-Cre) is embryonic lethal, we specifically activated the beta-catenin gene in articular chondrocytes in adult mice by generating beta-catenin conditional activation (cAct) mice through breeding of beta-catenin(fx(Ex3)/fx(Ex3)) mice with Col2a1-CreER(T2) transgenic mice. Deletion of exon 3 of the beta-catenin gene results in the production of a stabilized fusion beta-catenin protein that is resistant to phosphorylation by GSK-3beta. In this study, tamoxifen was administered to the 3- and 6-mo-old Col2a1-CreER(T2);beta-catenin(fx(Ex3)/wt) mice, and tissues were harvested for histologic analysis 2 mo after tamoxifen induction. Overexpression of beta-catenin protein was detected by immunostaining in articular cartilage tissues of beta-catenin cAct mice. In 5-mo-old beta-catenin cAct mice, reduction of Safranin O and Alcian blue staining in articular cartilage tissue and reduced articular cartilage area were observed. In 8-mo-old beta-catenin cAct mice, cell cloning, surface fibrillation, vertical clefting, and chondrophyte/osteophyte formation were observed. Complete loss of articular cartilage layers and the formation of new woven bone in the subchondral bone area were also found in beta-catenin cAct mice. Expression of chondrocyte marker genes, such as aggrecan, Mmp-9, Mmp-13, Alp, Oc, and colX, was significantly increased (3- to 6-fold) in articular chondrocytes derived from beta-catenin cAct mice. Bmp2 but not Bmp4 expression was also significantly upregulated (6-fold increase) in these cells. In addition, we also observed overexpression of beta-catenin protein in the knee joint samples from patients with OA. These findings indicate that activation of beta-catenin signaling in articular chondrocytes in adult mice leads to the premature chondrocyte differentiation and the development of an OA-like phenotype. This study provides direct and definitive evidence about the role of beta-catenin in the development of OA.
Collapse
|
685
|
Abstract
Mutations in LRP5, a coreceptor for Wnt proteins, cause the disease osteoporosis pseudoglioma. A new study by Yadav et al. (2008) now challenges the view that LRP5 controls bone mass through Wnt signaling in bone and argues instead that LRP5 regulates bone mass indirectly through its effects on serotonin synthesis in the gut.
Collapse
Affiliation(s)
- Fanxin Long
- Department of Medicine and Department of Developmental Biology, Washington University Medical School, St. Louis, MO 63131, USA.
| |
Collapse
|
686
|
Daoussis D, Andonopoulos AP, Liossis SNC. Wnt pathway and IL-17: novel regulators of joint remodeling in rheumatic diseases. Looking beyond the RANK-RANKL-OPG axis. Semin Arthritis Rheum 2008; 39:369-83. [PMID: 19095294 DOI: 10.1016/j.semarthrit.2008.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Revised: 09/12/2008] [Accepted: 10/18/2008] [Indexed: 12/17/2022]
Abstract
OBJECTIVES During the last decade research has focused on the RANK-RANKL-OPG (Receptor Activator of Nuclear factor KappaB-Receptor Activator of Nuclear factor KappaB Ligand-Osteoprotegerin) pathway that is currently considered the final common route to bone and joint remodeling. The potential role of novel additional mediators has been highlighted by several reports. This review focuses on the recent information about the pathophysiology of the Wingless (Wnt) pathway and interleukin-17 (IL-17) in relation of their role in bone and joint remodeling. METHODS An extensive internet search was performed (PubMed) from 1998 and onward using the following keywords: Wnt, bone remodeling, bone, rheumatic diseases, rheumatoid arthritis, IL-17, Th17, osteoblastogenesis, and osteoclastogenesis. RESULTS Several members of the Wnt pathway play an important role in bone remodeling. Recent experimental data indicate a key role for Dickkopf-1, a soluble inhibitor of the Wnt pathway, in bone remodeling. Increased Dickkopf-1 levels are linked to bone resorption and decreased levels to new bone formation. Low-density lipoprotein receptor-related protein-5, the main receptor that mediates Wnt signaling, plays a critical role in bone mass regulation. Gain-of-function mutations of lipoprotein receptor-related protein-5 cause high bone mass phenotypes, whereas loss-of-function mutations are linked to severe osteoporosis. IL-17 is a proinflammatory cytokine that is produced by a recently described T-cell subset, known as Th17 cells. Evidence suggests that IL-17 is a critical mediator of joint destruction in animal models of arthritis. IL-17 blockade has beneficial effects on murine arthritis, a fact that points to the direction of this cytokine as a potential therapeutic target in human inflammatory arthritides as well. CONCLUSIONS The available data suggest that mediators in these 2 biologic systems are critical in joint remodeling and may be appropriate targets in the treatment of bone and joint abnormalities that characterize a variety of inflammatory arthritides and bone diseases.
Collapse
Affiliation(s)
- Dimitrios Daoussis
- Consultant Rheumatologist, Division of Rheumatology, Department of Internal Medicine, Patras University Hospital, University of Patras Medical School, Patras, Greece.
| | | | | |
Collapse
|
687
|
Tevosian SG, Manuylov NL. To beta or not to beta: canonical beta-catenin signaling pathway and ovarian development. Dev Dyn 2008; 237:3672-80. [PMID: 18985752 PMCID: PMC2837360 DOI: 10.1002/dvdy.21784] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The mammalian embryonic gonad is a unique organ primordium in that it can adopt two different developmental fates-namely, differentiate as either a testis or an ovary-with dramatic consequences for an individual. While a molecular cascade culminating in testis development is well characterized, the ovarian pathways still remain enigmatic. The canonical Wnt/beta-catenin signaling implements a conserved mechanism of regulating gene expression that is integral to development of all metazoans. In this review, we summarize the recent evidence that suggests a central role for this signaling pathway in the development of the mammalian female.
Collapse
Affiliation(s)
- Sergei G. Tevosian
- Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA
- Norris Cotton Cancer Center, Dartmouth Medical School, Hanover, NH 03755, USA
| | | |
Collapse
|
688
|
Mesenchymal stem cells as a potential pool for cartilage tissue engineering. Ann Anat 2008; 190:395-412. [DOI: 10.1016/j.aanat.2008.07.007] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Accepted: 07/18/2008] [Indexed: 01/13/2023]
|
689
|
Himes R, Wezeman FH, Callaci JJ. Identification of novel bone-specific molecular targets of binge alcohol and ibandronate by transcriptome analysis. Alcohol Clin Exp Res 2008; 32:1167-80. [PMID: 18537941 DOI: 10.1111/j.1530-0277.2008.00736.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Our laboratory established that binge alcohol-related bone damage is prevented by aminobisphosphonates, suggesting bone resorption increases following binge exposure. We examined the effects of binge alcohol and antiresorptive therapy on the relationship between bone damage and modulation of the vertebral transcriptome, in an attempt to determine how alcohol-induced bone damage and its prevention modulate bone-related biological pathways. METHODS Male Sprague-Dawley rats were assigned to 1 of 6 treatment groups (n = 12/group). (C1) saline ip 3 d/wk for 1 week, (A1) binge alcohol, 3 g/kg, ip 3 d/wk for 1 week, (C4) saline ip, 3 d/wk for 4 weeks, (A4) binge alcohol, ip, 3 g/kg 3 d/wk for 4 weeks, (I4) ibandronate, saline ip 3 d/wk for 4 weeks, plus a single ip injection of ibandronate at 120 microg/animal, and (AI4) binge alcohol plus ibandronate as above. After 1 or 4 weeks, adjacent lumbar vertebrae were assayed for bone damage or transcriptional changes. RESULTS Bone loss was not observed after 1 week of binge alcohol treatment. After 4 weeks, binge alcohol decreased vertebral BMD by 23% (p < 0.05) and compressive strength by 18% compared to saline controls (p < 0.05). Concurrent ibandronate prevented bone loss, increasing these parameters by 145 and 134% respectively compared to binge alcohol. (p < 0.05). Analysis of the vertebral transcriptome identified gene clusters specific for acute and chronic binge alcohol-related bone damage. Acute binge alcohol modulated the expression of integrin signaling-specific genes, while chronic binge alcohol modulated canonical Wnt signaling gene expression. Ibandronate normalized the expression of approximately 20% of the genes affected by chronic binge alcohol, allowing the identification of a unique subset of alcohol-sensitive, ibandronate-responsive genes. CONCLUSIONS Identification of bone-specific gene expression clusters associated with acute and chronic binge alcohol treatment allowed for the identification of cellular pathways affected by binge treatment with known involvement in bone remodeling (Integrin, Canonical Wnt signaling) not previously identified as alcohol-sensitive. This data provides a basis for a plausible mechanistic explanation for the known detrimental effects of alcohol on bone formation and resorption.
Collapse
Affiliation(s)
- Ryan Himes
- Department of Orthopaedic Surgery and Rehabilitation, Loyola University Stritch School of Medicine, Maywood, Illinois 60153, USA
| | | | | |
Collapse
|
690
|
Radiographic osteoarthritis at three joint sites and FRZB, LRP5, and LRP6 polymorphisms in two population-based cohorts. Osteoarthritis Cartilage 2008; 16:1141-9. [PMID: 18406176 DOI: 10.1016/j.joca.2008.02.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Accepted: 02/08/2008] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To examine the association of genetic variation in key players in the Wnt signaling pathway with aspects of osteoarthritis (OA) in two population-based cohort studies: the Rotterdam Study and the Chingford Study. METHODS Radiographic OA (ROA) was defined as a Kellgren/Lawrence score (K/L) score > or = 2 for the knee and hip. Total hip replacement (THR) was scored. Hand OA was defined as presence of ROA (K/L > or = 2) in two out of three hand joint groups [distal interphalangeal (DIPs), proximal interphalangeal (PIPs), first carpometacarpal (CMC1)/trapezio-scaphoid joint (TS)] of each hand. The concentration of urinary C-terminal cross-linked telopeptide of type II collagen (CTX-II) was standardized to the total urine creatinine. Genotypes for the amino acid variants, Arg200Trp and Arg324Gly of Frizzled-Related protein gene (FRZB), Ala1330Val of Low-density lipoprotein receptor-related protein 5 (LRP5) and Ile1062Val of Low-density lipoprotein receptor-related protein 6 (LRP6), were obtained using the Taqman allelic discrimination assay. A meta-analysis was performed for the FRZB Arg324Gly polymorphism and hip- and knee-OA using RevMan version 4.3. RESULTS No consistent associations were observed between the FRZB, LRP5 and LRP6 amino acid variants and radiographic hip-, knee-, or hand-OA or THR, in either study population. While power was limited for most studies to date, a meta-analysis of all published studies regarding the FRZB Arg324Gly polymorphism was performed for hip- and knee-OA separately. This showed no significant associations between the Gly324 allele and risk for hip- or knee OA, although there was large heterogeneity between studies for hip OA in females. CONCLUSION No association was seen between FRZB, LRP5 and LRP6 variants with radiographic osteoarthritic outcomes in two population-based cohorts. In future studies, increased power and standardization of OA-phenotypes are highly recommended for replication studies and to allow meta-analysis.
Collapse
|
691
|
Salazar VS, Mbalaviele G, Civitelli R. The pro-osteogenic action of beta-catenin requires interaction with BMP signaling, but not Tcf/Lef transcriptional activity. J Cell Biochem 2008; 104:942-52. [PMID: 18247340 DOI: 10.1002/jcb.21679] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The role of beta-catenin in skeletal development and osteogenic cell differentiation is well established, but the molecular mechanisms attending these effects remain largely unknown. We conducted a structure/function analysis of beta-catenin to gain further insights on these mechanisms. Retroviral transduction of a full-length, constitutively active beta-catenin mutant inhibited adipogenesis and stimulated osteoblast differentiation from multipotent embryonic fibroblasts (C3H10T1/2). However, N-terminal truncated beta-catenin mutants with weak Tcf/Lef activity retained their pro-osteogenic action, as did a constitutively stabilized mutant lacking the C-terminal Tcf/Lef transactivation domain. Importantly, this Tcf/Lef-defective beta-catenin did not suppress adipogenesis, and even elicited spontaneous adipogenesis when expressed in cells cultured in osteogenic conditions. Thus, Tcf/Lef transcriptional activity of beta-catenin is critical for inhibition of adipogenesis, while it is dispensable for its pro-osteogenic effect. BMP-2 greatly enhanced both osteogenesis and adipogenesis in the presence of the C-terminally truncated mutant, though it selectively enhanced only osteoblast differentiation in cells transduced with the full-length, Tcf/Lef active beta-catenin mutant. C3H10T1/2 cells produce BMP-4, and inhibition of endogenous BMP signaling by Noggin curtailed osteogenic differentiation by constitutively active beta-catenin. Therefore, BMP signaling must be active for full induction by beta-catenin of osteogenic differentiation from multipotent precursors. These data suggest that cooperative interactions between beta-catenin and BMP signaling systems drive osteoblast cell fate specification and differentiation.
Collapse
Affiliation(s)
- Valerie S Salazar
- Division of Bone and Mineral Diseases, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
692
|
Serra R. Role of intraflagellar transport and primary cilia in skeletal development. Anat Rec (Hoboken) 2008; 291:1049-61. [PMID: 18727103 DOI: 10.1002/ar.20634] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Primary cilia are nonmotile microtubule-based appendages extending from the surface of almost all vertebrate cells. The process of intraflagellar transport (IFT) is responsible for building and maintaining the structure and function of primary cilia. Disruption of Kif3a, a component of the Kinesin-II motor complex, disables anterograde IFT and leads to failure in the formation and maintenance of cilia. Likewise, the absence of IFT88/Tg737/Polaris, a core component of the IFT particle, results in the loss of cilia. Although primary cilia were described on chondrocytes almost 40 years ago, only recently has the functional significance of IFT and cilia in skeletal development been uncovered through the use of mouse models containing mutations or deletions in genes required to make and maintain cilia. Together, the results indicate that primary cilia/IFT are involved in coordinating multiple signaling pathways within the skeleton.
Collapse
Affiliation(s)
- Rosa Serra
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| |
Collapse
|
693
|
Sohaskey ML, Yu J, Diaz MA, Plaas AH, Harland RM. JAWS coordinates chondrogenesis and synovial joint positioning. Development 2008; 135:2215-20. [PMID: 18539921 DOI: 10.1242/dev.019950] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Properly positioned synovial joints are crucial to coordinated skeletal movement. Despite their importance for skeletal development and function, the molecular mechanisms that underlie joint positioning are not well understood. We show that mice carrying an insertional mutation in a previously uncharacterized gene, which we have named Jaws (joints abnormal with splitting), die perinatally with striking skeletal defects, including ectopic interphalangeal joints. These ectopic joints develop along the longitudinal axis and persist at birth, suggesting that JAWS is uniquely required for the orientation and consequent positioning of interphalangeal joints within the endochondral skeleton. Jaws mutant mice also exhibit severe chondrodysplasia characterized by delayed and disorganized maturation of growth plate chondrocytes, together with impaired chondroitin sulfation and abnormal metabolism of the chondroitin sulfate proteoglycan aggrecan. Our findings identify JAWS as a key regulator of chondrogenesis and synovial joint positioning required for the restriction of joint formation to discrete stereotyped locations in the embryonic skeleton.
Collapse
Affiliation(s)
- Michael L Sohaskey
- Division of Genetics, Genomics and Development, Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
694
|
Leucht P, Minear S, Ten Berge D, Nusse R, Helms JA. Translating insights from development into regenerative medicine: the function of Wnts in bone biology. Semin Cell Dev Biol 2008; 19:434-43. [PMID: 18824114 DOI: 10.1016/j.semcdb.2008.09.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Revised: 08/20/2008] [Accepted: 09/02/2008] [Indexed: 11/25/2022]
Abstract
The Wnt pathway constitutes one of the most attractive candidates for modulating skeletal tissue regeneration based on its functions during skeletal development and homeostasis. Wnts participate in every stage of skeletogenesis, from the self-renewal and proliferation of skeletal stem cells to the specification of osteochondroprogenitor cells and the maturation of chondrocytes and osteoblasts. We propose that the function of Wnts depend upon a skeletogenic cell's state of differentiation. In this review we summarize recent data with a focus on the roles of Wnt signaling in mesenchymal stem cell fate, osteoprogenitor cell differentiation, chondrocyte maturation, bone remodeling, and bone regeneration.
Collapse
Affiliation(s)
- P Leucht
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
695
|
Cairns DM, Sato ME, Lee PG, Lassar AB, Zeng L. A gradient of Shh establishes mutually repressing somitic cell fates induced by Nkx3.2 and Pax3. Dev Biol 2008; 323:152-65. [PMID: 18796301 DOI: 10.1016/j.ydbio.2008.08.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 08/14/2008] [Accepted: 08/23/2008] [Indexed: 11/25/2022]
Abstract
Wnt and Sonic Hedgehog (Shh) signals are known to pattern the somite into dermomyotomal, myotomal and sclerotomal cell fates. By employing explants of presomitic mesoderm cultured with constant levels of Wnt3a conditioned medium and increasing levels of Shh, we found that differing levels of Shh signaling elicit differing responses from somitic cells: the lowest level of Shh signaling allows dermomyotomal gene expression, intermediate levels induce loss of dermomyotomal markers and activation of myogenic differentiation, and higher levels induce loss of myotomal markers and activation of sclerotomal gene expression. In addition, we have found that in the presence of high levels of Wnt signaling, instead of inducing sclerotomal markers, Shh signals act to maintain the expression of dermomyotomal and myotomal markers. One of the sclerotomal genes induced by high levels of Shh signaling is Nkx3.2. Forced expression of Nkx3.2 blocks somitic expression of the dermomyotomal marker Pax3 both in vitro and in vivo. Conversely, forced expression of Pax3 in somites can block Shh-mediated induction of sclerotomal gene expression and chondrocyte differentiation in vitro. Thus we propose that varying levels of Shh signaling act in a morphogen-like manner to elicit differing responses from somitic cells, and that Pax3 and Nkx3.2 set up mutually repressing cell fates that promote either dermomyotome/myotome or sclerotome differentiation, respectively.
Collapse
Affiliation(s)
- Dana M Cairns
- Program in Cellular, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | | | | | |
Collapse
|
696
|
Ikegawa M, Han H, Okamoto A, Matsui R, Tanaka M, Omi N, Miyamae M, Toguchida J, Tashiro K. Syndactyly and preaxial synpolydactyly in the singleSfrp2deleted mutant mice. Dev Dyn 2008; 237:2506-17. [DOI: 10.1002/dvdy.21655] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
697
|
Abstract
Stem cells are a powerful resource for cell-based transplantation therapies in osteodegenerative disorders, but before some kinds of stem cells can be applied clinically, several aspects of their expansion and differentiation need to be better controlled. Wnt molecules and members of the Wnt signaling cascade have been ascribed a role in both these processes in vitro as well as normal development in vivo. However some results are controversial. In this review we will present the hypothesis that both canonical and non-canonical signaling are involved in mesenchymal cell fate regulation, such as adipogenesis, chondrogenesis and osteogenesis, and that in vitro it is a timely switch between the two that specifies the identity of the differentiating cell. We will specifically focus on the in vitro differentiation of adipocytes, chondrocytes and osteoblasts contrasting embryonic and mesenchymal stem cells as well as the role of Wnts in mesenchymal fate specification during embryogenesis.
Collapse
Affiliation(s)
- L. A. Davis
- Department of Surgery and Cambridge Institute for Medical Research, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB2 2XY United Kingdom
| | - N. I. zur Nieden
- Fraunhofer Institute for Cell Therapy and Immunology, Deutscher Platz 5e, 04103 Leipzig, Germany
| |
Collapse
|
698
|
Grigoryan T, Wend P, Klaus A, Birchmeier W. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev 2008; 22:2308-41. [PMID: 18765787 PMCID: PMC2749675 DOI: 10.1101/gad.1686208] [Citation(s) in RCA: 453] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wnt signaling is one of a handful of powerful signaling pathways that play crucial roles in the animal life by controlling the genetic programs of embryonic development and adult homeostasis. When disrupted, these signaling pathways cause developmental defects, or diseases, among them cancer. The gateway of the canonical Wnt pathway, which contains >100 genes, is an essential molecule called beta-catenin (Armadillo in Drosophila). Conditional loss- and gain-of-function mutations of beta-catenin in mice provided powerful tools for the functional analysis of canonical Wnt signaling in many tissues and organs. Such studies revealed roles of Wnt signaling that were previously not accessible to genetic analysis due to the early embryonic lethality of conventional beta-catenin knockout mice, as well as the redundancy of Wnt ligands, receptors, and transcription factors. Analysis of conditional beta-catenin loss- and gain-of-function mutant mice demonstrated that canonical Wnt signals control progenitor cell expansion and lineage decisions both in the early embryo and in many organs. Canonical Wnt signaling also plays important roles in the maintenance of various embryonic or adult stem cells, and as recent findings demonstrated, in cancer stem cell types. This has opened new opportunities to model numerous human diseases, which have been associated with deregulated Wnt signaling. Our review summarizes what has been learned from genetic studies of the Wnt pathway by the analysis of conditional beta-catenin loss- and gain-of-function mice.
Collapse
Affiliation(s)
- Tamara Grigoryan
- Max-Delbück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Peter Wend
- Max-Delbück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Alexandra Klaus
- Max-Delbück Center for Molecular Medicine, 13125 Berlin, Germany
| | | |
Collapse
|
699
|
Morello R, Bertin TK, Schlaubitz S, Shaw CA, Kakuru S, Munivez E, Hermanns P, Chen Y, Zabel B, Lee B. Brachy-syndactyly caused by loss of Sfrp2 function. J Cell Physiol 2008; 217:127-37. [PMID: 18446812 DOI: 10.1002/jcp.21483] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Wnt signaling pathways are regulated both at the intracellular and extracellular levels. During embryogenesis, the in vivo effects of the secreted frizzled-related protein (Sfrp) family of Wnt inhibitors are poorly understood. Here, we show that inactivation of Sfrp2 results in subtle limb defects in mice with mesomelic shortening and consistent shortening of all autopodal elements that is clinically manifested as brachydactyly. In addition, there is soft-tissue syndactyly of the hindlimb. The brachydactyly is caused by decreased chondrocyte proliferation and delayed differentiation in distal limb chondrogenic elements. These data suggest that Sfrp2 can regulate both chondrogenesis and regression of interdigital mesenchyme in distal limb. Sfrp2 can also repress canonical Wnt signaling by Wnt1, Wnt9a, and Wnt4 in vitro. Sfrp2-/- and TOPGAL/Sfrp2-/- mice have a mild increase in beta-catenin and beta-galactosidase staining, respectively, in some phalangeal elements. This however does not exclude a potential concurrent effect on non-canonical Wnt signaling in the growth plate. In combination with what is known about BMP and Wnt signaling in human brachydactylies, our data establish a critical role for Sfrp2 in proper distal limb formation and suggest SFPR2 could be a novel candidate gene for human brachy-syndactyly defects.
Collapse
Affiliation(s)
- Roy Morello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
700
|
Trevant B, Gaur T, Hussain S, Symons J, Komm BS, Bodine PVN, Stein GS, Lian JB. Expression of secreted frizzled related protein 1, a Wnt antagonist, in brain, kidney, and skeleton is dispensable for normal embryonic development. J Cell Physiol 2008; 217:113-26. [PMID: 18498122 DOI: 10.1002/jcp.21482] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Secreted frizzled related protein-1 (sFRP1), an antagonist of Wnt signaling, regulates cell proliferation, differentiation and apoptosis and negatively regulates bone formation. The spatial and temporal pattern of endogenous sFRP1 expression and loss-of-function were examined in the sFRP1-LacZ knock-in mouse (sFRP1-/-) during embryonic development and post-natal growth. beta-gal activity representing sFRP1 expression is robust in brain, skeleton, kidney, eye, spleen, abdomen, heart and somites in early embryos, but sFRP1 gene inactivation in these tissues did not compromise normal embryonic and post-natal development. Kidney histology revealed increased numbers of glomeruli in KO mice, observed after 5 years of breeding. In the skeleton, we show sFRP1 expression is found in relation to the mineralizing front of bone tissue during skeletal development from E15.5 to birth. Trabecular bone volume and bone mineral density in the sFRP1-/- mouse compared to WT was slightly increased during post-natal growth. Calvarial osteoblasts from newborn sFRP1-/- mice exhibited a 20% increase in cell proliferation and differentiation at the early stages of osteoblast maturation. sFRP1 expression was observed in osteoclasts, but this did not affect osteoclast number or activity. These findings have identified functions for sFRP1 in kidney and bone that are not redundant with other sFRPs. In summary, the absence of major organ abnormalities, the enhanced bone formation and a normal life span with no detection of spontaneous tumors suggests that targeting sFRP1 can be used as a therapeutic strategy for increasing bone mass in metabolic bone disorders or promoting fracture healing by modulating Wnt signaling.
Collapse
Affiliation(s)
- Brune Trevant
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | | | | | |
Collapse
|