651
|
Ferrari R, Talamini L, Violatto MB, Giangregorio P, Sponchioni M, Morbidelli M, Salmona M, Bigini P, Moscatelli D. Biocompatible Polymer Nanoformulation To Improve the Release and Safety of a Drug Mimic Molecule Detectable via ICP-MS. Mol Pharm 2016; 14:124-134. [DOI: 10.1021/acs.molpharmaceut.6b00753] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Raffaele Ferrari
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Laura Talamini
- Department
of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milan, Italy
| | - Martina Bruna Violatto
- Department
of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milan, Italy
| | - Paola Giangregorio
- Department
of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milan, Italy
| | - Mattia Sponchioni
- Department
of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| | - Massimo Morbidelli
- Institute
for Chemical and Bioengineering, Department of Chemistry and Applied
Biosciences, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Mario Salmona
- Department
of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milan, Italy
| | - Paolo Bigini
- Department
of Molecular Biochemistry and Pharmacology, IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milan, Italy
| | - Davide Moscatelli
- Department
of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Via Mancinelli 7, 20131 Milan, Italy
| |
Collapse
|
652
|
Badri W, Miladi K, Nazari QA, Greige-Gerges H, Fessi H, Elaissari A. Encapsulation of NSAIDs for inflammation management: Overview, progress, challenges and prospects. Int J Pharm 2016; 515:757-773. [DOI: 10.1016/j.ijpharm.2016.11.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/17/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022]
|
653
|
Achieving high gene delivery performance with caveolae-mediated endocytosis pathway by (l)-arginine/(l)-histidine co-modified cationic gene carriers. Colloids Surf B Biointerfaces 2016; 148:73-84. [DOI: 10.1016/j.colsurfb.2016.08.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/02/2016] [Accepted: 08/21/2016] [Indexed: 11/20/2022]
|
654
|
Yu HY, Eckmann DM, Ayyaswamy PS, Radhakrishnan R. Effect of wall-mediated hydrodynamic fluctuations on the kinetics of a Brownian nanoparticle. Proc Math Phys Eng Sci 2016; 472:20160397. [PMID: 28119544 PMCID: PMC5247520 DOI: 10.1098/rspa.2016.0397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/21/2016] [Indexed: 12/14/2022] Open
Abstract
The reactive flux formalism (Chandler 1978 J. Chem. Phys.68, 2959-2970. (doi:10.1063/1.436049)) and the subsequent development of methods such as transition path sampling have laid the foundation for explicitly quantifying the rate process in terms of microscopic simulations. However, explicit methods to account for how the hydrodynamic correlations impact the transient reaction rate are missing in the colloidal literature. We show that the composite generalized Langevin equation (Yu et al. 2015 Phys. Rev. E91, 052303. (doi:10.1103/PhysRevE.91.052303)) makes a significant step towards solving the coupled processes of molecular reactions and hydrodynamic relaxation by examining how the wall-mediated hydrodynamic memory impacts the two-stage temporal relaxation of the reaction rate for a nanoparticle transition between two bound states in the bulk, near-wall and lubrication regimes.
Collapse
Affiliation(s)
- Hsiu-Yu Yu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David M. Eckmann
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Portonovo S. Ayyaswamy
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Radhakrishnan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
655
|
Pinto MP, Arce M, Yameen B, Vilos C. Targeted brain delivery nanoparticles for malignant gliomas. Nanomedicine (Lond) 2016; 12:59-72. [PMID: 27876436 DOI: 10.2217/nnm-2016-0307] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Brain tumors display the highest mortality rates of all childhood cancers, and over the last decade its prevalence has steadily increased in elderly. To date, effective treatments for brain tumors and particularly for malignant gliomas remain a challenge mainly due to the low permeability and high selectivity of the blood-brain barrier (BBB) to conventional anticancer drugs. In recent years, the elucidation of the cellular mechanisms involved in the transport of substances into the brain has boosted the development of therapeutic-targeted nanoparticles (NPs) with the ability to cross the BBB. Here, we present a comprehensive overview of the available therapeutic strategies developed against malignant gliomas based on 'actively targeted' NPs, the challenges of crossing the BBB and blood-brain tumor barrier as well as its mechanisms and a critical assessment of clinical studies that have used targeted NPs for the treatment of malignant gliomas. Finally, we discuss the potential of actively targeted NP-based strategies in clinical settings, its possible side effects and future directions for therapeutic applications. First draft submitted: 4 October 2016; Accepted for publication: 14 October 2016; Published online: 23 November 2016.
Collapse
Affiliation(s)
- Mauricio P Pinto
- Laboratory of Immunology of Reproduction, Faculty of Chemistry & Biology, Universidad de Santiago de Chile, 9170022 Santiago, Chile
| | - Maximiliano Arce
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Faculty of Biological Sciences, Pontificia Universidad Catolica de Chile, Santiago, Chile
| | - Basit Yameen
- Laboratory of Nanomedicine & Biomaterials, Department of Anesthesiology, Harvard Medical School, Brigham & Women's Hospital, Boston, MA 02115, USA.,Department of Chemistry, SBA School of Science & Engineering, Lahore University of Management Sciences (LUMS), Lahore 54792, Pakistan
| | - Cristian Vilos
- Laboratory of Nanomedicine & Targeted Delivery, Center for Integrative Medicine & Innovative Science, Faculty of Medicine, Universidad Andres Bello, Santiago, 8370071 Santiago, Chile.,Center for Bioinformatics & Integrative Biology, Faculty of Biological Sciences, Universidad Andres Bello, Santiago, 8370071 Santiago, Chile.,Center for the Development of Nanoscience & Nanotechnology, CEDENNA, 9170124 Santiago, Chile
| |
Collapse
|
656
|
Tian J, Min Y, Rodgers Z, Wan X, Qiu H, Mi Y, Tian X, Wagner KT, Caster JM, Qi Y, Roche K, Zhang T, Cheng J, Wang AZ. Nanoparticle delivery of chemotherapy combination regimen improves the therapeutic efficacy in mouse models of lung cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:1301-1307. [PMID: 27884641 DOI: 10.1016/j.nano.2016.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/28/2016] [Accepted: 11/17/2016] [Indexed: 11/26/2022]
Abstract
The combination chemotherapy regimen of cisplatin (CP) and docetaxel (DTX) is effective against a variety of cancers. However, combination therapies present unique challenges that can complicate clinical application, such as increases in toxicity and imprecise exposure of tumors to specific drug ratios that can produce treatment resistance. Drug co-encapsulation within a single nanoparticle (NP) formulation can overcome these challenges and further improve combinations' therapeutic index. In this report, we employ a CP prodrug (CPP) strategy to formulate poly(lactic-co-glycolic acid)-poly(ethylene glycol) (PLGA-PEG) NPs carrying both CPP and DTX. The dually loaded NPs display differences in drug release kinetics and in vitro cytotoxicity based on the structure of the chosen CPP. Furthermore, NPs containing both drugs showed a significant improvement in treatment efficacy versus the free drug combination in vivo.
Collapse
Affiliation(s)
- Jing Tian
- School of Biological and Environmental Engineering, Tianjin Vocational Institute, Tianjin, PR China; Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yuangzeng Min
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zachary Rodgers
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xiaomeng Wan
- Division of Molecular Pharmaceutics, Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hui Qiu
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yu Mi
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xi Tian
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kyle T Wagner
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph M Caster
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yanfei Qi
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; School of Public Health, Jilin University, Changchun, Jilin, China
| | - Kyle Roche
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tian Zhang
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew Z Wang
- Laboratory of Nano- and Translational Medicine, Lineberger Comprehensive Cancer Center, Carolina Center for Cancer Nanotechnology Excellence, Carolina Institute of Nanomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
657
|
|
658
|
Lin G, Mi P, Chu C, Zhang J, Liu G. Inorganic Nanocarriers Overcoming Multidrug Resistance for Cancer Theranostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1600134. [PMID: 27980988 PMCID: PMC5102675 DOI: 10.1002/advs.201600134] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/03/2016] [Indexed: 02/05/2023]
Abstract
Cancer multidrug resistance (MDR) could lead to therapeutic failure of chemotherapy and radiotherapy, and has become one of the main obstacles to successful cancer treatment. Some advanced drug delivery platforms, such as inorganic nanocarriers, demonstrate a high potential for cancer theranostic to overcome the cancer-specific limitation of conventional low-molecular-weight anticancer agents and imaging probes. Specifically, it could achieve synergetic therapeutic effects, demonstrating stronger killing effects to MDR cancer cells by combining the inorganic nanocarriers with other treatment manners, such as RNA interference and thermal therapy. Moreover, the inorganic nanocarriers could provide imaging functions to help monitor treatment responses, e.g., drug resistance and therapeutic effects, as well as analyze the mechanism of MDR by molecular imaging modalities. In this review, the mechanisms involved in cancer MDR and recent advances of applying inorganic nanocarriers for MDR cancer imaging and therapy are summarized. The inorganic nanocarriers may circumvent cancer MDR for effective therapy and provide a way to track the therapeutic processes for real-time molecular imaging, demonstrating high performance in studying the interaction of nanocarriers and MDR cancer cells/tissues in laboratory study and further shedding light on elaborate design of nanocarriers that could overcome MDR for clinical translation.
Collapse
Affiliation(s)
- Gan Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- Department of Chemical and Biomolecular EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Peng Mi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University, and Collaborative Innovation Center for BiotherapyChengduSichuan610041China
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
- Department of UltrasoundXijing HospitalXi'anShaanXi710032China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational MedicineSchool of Public HealthXiamen UniversityXiamen361102China
| |
Collapse
|
659
|
The Eighth Central European Conference "Chemistry towards Biology": Snapshot. Molecules 2016; 21:molecules21101381. [PMID: 27763518 PMCID: PMC5283649 DOI: 10.3390/molecules21101381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/12/2016] [Indexed: 01/27/2023] Open
Abstract
The Eighth Central European Conference "Chemistry towards Biology" was held in Brno, Czech Republic, on August 28-September 1, 2016 to bring together experts in biology, chemistry and design of bioactive compounds; promote the exchange of scientific results, methods and ideas; and encourage cooperation between researchers from all over the world. The topics of the conference covered "Chemistry towards Biology", meaning that the event welcomed chemists working on biology-related problems, biologists using chemical methods, and students and other researchers of the respective areas that fall within the common scope of chemistry and biology. The authors of this manuscript are plenary speakers and other participants of the symposium and members of their research teams. The following summary highlights the major points/topics of the meeting.
Collapse
|
660
|
Wang J, Kong M, Zhou Z, Yan D, Yu X, Cheng X, Feng C, Liu Y, Chen X. Mechanism of surface charge triggered intestinal epithelial tight junction opening upon chitosan nanoparticles for insulin oral delivery. Carbohydr Polym 2016; 157:596-602. [PMID: 27987967 DOI: 10.1016/j.carbpol.2016.10.021] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/03/2016] [Accepted: 10/09/2016] [Indexed: 12/20/2022]
Abstract
Intestinal epithelium is a major barrier limiting the absorption of oral insulin owing to the presence of intercellular tight junctions (TJs). Previous studies proved that carboxymethyl chitosan/chitosan-nanoparticles (CMCS/CS-NPs) exhibited surface charge depending promotion of intestinal absorption. This study further confirmed the better performances of insulin:CMCS/CS-NPs(-) in enhancing epithelial permeation, increasing bioavailability and extending blood duration of insulin than insulin:CMCS/CS-NPs(+). Immunohistochemistry sections found that TJs on jejunum epithelium completely disappeared in insulin:CMCS/CS-NPs(-) group, partially existed in insulin:CMCS/CS-NPs(+) group and appeared no change in control. Surface charges of CMCS/CS-NPs triggered intestinal epithelial TJs opening through different mechanisms. Although a down-regulation of TJs protein claudin-4 was detected in both nanoparticles groups, for phosphorylated claudin-4, the activating form, whose down-regulation occurred only in insulin:CMCS/CS-NPs(-) group. Counting upon synergetic effects of Ca2+ deprivation from adherens junctions and claudin-4 dephosphorylation and degradation, CMCS/CS-NPs(-) triggered more extensive disintegration of TJs and stronger paracellular permeability than the positive.
Collapse
Affiliation(s)
- Juan Wang
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China; College of Life Science, Linyi University, Shandong, 276005, PR China
| | - Ming Kong
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Zhenjin Zhou
- Shandong Linyi Guolong Eco-Tech Co., Ltd., Lin'yi, 276034, PR China
| | - Dong Yan
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Xiaoping Yu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Xiaojie Cheng
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Chao Feng
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China
| | - Ya Liu
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China.
| | - Xiguang Chen
- College of Marine Life Science, Ocean University of China, Qingdao, 266003, PR China.
| |
Collapse
|
661
|
Biomimetic carriers mimicking leukocyte plasma membrane to increase tumor vasculature permeability. Sci Rep 2016; 6:34422. [PMID: 27703233 PMCID: PMC5050497 DOI: 10.1038/srep34422] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 09/13/2016] [Indexed: 12/05/2022] Open
Abstract
Recent advances in the field of nanomedicine have demonstrated that biomimicry can further improve targeting properties of current nanotechnologies while simultaneously enable carriers with a biological identity to better interact with the biological environment. Immune cells for example employ membrane proteins to target inflamed vasculature, locally increase vascular permeability, and extravasate across inflamed endothelium. Inspired by the physiology of immune cells, we recently developed a procedure to transfer leukocyte membranes onto nanoporous silicon particles (NPS), yielding Leukolike Vectors (LLV). LLV are composed of a surface coating containing multiple receptors that are critical in the cross-talk with the endothelium, mediating cellular accumulation in the tumor microenvironment while decreasing vascular barrier function. We previously demonstrated that lymphocyte function-associated antigen (LFA-1) transferred onto LLV was able to trigger the clustering of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells. Herein, we provide a more comprehensive analysis of the working mechanism of LLV in vitro in activating this pathway and in vivo in enhancing vascular permeability. Our results suggest the biological activity of the leukocyte membrane can be retained upon transplant onto NPS and is critical in providing the particles with complex biological functions towards tumor vasculature.
Collapse
|
662
|
Yu Y, Qiu L. Optimizing particle size of docetaxel-loaded micelles for enhanced treatment of oral epidermoid carcinoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1941-1949. [DOI: 10.1016/j.nano.2016.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 04/03/2016] [Accepted: 04/20/2016] [Indexed: 11/28/2022]
|
663
|
In vivo formation of natural HgSe nanoparticles in the liver and brain of pilot whales. Sci Rep 2016; 6:34361. [PMID: 27678068 PMCID: PMC5039623 DOI: 10.1038/srep34361] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/07/2016] [Indexed: 12/23/2022] Open
Abstract
To understand the biochemistry of methylmercury (MeHg) that leads to the formation of mercury-selenium (Hg-Se) clusters is a long outstanding challenge that promises to deepen our knowledge of MeHg detoxification and the role Se plays in this process. Here, we show that mercury selenide (HgSe) nanoparticles in the liver and brain of long-finned pilot whales are attached to Se-rich structures and possibly act as a nucleation point for the formation of large Se-Hg clusters, which can grow with age to over 5 μm in size. The detoxification mechanism is fully developed from the early age of the animals, with particulate Hg found already in juvenile tissues. As a consequence of MeHg detoxification, Se-methionine, the selenium pool in the system is depleted in the efforts to maintain essential levels of Se-cysteine. This study provides evidence of so far unreported depletion of the bioavailable Se pool, a plausible driving mechanism of demonstrated neurotoxic effects of MeHg in the organism affected by its high dietary intake.
Collapse
|
664
|
Yu J, Zhang Y, Bomba H, Gu Z. Stimuli-Responsive Delivery of Therapeutics for Diabetes Treatment. Bioeng Transl Med 2016; 1:323-337. [PMID: 29147685 PMCID: PMC5685194 DOI: 10.1002/btm2.10036] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 09/07/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
Diabetic therapeutics, including insulin and glucagon-like peptide 1 (GLP-1), are essential for diabetic patients to regulate blood glucose levels. However, conventional treatments that are based on subcutaneous injections are often associated with poor glucose control and a lack of patient compliance. In this review, we focus on the different stimuli-responsive systems to deliver therapeutics for diabetes treatment to improve patient comfort and prevent complications. Specifically, the pH-responsive systems for oral drug delivery are introduced first. Then, the closed-loop glucose-responsive systems are summarized based on different glucose-responsive moieties, including glucose oxidase (GOx), glucose binding protein (GBP), and phenylboronic acid (PBA). Finally, the on-demand delivery systems activated by external remote triggers are also discussed. We conclude by discussing advantages and limitations of current strategies, as well as future opportunities and challenges in this area.
Collapse
Affiliation(s)
- Jicheng Yu
- Joint Dept. of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighNC27695
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599
| | - Yuqi Zhang
- Joint Dept. of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighNC27695
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599
| | - Hunter Bomba
- Joint Dept. of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighNC27695
| | - Zhen Gu
- Joint Dept. of Biomedical EngineeringUniversity of North Carolina at Chapel Hill and North Carolina State UniversityRaleighNC27695
- Center for Nanotechnology in Drug Delivery and Division of Molecular Pharmaceutics, UNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNC27599
- Dept. of MedicineUniversity of North Carolina at Chapel HillChapel HillNC27599
| |
Collapse
|
665
|
Ke W, Li J, Zhao K, Zha Z, Han Y, Wang Y, Yin W, Zhang P, Ge Z. Modular Design and Facile Synthesis of Enzyme-Responsive Peptide-Linked Block Copolymers for Efficient Delivery of Doxorubicin. Biomacromolecules 2016; 17:3268-3276. [PMID: 27564064 DOI: 10.1021/acs.biomac.6b00997] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Construction of efficient doxorubicin (DOX) delivery systems addressing a cascade of physiological barriers remains a great challenge for better therapeutic efficacy of tumors. Herein, we design well-defined enzyme-responsive peptide-linked block copolymer, PEG-GPLGVRGDG-P(BLA-co-Asp) [PEG and P(BLA-co-Asp) are poly(ethylene glycol) and partially hydrolyzed poly(β-benzyl l-aspartate) (PBLA), respectively] (P3), with modular functionality for efficient delivery of DOX. The block copolymers were successfully obtained via click reaction to introduce peptide (alkynyl-GPLGVRGDG) into the end of PEG for initiating ring-opening polymerization of β-benzyl l-aspartate N-carboxyanhydride (BLA-NCA) by terminal amino groups followed by partial hydrolysis of PBLA segments. P3 micelle was demonstrated to encapsulate DOX efficiently through synergistic effect of benzyl group-based hydrophobic and carboxyl moiety-based electrostatic interactions. Effective matrix metalloproteinase-2 (MMP-2)-triggered cleavage of peptide for dePEGylation of P3 micelles was confirmed and residual RGD ligands were retained on the surfaces. Against HT1080 cells overexpressing MMP-2, DOX-loaded P3 micelles showed approximately 4-fold increase of the cellular internalization amount as compared with free DOX and half maximal inhibitory concentration (IC50) value of DOX-loaded P3 micelles was determined to be 0.38 μg/mL compared with 0.66 μg/mL of free DOX due to MMP-triggered dePEGylation, RGD-mediated cellular uptake, and rapid drug release inside cells. Binding and penetration evaluation toward HT1080 multicellular tumor spheroids (MCTs) confirmed high affinity and deep penetration of P3 micelles in tumor tissues. This modular design of enzyme-responsive block copolymers represents an effective strategy to construct intelligent drug delivery vehicles for addressing a cascade of delivery barriers.
Collapse
Affiliation(s)
- Wendong Ke
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui China
| | - Junjie Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui China
| | - Kaijie Zhao
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui China
| | - Zengshi Zha
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui China
| | - Yu Han
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui China
| | - Yuheng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui China
| | - Wei Yin
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui China.,Department of Pharmacology, Xin Hua University of Anhui , Hefei, China
| | - Ping Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui China.,Department of Chemistry, Anhui Science and Technology University , Anhui Fengyang 233100, China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei 230026, Anhui China
| |
Collapse
|
666
|
Feng L, Zhu J, Wang Z. Biological Functionalization of Conjugated Polymer Nanoparticles for Targeted Imaging and Photodynamic Killing of Tumor Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19364-19370. [PMID: 27406913 DOI: 10.1021/acsami.6b06642] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Conjugated polymer nanoparticles composed of PFT/PS as a core and PEG-COOH on the surface were prepared by a reprecipitating method. The CPNs diaplay excellet properties such as good photostability, low cytotoxicity, and strong brightness, etc. The average diamater of CPNs is 30 nm with a spherical morphology. To realize specific imaging in different parts of tumor cells, the bare CPNs with the carboxyls on the surface were conjugated with antibody or peptide by a covalent mode. Studies display that CPNs modified with anti-EpCAM can recognize MCF-7 tumor cells and locate on the membrane, while CPNs conjugated with transcriptional activator protein (Tat) specifically locate in the cytoplasm of MCF-7 cells. On the basis of the ability of CPNs for producing reactive oxygen species (ROS) under light irradiation, photodynamic therapy for tumor cells was investigated. Due to the long distance and wide diffusion range, MCF-7 tumor cells with CPNs/anti-EpCAM have no obvious change with or without white light irradiation. However, CPNs/Tat exhibits higher killing ability for MCF-7 cells. Noticeably, multifunctional CPNs linked with anti-EpCAM and Tat simultaneously not only can specifically target MCF-7 tumor cells, but also may inhibit and kill these cells. This work develops a potential application platform for multifunctional CPNs in locating imaging, photodynamic therapy, and other aspects.
Collapse
Affiliation(s)
- Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University , Taiyuan 030006, P. R. China
| | - Jiarong Zhu
- School of Chemistry and Chemical Engineering, Shanxi University , Taiyuan 030006, P. R. China
| | - Zhijun Wang
- Department of Chemistry, Changzhi University , Changzhi 046011, P. R. China
| |
Collapse
|
667
|
Herranz-Blanco B, Shahbazi MA, Correia AR, Balasubramanian V, Kohout T, Hirvonen J, Santos HA. pH-Switch Nanoprecipitation of Polymeric Nanoparticles for Multimodal Cancer Targeting and Intracellular Triggered Delivery of Doxorubicin. Adv Healthc Mater 2016; 5:1904-16. [PMID: 27245691 DOI: 10.1002/adhm.201600160] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/15/2016] [Indexed: 11/10/2022]
Abstract
Theranostic nanoparticles are emerging as potent tools for noninvasive diagnosis, treatment, and monitoring of solid tumors. Herein, an advanced targeted and multistimuli responsive theranostic platform is presented for the intracellular triggered delivery of doxorubicin. The system consists of a polymeric-drug conjugate solid nanoparticle containing encapsulated superparamagnetic iron oxide nanoparticles (IO@PNP) and decorated with a tumor homing peptide, iRGD. The production of this nanosystem is based on a pH-switch nanoprecipitation method in organic-free solvents, making it ideal for biomedical applications. The nanosystem shows sufficient magnetization saturation for magnetically guided therapy along with reduced cytotoxicity and hemolytic effects. IO@PNP are largely internalized by endothelial and metastatic cancer cells and iRGD decorated IO@PNP moderately enhance their internalization into endothelial cells, while no enhancement is found for the metastatic cancer cells. Poly(ethylene glycol)-block-poly(histidine) with pH-responsive and proton-sponge properties promotes prompt lysosomal escape once the nanoparticles are endocyted. In addition, the polymer-doxorubicin conjugate solid nanoparticles show both intracellular lysosomal escape and efficient translocation of doxorubicin to the nuclei of the cells via cleavage of the amide bond. Overall, IO@PNP-doxorubicin and the iRGD decorated counterpart demonstrate to enhance the toxicity of doxorubicin in cancer cells by improving the intracellular delivery of the drug carried in the IO@PNP.
Collapse
Affiliation(s)
- Bárbara Herranz-Blanco
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P. O. Box 56) 00014 Helsinki Finland
| | - Mohammad-Ali Shahbazi
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P. O. Box 56) 00014 Helsinki Finland
| | - Alexandra R. Correia
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P. O. Box 56) 00014 Helsinki Finland
| | - Vimalkumar Balasubramanian
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P. O. Box 56) 00014 Helsinki Finland
| | - Tomáš Kohout
- Department of Physics; University of Helsinki; Gustaf Hällströmin katu 2a (P. O. Box 64) 00560 Helsinki Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P. O. Box 56) 00014 Helsinki Finland
| | - Hélder A. Santos
- Division of Pharmaceutical Chemistry and Technology; Faculty of Pharmacy; University of Helsinki; Viikinkaari 5 E (P. O. Box 56) 00014 Helsinki Finland
| |
Collapse
|
668
|
Quignard S, Frébourg G, Chen Y, Fattaccioli J. Nanometric emulsions encapsulating solid particles as alternative carriers for intracellular delivery. Nanomedicine (Lond) 2016; 11:2059-72. [PMID: 27465123 DOI: 10.2217/nnm-2016-0074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM Formulate nanometric oil droplets for encapsulating solid nanoparticles and assess their interactions with cells. MATERIALS & METHODS Soybean oil droplets, stabilized by Pluronic F68 surfactant, incorporating hydrophobically modified fluorescent silica, nanoparticles were obtained. Cytotoxicity over time, internalization, subsequent intracellular localization and internalization pathways were assessed by microscopy (fluoresence and TEM) in vitro with HeLa cells. RESULTS Oil droplets encapsulating solid nanoparticles are readily internalized by HeLa cells like free nanoparticles but the intracellular localization differs (nanoemulsions less colocalized with lysosomes) as well as internalization pathway is used (nanoemulsions partially internalized by nonendocytic transport). No cytotoxicity could be observed for either particles tested. CONCLUSION Our results confirm that nanometric emulsions encapsulating solid nanoparticles can be used for alternative and multifunctional intracellular delivery.
Collapse
Affiliation(s)
- Sandrine Quignard
- École Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005 Paris, France.,Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005 Paris, France.,CNRS, UMR 8640 PASTEUR, F-75005 Paris, France
| | - Ghislaine Frébourg
- Institut de Biologie Paris-Seine FR3631, Service de Microscopie Electronique, Université Pierre et Marie Curie, 9 Quai Saint Bernard, 75005 Paris, France
| | - Yong Chen
- École Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005 Paris, France.,Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005 Paris, France.,CNRS, UMR 8640 PASTEUR, F-75005 Paris, France
| | - Jacques Fattaccioli
- École Normale Supérieure - PSL Research University, Département de Chimie, 24 rue Lhomond, F-75005 Paris, France.,Sorbonne Universités, UPMC Univ. Paris 06, PASTEUR, F-75005 Paris, France.,CNRS, UMR 8640 PASTEUR, F-75005 Paris, France
| |
Collapse
|
669
|
Kashaninejad N, Nikmaneshi MR, Moghadas H, Kiyoumarsi Oskouei A, Rismanian M, Barisam M, Saidi MS, Firoozabadi B. Organ-Tumor-on-a-Chip for Chemosensitivity Assay: A Critical Review. MICROMACHINES 2016; 7:mi7080130. [PMID: 30404302 PMCID: PMC6190381 DOI: 10.3390/mi7080130] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 06/22/2016] [Accepted: 07/18/2016] [Indexed: 01/09/2023]
Abstract
With a mortality rate over 580,000 per year, cancer is still one of the leading causes of death worldwide. However, the emerging field of microfluidics can potentially shed light on this puzzling disease. Unique characteristics of microfluidic chips (also known as micro-total analysis system) make them excellent candidates for biological applications. The ex vivo approach of tumor-on-a-chip is becoming an indispensable part of personalized medicine and can replace in vivo animal testing as well as conventional in vitro methods. In tumor-on-a-chip, the complex three-dimensional (3D) nature of malignant tumor is co-cultured on a microfluidic chip and high throughput screening tools to evaluate the efficacy of anticancer drugs are integrated on the same chip. In this article, we critically review the cutting edge advances in this field and mainly categorize each tumor-on-a-chip work based on its primary organ. Specifically, design, fabrication and characterization of tumor microenvironment; cell culture technique; transferring mechanism of cultured cells into the microchip; concentration gradient generators for drug delivery; in vitro screening assays of drug efficacy; and pros and cons of each microfluidic platform used in the recent literature will be discussed separately for the tumor of following organs: (1) Lung; (2) Bone marrow; (3) Brain; (4) Breast; (5) Urinary system (kidney, bladder and prostate); (6) Intestine; and (7) Liver. By comparing these microchips, we intend to demonstrate the unique design considerations of each tumor-on-a-chip based on primary organ, e.g., how microfluidic platform of lung-tumor-on-a-chip may differ from liver-tumor-on-a-chip. In addition, the importance of heart–liver–intestine co-culture with microvasculature in tumor-on-a-chip devices for in vitro chemosensitivity assay will be discussed. Such system would be able to completely evaluate the absorption, distribution, metabolism, excretion and toxicity (ADMET) of anticancer drugs and more realistically recapitulate tumor in vivo-like microenvironment.
Collapse
Affiliation(s)
- Navid Kashaninejad
- School of Mechanical Engineering, Sharif University of Technology, 11155-9567 Tehran, Iran.
| | | | - Hajar Moghadas
- School of Mechanical Engineering, Sharif University of Technology, 11155-9567 Tehran, Iran.
| | | | - Milad Rismanian
- School of Mechanical Engineering, Sharif University of Technology, 11155-9567 Tehran, Iran.
| | - Maryam Barisam
- School of Mechanical Engineering, Sharif University of Technology, 11155-9567 Tehran, Iran.
| | - Mohammad Said Saidi
- School of Mechanical Engineering, Sharif University of Technology, 11155-9567 Tehran, Iran.
| | - Bahar Firoozabadi
- School of Mechanical Engineering, Sharif University of Technology, 11155-9567 Tehran, Iran.
| |
Collapse
|
670
|
Abd Ellah NH, Abouelmagd SA. Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opin Drug Deliv 2016; 14:201-214. [DOI: 10.1080/17425247.2016.1213238] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Noura H. Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Sara A. Abouelmagd
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|
671
|
Abstract
Targeted delivery allows drug molecules to preferentially accumulate at the sites of action and thus holds great promise to improve therapeutic index. Among various drug-targeting approaches, nanoparticle-based delivery systems offer some unique strengths and have achieved exciting preclinical and clinical results. Herein, we aim to provide a review on the recent development of cell membrane-coated nanoparticle system, a new class of biomimetic nanoparticles that combine both the functionalities of cellular membranes and the engineering flexibility of synthetic nanomaterials for effective drug delivery and novel therapeutics. This review is particularly focused on novel designs of cell membrane-coated nanoparticles as well as their underlying principles that facilitate the purpose of drug targeting. Three specific areas are highlighted, including: (i) cell membrane coating to prolong nanoparticle circulation, (ii) cell membrane coating to achieve cell-specific targeting and (iii) cell membrane coating for immune system targeting. Overall, cell membrane-coated nanoparticles have emerged as a novel class of targeted nanotherapeutics with strong potentials to improve on drug delivery and therapeutic efficacy for treatment of various diseases.
Collapse
Affiliation(s)
- Weiwei Gao
- a Department of NanoEngineering and Moores Cancer Center , University of California , San Diego , La Jolla , CA , USA
| | - Liangfang Zhang
- a Department of NanoEngineering and Moores Cancer Center , University of California , San Diego , La Jolla , CA , USA
| |
Collapse
|
672
|
Dancy JG, Wadajkar AS, Schneider CS, Mauban JRH, Goloubeva OG, Woodworth GF, Winkles JA, Kim AJ. Non-specific binding and steric hindrance thresholds for penetration of particulate drug carriers within tumor tissue. J Control Release 2016; 238:139-148. [PMID: 27460683 DOI: 10.1016/j.jconrel.2016.07.034] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/27/2016] [Accepted: 07/22/2016] [Indexed: 11/15/2022]
Abstract
Therapeutic nanoparticles (NPs) approved for clinical use in solid tumor therapy provide only modest improvements in patient survival, in part due to physiological barriers that limit delivery of the particles throughout the entire tumor. Here, we explore the thresholds for NP size and surface poly(ethylene glycol) (PEG) density for penetration within tumor tissue extracellular matrix (ECM). We found that NPs as large as 62nm, but less than 110nm in diameter, diffused rapidly within a tumor ECM preparation (Matrigel) and breast tumor xenograft slices ex vivo. Studies of PEG-density revealed that increasing PEG density enhanced NP diffusion and that PEG density below a critical value led to adhesion of NP to ECM. Non-specific binding of NPs to tumor ECM components was assessed by surface plasmon resonance (SPR), which revealed excellent correlation with the particle diffusion results. Intravital microscopy of NP spread in breast tumor tissue confirmed a significant difference in tumor tissue penetration between the 62 and 110nm PEG-coated NPs, as well as between PEG-coated and uncoated NPs. SPR assays also revealed that Abraxane, an FDA-approved non-PEGylated NP formulation used for cancer therapy, binds to tumor ECM. Our results establish limitations on the size and surface PEG density parameters required to achieve uniform and broad dispersion within tumor tissue and highlight the utility of SPR as a high throughput method to screen NPs for tumor penetration.
Collapse
Affiliation(s)
- Jimena G Dancy
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Aniket S Wadajkar
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Craig S Schneider
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Joseph R H Mauban
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Olga G Goloubeva
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Jeffrey A Winkles
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, United States; Center for Biomedical Engineering and Technology, University of Maryland School Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
673
|
Desmet E, Van Gele M, Lambert J. Topically applied lipid- and surfactant-based nanoparticles in the treatment of skin disorders. Expert Opin Drug Deliv 2016; 14:109-122. [PMID: 27348356 DOI: 10.1080/17425247.2016.1206073] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION In the treatment of dermatological disorders, topical drug administration is a mainstay. However, nanoparticle-based carrier systems could improve and expand the current therapeutic range via localized delivery of active ingredients. Areas covered: This review gives a detailed description of lipid- and surfactant-based drug delivery systems which have been explored for topical drug administration. To guide researchers in their choice of delivery system, an informative decision tree is included. Moreover, this review provides a complete overview of the topical or transdermal drug products, currently on the market or under clinical investigation, delivered via the discussed carriers, in the treatment of skin disorders. Expert opinion: Conventional liposomes are still popular in the domain of topical or transdermal drug delivery and dominate the market landscape. However, several other carriers, such as exosomes and niosomes, are being explored which offer distinct advantages over liposomes and should therefore not be disregarded when selecting a proper drug delivery system.
Collapse
Affiliation(s)
- Eline Desmet
- a Department of Dermatology , Ghent University Hospital , Ghent , Belgium
| | - Mireille Van Gele
- a Department of Dermatology , Ghent University Hospital , Ghent , Belgium
| | - Jo Lambert
- a Department of Dermatology , Ghent University Hospital , Ghent , Belgium
| |
Collapse
|
674
|
Mukherjee S, Patra CR. Therapeutic application of anti-angiogenic nanomaterials in cancers. NANOSCALE 2016; 8:12444-12470. [PMID: 27067119 DOI: 10.1039/c5nr07887c] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing vasculature, plays a vital role in physiological and pathological processes (embryonic development, wound healing, tumor growth and metastasis). The overall balance of angiogenesis inside the human body is maintained by pro- and anti-angiogenic signals. The processes by which drugs inhibit angiogenesis as well as tumor growth are called the anti-angiogenesis technique, a most promising cancer treatment strategy. Over the last couple of decades, scientists have been developing angiogenesis inhibitors for the treatment of cancers. However, conventional anti-angiogenic therapy has several limitations including drug resistance that can create problems for a successful therapeutic strategy. Therefore, a new comprehensive treatment strategy using antiangiogenic agents for the treatment of cancer is urgently needed. Recently researchers have been developing and designing several nanoparticles that show anti-angiogenic properties. These nanomedicines could be useful as an alternative strategy for the treatment of various cancers using anti-angiogenic therapy. In this review article, we critically focus on the potential application of anti-angiogenic nanomaterial and nanoparticle based drug/siRNA/peptide delivery systems in cancer therapeutics. We also discuss the basic and clinical perspectives of anti-angiogenesis therapy, highlighting its importance in tumor angiogenesis, current status and future prospects and challenges.
Collapse
Affiliation(s)
- Sudip Mukherjee
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad - 500007, Telangana, India.
| | | |
Collapse
|
675
|
Aparicio-Blanco J, Martín-Sabroso C, Torres-Suárez AI. In vitro screening of nanomedicines through the blood brain barrier: A critical review. Biomaterials 2016; 103:229-255. [PMID: 27392291 DOI: 10.1016/j.biomaterials.2016.06.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/14/2016] [Accepted: 06/20/2016] [Indexed: 12/16/2022]
Abstract
The blood-brain barrier accounts for the high attrition rate of the treatments of most brain disorders, which therefore remain one of the greatest health-care challenges of the twenty first century. Against this background of hindrance to brain delivery, nanomedicine takes advantage of the assembly at the nanoscale of available biomaterials to provide a delivery platform with potential to raising brain levels of either imaging or therapeutic agents. Nevertheless, to prevent later failure due to ineffective drug levels at the target site, researchers have been endeavoring to develop a battery of in vitro screening procedures that can predict earlier in the drug discovery process the ability of these cutting-edge drug delivery platforms to cross the blood-brain barrier for biomedical purposes. This review provides an in-depth analysis of the currently available in vitro blood-brain barrier models (both cell-based and non-cell-based) with the focus on their suitability for understanding the biological brain distribution of forthcoming nanomedicines. The relationship between experimental factors and underlying physiological assumptions that would ultimately lead to a more predictive capacity of their in vivo performance, and those methods already assayed for the evaluation of the brain distribution of nanomedicines are comprehensively discussed.
Collapse
Affiliation(s)
- Juan Aparicio-Blanco
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Cristina Martín-Sabroso
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain
| | - Ana-Isabel Torres-Suárez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Complutense University, 28040, Madrid, Spain; University Institute of Industrial Pharmacy, Complutense University, 28040, Madrid, Spain.
| |
Collapse
|
676
|
Gao H, Bi Y, Chen J, Peng L, Wen K, Ji P, Ren W, Li X, Zhang N, Gao J, Chai Z, Hu Y. Near-Infrared Light-Triggered Switchable Nanoparticles for Targeted Chemo/Photothermal Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2016; 8:15103-12. [PMID: 27227416 DOI: 10.1021/acsami.6b03905] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Accumulation of nanoparticles in solid tumors depends on their extravasation, but their efficacy is often compromised by intrinsic physiological heterogeneity in tumors. The conventional solutions to circumvent this problem are size control of nanoparticles or increasing the vascular permeability. The aim of this study is to investigate the combination effect of size variation of stimuli-responsive nanoparticles and improved vascular permeability triggered by near-infrared (NIR) light irradiation. Doxorubicin (DOX), a clinically proven drug for bladder cancer, was encapsulated in the nanocomposites with high loading content up to 45%. We show that NIR light-responsive size-switchable nanocarriers could considerably enhance the tumor-targeting of DOX in bladder tumor-bearing mice. Moreover, a combination of NIR-induced hyperthermia and DOX-mediated chemotherapy resulted in remarkable inhibition of tumor growth in mice. Histological results suggest that the change in morphology of tumor microvasculature may account for enhanced extravasation and accumulation of the nanodrugs upon NIR irradiation. Together, these data suggest that external stimuli-responsive drug delivery system offers a safe and effective means of targeted chemo/photothermal therapy.
Collapse
Affiliation(s)
- Hui Gao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou 325035, Zhejiang Province, China
| | - Ying Bi
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou 325035, Zhejiang Province, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Jun Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Lirong Peng
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou 325035, Zhejiang Province, China
| | - Kaikai Wen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| | - Pan Ji
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou 325035, Zhejiang Province, China
| | - Weifeng Ren
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou 325035, Zhejiang Province, China
| | - Xiaoqing Li
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou 325035, Zhejiang Province, China
| | - Ning Zhang
- Research Center of Basic Medical Sciences & Cancer Institute and Hospital, National Clinical Research Center of Cancer, Tianjin Medical University , Tianjin 300070, China
| | - Jimin Gao
- Zhejiang Provincial Key Laboratory for Technology & Application of Model Organisms, School of Laboratory Medicine and Life Science, Wenzhou Medical University , Wenzhou 325035, Zhejiang Province, China
| | - Zhifang Chai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
- School of Radiological and Interdisciplinary Sciences, Soochow University , Suzhou 215123, China
| | - Yi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Multi-disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
677
|
Hirschberg H, Madsen SJ. Cell Mediated Photothermal Therapy of Brain Tumors. J Neuroimmune Pharmacol 2016; 12:99-106. [PMID: 27289473 DOI: 10.1007/s11481-016-9690-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/07/2016] [Indexed: 01/17/2023]
Abstract
Gold based nanoparticles with strong near infra-red (NIR) absorption are ideally suited for photothermal therapy (PTT) of brain tumors. The goal of PTT is to induce rapid heating in tumor tissues while minimizing thermal diffusion to normal brain. PTT efficacy is sensitively dependent on both nanoparticle concentration and distribution in tumor tissues. Nanoparticle delivery via passive approaches such as the enhanced permeability and retention (EPR) effect is unlikely to achieve sufficient nanoparticle concentrations throughout tumor volumes required for effective PTT. A simple approach for improving tumor biodsitribution of nanoparticles is the use of cellular delivery vehicles. Specifically, this review focuses on the use of monocytes/macrophages (Mo/Ma) as gold nanoparticle delivery vectors for PTT of brain tumors. Although the efficacy of this delivery approach has been demonstrated in both in vitro and animal PTT studies, its clinical potential for the treatment of brain tumors remains uncertain.
Collapse
Affiliation(s)
- Henry Hirschberg
- Beckman Laser Institute, University of California, Irvine, CA, 92612, USA
| | - Steen J Madsen
- Department of Health Physics and Diagnostic Sciences, University of Nevada, Las Vegas, NV, 89154, USA.
| |
Collapse
|
678
|
Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioeng Transl Med 2016; 1:10-29. [PMID: 29313004 PMCID: PMC5689513 DOI: 10.1002/btm2.10003] [Citation(s) in RCA: 804] [Impact Index Per Article: 100.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 02/25/2016] [Indexed: 12/15/2022] Open
Abstract
Nanoparticle/microparticle-based drug delivery systems for systemic (i.e., intravenous) applications have significant advantages over their nonformulated and free drug counterparts. For example, nanoparticle systems are capable of delivering therapeutics and treating areas of the body that other delivery systems cannot reach. As such, nanoparticle drug delivery and imaging systems are one of the most investigated systems in preclinical and clinical settings. Here, we will highlight the diversity of nanoparticle types, the key advantages these systems have over their free drug counterparts, and discuss their overall potential in influencing clinical care. In particular, we will focus on current clinical trials for nanoparticle formulations that have yet to be clinically approved. Additional emphasis will be on clinically approved nanoparticle systems, both for their currently approved indications and their use in active clinical trials. Finally, we will discuss many of the often overlooked biological, technological, and study design challenges that impact the clinical success of nanoparticle delivery systems.
Collapse
Affiliation(s)
- Aaron C Anselmo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology Cambridge MA 02139
| | - Samir Mitragotri
- Dept. of Chemical Engineering, Center for Bioengineering University of California Santa Barbara CA 93106
| |
Collapse
|
679
|
Katti KV. Renaissance of nuclear medicine through green nanotechnology: functionalized radioactive gold nanoparticles in cancer therapy—my journey from chemistry to saving human lives. J Radioanal Nucl Chem 2016. [DOI: 10.1007/s10967-016-4888-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
680
|
Chariou PL, Lee KL, Pokorski JK, Saidel GM, Steinmetz NF. Diffusion and Uptake of Tobacco Mosaic Virus as Therapeutic Carrier in Tumor Tissue: Effect of Nanoparticle Aspect Ratio. J Phys Chem B 2016; 120:6120-9. [PMID: 27045770 DOI: 10.1021/acs.jpcb.6b02163] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nanoparticle-based technologies, including platforms derived from plant viruses, hold great promise for targeting and delivering cancer therapeutics to solid tumors by overcoming dose-limiting toxicities associated with chemotherapies. A growing body of data indicates advantageous margination and penetration properties of high aspect-ratio nanoparticles, which enhance payload delivery, resulting in increased efficacy. Our lab has demonstrated that elongated rod-shaped and filamentous macromolecular nucleoprotein assemblies from plant viruses have higher tissue diffusion rates than spherical particles. In this study, we developed a mathematical model to quantify diffusion and uptake of tobacco mosaic virus (TMV) in a spheroid system approximating a capillary-free segment of a solid tumor. Model simulations predict TMV concentration distribution with time in a tumor spheroid for different sizes and cell densities. From simulations of TMV concentration distribution, we can quantify the effect of TMV aspect ratio (e.g., nanorod length-to-width) with and without cellular uptake by modulated surface chemistry. This theoretical analysis can be applied to other viral or nonviral delivery systems to complement the experimental development of the next generation of nanotherapeutics.
Collapse
Affiliation(s)
- Paul L Chariou
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering , Cleveland, Ohio 44106, United States
| | - Karin L Lee
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering , Cleveland, Ohio 44106, United States
| | - Jonathan K Pokorski
- Department of Radiology, Case Western Reserve University School of Engineering , Cleveland, Ohio 44106, United States
| | - Gerald M Saidel
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering , Cleveland, Ohio 44106, United States
| | - Nicole F Steinmetz
- Department of Biomedical Engineering, Case Western Reserve University Schools of Medicine and Engineering , Cleveland, Ohio 44106, United States.,Department of Radiology, Case Western Reserve University School of Engineering , Cleveland, Ohio 44106, United States.,Department of Materials Science and Engineering, Case Western Reserve University School of Engineering , Cleveland, Ohio 44106, United States.,Department of Macromolecular Science and Engineering, Case Western Reserve University School of Engineering , Cleveland, Ohio 44106, United States.,Department of Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine , Cleveland, Ohio 44106, United States
| |
Collapse
|
681
|
Rehberg M, Nekolla K, Sellner S, Praetner M, Mildner K, Zeuschner D, Krombach F. Intercellular Transport of Nanomaterials is Mediated by Membrane Nanotubes In Vivo. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:1882-1890. [PMID: 26854197 DOI: 10.1002/smll.201503606] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 12/22/2015] [Indexed: 06/05/2023]
Abstract
So-called membrane nanotubes are cellular protrusions between cells whose functions include cell communication, environmental sampling, and protein transfer. It has been previously reported that systemically administered carboxyl-modified quantum dots (cQDs) are rapidly taken up by perivascular macrophages in skeletal muscle of healthy mice. Expanding these studies, it is found, by means of in vivo fluorescence microscopy on the mouse cremaster muscle, rapid uptake of cQDs not only by perivascular macrophages but also by tissue-resident cells, which are localized more than 100 μm distant from the closest vessel. Confocal microscopy on muscle tissue, immunostained for the membrane dye DiI, reveals the presence of continuous membranous structures between MHC-II-positive, F4/80-positive cells. These structures contain microtubules, components of the cytoskeleton, which clearly colocalize with cQDs. The cQDs are exclusively found inside endosomal vesicles. Most importantly, by using in vivo fluorescence microscopy, this study detected fast (0.8 μm s(-1) , mean velocity), bidirectional movement of cQDs in such structures, indicating transport of cQD-containing vesicles along microtubule tracks by the action of molecular motors. The findings are the first to demonstrate membrane nanotube function in vivo and they suggest a previously unknown route for the distribution of nanomaterials in tissue.
Collapse
Affiliation(s)
- Markus Rehberg
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Katharina Nekolla
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sabine Sellner
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Marc Praetner
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Fritz Krombach
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
682
|
Benoit DSW, Koo H. Targeted, triggered drug delivery to tumor and biofilm microenvironments. Nanomedicine (Lond) 2016; 11:873-9. [DOI: 10.2217/nnm-2016-0014] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Danielle SW Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Hyun Koo
- Biofilm Research Lab, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthodontics & Divisions of Pediatric Dentistry & Community Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
683
|
|
684
|
Zhong Y, Goltsche K, Cheng L, Xie F, Meng F, Deng C, Zhong Z, Haag R. Hyaluronic acid-shelled acid-activatable paclitaxel prodrug micelles effectively target and treat CD44-overexpressing human breast tumor xenografts in vivo. Biomaterials 2016; 84:250-261. [DOI: 10.1016/j.biomaterials.2016.01.049] [Citation(s) in RCA: 237] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/21/2016] [Accepted: 01/21/2016] [Indexed: 02/06/2023]
|
685
|
Fasehee H, Zarrinrad G, Tavangar SM, Ghaffari SH, Faghihi S. The inhibitory effect of disulfiram encapsulated PLGA NPs on tumor growth: Different administration routes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:587-95. [PMID: 27040254 DOI: 10.1016/j.msec.2016.03.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/19/2016] [Accepted: 03/07/2016] [Indexed: 01/15/2023]
Abstract
The strong anticancer activity of disulfiram is hindered by its rapid degradation in blood system. A novel folate-receptor-targeted poly (lactide-co-glycolide) (PLGA)-polyethylene glycol (PEG) nanoparticle (NP) is developed for encapsulation and delivery of disulfiram into breast cancer tumor using passive (EPR effect) and active (folate receptor) targeting. The anticancer activity of disulfiram and its effect on caspase-3 activity and cell cycle are studied. The administration of encapsulated PLGA NPs using intra-peritoneal, intravenous and intra-tumor routes is investigated using animal model. Disulfiram shows strong cytotoxicity against MCF7 cell line. The activity of caspase-3 inhibited with disulfiram via dose dependent manner while the drug causes cell cycle arrest in G0/G1 and S phase time-dependently. The encapsulated disulfiram shows higher activity in apoptosis induction as compared to free drug. In nontoxic dose of encapsulated disulfiram, the highest and lowest efficacy of NPs in tumor growth inhibition is observed for intravenous injection and intraperitoneal injection. It is suggested that administration of disulfiram by targeted PLGA nanoparticles using intravenous injection would present an alternative therapeutic approach for solid tumor treatment.
Collapse
Affiliation(s)
- Hamidreza Fasehee
- Tissue engineering and biomaterials Research Center, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran
| | - Ghazaleh Zarrinrad
- Hematology, Oncology and Stem cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Science, Tehran, Iran
| | - Seyed Mohammad Tavangar
- Department of Pathology, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hamidollah Ghaffari
- Hematology, Oncology and Stem cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Science, Tehran, Iran.
| | - Shahab Faghihi
- Tissue engineering and biomaterials Research Center, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran 14965/161, Iran.
| |
Collapse
|
686
|
Layek B, Sadhukha T, Prabha S. Glycoengineered mesenchymal stem cells as an enabling platform for two-step targeting of solid tumors. Biomaterials 2016; 88:97-109. [PMID: 26946263 DOI: 10.1016/j.biomaterials.2016.02.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 12/26/2022]
Abstract
Current tumor targeted drug and diagnostic delivery systems suffer from a lack of selectivity for tumor cells. Here, we propose a two-step tumor targeting strategy based on mesenchymal stem cells (MSCs), which actively traffic to tumors. We developed glycoengineering protocols to induce expression of non-natural azide groups on the surface of MSCs without affecting their viability or tumor homing properties. Glycoengineered MSCs demonstrated active tumor homing in subcutaneous and orthotopic lung and ovarian tumor models. Subsequent systemic administration of dibenzyl cyclooctyne (DBCO)-labeled fluorophores or nanoparticles to MSC pretreated mice resulted in enhanced tumor accumulation of these agents through bio-orthogonal copper-free click chemistry. Further, administration of glycoengineered MSCs along with paclitaxel-loaded DBCO-functionalized nanoparticles resulted in significant (p < 0.05) inhibition of tumor growth and improved survival (p < 0.0001) in an orthotopic metastatic ovarian tumor model. These results provide evidence for the potential of MSC-based two-step targeting strategy to improve the tumor specificity of diagnostic agents and drugs, and thus potentially improve the treatment outcomes for patients diagnosed with cancer.
Collapse
Affiliation(s)
- Buddhadev Layek
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Tanmoy Sadhukha
- Albany Medical Research Inc., 21 Corporate Circle, Albany, NY 12203, USA
| | - Swayam Prabha
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, USA; Center for Translational Drug Delivery, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
687
|
Margineanu MB, Julfakyan K, Sommer C, Perez JE, Contreras MF, Khashab N, Kosel J, Ravasi T. Semi-automated quantification of living cells with internalized nanostructures. J Nanobiotechnology 2016; 14:4. [PMID: 26768888 PMCID: PMC4714438 DOI: 10.1186/s12951-015-0153-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/17/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Nanostructures fabricated by different methods have become increasingly important for various applications in biology and medicine, such as agents for medical imaging or cancer therapy. In order to understand their interaction with living cells and their internalization kinetics, several attempts have been made in tagging them. Although methods have been developed to measure the number of nanostructures internalized by the cells, there are only few approaches aimed to measure the number of cells that internalize the nanostructures, and they are usually limited to fixed-cell studies. Flow cytometry can be used for live-cell assays on large populations of cells, however it is a single time point measurement, and does not include any information about cell morphology. To date many of the observations made on internalization events are limited to few time points and cells. RESULTS In this study, we present a method for quantifying cells with internalized magnetic nanowires (NWs). A machine learning-based computational framework, CellCognition, is adapted and used to classify cells with internalized and no internalized NWs, labeled with the fluorogenic pH-dependent dye pHrodo™ Red, and subsequently to determine the percentage of cells with internalized NWs at different time points. In a "proof-of-concept", we performed a study on human colon carcinoma HCT 116 cells and human epithelial cervical cancer HeLa cells interacting with iron (Fe) and nickel (Ni) NWs. CONCLUSIONS This study reports a novel method for the quantification of cells that internalize a specific type of nanostructures. This approach is suitable for high-throughput and real-time data analysis and has the potential to be used to study the interaction of different types of nanostructures in live-cell assays.
Collapse
Affiliation(s)
- Michael Bogdan Margineanu
- Division of Biological and Environmental Sciences and Engineering, KAUST Environmental Epigenetic Program (KEEP), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Kingdom of Saudi Arabia. .,Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Khachatur Julfakyan
- Division of Physical Science and Engineering, Smart Hybrid Materials Laboratory (SHMs), King Abdullah University of Science and Technology,, Thuwal, Kingdom of Saudi Arabia.
| | - Christoph Sommer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3, Vienna, 1030, Austria.
| | - Jose Efrain Perez
- Division of Biological and Environmental Sciences and Engineering, KAUST Environmental Epigenetic Program (KEEP), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Kingdom of Saudi Arabia. .,Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Maria Fernanda Contreras
- Division of Biological and Environmental Sciences and Engineering, KAUST Environmental Epigenetic Program (KEEP), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Kingdom of Saudi Arabia.
| | - Niveen Khashab
- Division of Physical Science and Engineering, Smart Hybrid Materials Laboratory (SHMs), King Abdullah University of Science and Technology,, Thuwal, Kingdom of Saudi Arabia.
| | - Jürgen Kosel
- Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | - Timothy Ravasi
- Division of Biological and Environmental Sciences and Engineering, KAUST Environmental Epigenetic Program (KEEP), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Kingdom of Saudi Arabia. .,Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
688
|
Jastrzębska E, Bazylińska U, Bułka M, Tokarska K, Chudy M, Dybko A, Wilk KA, Brzózka Z. Microfluidic platform for photodynamic therapy cytotoxicity analysis of nanoencapsulated indocyanine-type photosensitizers. BIOMICROFLUIDICS 2016; 10:014116. [PMID: 26909122 PMCID: PMC4752532 DOI: 10.1063/1.4941681] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/27/2016] [Indexed: 05/12/2023]
Abstract
The application of nanotechnology is important to improve research and development of alternative anticancer therapies. In order to accelerate research related to cancer diagnosis and to improve the effectiveness of cancer treatment, various nanomaterials are being tested. The main objective of this work was basic research focused on examination of the mechanism and effectiveness of the introduction of nanoencapsulated photosensitizers to human carcinoma (A549) and normal cells (MRC-5). Newly encapsulated hydrophobic indocyanine-type photosensitizer (i.e., IR-780) was subjected to in vitro studies to determine its release characteristics on a molecular level. The photosensitizers were delivered to carcinoma and normal cells cultured under model conditions using multiwell plates and with the use of the specially designed hybrid (poly(dimethylsiloxane) (PDMS)/glass) microfluidic system. The specific geometry of our microsystem allows for the examination of intercellular interactions between cells cultured in the microchambers connected with microchannels of precisely defined length. Our microsystem allows investigating various therapeutic procedures (e.g., photodynamic therapy) on monoculture, coculture, and mixed culture, simultaneously, which is very difficult to perform using standard multiwell plates. In addition, we tested the cellular internalization of nanoparticles (differing in size, surface properties) in carcinoma and normal lung cells. We proved that cellular uptake of nanocapsules loaded with cyanine IR-780 in carcinoma cells was more significant than in normal cells. We demonstrated non cytotoxic effect of newly synthesized nanocapsules built with polyelectrolytes (PEs) of opposite surface charges: polyanion-polysodium-4-styrenesulphonate and polycation-poly(diallyldimethyl-ammonium) chloride loaded with cyanine IR-780 on human lung carcinoma and normal cell lines. However, the differences observed in the photocytotoxic effect between two types of tested nanocapsules can result from the type of last PE layer and their different surface charge.
Collapse
Affiliation(s)
- Elżbieta Jastrzębska
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| | - Urszula Bazylińska
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Technology , Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Magdalena Bułka
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| | - Katarzyna Tokarska
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| | - Michał Chudy
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| | - Artur Dybko
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| | - Kazimiera Anna Wilk
- Department of Organic and Pharmaceutical Technology, Faculty of Chemistry, Wroclaw University of Technology , Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Zbigniew Brzózka
- Institute of Biotechnology, Department of Microbioanalytics, Faculty of Chemistry, Warsaw University of Technology , Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
689
|
Gutierrez JA, Cruz J, Rondón P, Jones N, Ortiz C. Small gold nanocomposites obtained in reverse micelles as nanoreactors. Effect of surfactant, optical properties and activity against Pseudomonas aeruginosa. NEW J CHEM 2016. [DOI: 10.1039/c6nj02259f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
High antibacterial convergence of an antimicrobial synthetic peptide and small gold nanoparticles against Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Jorge A. Gutierrez
- Escuela de Química
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - Jenniffer Cruz
- Escuela de Química
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - Paola Rondón
- Escuela de Química
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - Nathalia Jones
- Escuela de Microbiología
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| | - Claudia Ortiz
- Escuela de Microbiología
- Universidad Industrial de Santander
- Bucaramanga
- Colombia
| |
Collapse
|
690
|
Vij M, Natarajan P, Pattnaik BR, Alam S, Gupta N, Santhiya D, Sharma R, Singh A, Ansari KM, Gokhale RS, Natarajan VT, Ganguli M. Non-invasive topical delivery of plasmid DNA to the skin using a peptide carrier. J Control Release 2016; 222:159-68. [DOI: 10.1016/j.jconrel.2015.12.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 11/25/2015] [Accepted: 12/12/2015] [Indexed: 01/18/2023]
|
691
|
Staegemann MH, Gräfe S, Haag R, Wiehe A. A toolset of functionalized porphyrins with different linker strategies for application in bioconjugation. Org Biomol Chem 2016; 14:9114-9132. [DOI: 10.1039/c6ob01551d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Polar, functionalized A3B-porphyrins are conjugated to hyperbranched polyglycerol (hPG) as an example of a biocompatible carrier system for photodynamic therapy.
Collapse
Affiliation(s)
- M. H. Staegemann
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Biolitec research GmbH
| | - S. Gräfe
- Biolitec research GmbH
- 07745 Jena
- Germany
| | - R. Haag
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
| | - A. Wiehe
- Institut für Chemie und Biochemie
- Freie Universität Berlin
- 14195 Berlin
- Germany
- Biolitec research GmbH
| |
Collapse
|
692
|
Hitchhiking nanoparticles: Reversible coupling of lipid-based nanoparticles to cytotoxic T lymphocytes. Biomaterials 2016; 77:243-54. [DOI: 10.1016/j.biomaterials.2015.11.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 11/06/2015] [Indexed: 12/20/2022]
|
693
|
Visaveliya N, Köhler JM. Microfluidic Assisted Synthesis of Multipurpose Polymer Nanoassembly Particles for Fluorescence, LSPR, and SERS Activities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:6435-6443. [PMID: 26514575 DOI: 10.1002/smll.201502364] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/25/2015] [Indexed: 06/05/2023]
Abstract
Potential biomedical applications such as controlled delivery with sustained drug release profile demand for multifunctional polymeric particles of precise chemical composition and with welldefined physicochemical properties. The real challenge is to obtain the reproducible and homogeneous nanoparticles in a minimum number of preparation steps. Here, single-step nanoarchitectures of soft surface layered copolymer nanoparticles with a regular tuning in the size via micro flow-through assisted synthesis are reported. Interfacial copolymerization induces the controlled compartmentalization where a hydrophobic core adopts spherical shape in order to minimize the surface energy and simultaneously shelter in the hydrophilic shelllike surface layer. Surface layer can swell in the aqueous medium and allow controlled entrapping of functional hydrophobic nanoparticles in the hydrophilic interior via electrostatic interaction which can be particularly interesting for combined fluorescence activity. Furthermore, the nanoarchitecture of size and concentration controlled polymer-metal nanoassembly particles can be implemented as an ideal surface-enhanced Raman scattering substrate for detection of the trace amounts of various analytes.
Collapse
Affiliation(s)
- Nikunjkumar Visaveliya
- Department of Physical Chemistry and Microreaction Technology, Technical University of Ilmenau, Weimarer Strasse 32, 98693, Ilmenau, Germany
| | - J Michael Köhler
- Department of Physical Chemistry and Microreaction Technology, Technical University of Ilmenau, Weimarer Strasse 32, 98693, Ilmenau, Germany
| |
Collapse
|
694
|
The Dichotomy of Tumor Exosomes (TEX) in Cancer Immunity: Is It All in the ConTEXt? Vaccines (Basel) 2015; 3:1019-51. [PMID: 26694473 PMCID: PMC4693230 DOI: 10.3390/vaccines3041019] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/24/2015] [Accepted: 12/05/2015] [Indexed: 02/06/2023] Open
Abstract
Exosomes are virus-sized nanoparticles (30–130 nm) formed intracellularly as intravesicular bodies/intralumenal vesicles within maturing endosomes (“multivesicular bodies”, MVBs). If MVBs fuse with the cell’s plasma membrane, the interior vesicles may be released extracellularly, and are termed “exosomes”. The protein cargo of exosomes consists of cytosolic, membrane, and extracellular proteins, along with membrane-derived lipids, and an extraordinary variety of nucleic acids. As such, exosomes reflect the status and identity of the parent cell, and are considered as tiny cellular surrogates. Because of this closely entwined relationship between exosome content and the source/status of the parental cell, conceivably exosomes could be used as vaccines against various pathologies, as they contain antigens associated with a given disease, e.g., cancer. Tumor-derived exosomes (TEX) have been shown to be potent anticancer vaccines in animal models, driving antigen-specific T and B cell responses, but much recent literature concerning TEX strongly places the vesicles as powerfully immunosuppressive. This dichotomy suggests that the context in which the immune system encounters TEX is critical in determining immune stimulation versus immunosuppression. Here, we review literature on both sides of this immune coin, and suggest that it may be time to revisit the concept of TEX as anticancer vaccines in clinical settings.
Collapse
|
695
|
Zhang L, Liu F, Li G, Zhou Y, Yang Y. Twin-Arginine Translocation Peptide Conjugated Epirubicin-Loaded Nanoparticles for Enhanced Tumor Penetrating and Targeting. J Pharm Sci 2015; 104:4185-4196. [DOI: 10.1002/jps.24649] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 12/27/2022]
|
696
|
Tumor-specific penetrating peptides-functionalized hyaluronic acid- d -α-tocopheryl succinate based nanoparticles for multi-task delivery to invasive cancers. Biomaterials 2015; 71:11-23. [DOI: 10.1016/j.biomaterials.2015.08.035] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 08/15/2015] [Accepted: 08/18/2015] [Indexed: 12/12/2022]
|
697
|
Reyes-Esparza J, Martínez-Mena A, Gutiérrez-Sancha I, Rodríguez-Fragoso P, de la Cruz GG, Mondragón R, Rodríguez-Fragoso L. Synthesis, characterization and biocompatibility of cadmium sulfide nanoparticles capped with dextrin for in vivo and in vitro imaging application. J Nanobiotechnology 2015; 13:83. [PMID: 26577398 PMCID: PMC4650400 DOI: 10.1186/s12951-015-0145-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/04/2015] [Indexed: 02/04/2023] Open
Abstract
Background The safe use in biomedicine of semiconductor nanoparticles, also known as quantum dots (QDs), requires a detailed understanding of the biocompatibility and toxicity of QDs in human beings. The biological characteristics and physicochemical properties of QDs entail new challenges regarding the management of potential adverse health effects following exposure. At certain concentrations, the synthesis of semiconductor nanoparticles of CdS using dextrin as capping agent, at certain concentration, to reduce their toxicity and improves their biocompatibility. Results This study successfully synthesized and characterized biocompatible dextrin-coated cadmium sulfide nanoparticles (CdS-Dx/QDs). The results show that CdS-Dx/QDs are cytotoxic at high concentrations (>2 μg/mL) in HepG2 and HEK293 cells. At low concentrations (<1 μg/mL), CdS-Dx/QDs were not toxic to HepG2 or HeLa cells. CdS-Dx nanoparticles only induced cell death by apoptosis in HEK293 cells at 1 μg/mL concentrations. The in vitro results showed that the cells efficiently took up the CdS-Dx/QDs and this resulted in strong fluorescence. The subcellular localization of CdS-Dx/QDs were usually small and apparently unique in the cytoplasm in HeLa cells but, in the case of HEK293 cells it were more abundant and found in cytoplasm and the nucleus. Animals treated with 100 μg/kg of CdS-Dx/QDs and sacrificed at 3, 7 and 18 h showed a differential distribution in their organs. Intense fluorescence was detected in lung and kidney, with moderate fluorescence detected in liver, spleen and brain. The biocompatibility and toxicity of CdS-Dx/QDs in animals treated daily with 100 μg/kg for 1 week showed the highest level of fluorescence in kidney, liver and brain. Less fluorescence was detected in lung and spleen. There was also evident presence of fluorescence in testis. The histopathological and biochemical analyses showed that CdS-Dx/QDs were non-toxic for rodents. Conclusions The in vitro and in vivo studies confirmed the effective cellular uptake and even distribution pattern of CdS-Dx/QDs in tissues. CdS-Dx/QDs were biocompatible with tissues from rodents. The CdS-Dx/QDs used in this study can be potentially used in bio-imaging applications.
Collapse
Affiliation(s)
- Jorge Reyes-Esparza
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, 62210, Mexico.
| | - Alberto Martínez-Mena
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, 62210, Mexico.
| | - Ivonne Gutiérrez-Sancha
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, 62210, Mexico.
| | | | | | - R Mondragón
- Departamento de Bioquímica, CINVESTAV-I.P.N., Apartado Postal 14-740, 07000, Mexico, D.F., Mexico.
| | | |
Collapse
|
698
|
Li J, Ke W, Li H, Zha Z, Han Y, Ge Z. Endogenous stimuli-sensitive multistage polymeric micelleplex anticancer drug delivery system for efficient tumor penetration and cellular internalization. Adv Healthc Mater 2015; 4:2206-19. [PMID: 26346421 DOI: 10.1002/adhm.201500379] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/30/2015] [Indexed: 12/21/2022]
Abstract
To efficiently deliver anticancer drugs to the entire tumor tissue and cancer cells, an endogenous stimuli-sensitive multistage polymeric micelleplex drug delivery system is developed via electrostatic complexation between poly(ethylene glycol)-block-poly[(N'-dimethylmaleoyl-2-aminoethyl)aspartamide]-block-poly(ε-caprolactone) (PEG-b-PAsp(EDA-DM)-b-PCL) triblock copolymer micelles and cisplatin prodrug (Pt(IV))-conjugated cationic poly(amidoamine) dendrimers (PAMAM-Pt(IV)). The micelleplexes maintain structural stability at pH 7.4 ensuring long blood circulation and high tumor accumulation level, while they exhibit triggered release of secondary PAMAM-Pt(IV) dendrimer nanocarriers at tumoral acidity (≈pH 6.8) due to acid-labile charge-reversal properties of PAsp(EDA-DM) component under mildly acidic condition. The released PAMAM delivery nanocarriers with small size and slightly positive charges exhibit significantly deep tumor tissue penetration and efficient cellular internalization, followed by release of active cisplatin anticancer drug in intracellular reducing medium. In vivo investigation reveals that the Pt(IV)-loading micelleplexes significantly suppress tumor growth via intravenous injection due to synergistic effect of long circulation in bloodstream, high tumor accumulation, deep tumor tissue penetration, and efficient cellular internalization. Thus, the micelleplexes with stimuli-responsive multistage release feature show great potentials for better therapeutic efficacy of cancer especially through enhanced tumor penetration and cellular internalization.
Collapse
Affiliation(s)
- Junjie Li
- Key Laboratory of Soft Matter Chemistry; Chinese Academy of Sciences; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Wendong Ke
- Key Laboratory of Soft Matter Chemistry; Chinese Academy of Sciences; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Hui Li
- Key Laboratory of Soft Matter Chemistry; Chinese Academy of Sciences; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Zengshi Zha
- Key Laboratory of Soft Matter Chemistry; Chinese Academy of Sciences; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Yu Han
- Key Laboratory of Soft Matter Chemistry; Chinese Academy of Sciences; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| | - Zhishen Ge
- Key Laboratory of Soft Matter Chemistry; Chinese Academy of Sciences; Department of Polymer Science and Engineering; University of Science and Technology of China; Hefei Anhui 230026 China
| |
Collapse
|
699
|
Abstract
RNAi technology is currently experiencing a revival due to remarkable improvements in efficacy and viability through oligonucleotide chemical manipulations and/or via their packaging into nanoscale carriers. At present, there is no FDA-approved system for siRNA technology in humans. The design of the next generation of siRNA carriers requires a deep understanding of how a nanoparticle's physicochemical properties truly impart biological stability and efficiency. For example, we now know that nanoparticles need to be sterically stabilized in order to meet adequate biodistribution profiles. At present, targeting, uptake, and, in particular, endosomal escape are among the most critical challenges impairing RNAi technologies. The disruption of endosomes encompasses membrane transformations (for example, pore formation) that cost significant elastic energy. Nanoparticle size and shape have been identified as relevant parameters impacting tissue accumulation and cellular uptake. In this paper, we demonstrate that the internal structure of lipid-based particles offers a different handle to promote endosomal membrane topological disruptions that enhance siRNA delivery. Specifically, we designed sterically stabilized lipid-based particles that differ from traditional liposomal systems by displaying highly ordered bicontinuous cubic internal structures that can be loaded with large amounts of siRNA. This system differs from traditional siRNA-containing liposomes (lipoplexes) as the particle-endosomal membrane interactions are controlled by elasticity energetics and not by electrostatics. The resulting "PEGylated cuboplex" has the ability to deliver siRNA and specifically knockdown genes with efficiencies that surpass those achieved by traditional lipoplex systems.
Collapse
Affiliation(s)
- Hojun Kim
- Materials Science and Engineering Department, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| | - Cecilia Leal
- Materials Science and Engineering Department, University of Illinois at Urbana-Champaign , 1304 West Green Street, Urbana, Illinois 61801, United States
| |
Collapse
|
700
|
Alpaslan E, Yazici H, Golshan NH, Ziemer KS, Webster TJ. pH-Dependent Activity of Dextran-Coated Cerium Oxide Nanoparticles on Prohibiting Osteosarcoma Cell Proliferation. ACS Biomater Sci Eng 2015; 1:1096-1103. [PMID: 33429551 DOI: 10.1021/acsbiomaterials.5b00194] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cerium oxide nanoparticles (or nanoceria) have demonstrated great potential as antioxidants in various cell culture models. Despite such promise for reducing reactive oxygen species and an ability for surface functionalization, nanoceria has not been extensively studied for cancer applications to date. Herein, we engineered the surface of nanoceria with dextran and observed its activity in the presence bone cancer cells (osteosarcoma cells) at different pH values resembling the cancerous and noncancerous environment. We found that dextran coated nanoceria was much more effective at killing bone cancer cells at slightly acidic (pH 6) compared to physiological and basic pH values (pH 7 and pH 9). In contrast, minimal toxicity was observed for healthy (noncancerous) bone cells when cultured with nanoceria at pH = 6 after 1 day of treatment in the concentration range of 10-1000 μg/mL. Although healthy bone cancer cell viability decreased after treatment with high ceria nanoparticle concentrations (250-1000 μg/mL) for longer time periods at pH 6 (3 days and 5 days), approximately 2-3 fold higher healthy bone cell viabilities were observed compared to osteosarcoma cell viability at similar conditions. Very low toxicity was observed for healthy osteoblasts cultured with nanoceria for any concentration at any time period at pH 7. In this manner, this study provides the first evidence that nanoceria can be a promising nanoparticle for treating bone cancer without adversely affecting healthy bone cells and thus deserves further investigation.
Collapse
Affiliation(s)
- Ece Alpaslan
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Hilal Yazici
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Negar H Golshan
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Katherine S Ziemer
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States.,Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|