651
|
Enhanced CAR T-cell engineering using non-viral Sleeping Beauty transposition from minicircle vectors. Leukemia 2016; 31:186-194. [PMID: 27491640 DOI: 10.1038/leu.2016.180] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 12/28/2022]
Abstract
Immunotherapy with T cell modified with gamma-retroviral or lentiviral (LV) vectors to express a chimeric antigen receptor (CAR) has shown remarkable efficacy in clinical trials. However, the potential for insertional mutagenesis and genotoxicity of viral vectors is a safety concern, and their cost and regulatory demands a roadblock for rapid and broad clinical translation. Here, we demonstrate that CAR T cells can be engineered through non-viral Sleeping Beauty (SB) transposition of CAR genes from minimalistic DNA vectors called minicircles (MCs). We analyzed genomic distribution of SB and LV integrations and show that a significantly higher proportion of MC-derived CAR transposons compared with LV integrants had occurred outside of highly expressed and cancer-related genes into genomic safe harbor loci that are not expected to cause mutagenesis or genotoxicity. CD19-CAR T cells engineered with our enhanced SB approach conferred potent reactivity in vitro and eradicated lymphoma in a xenograft model in vivo. Intriguingly, electroporation of SB MCs is substantially more effective and less toxic compared with conventional plasmids, and enables cost-effective rapid preparation of therapeutic CAR T-cell doses. This approach sets a new standard in advanced cellular and gene therapy and will accelerate and increase the availability of CAR T-cell therapy to treat hematologic malignancies.
Collapse
|
652
|
Turtle CJ, Riddell SR, Maloney DG. CD19-Targeted chimeric antigen receptor-modified T-cell immunotherapy for B-cell malignancies. Clin Pharmacol Ther 2016; 100:252-8. [PMID: 27170467 DOI: 10.1002/cpt.392] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/04/2016] [Indexed: 12/16/2022]
Abstract
Chimeric antigen receptors (CARs) comprise a tumor-targeting moiety, often in the form of a single chain variable fragment derived from a monoclonal antibody, fused to one or more intracellular T-cell signaling sequences. Lymphodepletion chemotherapy followed by infusion of T cells that are genetically modified to express a CD19-specific CAR is a promising therapy for patients with refractory CD19(+) B-cell malignancies, producing rates of complete remission that are remarkably high in acute lymphoblastic leukemia and encouraging in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Responses are often durable, although additional studies are needed to define the role of CAR-T cell immunotherapy in the context of other treatments. CAR-modified T-cell immunotherapy can be complicated by cytokine release syndrome and neurologic toxicity, which in most cases are manageable and reversible. Here we review recent clinical trial data and discuss issues for the field.
Collapse
Affiliation(s)
- C J Turtle
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - S R Riddell
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| | - D G Maloney
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
653
|
Wang X, Rivière I. Clinical manufacturing of CAR T cells: foundation of a promising therapy. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16015. [PMID: 27347557 PMCID: PMC4909095 DOI: 10.1038/mto.2016.15] [Citation(s) in RCA: 419] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/13/2022]
Abstract
The treatment of cancer patients with autologous T cells expressing a chimeric antigen receptor (CAR) is one of the most promising adoptive cellular therapy approaches. Reproducible manufacturing of high-quality, clinical-grade CAR-T cell products is a prerequisite for the wide application of this technology. Product quality needs to be built-in within every step of the manufacturing process. We summarize herein the requirements and logistics to be considered, as well as the state of the art manufacturing platforms available. CAR-T cell therapy may be on the verge of becoming standard of care for a few clinical indications. Yet, many challenges pertaining to manufacturing standardization and product characterization remain to be overcome in order to achieve broad usage and eventual commercialization of this therapeutic modality.
Collapse
Affiliation(s)
- Xiuyan Wang
- Cell Therapy and Cell Engineering Facility, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Center for Cell Engineering, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - Isabelle Rivière
- Cell Therapy and Cell Engineering Facility, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Center for Cell Engineering, Memorial Sloan-Kettering Cancer Center, New York, New York, USA; Molecular Pharmacology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
654
|
Generation of clinical-grade CD19-specific CAR-modified CD8+ memory stem cells for the treatment of human B-cell malignancies. Blood 2016; 128:519-28. [PMID: 27226436 DOI: 10.1182/blood-2015-11-683847] [Citation(s) in RCA: 286] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/23/2016] [Indexed: 12/14/2022] Open
Abstract
Long-lived, self-renewing, multipotent T memory stem cells (TSCM) can trigger profound and sustained tumor regression but their rareness poses a major hurdle to their clinical application. Presently, clinically compliant procedures to generate relevant numbers of this T-cell population are undefined. Here, we provide a strategy for deriving large numbers of clinical-grade tumor-redirected TSCM starting from naive precursors. CD8(+)CD62L(+)CD45RA(+) naive T cells enriched by streptamer-based serial-positive selection were activated by CD3/CD28 engagement in the presence of interleukin-7 (IL-7), IL-21, and the glycogen synthase-3β inhibitor TWS119, and genetically engineered to express a CD19-specific chimeric antigen receptor (CD19-CAR). These conditions enabled the generation of CD19-CAR-modified CD8(+) TSCM that were phenotypically, functionally, and transcriptomically equivalent to their naturally occurring counterpart. Compared with CD8(+) T cells generated with clinical protocols currently under investigation, CD19-CAR-modified CD8(+) TSCM exhibited enhanced metabolic fitness and mediated robust, long-lasting antitumor responses against systemic acute lymphoblastic leukemia xenografts. This clinical-grade platform provides the basis for a phase 1 trial evaluating the activity of CD19-CAR-modified CD8(+) TSCM in patients with B-cell malignancies refractory to prior allogeneic hematopoietic stem cell transplantation.
Collapse
|
655
|
CD19-targeted CAR T-cell therapeutics for hematologic malignancies: interpreting clinical outcomes to date. Blood 2016; 127:3312-20. [PMID: 27207800 DOI: 10.1182/blood-2016-02-629063] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/07/2016] [Indexed: 12/13/2022] Open
Abstract
Adoptive transfer of T cells genetically modified to express chimeric antigen receptors (CARs) targeting CD19 has produced impressive results in treating patients with B-cell malignancies. Although these CAR-modified T cells target the same antigen, the designs of CARs vary as well as several key aspects of the clinical trials in which these CARs have been studied. It is unclear whether these differences have any impact on clinical outcome and treatment-related toxicities. Herein, we review clinical results reflecting the investigational use of CD19-targeted CAR T-cell therapeutics in patients with B-cell hematologic malignancies, in light of differences in CAR design and production, and outline the limitations inherent in comparing outcomes between studies.
Collapse
|
656
|
CAR T Cell Therapy: A Game Changer in Cancer Treatment. J Immunol Res 2016; 2016:5474602. [PMID: 27298832 PMCID: PMC4889848 DOI: 10.1155/2016/5474602] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 01/13/2023] Open
Abstract
The development of novel targeted therapies with acceptable safety profiles is critical to successful cancer outcomes with better survival rates. Immunotherapy offers promising opportunities with the potential to induce sustained remissions in patients with refractory disease. Recent dramatic clinical responses in trials with gene modified T cells expressing chimeric antigen receptors (CARs) in B-cell malignancies have generated great enthusiasm. This therapy might pave the way for a potential paradigm shift in the way we treat refractory or relapsed cancers. CARs are genetically engineered receptors that combine the specific binding domains from a tumor targeting antibody with T cell signaling domains to allow specifically targeted antibody redirected T cell activation. Despite current successes in hematological cancers, we are only in the beginning of exploring the powerful potential of CAR redirected T cells in the control and elimination of resistant, metastatic, or recurrent nonhematological cancers. This review discusses the application of the CAR T cell therapy, its challenges, and strategies for successful clinical and commercial translation.
Collapse
|
657
|
Tian G, Courtney AN, Jena B, Heczey A, Liu D, Marinova E, Guo L, Xu X, Torikai H, Mo Q, Dotti G, Cooper LJ, Metelitsa LS. CD62L+ NKT cells have prolonged persistence and antitumor activity in vivo. J Clin Invest 2016; 126:2341-55. [PMID: 27183388 DOI: 10.1172/jci83476] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 03/22/2016] [Indexed: 12/25/2022] Open
Abstract
Vα24-invariant natural killer T cells (NKTs) localize to tumors and have inherent antitumor properties, making them attractive chimeric antigen receptor (CAR) carriers for redirected cancer immunotherapy. However, clinical application of CAR-NKTs has been impeded, as mechanisms responsible for NKT expansion and the in vivo persistence of these cells are unknown. Here, we demonstrated that antigen-induced expansion of primary NKTs in vitro associates with the accumulation of a CD62L+ subset and exhaustion of CD62L- cells. Only CD62L+ NKTs survived and proliferated in response to secondary stimulation. When transferred to immune-deficient NSG mice, CD62L+ NKTs persisted 5 times longer than CD62L- NKTs. Moreover, CD62L+ cells transduced with a CD19-specific CAR achieved sustained tumor regression in a B cell lymphoma model. Proliferating CD62L+ cells downregulated or maintained CD62L expression when activated via T cell receptor alone or in combination with costimulatory receptors. We generated HLAnull K562 cell clones that were engineered to express CD1d and costimulatory ligands. Clone B-8-2 (HLAnullCD1dmedCD86high4-1BBLmedOX40Lhigh) induced the highest rates of NKT expansion and CD62L expression. B-8-2-expanded CAR-NKTs exhibited prolonged in vivo persistence and superior therapeutic activities in models of lymphoma and neuroblastoma. Therefore, we have identified CD62L as a marker of a distinct NKT subset endowed with high proliferative potential and have developed artificial antigen-presenting cells that generate CD62L-enriched NKTs for effective cancer immunotherapy.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/immunology
- Cell Line, Tumor
- Cell Proliferation
- Cell Survival
- Cells, Cultured
- Cytokines/biosynthesis
- Cytotoxicity, Immunologic
- Humans
- Immunotherapy, Adoptive
- L-Selectin/metabolism
- Lymphocyte Activation
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/therapy
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Natural Killer T-Cells/classification
- Natural Killer T-Cells/immunology
- Neuroblastoma/immunology
- Neuroblastoma/therapy
- Receptors, Antigen/immunology
- Recombinant Fusion Proteins/immunology
- Xenograft Model Antitumor Assays
Collapse
|
658
|
Prime pick: Researchers get selective about T cells for cancer therapy. Nat Med 2016; 22:456-8. [PMID: 27149215 DOI: 10.1038/nm0516-456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
659
|
Turtle CJ, Hanafi LA, Berger C, Gooley TA, Cherian S, Hudecek M, Sommermeyer D, Melville K, Pender B, Budiarto TM, Robinson E, Steevens NN, Chaney C, Soma L, Chen X, Yeung C, Wood B, Li D, Cao J, Heimfeld S, Jensen MC, Riddell SR, Maloney DG. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest 2016; 126:2123-38. [PMID: 27111235 DOI: 10.1172/jci85309] [Citation(s) in RCA: 1607] [Impact Index Per Article: 178.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 03/08/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND T cells that have been modified to express a CD19-specific chimeric antigen receptor (CAR) have antitumor activity in B cell malignancies; however, identification of the factors that determine toxicity and efficacy of these T cells has been challenging in prior studies in which phenotypically heterogeneous CAR-T cell products were prepared from unselected T cells. METHODS We conducted a clinical trial to evaluate CD19 CAR-T cells that were manufactured from defined CD4+ and CD8+ T cell subsets and administered in a defined CD4+:CD8+ composition to adults with B cell acute lymphoblastic leukemia after lymphodepletion chemotherapy. RESULTS The defined composition product was remarkably potent, as 27 of 29 patients (93%) achieved BM remission, as determined by flow cytometry. We established that high CAR-T cell doses and tumor burden increase the risks of severe cytokine release syndrome and neurotoxicity. Moreover, we identified serum biomarkers that allow testing of early intervention strategies in patients at the highest risk of toxicity. Risk-stratified CAR-T cell dosing based on BM disease burden decreased toxicity. CD8+ T cell-mediated anti-CAR transgene product immune responses developed after CAR-T cell infusion in some patients, limited CAR-T cell persistence, and increased relapse risk. Addition of fludarabine to the lymphodepletion regimen improved CAR-T cell persistence and disease-free survival. CONCLUSION Immunotherapy with a CAR-T cell product of defined composition enabled identification of factors that correlated with CAR-T cell expansion, persistence, and toxicity and facilitated design of lymphodepletion and CAR-T cell dosing strategies that mitigated toxicity and improved disease-free survival. TRIAL REGISTRATION ClinicalTrials.gov NCT01865617. FUNDING R01-CA136551; Life Science Development Fund; Juno Therapeutics; Bezos Family Foundation.
Collapse
|
660
|
Newick K, O'Brien S, Sun J, Kapoor V, Maceyko S, Lo A, Puré E, Moon E, Albelda SM. Augmentation of CAR T-cell Trafficking and Antitumor Efficacy by Blocking Protein Kinase A Localization. Cancer Immunol Res 2016; 4:541-51. [PMID: 27045023 DOI: 10.1158/2326-6066.cir-15-0263] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/04/2016] [Indexed: 11/16/2022]
Abstract
Antitumor treatments based on the infusion of T cells expressing chimeric antigen receptors (CAR T cells) are still relatively ineffective for solid tumors, due to the presence of immunosuppressive mediators [such as prostaglandin E2 (PGE2) and adenosine] and poor T-cell trafficking. PGE2 and adenosine activate protein kinase A (PKA), which then inhibits T-cell receptor (TCR) activation. This inhibition process requires PKA to localize to the immune synapse via binding to the membrane protein ezrin. We generated CAR T cells that expressed a small peptide called the "regulatory subunit I anchoring disruptor" (RIAD) that inhibits the association of PKA with ezrin, thus blunting the negative effects of PKA on TCR activation. After exposure to PGE2 or adenosine in vitro, CAR-RIAD T cells showed increased TCR signaling, released more cytokines, and showed enhanced killing of tumor cells compared with CAR T cells. When injected into tumor-bearing mice, the antitumor efficacy of murine and human CAR-RIAD T cells was enhanced compared with that of CAR T cells, due to resistance to tumor-induced hypofunction and increased T-cell infiltration of established tumors. Subsequent in vitro assays showed that both mouse and human CAR-RIAD cells migrated more efficiently than CAR cells did in response to the chemokine CXCL10 and also had better adhesion to various matrices. Thus, the intracellular addition of the RIAD peptide to adoptively transferred CAR T cells augments their efficacy by increasing their effector function and by improving trafficking into tumor sites. This treatment strategy, therefore, shows potential clinical application for treating solid tumors. Cancer Immunol Res; 4(6); 541-51. ©2016 AACR.
Collapse
Affiliation(s)
- Kheng Newick
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Shaun O'Brien
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jing Sun
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Veena Kapoor
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven Maceyko
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Albert Lo
- Department of Biomedical Sciences, School of Veterinary Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ellen Puré
- Department of Biomedical Sciences, School of Veterinary Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edmund Moon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Steven M Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
661
|
Abstract
The engineered expression of chimeric antigen receptors (CARs) on the surface of T cells enables the redirection of T-cell specificity. Early clinical trials using CAR T cells for the treatment of patients with cancer showed modest results, but the impressive outcomes of several trials of CD19-targeted CAR T cells in the treatment of patients with B-cell malignancies have generated an increased enthusiasm for this approach. Important lessons have been derived from clinical trials of CD19-specific CAR T cells, and ongoing clinical trials are testing CAR designs directed at novel targets involved in haematological and solid malignancies. In this Review, we discuss these trials and present strategies that can increase the antitumour efficacy and safety of CAR T-cell therapy. Given the fast-moving nature of this field, we only discuss studies with direct translational application currently or soon-to-be tested in the clinical setting.
Collapse
|
662
|
Golubovskaya V, Wu L. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy. Cancers (Basel) 2016; 8:cancers8030036. [PMID: 26999211 PMCID: PMC4810120 DOI: 10.3390/cancers8030036] [Citation(s) in RCA: 384] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 12/11/2022] Open
Abstract
This review is focused on different subsets of T cells: CD4 and CD8, memory and effector functions, and their role in CAR-T therapy--a cellular adoptive immunotherapy with T cells expressing chimeric antigen receptor. The CAR-T cells recognize tumor antigens and induce cytotoxic activities against tumor cells. Recently, differences in T cell functions and the role of memory and effector T cells were shown to be important in CAR-T cell immunotherapy. The CD4⁺ subsets (Th1, Th2, Th9, Th17, Th22, Treg, and Tfh) and CD8⁺ memory and effector subsets differ in extra-cellular (CD25, CD45RO, CD45RA, CCR-7, L-Selectin [CD62L], etc.); intracellular markers (FOXP3); epigenetic and genetic programs; and metabolic pathways (catabolic or anabolic); and these differences can be modulated to improve CAR-T therapy. In addition, CD4⁺ Treg cells suppress the efficacy of CAR-T cell therapy, and different approaches to overcome this suppression are discussed in this review. Thus, next-generation CAR-T immunotherapy can be improved, based on our knowledge of T cell subsets functions, differentiation, proliferation, and signaling pathways to generate more active CAR-T cells against tumors.
Collapse
Affiliation(s)
- Vita Golubovskaya
- Promab Biotechnologies, 2600 Hilltop Drive, Suite 320, Richmond, CA 94803, USA.
| | - Lijun Wu
- Promab Biotechnologies, 2600 Hilltop Drive, Suite 320, Richmond, CA 94803, USA.
| |
Collapse
|
663
|
Busch DH, Fräßle SP, Sommermeyer D, Buchholz VR, Riddell SR. Role of memory T cell subsets for adoptive immunotherapy. Semin Immunol 2016; 28:28-34. [PMID: 26976826 DOI: 10.1016/j.smim.2016.02.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/03/2016] [Accepted: 02/10/2016] [Indexed: 12/14/2022]
Abstract
Adoptive transfer of primary (unmodified) or genetically engineered antigen-specific T cells has demonstrated astonishing clinical results in the treatment of infections and some malignancies. Besides the definition of optimal targets and antigen receptors, the differentiation status of transferred T cells is emerging as a crucial parameter for generating cell products with optimal efficacy and safety profiles. Long-living memory T cells subdivide into phenotypically as well as functionally different subsets (e.g. central memory, effector memory, tissue-resident memory T cells). This diversification process is crucial for effective immune protection, with probably distinct dependencies on the presence of individual subsets dependent on the disease to which the immune response is directed as well as its organ location. Adoptive T cell therapy intends to therapeutically transfer defined T cell immunity into patients. Efficacy of this approach often requires long-term maintenance of transferred cells, which depends on the presence and persistence of memory T cells. However, engraftment and survival of highly differentiated memory T cell subsets upon adoptive transfer is still difficult to achieve. Therefore, the recent observation that a distinct subset of weakly differentiated memory T cells shows all characteristics of adult tissue stem cells and can reconstitute all types of effector and memory T cell subsets, became highly relevant. We here review our current understanding of memory subset formation and T cell subset purification, and its implications for adoptive immunotherapy.
Collapse
Affiliation(s)
- Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich 81675, Germany; Focus Group "Clinical Cell Processing and Purification", Institute for Advanced Study, TUM, Munich 81675, Germany; National Center for Infection Research (DZIF), Munich 81675, Germany.
| | - Simon P Fräßle
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich 81675, Germany; Focus Group "Clinical Cell Processing and Purification", Institute for Advanced Study, TUM, Munich 81675, Germany
| | - Daniel Sommermeyer
- Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich 81675, Germany
| | - Stanley R Riddell
- Focus Group "Clinical Cell Processing and Purification", Institute for Advanced Study, TUM, Munich 81675, Germany; Program in Immunology, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
664
|
Bispecific antibodies and CARs: generalized immunotherapeutics harnessing T cell redirection. Curr Opin Immunol 2016; 40:24-35. [PMID: 26963133 DOI: 10.1016/j.coi.2016.02.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/31/2022]
Abstract
To realize the full potential of cancer immunotherapy, the latest generation immunotherapeutics are designed to harness the potent tumor-killing capacity of T cells. Thus, to mobilize T cells, new optimized bispecific antibody (BsAb) designs, enabling efficient polyclonal redirection of cytotoxic activity through binding to CD3 and a Tumor Associated Antigen (TAA) and refined genetically modified T cells have recently expanded the arsenal of available options for cancer treatment. This review presents the current understanding of the parameters crucial to the design of optimal T cell redirecting BsAb and chimeric antigen receptor (CAR)-modified T cells. However, there are additional questions that require thorough elucidation. Both modalities will benefit from design changes that may increase the therapeutic window. One such approach could employ the discrimination afforded by multiple TAA to significantly increase selectivity.
Collapse
|
665
|
Perales MA, Sauter CS, Armand P. Reprint of: Fast Cars and No Brakes: Autologous Stem Cell Transplantation as a Platform for Novel Immunotherapies. Biol Blood Marrow Transplant 2016; 22:S9-S14. [PMID: 26899275 DOI: 10.1016/j.bbmt.2016.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 10/14/2015] [Indexed: 11/24/2022]
Abstract
Autologous stem cell transplantation (ASCT) is indicated in a number of hematologic malignancies, including multiple myeloma, non-Hodgkin lymphoma, and Hodgkin lymphoma. Relapse, however, remains 1 of the main causes of post-ASCT failure, and several strategies are being investigated to decrease the risk of relapse of progression. Recent advances in the treatment of hematological malignancies have included adoptive transfer of genetically modified T cells that express chimeric antigen receptors or T cell receptors, as well the use of checkpoint inhibitors. Early clinical results in non-transplantation patients have been very promising. This review will focus on the use of gene-modified T cells and checkpoint inhibitors in stem cell transplantation.
Collapse
Affiliation(s)
- Miguel-Angel Perales
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York.
| | - Craig S Sauter
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, New York; Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Philippe Armand
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
666
|
Beavis PA, Slaney CY, Kershaw MH, Gyorki D, Neeson PJ, Darcy PK. Reprogramming the tumor microenvironment to enhance adoptive cellular therapy. Semin Immunol 2016; 28:64-72. [DOI: 10.1016/j.smim.2015.11.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 10/29/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
|
667
|
Baron F, Ruggeri A, Nagler A. Methods of ex vivo expansion of human cord blood cells: challenges, successes and clinical implications. Expert Rev Hematol 2016; 9:297-314. [PMID: 26635058 DOI: 10.1586/17474086.2016.1128321] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
More than 40,000 unrelated cord blood transplantations (UCBT) have been performed worldwide as treatment for patients with malignant or non-malignant life threatening hematologic disorders. However, low absolute numbers of hematopoietic stem and progenitor cells (HSPCs) within a single cord blood unit has remained a limiting factor for this transplantation modality, particularly in adult recipients. Further, because UCB contains low numbers of mostly naïve T cells, immune recovery after UCBT is slow, predisposing patients to severe infections. Other causes of UCBT failure has included graft-versus-host disease (GVHD) and relapse of the underlying disease. In this article, we first review the current landscape of cord blood engineering aimed at improving engraftment. This includes approaches of UCB-HSPCs expansion and methods aimed at improving UCB-HSCPs homing. We then discuss recent approaches of cord blood engineering developed to prevent infection [generation of multivirus-specific cytotoxic T cells (VSTs) from UCB], relapse [transduction of UCB-T cells with tumor-specific chimeric receptor antigens (CARs)] and GVHD (expansion of regulatory T cells from UCB). Although many of these techniques of UCB engineering remain currently technically challenging and expensive, they are likely to revolutionize the field of UCBT in the next decades.
Collapse
Affiliation(s)
- Frédéric Baron
- a Division of Hematology, Department of Medicine , University and CHU of Liège , Liège , Belgium.,b GIGA-I3, Section of Hematology , University of Liège , Liège , Belgium
| | - Annalisa Ruggeri
- c Eurocord Hospital Saint Louis, AP-HP , Paris , France.,d Hospital Saint Antoine , Service d'Hématologie et Thérapie Cellulaire, AP-HP , Paris , France.,e Cord Blood Committee, Cellular Therapy and Immunobiology Working Party , EBMT , Leiden , Netherlands
| | - Arnon Nagler
- f Division of Hematology and Bone Marrow Transplantation , The Chaim Sheba Medical Center, Tel-Hashomer , Ramat-Gan , Israel.,g EBMT Paris Office , Hospital Saint Antoine , Paris , France.,h Université Pierre et Marie Curie , Paris , France.,i Tel Aviv University (TAU) , Tel Aviv , Israel
| |
Collapse
|
668
|
Abstract
Plasmid DNA is being used as a pharmaceutical agent in vaccination, as well as a basic substance and starting material in gene and cell therapy, and viral vector production. Since the uncontrolled expression of backbone sequences present in such plasmids and the dissemination of antibiotic resistance genes may have profound detrimental effects, an important goal in vector development was to produce supercoiled DNA lacking bacterial backbone sequences: Minicircle (MC) DNA. The Sleeping Beauty (SB) transposon system is a non-viral gene delivery platform enabling a close-to-random profile of genomic integration. In combination, the MC platform greatly enhances SB transposition and transgene integration resulting in higher numbers of stably modified target cells. We have recently developed a strategy for MC-based SB transposition of chimeric antigen receptor (CAR) transgenes that enable improved transposition rates compared to conventional plasmids and rapid manufacturing of therapeutic CAR T cell doses (Monjezi et al. 2016). This advance enables manufacturing CAR T cells in a virus-free process that relies on SB-mediated transposition from MC DNA to accomplish gene-transfer. Advantages of this approach include a strong safety profile due to the nature of the MC itself and the genomic insertion pattern of MC-derived CAR transposons. In addition, stable transposition and high-level CAR transgene expression, as well as easy and reproducible handling, make MCs a preferred vector source for gene-transfer in advanced cellular and gene therapy. In this chapter, we will review our experience in MC-based CAR T cell engineering and discuss our recent advances in MC manufacturing to accelerate both pre-clinical and clinical implementation.
Collapse
|
669
|
Fast Cars and No Brakes: Autologous Stem Cell Transplantation as a Platform for Novel Immunotherapies. Biol Blood Marrow Transplant 2015; 22:17-22. [PMID: 26485445 DOI: 10.1016/j.bbmt.2015.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 10/14/2015] [Indexed: 01/21/2023]
Abstract
Autologous stem cell transplantation (ASCT) is indicated in a number of hematologic malignancies, including multiple myeloma, non-Hodgkin lymphoma, and Hodgkin lymphoma. Relapse, however, remains 1 of the main causes of post-ASCT failure, and several strategies are being investigated to decrease the risk of relapse of progression. Recent advances in the treatment of hematological malignancies have included adoptive transfer of genetically modified T cells that express chimeric antigen receptors or T cell receptors, as well the use of checkpoint inhibitors. Early clinical results in nontransplantation patients have been very promising. This review will focus on the use of gene-modified T cells and checkpoint inhibitors in stem cell transplantation.
Collapse
|