651
|
Hager J, Staker BL, Bugl H, Jakob U. Active site in RrmJ, a heat shock-induced methyltransferase. J Biol Chem 2002; 277:41978-86. [PMID: 12181314 DOI: 10.1074/jbc.m205423200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heat shock protein RrmJ (FtsJ), highly conserved from eubacteria to eukarya, is responsible for the 2'-O-ribose methylation of the universally conserved base U2552 in the A-loop of the 23 S rRNA. Absence of this methylation, which occurs late in the maturation process of the ribosome, appears to cause the destabilization and premature dissociation of the 50 S ribosomal subunit. To understand the mechanism of 2'-O-ribose methyltransfer reactions, we characterized the enzymatic parameters of RrmJ and conducted site-specific mutagenesis of RrmJ. A structure based sequence alignment with VP39, a structurally related 2'-O-methyltransferase from vaccinia virus, guided our mutagenesis studies. We analyzed the function of our RrmJ mutants in vivo and characterized the methyltransfer reaction of the purified proteins in vitro. The active site of RrmJ appears to be formed by a catalytic triad consisting of two lysine residues, Lys-38 and Lys-164, and the negatively charged residue Asp-124. Another highly conserved residue, Glu-199, that is present in the active site of RrmJ and VP39 appears to play only a minor role in the methyltransfer reaction in vivo. Based on these results, a reaction mechanism for the methyltransfer activity of RrmJ is proposed.
Collapse
Affiliation(s)
- Jutta Hager
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor 48109-1048, USA
| | | | | | | |
Collapse
|
652
|
Kofoed CB, Vester B. Interaction of avilamycin with ribosomes and resistance caused by mutations in 23S rRNA. Antimicrob Agents Chemother 2002; 46:3339-42. [PMID: 12384333 PMCID: PMC128742 DOI: 10.1128/aac.46.11.3339-3342.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The antibiotic growth promoter avilamycin inhibits protein synthesis by binding to bacterial ribosomes. Here the binding site is further characterized on Escherichia coli ribosomes. The drug interacts with domain V of 23S rRNA, giving a chemical footprint at nucleotides A2482 and A2534. Selection of avilamycin-resistant Halobacterium halobium cells revealed mutations in helix 89 of 23S rRNA. Furthermore, mutations in helices 89 and 91, which have previously been shown to confer resistance to evernimicin, give cross-resistance to avilamycin. These data place the binding site of avilamycin on 23S rRNA close to the elbow of A-site tRNA. It is inferred that avilamycin interacts with the ribosomes at the ribosomal A-site interfering with initiation factor IF2 and tRNA binding in a manner similar to evernimicin.
Collapse
Affiliation(s)
- Christine B Kofoed
- Institute of Molecular Biology, University of Copenhagen, DK-1307 Copenhagen K, Denmark
| | | |
Collapse
|
653
|
Raibaud S, Lebars I, Guillier M, Chiaruttini C, Bontems F, Rak A, Garber M, Allemand F, Springer M, Dardel F. NMR structure of bacterial ribosomal protein l20: implications for ribosome assembly and translational control. J Mol Biol 2002; 323:143-51. [PMID: 12368106 DOI: 10.1016/s0022-2836(02)00921-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
L20 is a specific protein of the bacterial ribosome, which is involved in the early assembly steps of the 50S subunit and in the feedback control of the expression of its own gene. This dual function involves specific interactions with either the 23S rRNA or its messenger RNA. The solution structure of the free Aquifex aeolicus L20 has been solved. It is composed of an unstructured N-terminal domain comprising residues 1-58 and a C-terminal alpha-helical domain. This is in contrast with what is observed in the bacterial 50S subunit, where the N-terminal region folds as an elongated alpha-helical region. The solution structure of the C-terminal domain shows that several solvent-accessible, conserved residues are clustered on the surface of the molecule and are probably involved in RNA recognition. In vivo studies show that this domain is sufficient to repress the expression of the cistrons encoding L35 and L20 in the IF3 operon. The ability of L20 C-terminal domain to specifically recognise RNA suggests an assembly mechanism for L20 into the ribosome. The pre-folded C-terminal domain would make a primary interaction with a specific site on the 23S rRNA. The N-terminal domain would then fold within the ribosome, participating in its correct 3D assembly.
Collapse
Affiliation(s)
- Sophie Raibaud
- Cristallographie et RMN Biologiques, UMR 8015 CNRS, Faculté de Pharmacie, 4 avenue de l'Observatoire, 75006 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
654
|
Lancaster L, Kiel MC, Kaji A, Noller HF. Orientation of ribosome recycling factor in the ribosome from directed hydroxyl radical probing. Cell 2002; 111:129-40. [PMID: 12372306 DOI: 10.1016/s0092-8674(02)00938-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ribosome recycling factor (RRF) disassembles posttermination complexes in conjunction with elongation factor EF-G, liberating ribosomes for further rounds of translation. The striking resemblance of its L-shaped structure to that of tRNA has suggested that the mode of action of RRF may be based on mimicry of tRNA. Directed hydroxyl radical probing of 16S and 23S rRNA from Fe(II) tethered to ten positions on the surface of E. coli RRF constrains it to a well-defined location in the subunit interface cavity. Surprisingly, the orientation of RRF in the ribosome differs markedly from any of those previously observed for tRNA, suggesting that structural mimicry does not necessarily reflect functional mimicry.
Collapse
Affiliation(s)
- Laura Lancaster
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
655
|
Maisnier-Patin S, Berg OG, Liljas L, Andersson DI. Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium. Mol Microbiol 2002; 46:355-66. [PMID: 12406214 DOI: 10.1046/j.1365-2958.2002.03173.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most chromosomal mutations that cause antibiotic resistance impose fitness costs on the bacteria. This biological cost can often be reduced by compensatory mutations. In Salmonella typhimurium, the nucleotide substitution AAA42 --> AAC in the rpsL gene confers resistance to streptomycin. The resulting amino acid substitution (K42N) in ribosomal protein S12 causes an increased rate of ribosomal proofreading and, as a result, the rate of protein synthesis, bacterial growth and virulence are decreased. Eighty-one independent lineages of the low-fitness, K42N mutant were evolved in the absence of antibiotic to ameliorate the costs. From the rate of fixation of compensated mutants and their fitness, the rate of compensatory mutations was estimated to be > or = 10-7 per cell per generation. The size of the population bottleneck during evolution affected fitness of the adapted mutants: a larger bottleneck resulted in higher average fitness. Only four of the evolved lineages contained streptomycin-sensitive revertants. The remaining 77 lineages contained mutants that were still fully streptomycin resistant, had retained the original resistance mutation and also acquired compensatory mutations. Most of the compensatory mutations, resulting in at least 35 different amino acid substitutions, were novel single-nucleotide substitutions in the rpsD, rpsE, rpsL or rplS genes encoding the ribosomal proteins S4, S5, S12 and L19 respectively. Our results show that the deleterious effects of a resistance mutation can be compensated by an unexpected variety of mutations.
Collapse
Affiliation(s)
- Sophie Maisnier-Patin
- Department of Bacteriology, Swedish Insitute for Infectious Disease Control, Solna, Sweden
| | | | | | | |
Collapse
|
656
|
Davydova N, Streltsov V, Wilce M, Liljas A, Garber M. L22 ribosomal protein and effect of its mutation on ribosome resistance to erythromycin. J Mol Biol 2002; 322:635-44. [PMID: 12225755 DOI: 10.1016/s0022-2836(02)00772-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ribosomal protein L22 is a core protein of the large ribosomal subunit interacting with all domains of the 23S rRNA. The triplet Met82-Lys83-Arg84 deletion in L22 from Escherichia coli renders cells resistant to erythromycin which is known as an inhibitor of the nascent peptide chain elongation. The crystal structure of the Thermus thermophilus L22 mutant with equivalent triplet Leu82-Lys83-Arg84 deletion has been determined at 1.8A resolution. The superpositions of the mutant and the wild-type L22 structures within the 50S subunits from Haloarcula marismortui and Deinococcus radiodurans show that the mutant beta-hairpin is bent inward the ribosome tunnel modifying the shape of its narrowest part and affecting the interaction between L22 and 23S rRNA. 23S rRNA nucleotides of domain V participating in erythromycin binding are located on the opposite sides of the tunnel and are brought to those positions by the interaction of the 23S rRNA with the L22 beta-hairpin. The mutation in the L22 beta-hairpin affects the orientation and distances between those nucleotides. This destabilizes the erythromycin-binding "pocket" formed by 23S rRNA nucleotides exposed at the tunnel surface. It seems that erythromycin, while still being able to interact with one side of the tunnel but not reaching the other, is therefore unable to block the polypeptide growth in the drug-resistant ribosome.
Collapse
Affiliation(s)
- Natalia Davydova
- Institute of Protein Research, Moscow Region 142 290, Pushchino, Russia.
| | | | | | | | | |
Collapse
|
657
|
Leontis NB, Stombaugh J, Westhof E. Motif prediction in ribosomal RNAs Lessons and prospects for automated motif prediction in homologous RNA molecules. Biochimie 2002; 84:961-73. [PMID: 12458088 DOI: 10.1016/s0300-9084(02)01463-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The traditional way to infer RNA secondary structure involves an iterative process of alignment and evaluation of covariation statistics between all positions possibly involved in basepairing. Watson-Crick basepairs typically show covariations that score well when examples of two or more possible basepairs occur. This is not necessarily the case for non-Watson-Crick basepairing geometries. For example, for sheared (trans Hoogsteen/Sugar edge) pairs, one base is highly conserved (always A or mostly A with some C or U), while the other can vary (G or A and sometimes C and U as well). RNA motifs consist of ordered, stacked arrays of non-Watson-Crick basepairs that in the secondary structure representation form hairpin or internal loops, multi-stem junctions, and even pseudoknots. Although RNA motifs occur recurrently and contribute in a modular fashion to RNA architecture, it is usually not apparent which bases interact and whether it is by edge-to-edge H-bonding or solely by stacking interactions. Using a modular sequence-analysis approach, recurrent motifs related to the sarcin-ricin loop of 23S RNA and to loop E from 5S RNA were predicted in universally conserved regions of the large ribosomal RNAs (16S- and 23S-like) before the publication of high-resolution, atomic-level structures of representative examples of 16S and 23S rRNA molecules in their native contexts. This provides the opportunity to evaluate the predictive power of motif-level sequence analysis, with the goal of automating the process for predicting RNA motifs in genomic sequences. The process of inferring structure from sequence by constructing accurate alignments is a circular one. The crucial link that allows a productive iteration of motif modeling and realignment is the comparison of the sequence variations for each putative pair with the corresponding isostericity matrix to determine which basepairs are consistent both with the sequence and the geometrical data.
Collapse
Affiliation(s)
- N B Leontis
- Chemistry Department and Center for Biomolecular Sciences, Overman Hall, Bowling Green State University, Bowling Green, OH 43403, USA.
| | | | | |
Collapse
|
658
|
Bujnicki JM, Feder M, Rychlewski L, Fischer D. Errors in the D. radiodurans large ribosomal subunit structure detected by protein fold-recognition and structure validation tools. FEBS Lett 2002; 525:174-5. [PMID: 12163184 DOI: 10.1016/s0014-5793(02)02959-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
659
|
Harms J, Schluenzen F, Zarivach R, Bashan A, Bartels H, Agmon I, Yonath A. Protein structure: experimental and theoretical aspects. FEBS Lett 2002; 525:176-8. [PMID: 12163185 DOI: 10.1016/s0014-5793(02)02960-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
660
|
Abstract
Ribosomal protein L4 is a crucial folding mediator and an important architectural component of the large ribosomal subunit. Furthermore, Escherichia coli L4 produced in excess of its rRNA binding sites downregulates the transcription and translation of its own S10 operon, encoding 11 ribosomal proteins. Genetic experiments and the crystal structure of Thermotoga maritima L4 had implicated separable regions on L4 in ribosome association and expression control while RNA competition experiments and the regulatory capacity of heterologous L4 had suggested an overlap of the protein sequences involved in the two functions. We report herein that contrary to other foreign bacterial L4 proteins, L4 from T. maritima only weakly controlled expression of the S10 operon in E. coli. Also, wildtype T. maritima L4 was more weakly associated with E. coli ribosomes than with the E. coli analog. Rational mutageneses were performed to try to increase the regulatory competence of T. maritima L4. The ribosome incorporation of the mutant proteins was also investigated. Two different deletions removing T. maritima-specific sequences had little effects on regulation although one did improve ribosome association. Interestingly, a set of multiple mutations, which rendered the region around helices alpha4 and alpha5 in T. maritima L4 more E. coli-like, had no influence on the incorporation of the protein into the large ribosomal subunit but considerably improved its regulatory potential. Therefore, the area around helices alpha4 and alpha5, which is critical for the initial folding steps of the large subunit, is also a central element of autogenous control, presumably by contacting the S10 mRNA leader. Ribosome association is compounded at later stages of assembly by additional rRNA contacts through L4 areas which do not participate in regulation. Similarly, sequences outside the alpha4/alpha5 region aid expression control.
Collapse
Affiliation(s)
- Michael Worbs
- Department of Biological Sciences, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, MD, Baltimore, USA
| | | | | | | |
Collapse
|
661
|
Katunin VI, Muth GW, Strobel SA, Wintermeyer W, Rodnina MV. Important contribution to catalysis of peptide bond formation by a single ionizing group within the ribosome. Mol Cell 2002; 10:339-46. [PMID: 12191479 DOI: 10.1016/s1097-2765(02)00566-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The catalytic mechanism of peptide bond formation on the ribosome is not known. The crystal structure of 50S ribosomal subunits shows that the catalytic center consists of RNA only and suggests potential catalytic residues. Here we report rapid kinetics of the peptidyl transferase reaction with puromycin at rates up to 50 s(-1). The rate-pH profile of the reaction reveals that protonation of a single ribosomal residue (pK(a) = 7.5), in addition to protonation of the nucleophilic amino group, strongly inhibits the reaction (>100-fold). The A2451U mutation within the peptidyl transferase center has about the same inhibitory effect. These results suggest a contribution to overall catalysis of general acid-base and/or conformational catalysis involving an ionizing group at the active site.
Collapse
Affiliation(s)
- Vladimir I Katunin
- Sankt-Petersburg Nuclear Physics Institute, Russian Academy of Sciences, Gatchina, Russia
| | | | | | | | | |
Collapse
|
662
|
Yonath A. The search and its outcome: high-resolution structures of ribosomal particles from mesophilic, thermophilic, and halophilic bacteria at various functional states. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 2002; 31:257-73. [PMID: 11988470 DOI: 10.1146/annurev.biophys.31.082901.134439] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We determined the high-resolution structures of large and small ribosomal subunits from mesophilic and thermophilic bacteria and compared them with those of the thermophilic ribosome and the halophilic large subunit. We confirmed that the elements involved in intersubunit contacts and in substrate binding are inherently flexible and that a common ribosomal strategy is to utilize this conformational variability for optimizing its functional efficiency and minimizing nonproductive interactions. Under close-to-physiological conditions, these elements maintain well-ordered characteristic conformations. In unbound subunits, the features creating intersubunit bridges within associated ribosomes lie on the interface surface, and the features that bind factors and substrates reach toward the binding site only when conditions are ripe.
Collapse
Affiliation(s)
- Ada Yonath
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
663
|
Hansen JL, Ippolito JA, Ban N, Nissen P, Moore PB, Steitz TA. The structures of four macrolide antibiotics bound to the large ribosomal subunit. Mol Cell 2002; 10:117-28. [PMID: 12150912 DOI: 10.1016/s1097-2765(02)00570-1] [Citation(s) in RCA: 401] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Crystal structures of the Haloarcula marismortui large ribosomal subunit complexed with the 16-membered macrolide antibiotics carbomycin A, spiramycin, and tylosin and a 15-membered macrolide, azithromycin, show that they bind in the polypeptide exit tunnel adjacent to the peptidyl transferase center. Their location suggests that they inhibit protein synthesis by blocking the egress of nascent polypeptides. The saccharide branch attached to C5 of the lactone rings extends toward the peptidyl transferase center, and the isobutyrate extension of the carbomycin A disaccharide overlaps the A-site. Unexpectedly, a reversible covalent bond forms between the ethylaldehyde substituent at the C6 position of the 16-membered macrolides and the N6 of A2103 (A2062, E. coli). Mutations in 23S rRNA that result in clinical resistance render the binding site less complementary to macrolides.
Collapse
MESH Headings
- Anti-Bacterial Agents/chemistry
- Anti-Bacterial Agents/metabolism
- Base Sequence
- Binding Sites
- Crystallography, X-Ray
- Drug Resistance/genetics
- Haloarcula marismortui/chemistry
- Haloarcula marismortui/cytology
- Haloarcula marismortui/genetics
- Macrolides
- Models, Molecular
- Molecular Structure
- Mutation
- Nucleic Acid Conformation
- Protein Conformation
- RNA, Archaeal/chemistry
- RNA, Archaeal/genetics
- RNA, Archaeal/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Ribosomal, 23S/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Static Electricity
Collapse
Affiliation(s)
- Jeffrey L Hansen
- Department of Molecular Biophysics and Biochemistry, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
664
|
Abstract
The development of three-dimensional maps of the modified nucleotides in the ribosomes of Escherichia coli and yeast has revealed that most (approximately 95% in E. coli and 60% in yeast) occur in functionally important regions. These include the peptidyl transferase centre, the A, P and E sites of tRNA- and mRNA binding, the polypeptide exit tunnel, and sites of subunit-subunit interaction. The correlations suggest that many ribosome functions benefit from nucleotide modification.
Collapse
MESH Headings
- Binding Sites
- Escherichia coli/genetics
- Escherichia coli/metabolism
- Humans
- Models, Molecular
- Molecular Structure
- Nucleic Acid Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- Ribosomes/chemistry
- Ribosomes/genetics
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
Collapse
|
665
|
Shimizu T, Nakagaki M, Nishi Y, Kobayashi Y, Hachimori A, Uchiumi T. Interaction among silkworm ribosomal proteins P1, P2 and P0 required for functional protein binding to the GTPase-associated domain of 28S rRNA. Nucleic Acids Res 2002; 30:2620-7. [PMID: 12060678 PMCID: PMC117291 DOI: 10.1093/nar/gkf379] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acidic ribosomal phosphoproteins P0, P1 and P2 were isolated in soluble form from silkworm ribosomes and tested for their interactions with each other and with RNA fragments corresponding to the GTPase-associated domain of residues 1030-1127 (Escherichia coli numbering) in silkworm 28S rRNA in vitro. Mixing of P1 and P2 formed the P1-P2 heterodimer, as demonstrated by gel mobility shift and chemical crosslinking. This heterodimer, but neither P1 or P2 alone, tightly bound to P0 and formed a pentameric complex, presumably as P0(P1-P2)2, assumed from its molecular weight derived from sedimentation analysis. Complex formation strongly stimulated binding of P0 to the GTPase-associated RNA domain. The protein complex and eL12 (E.coli L11-type), which cross-bound to the E.coli equivalent RNA domain, were tested for their function by replacing with the E.coli counterparts L10.L7/L12 complex and L11 on the rRNA domain within the 50S subunits. Both P1 and P2, together with P0 and eL12, were required to activate ribosomes in polyphenylalanine synthesis dependent on eucaryotic elongation factors as well as eEF-2-dependent GTPase activity. The results suggest that formation of the P1-P2 heterodimer is required for subsequent formation of the P0(P1-P2)2 complex and its functional rRNA binding in silkworm ribosomes.
Collapse
Affiliation(s)
- Tomomi Shimizu
- Institute of High Polymer Research and Department of Applied Biological Science, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567, Japan
| | | | | | | | | | | |
Collapse
|
666
|
Seo HS, Cooperman BS. Large-scale motions within ribosomal 50S subunits as demonstrated using photolabile oligonucleotides. Bioorg Chem 2002; 30:163-87. [PMID: 12406702 DOI: 10.1006/bioo.2002.1255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Photolabile oligonucleotides (PHONTs) bind to rRNA sequences to which they are complementary and, on photolysis, incorporate into neighboring ribosomal components. Here we report on photocrosslinking results obtained with PHONTs targeting 23S rRNA nucleotides 1882-1892, in the long lateral arm of the 50S subunit (PHONT 1892), and 1085-1093, in the L11 binding domain (PHONT 1093). Photolysis of the PHONT 1892.50S and PHONT 1093.50S complexes leads to formation of 'long-range' crosslinks from C1892 to U1094/A1095 and G1950, and from G1093 to U1712/1716 and U1926, that are clearly incompatible with published crystal structures of 50S subunits. These results provide strong evidence that within the 50S subunit (a) the L11 binding domain can extend in an arm-like fashion, accessing large areas of the ribosome, and (b) the lateral arm can bend about the noncanonical helix at its center. Such motions may have functional relevance in identifying regions that undergo major conformational change as the ribosome moves through its catalytic cycle.
Collapse
Affiliation(s)
- Hyuk-Soo Seo
- Department of Chemistry, University of Pennsylvania, Philadelphia, 19104, USA
| | | |
Collapse
|
667
|
Schäfer MA, Tastan AO, Patzke S, Blaha G, Spahn CMT, Wilson DN, Nierhaus KH. Codon-anticodon interaction at the P site is a prerequisite for tRNA interaction with the small ribosomal subunit. J Biol Chem 2002; 277:19095-105. [PMID: 11867615 DOI: 10.1074/jbc.m108902200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The arrival of high resolution crystal structures for the ribosomal subunits opens a new phase of molecular analysis and asks for corresponding analyses of ribosomal function. Here we apply the phosphorothioate technique to dissect tRNA interactions with the ribosome. We demonstrate that a tRNA bound to the P site of non-programmed 70 S ribosomes contacts predominantly the 50 S, as opposed to the 30 S subunit, indicating that codon-anticodon interaction at the P site is a prerequisite for 30 S binding. Protection patterns of tRNAs bound to isolated subunits and programmed 70 S ribosomes were compared. The results suggest the presence of a movable domain in the large ribosomal subunit that carries tRNA and reveal that only approximately 15% of a tRNA, namely residues 30 +/- 1 to 43 +/- 1, contact the 30 S subunit of programmed 70 S ribosomes, whereas the remaining 85% make contact with the 50 S subunit. Identical protection patterns of two distinct elongator tRNAs at the P site were identified as tRNA species-independent phosphate backbone contacts. The sites of protection correlate nicely with the predicted ribosomal-tRNA contacts deduced from a 5.5-A crystal structure of a programmed 70 S ribosome, thus refining which ribosomal components are critical for tRNA fixation at the P site.
Collapse
Affiliation(s)
- Markus A Schäfer
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Ihnestrasse 73, D-14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
668
|
Conn GL, Gittis AG, Lattman EE, Misra VK, Draper DE. A compact RNA tertiary structure contains a buried backbone-K+ complex. J Mol Biol 2002; 318:963-73. [PMID: 12054794 DOI: 10.1016/s0022-2836(02)00147-x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The structure of a 58 nucleotide ribosomal RNA fragment buries several phosphate groups of a hairpin loop within a large tertiary core. During refinement of an X-ray crystal structure containing this RNA, a potassium ion was found to be contacted by six oxygen atoms from the buried phosphate groups; the ion is contained completely within the solvent-accessible surface of the RNA. The electrostatic potential at the ion chelation site is unusually large, and more than compensates for the substantial energetic penalties associated with partial dehydration of the ion and displacement of delocalized ions. The very large predicted binding free energy, approximately -30 kcal/mol, implies that the site must be occupied for the RNA to fold. These findings agree with previous studies of the ion-dependent folding of tertiary structure in this RNA, which concluded that a monovalent ion was bound in a partially dehydrated environment where Mg2+ could not easily compete for binding. By compensating the unfavorable free energy of buried phosphate groups with a chelated ion, the RNA is able to create a larger and more complex tertiary fold than would be possible otherwise.
Collapse
Affiliation(s)
- Graeme L Conn
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
669
|
Woestenenk EA, Gongadze GM, Shcherbakov DV, Rak AV, Garber MB, Härd T, Berglund H. The solution structure of ribosomal protein L18 from Thermus thermophilus reveals a conserved RNA-binding fold. Biochem J 2002; 363:553-61. [PMID: 11964156 PMCID: PMC1222508 DOI: 10.1042/0264-6021:3630553] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We have determined the solution structure of ribosomal protein L18 from Thermus thermophilus. L18 is a 12.5 kDa protein of the large subunit of the ribosome and binds to both 5 S and 23 S rRNA. In the uncomplexed state L18 folds to a mixed alpha/beta globular structure with a long disordered N-terminal region. We compared our high-resolution structure with RNA-complexed L18 from Haloarcula marismortui and T. thermophilus to examine RNA-induced as well as species-dependent structural differences. We also identified T. thermophilus S11 as a structural homologue and found that the structures of the RNA-recognition sites are conserved. Important features, for instance a bulge in the RNA-contacting beta-sheet, are conserved in both proteins. We suggest that the L18 fold recognizes a specific RNA motif and that the resulting RNA-protein-recognition module is tolerant to variations in sequence.
Collapse
Affiliation(s)
- Esmeralda A Woestenenk
- Royal Institute of Technology (KTH), SCFAB, Department of Biotechnology, S-106 91 Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
670
|
|
671
|
Liu M, Douthwaite S. Methylation at nucleotide G745 or G748 in 23S rRNA distinguishes Gram-negative from Gram-positive bacteria. Mol Microbiol 2002; 44:195-204. [PMID: 11967079 DOI: 10.1046/j.1365-2958.2002.02866.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacteria tune the function of their ribosomes by methylating specific rRNA nucleotides. Nucleotide G745 in Escherichia coli 23S rRNA is methylated by the methyltransferase enzyme RrmA, whereas in Streptomyces fradiae, the neighbouring nucleotide G748 is methylated by the enzyme TlrB. Both nucleotides line the peptide exit channel of the ribosome at the binding site of macrolide, lincosamide and streptogramin B antibiotics. Resistance to the macrolide tylosin, which is produced by S. fradiae, is conferred by methylation of G748. RrmA and TlrB are homologues (29% identical), and a database search against all presently available sequences revealed a further two dozen homologues from a wide variety of Bacteria. No homologues were found among the Archaea or Eukarya. The bacterial sequences adhere to the species phylogeny and segregate into two groups, in which the Gram-negative sequences align with RrmA and the Gram-positives with TlrB. Consistently, in more than 20 species tested, the distribution of methylation in the Gram-negative rRNAs (methylated at G745) and the Gram-positives (methylated at G748) perfectly matches the bacterial phylogeny. Cloning and expression of representative methyltransferase genes showed that this specificity of methylation is determined solely by the methyltransferase enzyme and is independent of the origin of the rRNA substrate. This is the first case in which the position of an RNA methylation defines a sharp division between the Gram-negative and Gram-positive bacteria. Given the specificities and distribution of these methyltransferases, we propose a change in the nomenclature of RrmA to RlmAI (rRNA large subunit methyltransferase) and of TlrB to RlmAII.
Collapse
Affiliation(s)
- Mingfu Liu
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | |
Collapse
|
672
|
Abstract
Accumulating evidence for nascent-peptide-mediated regulation of translation suggests that all nascent peptides do not necessarily interact with the ribosome in a similar manner. Recent studies have helped to elucidate the exit route of the nascent chain and its interactions with the ribosome.
Collapse
Affiliation(s)
- Tanel Tenson
- Institute of Molecular and Cell Biology, Tartu University, Riia 23, Tartu, Estonia.
| | | |
Collapse
|
673
|
Abstract
The publication of crystal structures of the 50S and 30S ribosomal subunits and the intact 70S ribosome is revolutionizing our understanding of protein synthesis. This review is an attempt to correlate the structures with biochemical and genetic data to identify the gaps and limits in our current knowledge of the mechanisms involved in translation.
Collapse
Affiliation(s)
- V Ramakrishnan
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, United Kingdom.
| |
Collapse
|
674
|
Gluehmann M, Zarivach R, Bashan A, Harms J, Schluenzen F, Bartels H, Agmon I, Rosenblum G, Pioletti M, Auerbach T, Avila H, Hansen HA, Franceschi F, Yonath A. Ribosomal crystallography: from poorly diffracting microcrystals to high-resolution structures. Methods 2001; 25:292-302. [PMID: 11860283 DOI: 10.1006/meth.2001.1241] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cellular organelles translating the genetic code into proteins, the ribosomes, are large, asymmetric, flexible, and unstable ribonucleoprotein assemblies, hence they are difficult to crystallize. Despite two decades of intensive effort and thorough searches for suitable sources, so far only three crystal types have yielded high-resolution structures: two large subunits (from an archaean and from a mesophilic eubacterium) and one thermophilic small subunit. These structures have added to our understanding of decoding, have revealed dynamic aspects of the biosynthetic process, and have indicated the strategies adopted by ribosomes for interacting between themselves as well as with inhibitors, factors and substrates.
Collapse
Affiliation(s)
- M Gluehmann
- Max Planck Research Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
675
|
Schlünzen F, Zarivach R, Harms J, Bashan A, Tocilj A, Albrecht R, Yonath A, Franceschi F. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 2001; 413:814-21. [PMID: 11677599 DOI: 10.1038/35101544] [Citation(s) in RCA: 734] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ribosomes, the site of protein synthesis, are a major target for natural and synthetic antibiotics. Detailed knowledge of antibiotic binding sites is central to understanding the mechanisms of drug action. Conversely, drugs are excellent tools for studying the ribosome function. To elucidate the structural basis of ribosome-antibiotic interactions, we determined the high-resolution X-ray structures of the 50S ribosomal subunit of the eubacterium Deinococcus radiodurans, complexed with the clinically relevant antibiotics chloramphenicol, clindamycin and the three macrolides erythromycin, clarithromycin and roxithromycin. We found that antibiotic binding sites are composed exclusively of segments of 23S ribosomal RNA at the peptidyl transferase cavity and do not involve any interaction of the drugs with ribosomal proteins. Here we report the details of antibiotic interactions with the components of their binding sites. Our results also show the importance of putative Mg+2 ions for the binding of some drugs. This structural analysis should facilitate rational drug design.
Collapse
Affiliation(s)
- F Schlünzen
- Max-Planck-Research, Unit for Ribosomal Structure, Notkestrasse 85, 22603 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|