651
|
Sulfonolipids as novel metabolite markers of Alistipes and Odoribacter affected by high-fat diets. Sci Rep 2017; 7:11047. [PMID: 28887494 PMCID: PMC5591296 DOI: 10.1038/s41598-017-10369-z] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/09/2017] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota generates a huge pool of unknown metabolites, and their identification and characterization is a key challenge in metabolomics. However, there are still gaps on the studies of gut microbiota and their chemical structures. In this investigation, an unusual class of bacterial sulfonolipids (SLs) is detected in mouse cecum, which was originally found in environmental microbes. We have performed a detailed molecular level characterization of this class of lipids by combining high-resolution mass spectrometry and liquid chromatography analysis. Eighteen SLs that differ in their capnoid and fatty acid chain compositions were identified. The SL called “sulfobacin B” was isolated, characterized, and was significantly increased in mice fed with high-fat diets. To reveal bacterial producers of SLs, metagenome analysis was acquired and only two bacterial genera, i.e., Alistipes and Odoribacter, were revealed to be responsible for their production. This knowledge enables explaining a part of the molecular complexity introduced by microbes to the mammalian gastrointestinal tract and can be used as chemotaxonomic evidence in gut microbiota.
Collapse
|
652
|
Synthesis, iron(III) complexation properties, molecular dynamics simulations and P. aeruginosa siderophore-like activity of two pyoverdine analogs. Eur J Med Chem 2017; 137:338-350. [DOI: 10.1016/j.ejmech.2017.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 11/23/2022]
|
653
|
Rapid phenotypic stress-based microfluidic antibiotic susceptibility testing of Gram-negative clinical isolates. Sci Rep 2017; 7:8031. [PMID: 28808348 PMCID: PMC5556039 DOI: 10.1038/s41598-017-07584-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 06/27/2017] [Indexed: 01/27/2023] Open
Abstract
Bacteremia is a life-threatening condition for which antibiotics must be prescribed within hours of clinical diagnosis. Since the current gold standard for bacteremia diagnosis is based on conventional methods developed in the mid-1800s-growth on agar or in broth-identification and susceptibility profiling for both Gram-positive and Gram-negative bacterial species requires at least 48-72 h. Recent advancements in accelerated phenotypic antibiotic susceptibility testing have centered on the microscopic growth analysis of small bacterial populations. These approaches are still inherently limited by the bacterial growth rate. Our approach is fundamentally different. By applying environmental stress to bacteria in a microfluidic platform, we can correctly assign antibiotic susceptibility profiles of clinically relevant Gram-negative bacteria within two hours of antibiotic introduction rather than 8-24 h. The substantial expansion to include a number of clinical isolates of important Gram-negative species-Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa-reported here underscores the broad utility of our approach, complementing the method's proven utility for Gram-positive bacteria. We also demonstrate that the platform is compatible with antibiotics that have varying mechanisms of action-meropenem, gentamicin, and ceftazidime-highlighting the versatility of this platform.
Collapse
|
654
|
Häcker G. The role of septins in infections with vacuole-dwelling intracellular bacteria. Int J Med Microbiol 2017; 308:25-31. [PMID: 28784332 DOI: 10.1016/j.ijmm.2017.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/21/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022] Open
Abstract
Septins are a relatively little understood group of GTPases that form large assemblies in cells from all eukaryotes other than plants. Septins were first identified in cell division but have also been implicated in microbial infections. Septins often associate with cytoskeletal proteins - most often described for filamentous (F-) actin - and are considered cytoskeletal components themselves. Septins have increasingly been found to partake in processes that are linked to intracellular membranes, from mitochondria to phagosomes, and evidence is accumulating that septins specifically bind to membranes. Since a number of microorganisms have specialized to live and grow inside membranous vacuoles in the cytosol of mammalian cells, this membrane-association of septins suggests that septins may also be involved in the membranous, vacuolar structures that develop around these microbes. However, data are limited on this issue: septins have been identified by proteome analysis on some microbe-bearing vacuoles, but more extensive experimental data are only available for infections with the obligate intracellular bacterium Chlamydia trachomatis. In this review article I will discuss the available data and speculate about the mechanisms of recruitment and potential functions of septins for vacuole-dwelling microorganisms, which may be peculiar to Chlamydia or may pertain more generally to this class of microbes.
Collapse
Affiliation(s)
- Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Faculty of Medicine, 79104 Freiburg, Germany.
| |
Collapse
|
655
|
Abstract
The bacterial cytoplasmic membrane is composed of roughly equal proportions of lipids and proteins. The main lipid components are phospholipids, which vary in acyl chain length, saturation, and branching and carry head groups that vary in size and charge. Phospholipid variants determine membrane properties such as fluidity and charge that in turn modulate interactions with membrane-associated proteins. We summarize recent advances in understanding bacterial membrane structure and function, focusing particularly on the possible existence and significance of specialized membrane domains. We review the role of membrane curvature as a spatial cue for recruitment and regulation of proteins involved in morphogenic functions, especially elongation and division. Finally, we examine the role of the membrane, especially regulation of synthesis and fluid properties, in the life cycle of cell wall-deficient L-form bacteria.
Collapse
Affiliation(s)
- Henrik Strahl
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4AX United Kingdom; ,
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle Upon Tyne, NE2 4AX United Kingdom; ,
| |
Collapse
|
656
|
Ter Beek J, Kahle M, Ädelroth P. Modulation of protein function in membrane mimetics: Characterization of P. denitrificans cNOR in nanodiscs or liposomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1951-1961. [PMID: 28668220 DOI: 10.1016/j.bbamem.2017.06.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/03/2017] [Accepted: 06/27/2017] [Indexed: 10/19/2022]
Abstract
For detailed functional characterization, membrane proteins are usually studied in detergent. However, it is becoming clear that detergent micelles are often poor mimics of the lipid environment in which these proteins function. In this work we compared the catalytic properties of the membrane-embedded cytochrome c-dependent nitric oxide reductase (cNOR) from Paracoccus (P.) denitrificans in detergent, lipid/protein nanodiscs, and proteoliposomes. We used two different lipid mixtures, an extract of soybean lipids and a defined mix of synthetic lipids mimicking the original P. denitrificans membrane. We show that the catalytic activity of detergent-solubilized cNOR increased threefold upon reconstitution from detergent into proteoliposomes with the P. denitrificans lipid mixture, and above two-fold when soybean lipids were used. In contrast, there was only a small activity increase in nanodiscs. We further show that binding of the gaseous ligands CO and O2 are affected differently by reconstitution. In proteoliposomes the turnover rates are affected much more than in nanodiscs, but CO-binding is more significantly accelerated in liposomes with soybean lipids, while O2-binding is faster with the P. denitrificans lipid mix. We also investigated proton-coupled electron transfer during the reaction between fully reduced cNOR and O2, and found that the pKa of the internal proton donor was increased in proteoliposomes but not in nanodiscs. Taking our results together, the liposome-reconstituted enzyme shows significant differences to detergent-solubilized protein. Nanodiscs show much more subtle effects, presumably because of their much lower lipid to protein ratio. Which of these two membrane-mimetic systems best mimics the native membrane is discussed.
Collapse
Affiliation(s)
- Josy Ter Beek
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden.
| | - Maximilian Kahle
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden.
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
657
|
Sandoval-Calderón M, Guan Z, Sohlenkamp C. Knowns and unknowns of membrane lipid synthesis in streptomycetes. Biochimie 2017; 141:21-29. [PMID: 28522365 DOI: 10.1016/j.biochi.2017.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/12/2017] [Indexed: 11/16/2022]
Abstract
Bacteria belonging to the genus Streptomyces are among the most prolific producers of antibiotics. Research on cellular membrane biosynthesis and turnover is lagging behind in Streptomyces compared to related organisms like Mycobacterium tuberculosis. While natural products discovery in Streptomyces is evidently a priority in order to discover new antibiotics to combat the increase in antibiotic resistant pathogens, a better understanding of this cellular compartment should provide insights into the interplay between core and secondary metabolism. However, some of the pathways for membrane lipid biosynthesis are still incomplete. In addition, while it has become clear that remodelling of the membrane is necessary for coping with environmental stress and for morphological differentiation, the detailed mechanisms of these adaptations remain elusive. Here, we aim to provide a summary of what is known about the polar lipid composition in Streptomyces, the biosynthetic pathways of polar lipids, and to highlight current gaps in understanding function, dynamics and biosynthesis of these essential molecules.
Collapse
Affiliation(s)
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.
| |
Collapse
|
658
|
Rashid R, Cazenave-Gassiot A, Gao IH, Nair ZJ, Kumar JK, Gao L, Kline KA, Wenk MR. Comprehensive analysis of phospholipids and glycolipids in the opportunistic pathogen Enterococcus faecalis. PLoS One 2017; 12:e0175886. [PMID: 28423018 PMCID: PMC5397010 DOI: 10.1371/journal.pone.0175886] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 04/02/2017] [Indexed: 02/07/2023] Open
Abstract
Enterococcus faecalis is a Gram-positive, opportunistic, pathogenic bacterium that causes a significant number of antibiotic-resistant infections in hospitalized patients. The development of antibiotic resistance in hospital-associated pathogens is a formidable public health threat. In E. faecalis and other Gram-positive pathogens, correlations exist between lipid composition and antibiotic resistance. Resistance to the last-resort antibiotic daptomycin is accompanied by a decrease in phosphatidylglycerol (PG) levels, whereas multiple peptide resistance factor (MprF) converts anionic PG into cationic lysyl-PG via a trans-esterification reaction, providing resistance to cationic antimicrobial peptides. Unlike previous studies that relied on thin layer chromatography and spectrophotometry, we have performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) directly on lipids extracted from E. faecalis, and quantified the phospholipids through multiple reaction monitoring (MRM). In the daptomycin-sensitive E. faecalis strain OG1RF, we have identified 17 PGs, 8 lysyl-PGs (LPGs), 23 cardiolipins (CL), 3 glycerophospho-diglucosyl-diacylglycerols (GPDGDAG), 5 diglucosyl-diacylglycerols (DGDAG), 3 diacylglycerols (DAGs), and 4 triacylglycerols (TAGs). We have quantified PG and shown that PG levels vary during growth of E. faecalis in vitro. We also show that two daptomycin-resistant (DapR) strains of E. faecalis have substantially lower levels of PG and LPG levels. Since LPG levels in these strains are lower, daptomycin resistance is likely due to the reduction in PG. This lipidome map is the first comprehensive analysis of membrane phospholipids and glycolipids in the important human pathogen E. faecalis, for which antimicrobial resistance and altered lipid homeostasis have been intimately linked.
Collapse
Affiliation(s)
- Rafi Rashid
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Amaury Cazenave-Gassiot
- Singapore Lipidomics Incubator, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Iris H. Gao
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Zeus J. Nair
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jaspal K. Kumar
- Singapore Lipidomics Incubator, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Liang Gao
- Singapore Lipidomics Incubator, National University of Singapore, Singapore, Singapore
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Kimberly A. Kline
- Singapore Centre on Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
- * E-mail: (KAK); (MRW)
| | - Markus R. Wenk
- Singapore Lipidomics Incubator, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- * E-mail: (KAK); (MRW)
| |
Collapse
|
659
|
Favre L, Ortalo-Magné A, Greff S, Pérez T, Thomas OP, Martin JC, Culioli G. Discrimination of Four Marine Biofilm-Forming Bacteria by LC-MS Metabolomics and Influence of Culture Parameters. J Proteome Res 2017; 16:1962-1975. [PMID: 28362105 DOI: 10.1021/acs.jproteome.6b01027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Most marine bacteria can form biofilms, and they are the main components of biofilms observed on marine surfaces. Biofilms constitute a widespread life strategy, as growing in such structures offers many important biological benefits. The molecular compounds expressed in biofilms and, more generally, the metabolomes of marine bacteria remain poorly studied. In this context, a nontargeted LC-MS metabolomics approach of marine biofilm-forming bacterial strains was developed. Four marine bacteria, Persicivirga (Nonlabens) mediterranea TC4 and TC7, Pseudoalteromonas lipolytica TC8, and Shewanella sp. TC11, were used as model organisms. The main objective was to search for some strain-specific bacterial metabolites and to determine how culture parameters (culture medium, growth phase, and mode of culture) may affect the cellular metabolism of each strain and thus the global interstrain metabolic discrimination. LC-MS profiling and statistical partial least-squares discriminant analyses showed that the four strains could be differentiated at the species level whatever the medium, the growth phase, or the mode of culture (planktonic vs biofilm). A MS/MS molecular network was subsequently built and allowed the identification of putative bacterial biomarkers. TC8 was discriminated by a series of ornithine lipids, while the P. mediterranea strains produced hydroxylated ornithine and glycine lipids. Among the P. mediterranea strains, TC7 extracts were distinguished by the occurrence of diamine derivatives, such as putrescine amides.
Collapse
Affiliation(s)
- Laurie Favre
- Université de Toulon , MAPIEM, EA 4323, La Garde Cedex 83130, France
| | | | - Stéphane Greff
- CNRS, Aix Marseille Univ , IRD, Avignon Univ. Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station marine d'Endoume, Marseille 13007, France
| | - Thierry Pérez
- CNRS, Aix Marseille Univ , IRD, Avignon Univ. Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station marine d'Endoume, Marseille 13007, France
| | - Olivier P Thomas
- CNRS, Aix Marseille Univ , IRD, Avignon Univ. Institut Méditerranéen de Biodiversité et d'Ecologie marine et continentale, Station marine d'Endoume, Marseille 13007, France.,National University of Ireland Galway , School of Chemistry, Marine Biodiscovery, Galway, Ireland
| | | | - Gérald Culioli
- Université de Toulon , MAPIEM, EA 4323, La Garde Cedex 83130, France
| |
Collapse
|
660
|
Acosta-Andrade C, Artetxe I, Lete MG, Monasterio BG, Ruiz-Mirazo K, Goñi FM, Sánchez-Jiménez F. Polyamine-RNA-membrane interactions: From the past to the future in biology. Colloids Surf B Biointerfaces 2017; 155:173-181. [PMID: 28456048 DOI: 10.1016/j.colsurfb.2017.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 03/12/2017] [Accepted: 04/04/2017] [Indexed: 01/06/2023]
Abstract
Biogenic polyamines (PAs), spermine, spermidine and putrescine are widely spread amino acid derivatives, present in living cells throughout the whole evolutionary scale. Their amino groups confer them a marked basic character at the cellular pH. We have tested the interaction of PAs with negatively-charged phospholipids in the absence and presence of nucleic acids (tRNA was mainly used for practical reasons). PAs induced aggregation of lipid vesicles containing acidic phospholipids. Aggregation was detected using both spectroscopic and fluorescence microscopy methods (the latter with giant unilamellar vesicles). PA-liposome complexes were partially disaggregated when nucleic acids were added to the mixture, indicating a competition between lipids and nucleic acids for PAs in a multiple equilibrium phenomenon. Equivalent observations could be made when vesicles composed of oleic acid and 1-decanol (1:1mol ratio) were used instead of phospholipid liposomes. The data could evoke putative primitive processes of proto-biotic evolution. At the other end of the time scale, this system may be at the basis of an interesting tool in the development of nanoscale drug delivery.
Collapse
Affiliation(s)
- Carlos Acosta-Andrade
- Department of Molecular Biology and Biochemistry, University of Malaga, and Unit 741 of CIBER de Enfermedades Raras, Málaga, Spain
| | - Ibai Artetxe
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Marta G Lete
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Bingen G Monasterio
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Kepa Ruiz-Mirazo
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain; Department of Logic and Philosophy of Science, University of the Basque Country, Donostia, Spain
| | - Félix M Goñi
- Biofisika Institute (CSIC, UPV/EHU), and Department of Biochemistry, University of the Basque Country, 48940 Leioa, Spain
| | - Francisca Sánchez-Jiménez
- Department of Molecular Biology and Biochemistry, University of Malaga, and Unit 741 of CIBER de Enfermedades Raras, Málaga, Spain.
| |
Collapse
|
661
|
Dalecki AG, Crawford CL, Wolschendorf F. Copper and Antibiotics: Discovery, Modes of Action, and Opportunities for Medicinal Applications. Adv Microb Physiol 2017; 70:193-260. [PMID: 28528648 DOI: 10.1016/bs.ampbs.2017.01.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Copper is a ubiquitous element in the environment as well as living organisms, with its redox capabilities and complexation potential making it indispensable for many cellular functions. However, these same properties can be highly detrimental to prokaryotes and eukaryotes when not properly controlled, damaging many biomolecules including DNA, lipids, and proteins. To restrict free copper concentrations, all bacteria have developed mechanisms of resistance, sequestering and effluxing labile copper to minimize its deleterious effects. This weakness is actively exploited by phagocytes, which utilize a copper burst to destroy pathogens. Though administration of free copper is an unreasonable therapeutic antimicrobial itself, due to insufficient selectivity between host and pathogen, small-molecule ligands may provide an opportunity for therapeutic mimicry of the immune system. By modulating cellular entry, complex stability, resistance evasion, and target selectivity, ligand/metal coordination complexes can synergistically result in high levels of antibacterial activity. Several established therapeutic drugs, such as disulfiram and pyrithione, display remarkable copper-dependent inhibitory activity. These findings have led to development of new drug discovery techniques, using copper ions as the focal point. High-throughput screens for copper-dependent inhibitors against Mycobacterium tuberculosis and Staphylococcus aureus uncovered several new compounds, including a new class of inhibitors, the NNSNs. In this review, we highlight the microbial biology of copper, its antibacterial activities, and mechanisms to discover new inhibitors that synergize with copper.
Collapse
Affiliation(s)
- Alex G Dalecki
- The University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | |
Collapse
|
662
|
Rempe CS, Burris KP, Lenaghan SC, Stewart CN. The Potential of Systems Biology to Discover Antibacterial Mechanisms of Plant Phenolics. Front Microbiol 2017; 8:422. [PMID: 28360902 PMCID: PMC5352675 DOI: 10.3389/fmicb.2017.00422] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/28/2017] [Indexed: 12/13/2022] Open
Abstract
Drug resistance of bacterial pathogens is a growing problem that can be addressed through the discovery of compounds with novel mechanisms of antibacterial activity. Natural products, including plant phenolic compounds, are one source of diverse chemical structures that could inhibit bacteria through novel mechanisms. However, evaluating novel antibacterial mechanisms of action can be difficult and is uncommon in assessments of plant phenolic compounds. With systems biology approaches, though, antibacterial mechanisms can be assessed without the bias of target-directed bioassays to enable the discovery of novel mechanism(s) of action against drug resistant microorganisms. This review article summarizes the current knowledge of antibacterial mechanisms of action of plant phenolic compounds and discusses relevant methodology.
Collapse
Affiliation(s)
- Caroline S. Rempe
- College of Arts and Sciences, Graduate School of Genome Science and Technology, University of TennesseeKnoxville, TN, USA
| | - Kellie P. Burris
- Department of Food Science, University of TennesseeKnoxville, TN, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State UniversityRaleigh, NC, USA
| | - Scott C. Lenaghan
- Department of Food Science, University of TennesseeKnoxville, TN, USA
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of TennesseeKnoxville, TN, USA
| | - C. Neal Stewart
- College of Arts and Sciences, Graduate School of Genome Science and Technology, University of TennesseeKnoxville, TN, USA
- Department of Plant Sciences, University of TennesseeKnoxville, TN, USA
| |
Collapse
|
663
|
Clozapine Modulates Glucosylceramide, Clears Aggregated Proteins, and Enhances ATG8/LC3 in Caenorhabditis elegans. Neuropsychopharmacology 2017; 42:951-962. [PMID: 27711049 PMCID: PMC5312067 DOI: 10.1038/npp.2016.230] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/27/2016] [Accepted: 09/21/2016] [Indexed: 12/31/2022]
Abstract
Defining the mechanisms of action of the antipsychotic drug (APD), clozapine, is of great importance, as clozapine is more effective and has therapeutic benefits in a broader range of psychiatric disorders compared with other APDs. Its range of actions have not been fully characterized. Exposure to APDs early in development causes dose-dependent developmental delay and lethality in Caenorhabditis elegans. A previous genome-wide RNAi screen for suppressors of clozapine-induced developmental delay and lethality revealed 40 candidate genes, including sms-1, which encodes a sphingomyelin synthase. One sms-1 isoform is expressed in the C. elegans pharynx, and its transgene rescues the sms-1 mutant phenotype. We examined pharyngeal pumping and observed that clozapine-induced inhibition of pharyngeal pumping requires sms-1, a finding that may explain the role of the gene in mediating clozapine-induced developmental delay/lethality. By analyzing multiple enzymes involved in sphingolipid metabolism, and by observing the effect of addition of various lipids directly to the worms, we suggest that glucosylceramide may be a key mediator of the effects of clozapine. We further observed that clozapine clears protein aggregates, such as α-synuclein, PolyQ protein, and α-1-antitrypsin mutant protein. In addition, it enhances ATG8/LC3. We conclude that clozapine appears to affect the development and induce lethality of worms, in part, through modulating glucosylceramide. We discuss the possible connections among glucosylceramide, protein aggregate clearance, and autophagy. Interactions, including mechanistic pathways involving these elements, may underlie some of the clinical effects of clozapine.
Collapse
|
664
|
Kawazura T, Matsumoto K, Kojima K, Kato F, Kanai T, Niki H, Shiomi D. Exclusion of assembled MreB by anionic phospholipids at cell poles confers cell polarity for bidirectional growth. Mol Microbiol 2017; 104:472-486. [PMID: 28164388 DOI: 10.1111/mmi.13639] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2017] [Indexed: 12/21/2022]
Abstract
Cell polarity determines the direction of cell growth in bacteria. MreB actin spatially regulates peptidoglycan synthesis to enable cells to elongate bidirectionally. MreB densely localizes in the cylindrical part of the rod cell and not in polar regions in Escherichia coli. When treated with A22, which inhibits MreB polymerization, rod-shaped cells became round and MreB was diffusely distributed throughout the cytoplasmic membrane. A22 removal resulted in restoration of the rod shape. Initially, diffuse MreB started to re-assemble, and MreB-free zones were subsequently observed in the cytoplasmic membrane. These MreB-free zones finally became cell poles, allowing the cells to elongate bidirectionally. When MreB was artificially located at the cell poles, an additional pole was created, indicating that artificial localization of MreB at the cell pole induced local peptidoglycan synthesis. It was found that the anionic phospholipids (aPLs), phosphatidylglycerol and cardiolipin, which were enriched in cell poles preferentially interact with monomeric MreB compared with assembled MreB in vitro. MreB tended to localize to cell poles in cells lacking both aPLs, resulting in production of Y-shaped cells. Their findings indicated that aPLs exclude assembled MreB from cell poles to establish cell polarity, thereby allowing cells to elongate in a particular direction.
Collapse
Affiliation(s)
- Takuma Kawazura
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Kanon Matsumoto
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Koki Kojima
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Fumiya Kato
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Tomomi Kanai
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| | - Hironori Niki
- Microbial Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, The Graduate University for Advanced Studies, Sokendai, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Daisuke Shiomi
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
| |
Collapse
|
665
|
Lopez D, Koch G. Exploring functional membrane microdomains in bacteria: an overview. Curr Opin Microbiol 2017; 36:76-84. [PMID: 28237903 DOI: 10.1016/j.mib.2017.02.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/01/2017] [Indexed: 01/08/2023]
Abstract
Recent studies show that internal organization of bacterial cells is more complex than previously appreciated. A clear example of this is the assembly of the nanoscale membrane platforms termed functional membrane microdomains. The lipid composition of these regions differs from that of the surrounding membrane; these domains confine a set of proteins involved in specific cellular processes such as protease secretion and signal transduction. It is currently thought that functional membrane microdomains act as oligomerization platforms and promote efficient oligomerization of interacting protein partners in bacterial membranes. In this review, we highlight the most noteworthy achievements, challenges and controversies of this emerging research field over the past five years.
Collapse
Affiliation(s)
- Daniel Lopez
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany; Spanish National Centre for Biotechnology (CNB), Madrid 28049, Spain.
| | - Gudrun Koch
- Research Centre for Infectious Diseases (ZINF), University of Würzburg, Würzburg 97080, Germany; Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg 97080, Germany
| |
Collapse
|
666
|
Abstract
Membrane deformation by proteins is a universal phenomenon that has been studied extensively in eukaryotes but much less in prokaryotes. In this study, we discovered a membrane-deforming activity of the phospholipid N-methyltransferase PmtA from the plant-pathogenic bacterium Agrobacterium tumefaciens PmtA catalyzes the successive three-step N-methylation of phosphatidylethanolamine to phosphatidylcholine. Here, we defined the lipid and protein requirements for the membrane-remodeling activity of PmtA by a combination of transmission electron microscopy and liposome interaction studies. Dependent on the lipid composition, PmtA changes the shape of spherical liposomes either into filaments or small vesicles. Upon overproduction of PmtA in A. tumefaciens, vesicle-like structures occur in the cytoplasm, dependent on the presence of the anionic lipid cardiolipin. The N-terminal lipid-binding α-helix (αA) is involved in membrane deformation by PmtA. Two functionally distinct and spatially separated regions in αA can be distinguished. Anionic interactions by positively charged amino acids on one face of the helix are responsible for membrane recruitment of the enzyme. The opposite hydrophobic face of the helix is required for membrane remodeling, presumably by shallow insertion into the lipid bilayer.IMPORTANCE The ability to alter the morphology of biological membranes is known for a small number of some bacterial proteins. Our study adds the phospholipid N-methyltransferase PmtA as a new member to the category of bacterial membrane-remodeling proteins. A combination of in vivo and in vitro methods reveals the molecular requirements for membrane deformation at the protein and phospholipid level. The dual functionality of PmtA suggests a contribution of membrane biosynthesis enzymes to the complex morphology of bacterial membranes.
Collapse
|
667
|
Isolation of detergent-resistant membranes (DRMs) from Escherichia coli. Anal Biochem 2017; 518:1-8. [DOI: 10.1016/j.ab.2016.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/16/2016] [Accepted: 10/26/2016] [Indexed: 12/21/2022]
|
668
|
Vences-Guzmán MÁ, Paula Goetting-Minesky M, Guan Z, Castillo-Ramirez S, Córdoba-Castro LA, López-Lara IM, Geiger O, Sohlenkamp C, Christopher Fenno J. 1,2-Diacylglycerol choline phosphotransferase catalyzes the final step in the unique Treponema denticola phosphatidylcholine biosynthesis pathway. Mol Microbiol 2017; 103:896-912. [PMID: 28009086 DOI: 10.1111/mmi.13596] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2016] [Indexed: 01/09/2023]
Abstract
Treponema denticola synthesizes phosphatidylcholine through a licCA-dependent CDP-choline pathway identified only in the genus Treponema. However, the mechanism of conversion of CDP-choline to phosphatidylcholine remained unclear. We report here characterization of TDE0021 (herein designated cpt) encoding a 1,2-diacylglycerol choline phosphotransferase homologous to choline phosphotransferases that catalyze the final step of the highly conserved Kennedy pathway for phosphatidylcholine synthesis in eukaryotes. T. denticola Cpt catalyzed in vitro phosphatidylcholine formation from CDP-choline and diacylglycerol, and full activity required divalent manganese. Allelic replacement mutagenesis of cpt in T. denticola resulted in abrogation of phosphatidylcholine synthesis. T. denticola Cpt complemented a Saccharomyces cerevisiae CPT1 mutant, and expression of the entire T. denticola LicCA-Cpt pathway in E. coli resulted in phosphatidylcholine biosynthesis. Our findings show that T. denticola possesses a unique phosphatidylcholine synthesis pathway combining conserved prokaryotic choline kinase and CTP:phosphocholine cytidylyltransferase activities with a 1,2-diacylglycerol choline phosphotransferase that is common in eukaryotes. Other than in a subset of mammalian host-associated Treponema that includes T. pallidum, this pathway is found in neither bacteria nor Archaea. Molecular dating analysis of the Cpt gene family suggests that a horizontal gene transfer event introduced this gene into an ancestral Treponema well after its divergence from other spirochetes.
Collapse
Affiliation(s)
- Miguel Ángel Vences-Guzmán
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - M Paula Goetting-Minesky
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Santiago Castillo-Ramirez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Luz América Córdoba-Castro
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Isabel M López-Lara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
669
|
O'Brien-Simpson NM, Li W, Pantarat N, Hossain MA, Separovic F, Wade JD, Reynolds EC. Fluorescent Ion Efflux Screening Assay for Determining Membrane-Active Peptides. Aust J Chem 2017. [DOI: 10.1071/ch16659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A major global health threat is the emergence of antibiotic-resistant microbes. Coupled with a lack of development of modified antibiotics, there is a need to develop new antimicrobial molecules and screening assays for them. In this study, we provide proof of concept that a large unilamellar vesicle (LUV) method used to study chloride ion efflux facilitated by ionophores and surfactant-like molecules that disrupt membrane integrity can be adapted to identify membrane-interactive antimicrobial peptides (AMPs) and to screen relative activity of AMPs. Lucigenin was encapsulated in LUVs in the presence of Cl– ion (NaCl), which quenches fluorescence, and then incubated with AMPs in 100 mM NaNO3 buffer. Upon AMP membrane interaction or disruption, the Cl– ion is exchanged with the NO3– ion, and the resultant lucigenin fluorescence is indicative of relative AMP activity. Seven AMPs were synthesized by solid-phase peptide chemistry and incubated with LUVs of different phospholipid compositions. Each AMP resulted in lucigenin fluorescence, which was dose dependent, and the relative fluorescence correlated with the minimum inhibitory concentration and minimum bactericidal concentration values for the corresponding peptide. Furthermore, using mammalian model phospholipid LUVs, lucigenin-induced fluorescence also correlated with the AMP cytotoxicity half-maximal inhibitory concentration values. The proline-rich AMP, Chex1-Arg20, which is non-lytic but interacts with the bacterial membrane resulted in lucigenin fluorescence of bacterial membrane model LUVs but not of mammalian membrane model LUVs. The fluorescent ion efflux assay developed here should have applicability for most AMPs and could be tailored to target particular bacterial species membrane composition, potentially leading to the identification of novel membrane-interactive AMPs. The rapid high-throughput method also allows for screening of relative AMP activity and toxicity before biological testing.
Collapse
|
670
|
Lam SJ, Wong EHH, O'Brien-Simpson NM, Pantarat N, Blencowe A, Reynolds EC, Qiao GG. Bionano Interaction Study on Antimicrobial Star-Shaped Peptide Polymer Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:33446-33456. [PMID: 27960388 DOI: 10.1021/acsami.6b11402] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
'Structurally nanoengineered antimicrobial peptide polymers' (SNAPPs), in the form of star-shaped peptide polymer nanoparticles, have been recently demonstrated as a new class of antimicrobial agents with superior in vitro and in vivo efficacy against Gram-negative pathogens, including multidrug-resistant species. Herein, we present a detailed bionano interaction study on SNAPPs by assessing their antimicrobial activities against several Gram-negative bacteria in complex biological matrices. Simulated body fluid and animal serum were used as test media to reveal factors that influence the antimicrobial efficacy of SNAPPs. With the exception of Acinetobacter baumannii, the presence of divalent cations at physiological concentrations reduced the antimicrobial efficacy of SNAPPs from minimum inhibitory concentrations (MICs) within the nanomolar range (40-300 nM) against Escherichia coli, Pseudomanas aeruginosa, and Klebsiella pneumoniae to 0.6-4.7 μM. By using E. coli as a representative bacterial species, we demonstrated that the reduction in activity was due to a decrease in the ability of SNAPPs to cause outer and inner membrane disruption. This effect could be reversed through coadministration with a chelating agent. Interestingly, the potency of SNAPPs against A. baumannii was retained even under high salt concentrations. The presence of serum proteins was also found to affect the interaction of SNAPPs with bacterial membranes, possibly through intermolecular binding. Collectively, this study highlights the need to consider the possible interactions of (bio)molecules present in vivo with any new antimicrobial agent under development. We also demonstrate that outer membrane disruption/destabilization is an important but hitherto under-recognized target for the antimicrobial action of peptide-based agents, such as antimicrobial peptides (AMPs). Overall, the findings presented herein could aid in the design of more efficient peptide-based antimicrobial agents with uncompromised potency even under physiological conditions.
Collapse
Affiliation(s)
- Shu J Lam
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, and ‡Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, Oral Health CRC, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Edgar H H Wong
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, and ‡Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, Oral Health CRC, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Neil M O'Brien-Simpson
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, and ‡Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, Oral Health CRC, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Namfon Pantarat
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, and ‡Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, Oral Health CRC, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Anton Blencowe
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, and ‡Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, Oral Health CRC, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Eric C Reynolds
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, and ‡Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, Oral Health CRC, The University of Melbourne , Parkville, Victoria 3010, Australia
| | - Greg G Qiao
- Polymer Science Group, Department of Chemical & Biomolecular Engineering, and ‡Melbourne Dental School and The Bio21 Institute of Molecular Science and Biotechnology, Oral Health CRC, The University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
671
|
Affiliation(s)
- John A Wright
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| |
Collapse
|
672
|
Bondar AN. Biophysical mechanism of rhomboid proteolysis: Setting a foundation for therapeutics. Semin Cell Dev Biol 2016; 60:46-51. [DOI: 10.1016/j.semcdb.2016.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 08/12/2016] [Accepted: 09/12/2016] [Indexed: 11/16/2022]
|
673
|
MacCready JS, Schossau J, Osteryoung KW, Ducat DC. Robust Min-system oscillation in the presence of internal photosynthetic membranes in cyanobacteria. Mol Microbiol 2016; 103:483-503. [PMID: 27891682 DOI: 10.1111/mmi.13571] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2016] [Indexed: 11/29/2022]
Abstract
The oscillatory Min system of Escherichia coli defines the cell division plane by regulating the site of FtsZ-ring formation and represents one of the best-understood examples of emergent protein self-organization in nature. The oscillatory patterns of the Min-system proteins MinC, MinD and MinE (MinCDE) are strongly dependent on the geometry of membranes they bind. Complex internal membranes within cyanobacteria could disrupt this self-organization by sterically occluding or sequestering MinCDE from the plasma membrane. Here, it was shown that the Min system in the cyanobacterium Synechococcus elongatus PCC 7942 oscillates from pole-to-pole despite the potential spatial constraints imposed by their extensive thylakoid network. Moreover, reaction-diffusion simulations predict robust oscillations in modeled cyanobacterial cells provided that thylakoid network permeability is maintained to facilitate diffusion, and suggest that Min proteins require preferential affinity for the plasma membrane over thylakoids to correctly position the FtsZ ring. Interestingly, in addition to oscillating, MinC exhibits a midcell localization dependent on MinD and the DivIVA-like protein Cdv3, indicating that two distinct pools of MinC are coordinated in S. elongatus. Our results provide the first direct evidence for Min oscillation outside of E. coli and have broader implications for Min-system function in bacteria and organelles with internal membrane systems.
Collapse
Affiliation(s)
- Joshua S MacCready
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Jory Schossau
- Department of Computer Science, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Daniel C Ducat
- Department of Biochemistry, MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
674
|
Iavicoli P, Rossi F, Lamarre B, Bella A, Ryadnov MG, Calzolai L. Modulating charge-dependent and folding-mediated antimicrobial interactions at peptide-lipid interfaces. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:375-382. [PMID: 27832293 PMCID: PMC5384954 DOI: 10.1007/s00249-016-1180-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/05/2016] [Accepted: 10/11/2016] [Indexed: 01/10/2023]
Abstract
Peptide–lipid interactions support a variety of biological functions. Of particular interest are those that underpin fundamental mechanisms of innate immunity that are programmed in host defense or antimicrobial peptide sequences found virtually in all multicellular organisms. Here we synthetically modulate antimicrobial peptide–lipid interactions using an archetypal helical antimicrobial peptide and synthetic membranes mimicking bacterial and mammalian membranes in solution. We probe these interactions as a function of membrane-induced folding, membrane stability and peptide–lipid ratios using a correlative approach encompassing light scattering and spectroscopy measurements such as circular dichroism spectroscopy, fluorescence and nuclear magnetic resonance spectroscopy. The peptide behavior is assessed against that of its anionic counterpart having similar propensities for α-helical folding. The results indicate strong correlations between peptide folding and membrane type, supporting folding-responsive binding of antimicrobial peptides to bacterial membranes. The study provides a straightforward approach for modulating structure–activity relationships in the context of membrane-induced antimicrobial action, thus holding promise for the rational design of potent antimicrobial agents.
Collapse
Affiliation(s)
- Patrizia Iavicoli
- European Commission, DG Joint Research Centre, Via Enrico Fermi, 2749, Ispra, VA, 21027, Italy
| | - François Rossi
- European Commission, DG Joint Research Centre, Via Enrico Fermi, 2749, Ispra, VA, 21027, Italy
| | | | - Angelo Bella
- National Physical Laboratory, Teddington, TW11 0LW, UK
| | | | - Luigi Calzolai
- European Commission, DG Joint Research Centre, Via Enrico Fermi, 2749, Ispra, VA, 21027, Italy.
| |
Collapse
|
675
|
Cell-Free Phospholipid Biosynthesis by Gene-Encoded Enzymes Reconstituted in Liposomes. PLoS One 2016; 11:e0163058. [PMID: 27711229 PMCID: PMC5053487 DOI: 10.1371/journal.pone.0163058] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/01/2016] [Indexed: 11/19/2022] Open
Abstract
The goal of bottom-up synthetic biology culminates in the assembly of an entire cell from separate biological building blocks. One major challenge resides in the in vitro production and implementation of complex genetic and metabolic pathways that can support essential cellular functions. Here, we show that phospholipid biosynthesis, a multiple-step process involved in cell membrane homeostasis, can be reconstituted starting from the genes encoding for all necessary proteins. A total of eight E. coli enzymes for acyl transfer and headgroup modifications were produced in a cell-free gene expression system and were co-translationally reconstituted in liposomes. Acyl-coenzyme A and glycerol-3-phosphate were used as canonical precursors to generate a variety of important bacterial lipids. Moreover, this study demonstrates that two-step acyl transfer can occur from enzymes synthesized inside vesicles. Besides clear implications for growth and potentially division of a synthetic cell, we postulate that gene-based lipid biosynthesis can become instrumental for ex vivo and protein purification-free production of natural and non-natural lipids.
Collapse
|
676
|
Atila M, Katselis G, Chumala P, Luo Y. Characterization of N-Succinylation of L-Lysylphosphatidylglycerol in Bacillus subtilis Using Tandem Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1606-1613. [PMID: 27506207 DOI: 10.1007/s13361-016-1455-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 06/06/2023]
Abstract
Phospholipids generally dominate in bacterial lipids. The negatively charged nature of phospholipids renders bacteria susceptible to cationic antibiotic peptides. In comparison with Gram-negative bacteria, Gram-positive bacteria in general have much less zwitterionic phosphatidylethanolamine. However, they are known for producing aminoacylated phosphatidylglycerol (PG), especially positively charged L-lysyl-PG, which is catalyzed by lysyl-PG synthase MprF, which appears to have a broad range of specificity for L-aminoacyl transfer RNAs. In addition, many Gram-positive bacteria also have a dlt-gene-coded D-alanylation pathway for lipoteichoic acids and wall teichoic acids covalently attached to a glycolipid or peptidoglycan. D-Alanylation also masks the dominant negative charge of the phosphate-rich polymers of teichoic acids. Using mass spectrometry, we have recently observed that precursor scans in negative mode for deprotonated amino acid fragments were most sensitive for ester-linked amino acids. Such a scan for precursors generating an m/z 145 lysyl anion revealed lysyl-PG as well as an additional species 100 m/z units greater than lysyl-PG. This unexpected species corresponded precisely to the expected mass of N-succinylated lysyl-PG. Tandem mass spectrometry revealed a precise match to the fragmentation pattern of this putative new species. PG, lysyl-PG, and N-succinyl-lysyl-PG may form a complete loop of charge reversal from -1 to +1 and then back to -1. Analogous charge reversal by N-succinylation of lysine residues in the bacterial as well as eukaryotic proteomes has been recently discovered as a major posttranslational modification. Such modification in bacterial lipids is possibly catalyzed by an enzyme homologous to the enzymes that modify lysine residues in proteins. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Metin Atila
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - George Katselis
- Canadian Centre for Health and Safety in Agriculture/Department of Medicine, Core Mass Spectrometry Facility, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Paulos Chumala
- Canadian Centre for Health and Safety in Agriculture/Department of Medicine, Core Mass Spectrometry Facility, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Yu Luo
- Department of Biochemistry, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
677
|
Pyne A, Pfeil MP, Bennett I, Ravi J, Iavicoli P, Lamarre B, Roethke A, Ray S, Jiang H, Bella A, Reisinger B, Yin D, Little B, Muñoz-García JC, Cerasoli E, Judge PJ, Faruqui N, Calzolai L, Henrion A, Martyna GJ, Grovenor CRM, Crain J, Hoogenboom BW, Watts A, Ryadnov MG. Engineering monolayer poration for rapid exfoliation of microbial membranes. Chem Sci 2016; 8:1105-1115. [PMID: 28451250 PMCID: PMC5369539 DOI: 10.1039/c6sc02925f] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 09/25/2016] [Indexed: 12/04/2022] Open
Abstract
A novel mechanism of monolayer poration leading to the rapid exfoliation and lysis of microbial membranes is reported.
The spread of bacterial resistance to traditional antibiotics continues to stimulate the search for alternative antimicrobial strategies. All forms of life, from bacteria to humans, are postulated to rely on a fundamental host defense mechanism, which exploits the formation of open pores in microbial phospholipid bilayers. Here we predict that transmembrane poration is not necessary for antimicrobial activity and reveal a distinct poration mechanism that targets the outer leaflet of phospholipid bilayers. Using a combination of molecular-scale and real-time imaging, spectroscopy and spectrometry approaches, we introduce a structural motif with a universal insertion mode in reconstituted membranes and live bacteria. We demonstrate that this motif rapidly assembles into monolayer pits that coalesce during progressive membrane exfoliation, leading to bacterial cell death within minutes. The findings offer a new physical basis for designing effective antibiotics.
Collapse
Affiliation(s)
- Alice Pyne
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK . .,London Centre for Nanotechnology and Department of Physics and Astronomy , University College London , London WC1E 6BT , UK
| | - Marc-Philipp Pfeil
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK . .,Department of Biochemistry , University of Oxford , Oxford OX1 3QU , UK
| | - Isabel Bennett
- London Centre for Nanotechnology and Department of Physics and Astronomy , University College London , London WC1E 6BT , UK
| | - Jascindra Ravi
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Patrizia Iavicoli
- European Commission , Joint Research Centre , Institute for Health and Consumer Protection , Ispra (VA) , Italy
| | - Baptiste Lamarre
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Anita Roethke
- Physikalisch-Technische Bundesanstalt , 38116 Braunschweig , Germany
| | - Santanu Ray
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Haibo Jiang
- Centre for Microscopy , Characterisation and Analysis , The University of Western Australia , Crawley , Western Australia 6009 , Australia
| | - Angelo Bella
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Bernd Reisinger
- Physikalisch-Technische Bundesanstalt , 38116 Braunschweig , Germany
| | - Daniel Yin
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK . .,Department of Biochemistry , University of Oxford , Oxford OX1 3QU , UK
| | - Benjamin Little
- School of Physics and Astronomy , University of Edinburgh , Edinburgh EH9 3JZ , UK
| | | | - Eleonora Cerasoli
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Peter J Judge
- Department of Biochemistry , University of Oxford , Oxford OX1 3QU , UK
| | - Nilofar Faruqui
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| | - Luigi Calzolai
- European Commission , Joint Research Centre , Institute for Health and Consumer Protection , Ispra (VA) , Italy
| | - Andre Henrion
- Physikalisch-Technische Bundesanstalt , 38116 Braunschweig , Germany
| | - Glenn J Martyna
- IBM T. J. Watson Research Center , Yorktown Heights , NY 10598 , USA
| | | | - Jason Crain
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK . .,School of Physics and Astronomy , University of Edinburgh , Edinburgh EH9 3JZ , UK
| | - Bart W Hoogenboom
- London Centre for Nanotechnology and Department of Physics and Astronomy , University College London , London WC1E 6BT , UK
| | - Anthony Watts
- Department of Biochemistry , University of Oxford , Oxford OX1 3QU , UK
| | - Maxim G Ryadnov
- National Physical Laboratory , Teddington , Middlesex TW11 0LW , UK .
| |
Collapse
|
678
|
Draghi WO, Del Papa MF, Hellweg C, Watt SA, Watt TF, Barsch A, Lozano MJ, Lagares A, Salas ME, López JL, Albicoro FJ, Nilsson JF, Torres Tejerizo GA, Luna MF, Pistorio M, Boiardi JL, Pühler A, Weidner S, Niehaus K, Lagares A. A consolidated analysis of the physiologic and molecular responses induced under acid stress in the legume-symbiont model-soil bacterium Sinorhizobium meliloti. Sci Rep 2016; 6:29278. [PMID: 27404346 PMCID: PMC4941405 DOI: 10.1038/srep29278] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/14/2016] [Indexed: 01/30/2023] Open
Abstract
Abiotic stresses in general and extracellular acidity in particular disturb and limit nitrogen-fixing symbioses between rhizobia and their host legumes. Except for valuable molecular-biological studies on different rhizobia, no consolidated models have been formulated to describe the central physiologic changes that occur in acid-stressed bacteria. We present here an integrated analysis entailing the main cultural, metabolic, and molecular responses of the model bacterium Sinorhizobium meliloti growing under controlled acid stress in a chemostat. A stepwise extracellular acidification of the culture medium had indicated that S. meliloti stopped growing at ca. pH 6.0–6.1. Under such stress the rhizobia increased the O2 consumption per cell by more than 5-fold. This phenotype, together with an increase in the transcripts for several membrane cytochromes, entails a higher aerobic-respiration rate in the acid-stressed rhizobia. Multivariate analysis of global metabolome data served to unequivocally correlate specific-metabolite profiles with the extracellular pH, showing that at low pH the pentose-phosphate pathway exhibited increases in several transcripts, enzymes, and metabolites. Further analyses should be focused on the time course of the observed changes, its associated intracellular signaling, and on the comparison with the changes that operate during the sub lethal acid-adaptive response (ATR) in rhizobia.
Collapse
Affiliation(s)
- W O Draghi
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - M F Del Papa
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - C Hellweg
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - S A Watt
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - T F Watt
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - A Barsch
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - M J Lozano
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - A Lagares
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina
| | - M E Salas
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - J L López
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - F J Albicoro
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - J F Nilsson
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - G A Torres Tejerizo
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - M F Luna
- CINDEFI - Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - M Pistorio
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - J L Boiardi
- CINDEFI - Centro de Investigación y Desarrollo en Fermentaciones Industriales, CONICET - Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| | - A Pühler
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - S Weidner
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - K Niehaus
- CeBiTec - Centrum für Biotechnologie, Universität Bielefeld, Bielefeld, Germany
| | - A Lagares
- IBBM - Instituto de Biotecnología y Biología Molecular, CONICET - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, calles 47 y 115, 1900-La Plata, Argentina
| |
Collapse
|
679
|
Henderson JC, Zimmerman SM, Crofts AA, Boll JM, Kuhns LG, Herrera CM, Trent MS. The Power of Asymmetry: Architecture and Assembly of the Gram-Negative Outer Membrane Lipid Bilayer. Annu Rev Microbiol 2016; 70:255-78. [PMID: 27359214 DOI: 10.1146/annurev-micro-102215-095308] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Determining the chemical composition of biological materials is paramount to the study of natural phenomena. Here, we describe the composition of model gram-negative outer membranes, focusing on the predominant assembly, an asymmetrical bilayer of lipid molecules. We also give an overview of lipid biosynthetic pathways and molecular mechanisms that organize this material into the outer membrane bilayer. An emphasis is placed on the potential of these pathways as targets for antibiotic development. We discuss deviations in composition, through bacterial cell surface remodeling, and alternative modalities to the asymmetric lipid bilayer. Outer membrane lipid alterations of current microbiological interest, such as lipid structures found in commensal bacteria, are emphasized. Additionally, outer membrane components could potentially be engineered to develop vaccine platforms. Observations related to composition and assembly of gram-negative outer membranes will continue to generate novel discoveries, broaden biotechnologies, and reveal profound mysteries to compel future research.
Collapse
Affiliation(s)
- Jeremy C Henderson
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Shawn M Zimmerman
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - Alexander A Crofts
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Joseph M Boll
- Department of Molecular Biosciences, The University of Texas at Austin, Texas 78712
| | - Lisa G Kuhns
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - Carmen M Herrera
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| | - M Stephen Trent
- Department of Infectious Diseases, The University of Georgia, Athens, Georgia 30602;
| |
Collapse
|
680
|
Abstract
The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular mechanism by which these membrane-active peptides lyse membranes. The last class of membrane-active peptides discussed are the CPPs, which translocate across the lipid bilayer without inducing severe disruption and have potential as drug vehicles. CPPs are typically highly charged and can show antimicrobial activity by targeting an intracellular target rather than via a direct membrane lytic mechanism. A critical aspect in the structure-function relationship of membrane-active peptides is their specific activity relative to the lipid membrane composition of the cell target. Cell membranes have a wide diversity of lipids, and those of eukaryotic and prokaryotic species differ greatly in composition and structure. The activity of AMPs from Australian tree frogs, toxins, and CPPs has been investigated within various lipid systems to assess whether a relationship between peptide and membrane composition could be identified. NMR spectroscopy techniques are being used to gain atomistic details of how these membrane-active peptides interact with model membranes and cells, and in particular, competitive assays demonstrate the difference between affinity and activity for a specific lipid environment. Overall, the interactions between these relatively small sized peptides and various lipid bilayers give insight into how these peptides function at the membrane interface.
Collapse
Affiliation(s)
- Marc-Antoine Sani
- School of Chemistry, Bio21
Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Frances Separovic
- School of Chemistry, Bio21
Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
681
|
Andersson D, Hughes D, Kubicek-Sutherland J. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat 2016; 26:43-57. [DOI: 10.1016/j.drup.2016.04.002] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/07/2016] [Accepted: 04/11/2016] [Indexed: 10/21/2022]
|
682
|
Berjeaud JM, Chevalier S, Schlusselhuber M, Portier E, Loiseau C, Aucher W, Lesouhaitier O, Verdon J. Legionella pneumophila: The Paradox of a Highly Sensitive Opportunistic Waterborne Pathogen Able to Persist in the Environment. Front Microbiol 2016; 7:486. [PMID: 27092135 PMCID: PMC4824771 DOI: 10.3389/fmicb.2016.00486] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/23/2016] [Indexed: 01/28/2023] Open
Abstract
Legionella pneumophila, the major causative agent of Legionnaires’ disease, is found in freshwater environments in close association with free-living amoebae and multispecies biofilms, leading to persistence, spread, biocide resistance, and elevated virulence of the bacterium. Indeed, legionellosis outbreaks are mainly due to the ability of this bacterium to colonize and persist in water facilities, despite harsh physical and chemical treatments. However, these treatments are not totally efficient and, after a lag period, L. pneumophila may be able to quickly re-colonize these systems. Several natural compounds (biosurfactants, antimicrobial peptides…) with anti-Legionella properties have recently been described in the literature, highlighting their specific activities against this pathogen. In this review, we first consider this hallmark of Legionella to resist killing, in regard to its biofilm or host-associated life style. Then, we focus more accurately on natural anti-Legionella molecules described so far, which could provide new eco-friendly and alternative ways to struggle against this important pathogen in plumbing.
Collapse
Affiliation(s)
- Jean-Marc Berjeaud
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Sylvie Chevalier
- Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Université de Rouen Evreux, France
| | - Margot Schlusselhuber
- Laboratoire Aliments Bioprocédés Toxicologie Environnements, EA 4651, Université de Caen Caen, France
| | - Emilie Portier
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Clémence Loiseau
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Willy Aucher
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| | - Olivier Lesouhaitier
- Laboratoire de Microbiologie Signaux et Microenvironnement, EA 4312, Université de Rouen Evreux, France
| | - Julien Verdon
- Laboratoire Ecologie and Biologie des Interactions, UMR CNRS 7267, Université de Poitiers Poitiers, France
| |
Collapse
|
683
|
Lin TY, Weibel DB. Organization and function of anionic phospholipids in bacteria. Appl Microbiol Biotechnol 2016; 100:4255-67. [PMID: 27026177 DOI: 10.1007/s00253-016-7468-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/04/2016] [Accepted: 03/08/2016] [Indexed: 11/25/2022]
Abstract
In addition to playing a central role as a permeability barrier for controlling the diffusion of molecules and ions in and out of bacterial cells, phospholipid (PL) membranes regulate the spatial and temporal position and function of membrane proteins that play an essential role in a variety of cellular functions. Based on the very large number of membrane-associated proteins encoded in genomes, an understanding of the role of PLs may be central to understanding bacterial cell biology. This area of microbiology has received considerable attention over the past two decades, and the local enrichment of anionic PLs has emerged as a candidate mechanism for biomolecular organization in bacterial cells. In this review, we summarize the current understanding of anionic PLs in bacteria, including their biosynthesis, subcellular localization, and physiological relevance, discuss evidence and mechanisms for enriching anionic PLs in membranes, and conclude with an assessment of future directions for this area of bacterial biochemistry, biophysics, and cell biology.
Collapse
Affiliation(s)
- Ti-Yu Lin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Douglas B Weibel
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
684
|
Abstract
Lipoteichoic acid is a major lipid-anchored polymer in Gram-positive bacteria such as
Bacillus subtilis. This polymer typically consists of repeating phosphate-containing units and therefore has a predominant negative charge. The repeating units are attached to a glycolipid anchor which has a diacylglycerol (DAG) moiety attached to a dihexopyranose head group. D-alanylation is known as the major modification of type I and type IV lipoteichoic acids, which partially neutralizes the polymer and plays important roles in bacterial survival and resistance to the host immune system. The biosynthesis pathways of the glycolipid anchor and lipoteichoic acid have been fully characterized. However, the exact mechanism of D-alanyl transfer from the cytosol to cell surface lipoteichoic acid remains unclear. Here I report the use of mass spectrometry in the identification of possible intermediate species in the biosynthesis and D-alanylation of lipoteichoic acid: the glycolipid anchor, nascent lipoteichoic acid primer with one phosphoglycerol unit, as well as mono- and di-alanylated forms of the lipoteichoic acid primer. Monitoring these species as well as the recently reported D-alanyl-phosphatidyl glycerol should aid in shedding light on the mechanism of the D-alanylation pathway of lipoteichoic acid.
Collapse
Affiliation(s)
- Yu Luo
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
685
|
Abstract
Lipoteichoic acid is a major lipid-anchored polymer in Gram-positive bacteria such as Bacillus subtilis. This polymer typically consists of repeating phosphate-containing units and therefore has a predominant negative charge. The repeating units are attached to a glycolipid anchor which has a diacylglycerol (DAG) moiety attached to a dihexopyranose head group. D-alanylation is known as the major modification of type I and type IV lipoteichoic acids, which partially neutralizes the polymer and plays important roles in bacterial survival and resistance to the host immune system. The biosynthesis pathways of the glycolipid anchor and lipoteichoic acid have been fully characterized. However, the exact mechanism of D-alanyl transfer from the cytosol to cell surface lipoteichoic acid remains unclear. Here I report the use of mass spectrometry in the identification of possible intermediate species in the biosynthesis and D-alanylation of lipoteichoic acid: the glycolipid anchor, nascent lipoteichoic acid primer with one phosphoglycerol unit, as well as mono- and di-alanylated forms of the lipoteichoic acid primer. Monitoring these species as well as the recently reported D-alanyl-phosphatidyl glycerol should aid in shedding light on the mechanism of the D-alanylation pathway of lipoteichoic acid.
Collapse
Affiliation(s)
- Yu Luo
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
686
|
Atila M, Luo Y. Profiling and tandem mass spectrometry analysis of aminoacylated phospholipids in Bacillus subtilis . F1000Res 2016; 5:121. [PMID: 26998233 PMCID: PMC4792211 DOI: 10.12688/f1000research.7842.2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2016] [Indexed: 01/13/2023] Open
Abstract
Cationic modulation of the dominantly negative electrostatic structure of phospholipids plays an important role in bacterial response to changes in the environment. In addition to zwitterionic phosphatidylethanolamine, Gram-positive bacteria are also abundant in positively charged lysyl-phosphatidylglycerol. Increased amounts of both types of lipids render Gram-positive bacterial cells more resistant to cationic antibiotic peptides such as defensins. Lysyl and alanyl-phosphatidylglycerol as well as alanyl-cardiolipin have also been studied by mass spectroscopy. Phospholipids modified by other amino acids have been discovered by chemical analysis of the lipid lysate but have yet to be studied by mass spectroscopy. We exploited the high sensitivity of modern mass spectroscopy in searching for substructures in complex mixtures to establish a sensitive and thorough screen for aminoacylated phospholipids. The search for deprotonated aminoacyl anions in lipid extracted from
Bacillus subtilis strain 168 yielded strong evidence as well as relative abundance of aminoacyl-phosphatidylglycerols, which serves as a crude measure of the specificity of aminoacyl-phosphatidylglycerol synthase MprF. No aminoacyl-cardiolipin was found. More importantly, the second most abundant species in this category is D-alanyl-phosphatidylglycerol, suggesting a possible role in the D-alanylation pathway of wall- and lipo-teichoic acids.
Collapse
Affiliation(s)
- Metin Atila
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| | - Yu Luo
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
687
|
Degli Esposti M, Geiger O, Martinez-Romero E. Recent Developments on Bacterial Evolution into Eukaryotic Cells. Evol Biol 2016. [DOI: 10.1007/978-3-319-41324-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
688
|
Mingeot-Leclercq MP, Décout JL. Bacterial lipid membranes as promising targets to fight antimicrobial resistance, molecular foundations and illustration through the renewal of aminoglycoside antibiotics and emergence of amphiphilic aminoglycosides. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00503e] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Membrane anionic lipids as attractive targets in the design of amphiphilic antibacterial drugs active against resistant bacteria: molecular foundations and examples.
Collapse
Affiliation(s)
- Marie-Paule Mingeot-Leclercq
- Louvain Drug Research Institute
- Université catholique de Louvain
- Unité de Pharmacologie Cellulaire et Moléculaire
- Brussels
- Belgium
| | - Jean-Luc Décout
- Département de Pharmacochimie Moléculaire
- Université Grenoble Alpes/CNRS
- UMR 5063
- ICMG FR 2607
- F-38041 Grenoble
| |
Collapse
|
689
|
Sandoval-Calderón M, Nguyen DD, Kapono CA, Herron P, Dorrestein PC, Sohlenkamp C. Plasticity of Streptomyces coelicolor Membrane Composition Under Different Growth Conditions and During Development. Front Microbiol 2015; 6:1465. [PMID: 26733994 PMCID: PMC4686642 DOI: 10.3389/fmicb.2015.01465] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 12/07/2015] [Indexed: 01/08/2023] Open
Abstract
Streptomyces coelicolor is a model actinomycete that is well known for the diversity of its secondary metabolism and its complex life cycle. As a soil inhabitant, it is exposed to heterogeneous and frequently changing environmental circumstances. In the present work, we studied the effect of diverse growth conditions and phosphate depletion on its lipid profile and the relationship between membrane lipid composition and development in S. coelicolor. The lipid profile from cultures grown on solid media, which is closer to the natural habitat of this microorganism, does not resemble the previously reported lipid composition from liquid grown cultures of S. coelicolor. Wide variations were also observed across different media, growth phases, and developmental stages indicating active membrane remodeling. Ornithine lipids (OL) are phosphorus-free polar lipids that were accumulated mainly during sporulation stages, but were also major components of the membrane under phosphorus limitation. In contrast, phosphatidylethanolamine, which had been reported as one of the major polar lipids in the genus Streptomyces, is almost absent under these conditions. We identified one of the genes responsible for the synthesis of OL (SCO0921) and found that its inactivation causes the absence of OL, precocious morphological development and actinorhodin production. Our observations indicate a remarkable plasticity of the membrane composition in this bacterial species, reveal a higher metabolic complexity than expected, and suggest a relationship between cytoplasmic membrane components and the differentiation programs in S. coelicolor.
Collapse
Affiliation(s)
| | - Don D Nguyen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla CA, USA
| | - Clifford A Kapono
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla CA, USA
| | - Paul Herron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde Glasgow, UK
| | - Pieter C Dorrestein
- Department of Chemistry and Biochemistry, University of California, San Diego, La JollaCA, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La JollaCA, USA
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México Cuernavaca, Mexico
| |
Collapse
|
690
|
Filloux A, Whitfield C. Editorial: The many wonders of the bacterial cell surface. FEMS Microbiol Rev 2015; 40:161-3. [DOI: 10.1093/femsre/fuv047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
691
|
Neutral and Phospholipids of the Myxococcus xanthus Lipodome during Fruiting Body Formation and Germination. Appl Environ Microbiol 2015; 81:6538-47. [PMID: 26162876 DOI: 10.1128/aem.01537-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/05/2015] [Indexed: 01/13/2023] Open
Abstract
Myxobacteria are well-known for their complex life cycle, including the formation of spore-filled fruiting bodies. The model organism Myxococcus xanthus exhibits a highly complex composition of neutral and phospholipids, including triacylglycerols (TAGs), diacylglycerols (DAGs), phosphatidylethanolamines (PEs), phosphatidylglycerols (PGs), cardiolipins (CLs), and sphingolipids, including ceramides (Cers) and ceramide phosphoinositols (Cer-PIs). In addition, ether lipids have been shown to be involved in development and signaling. In this work, we describe the lipid profile of M. xanthus during its entire life cycle, including spore germination. PEs, representing one of the major components of the bacterial membrane, decreased by about 85% during development from vegetative rods to round myxospores, while TAGs first accumulated up to 2-fold before they declined 48 h after the induction of sporulation. Presumably, membrane lipids are incorporated into TAG-containing lipid bodies, serving as an intermediary energy source for myxospore formation. The ceramides Cer(d-19:0/iso-17:0) and Cer(d-19:0/16:0) accumulated 6-fold and 3-fold, respectively, after 24 h of development, identifying them to be novel putative biomarkers for M. xanthus sporulation. The most abundant ether lipid, 1-iso-15:0-alkyl-2,3-di-iso-15:0-acyl glycerol (TG1), exhibited a lipid profile different from that of all TAGs during sporulation, reinforcing its signaling character. The absence of all these lipid profile changes in mutants during development supports the importance of lipids in myxobacterial development. During germination of myxospores, only the de novo biosynthesis of new cell membrane fatty acids was observed. The unexpected accumulation of TAGs also during germination might indicate a function of TAGs as intermediary storage lipids during this part of the life cycle as well.
Collapse
|
692
|
Escobedo-Hinojosa WI, Vences-Guzmán MÁ, Schubotz F, Sandoval-Calderón M, Summons RE, López-Lara IM, Geiger O, Sohlenkamp C. OlsG (Sinac_1600) Is an Ornithine Lipid N-Methyltransferase from the Planctomycete Singulisphaera acidiphila. J Biol Chem 2015; 290:15102-11. [PMID: 25925947 DOI: 10.1074/jbc.m115.639575] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 11/06/2022] Open
Abstract
Ornithine lipids (OLs) are phosphorus-free membrane lipids widespread in bacteria but absent from archaea and eukaryotes. In addition to the unmodified OLs, a variety of OL derivatives hydroxylated in different structural positions has been reported. Recently, methylated derivatives of OLs were described in several planctomycetes isolated from a peat bog in Northern Russia, although the gene/enzyme responsible for the N-methylation of OL remained obscure. Here we identify and characterize the OL N-methyltransferase OlsG (Sinac_1600) from the planctomycete Singulisphaera acidiphila. When OlsG is co-expressed with the OL synthase OlsF in Escherichia coli, methylated OL derivatives are formed. An in vitro characterization shows that OlsG is responsible for the 3-fold methylation of the terminal δ-nitrogen of OL. Methylation is dependent on the presence of the detergent Triton X-100 and the methyldonor S-adenosylmethionine.
Collapse
Affiliation(s)
- Wendy Itzel Escobedo-Hinojosa
- From the Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62210, Mexico and
| | - Miguel Ángel Vences-Guzmán
- From the Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62210, Mexico and
| | - Florence Schubotz
- the Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02144
| | - Mario Sandoval-Calderón
- From the Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62210, Mexico and
| | - Roger E Summons
- the Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02144
| | - Isabel María López-Lara
- From the Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62210, Mexico and
| | - Otto Geiger
- From the Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62210, Mexico and
| | - Christian Sohlenkamp
- From the Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos CP62210, Mexico and
| |
Collapse
|