651
|
Minde D, Dunker AK, Lilley KS. Time, space, and disorder in the expanding proteome universe. Proteomics 2017; 17:1600399. [PMID: 28145059 PMCID: PMC5573936 DOI: 10.1002/pmic.201600399] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/16/2017] [Accepted: 01/25/2017] [Indexed: 12/31/2022]
Abstract
Proteins are highly dynamic entities. Their myriad functions require specific structures, but proteins' dynamic nature ranges all the way from the local mobility of their amino acid constituents to mobility within and well beyond single cells. A truly comprehensive view of the dynamic structural proteome includes: (i) alternative sequences, (ii) alternative conformations, (iii) alternative interactions with a range of biomolecules, (iv) cellular localizations, (v) alternative behaviors in different cell types. While these aspects have traditionally been explored one protein at a time, we highlight recently emerging global approaches that accelerate comprehensive insights into these facets of the dynamic nature of protein structure. Computational tools that integrate and expand on multiple orthogonal data types promise to enable the transition from a disjointed list of static snapshots to a structurally explicit understanding of the dynamics of cellular mechanisms.
Collapse
Affiliation(s)
- David‐Paul Minde
- Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUK
- Cambridge Centre for ProteomicsDepartment of BiochemistryUniversity of CambridgeCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - A. Keith Dunker
- Center for Computational Biology and BioinformaticsIndiana University School of MedicineIndianapolisINUSA
| | - Kathryn S. Lilley
- Cambridge Systems Biology CentreUniversity of CambridgeCambridgeUK
- Cambridge Centre for ProteomicsDepartment of BiochemistryUniversity of CambridgeCambridgeUK
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
652
|
|
653
|
|
654
|
Earnest TM, Watanabe R, Stone JE, Mahamid J, Baumeister W, Villa E, Luthey-Schulten Z. Challenges of Integrating Stochastic Dynamics and Cryo-Electron Tomograms in Whole-Cell Simulations. J Phys Chem B 2017; 121:3871-3881. [PMID: 28291359 DOI: 10.1021/acs.jpcb.7b00672] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cryo-electron tomography (cryo-ET) has rapidly emerged as a powerful tool to investigate the internal, three-dimensional spatial organization of the cell. In parallel, the GPU-based technology to perform spatially resolved stochastic simulations of whole cells has arisen, allowing the simulation of complex biochemical networks over cell cycle time scales using data taken from -omics, single molecule experiments, and in vitro kinetics. By using real cell geometry derived from cryo-ET data, we have the opportunity to imbue these highly detailed structural data-frozen in time-with realistic biochemical dynamics and investigate how cell structure affects the behavior of the embedded chemical reaction network. Here we present two examples to illustrate the challenges and techniques involved in integrating structural data into stochastic simulations. First, a tomographic reconstruction of Saccharomyces cerevisiae is used to construct the geometry of an entire cell through which a simple stochastic model of an inducible genetic switch is studied. Second, a tomogram of the nuclear periphery in a HeLa cell is converted directly to the simulation geometry through which we study the effects of cellular substructure on the stochastic dynamics of gene repression. These simple chemical models allow us to illustrate how to build whole-cell simulations using cryo-ET derived geometry and the challenges involved in such a process.
Collapse
Affiliation(s)
- Tyler M Earnest
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign , Urbana, Illinois, United States.,Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois, United States
| | - Reika Watanabe
- Department of Chemistry and Biochemistry, University of California , San Diego, California, United States
| | - John E Stone
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois, United States
| | - Julia Mahamid
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry , Munich, Germany
| | - Wolfgang Baumeister
- Department of Molecular Structural Biology, Max Planck Institute of Biochemistry , Munich, Germany
| | - Elizabeth Villa
- Department of Chemistry and Biochemistry, University of California , San Diego, California, United States
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign , Urbana, Illinois, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign , Urbana, Illinois, United States
| |
Collapse
|
655
|
|
656
|
Oberortner E, Cheng JF, Hillson NJ, Deutsch S. Streamlining the Design-to-Build Transition with Build-Optimization Software Tools. ACS Synth Biol 2017; 6:485-496. [PMID: 28004921 DOI: 10.1021/acssynbio.6b00200] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Scaling-up capabilities for the design, build, and test of synthetic biology constructs holds great promise for the development of new applications in fuels, chemical production, or cellular-behavior engineering. Construct design is an essential component in this process; however, not every designed DNA sequence can be readily manufactured, even using state-of-the-art DNA synthesis methods. Current biological computer-aided design and manufacture tools (bioCAD/CAM) do not adequately consider the limitations of DNA synthesis technologies when generating their outputs. Designed sequences that violate DNA synthesis constraints may require substantial sequence redesign or lead to price-premiums and temporal delays, which adversely impact the efficiency of the DNA manufacturing process. We have developed a suite of build-optimization software tools (BOOST) to streamline the design-build transition in synthetic biology engineering workflows. BOOST incorporates knowledge of DNA synthesis success determinants into the design process to output ready-to-build sequences, preempting the need for sequence redesign. The BOOST web application is available at https://boost.jgi.doe.gov and its Application Program Interfaces (API) enable integration into automated, customized DNA design processes. The herein presented results highlight the effectiveness of BOOST in reducing DNA synthesis costs and timelines.
Collapse
Affiliation(s)
- Ernst Oberortner
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, United States
| | - Jan-Fang Cheng
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, United States
| | - Nathan J. Hillson
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, United States
- Fuels
Synthesis and Technology Divisions, DOE Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Samuel Deutsch
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, United States
| |
Collapse
|
657
|
Development of oriC-Based Plasmids for Mesoplasma florum. Appl Environ Microbiol 2017; 83:AEM.03374-16. [PMID: 28115382 DOI: 10.1128/aem.03374-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 01/13/2017] [Indexed: 01/06/2023] Open
Abstract
The near-minimal bacterium Mesoplasma florum constitutes an attractive model for systems biology and for the development of a simplified cell chassis in synthetic biology. However, the lack of genetic engineering tools for this microorganism has limited our capacity to understand its basic biology and modify its genome. To address this issue, we have evaluated the susceptibility of M. florum to common antibiotics and developed the first generation of artificial plasmids able to replicate in this bacterium. Selected regions of the predicted M. florum chromosomal origin of replication (oriC) were used to create different plasmid versions that were tested for their transformation frequency and stability. Using polyethylene glycol-mediated transformation, we observed that plasmids harboring both rpmH-dnaA and dnaA-dnaN intergenic regions, interspaced or not with a copy of the dnaA gene, resulted in a frequency of ∼4.1 × 10-6 transformants per viable cell and were stably maintained throughout multiple generations. In contrast, plasmids containing only one M. florumoriC intergenic region or the heterologous oriC region of Mycoplasma capricolum, Mycoplasma mycoides, or Spiroplasma citri failed to produce any detectable transformants. We also developed alternative transformation procedures based on electroporation and conjugation from Escherichia coli, reaching frequencies up to 7.87 × 10-6 and 8.44 × 10-7 transformants per viable cell, respectively. Finally, we demonstrated the functionality of antibiotic resistance genes active against tetracycline, puromycin, and spectinomycin/streptomycin in M. florum Taken together, these valuable genetic tools will facilitate efforts toward building an M. florum-based near-minimal cellular chassis for synthetic biology.IMPORTANCEMesoplasma florum constitutes an attractive model for systems biology and for the development of a simplified cell chassis in synthetic biology. M. florum is closely related to the mycoides cluster of mycoplasmas, which has become a model for whole-genome cloning, genome transplantation, and genome minimization. However, M. florum shows higher growth rates than other Mollicutes, has no known pathogenic potential, and possesses a significantly smaller genome that positions this species among some of the simplest free-living organisms. So far, the lack of genetic engineering tools has limited our capacity to understand the basic biology of M. florum in order to modify its genome. To address this issue, we have evaluated the susceptibility of M. florum to common antibiotics and developed the first artificial plasmids and transformation methods for this bacterium. This represents a strong basis for ongoing genome engineering efforts using this near-minimal microorganism.
Collapse
|
658
|
Zou X, Wang L, Li Z, Luo J, Wang Y, Deng Z, Du S, Chen S. Genome Engineering and Modification Toward Synthetic Biology for the Production of Antibiotics. Med Res Rev 2017; 38:229-260. [PMID: 28295439 DOI: 10.1002/med.21439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 01/06/2017] [Accepted: 01/14/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Xuan Zou
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Lianrong Wang
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
| | - Zhiqiang Li
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
| | - Jie Luo
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Yunfu Wang
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Zixin Deng
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
| | - Shiming Du
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| | - Shi Chen
- Zhongnan Hospital, and Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences; Wuhan University; Wuhan Hubei 430071 China
- Taihe Hospital; Hubei University of Medicine; Shiyan Hubei China
| |
Collapse
|
659
|
Lin X, Yu ACS, Chan TF. Efforts and Challenges in Engineering the Genetic Code. Life (Basel) 2017; 7:life7010012. [PMID: 28335420 PMCID: PMC5370412 DOI: 10.3390/life7010012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 12/15/2022] Open
Abstract
This year marks the 48th anniversary of Francis Crick’s seminal work on the origin of the genetic code, in which he first proposed the “frozen accident” hypothesis to describe evolutionary selection against changes to the genetic code that cause devastating global proteome modification. However, numerous efforts have demonstrated the viability of both natural and artificial genetic code variations. Recent advances in genetic engineering allow the creation of synthetic organisms that incorporate noncanonical, or even unnatural, amino acids into the proteome. Currently, successful genetic code engineering is mainly achieved by creating orthogonal aminoacyl-tRNA/synthetase pairs to repurpose stop and rare codons or to induce quadruplet codons. In this review, we summarize the current progress in genetic code engineering and discuss the challenges, current understanding, and future perspectives regarding genetic code modification.
Collapse
Affiliation(s)
- Xiao Lin
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong, China.
| | - Allen Chi Shing Yu
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong, China.
| | - Ting Fung Chan
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, NT, Hong Kong, China.
| |
Collapse
|
660
|
Ecosystem Structure and Dynamics in the North Pacific Subtropical Gyre: New Views of an Old Ocean. Ecosystems 2017. [DOI: 10.1007/s10021-017-0117-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
661
|
Trussart M, Yus E, Martinez S, Baù D, Tahara YO, Pengo T, Widjaja M, Kretschmer S, Swoger J, Djordjevic S, Turnbull L, Whitchurch C, Miyata M, Marti-Renom MA, Lluch-Senar M, Serrano L. Defined chromosome structure in the genome-reduced bacterium Mycoplasma pneumoniae. Nat Commun 2017; 8:14665. [PMID: 28272414 PMCID: PMC5344976 DOI: 10.1038/ncomms14665] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/20/2017] [Indexed: 12/24/2022] Open
Abstract
DNA-binding proteins are central regulators of chromosome organization; however, in genome-reduced bacteria their diversity is largely diminished. Whether the chromosomes of such bacteria adopt defined three-dimensional structures remains unexplored. Here we combine Hi-C and super-resolution microscopy to determine the structure of the Mycoplasma pneumoniae chromosome at a 10 kb resolution. We find a defined structure, with a global symmetry between two arms that connect opposite poles, one bearing the chromosomal Ori and the other the midpoint. Analysis of local structures at a 3 kb resolution indicates that the chromosome is organized into domains ranging from 15 to 33 kb. We provide evidence that genes within the same domain tend to be co-regulated, suggesting that chromosome organization influences transcriptional regulation, and that supercoiling regulates local organization. This study extends the current understanding of bacterial genome organization and demonstrates that a defined chromosomal structure is a universal feature of living systems.
Collapse
Affiliation(s)
- Marie Trussart
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Eva Yus
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Sira Martinez
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
| | - Davide Baù
- Gene Regulation, Stem Cells and Cancer Program. Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain
| | - Yuhei O Tahara
- Department of Biology, Graduate School of Science, Osaka City University, 558-8585 Osaka, Japan.,OCU Advanced Research Institute for Natural Science and Technology (OCARNA), Osaka City University, 558-8585 Osaka, Japan
| | - Thomas Pengo
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,Advanced Light Microscopy Unit, Centre for Genomic Regulation (CRG), 08003 Barcelona, Spain
| | - Michael Widjaja
- The ithree Institute, The University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Simon Kretschmer
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Jim Swoger
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Steven Djordjevic
- The ithree Institute, The University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Lynne Turnbull
- The ithree Institute, The University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Cynthia Whitchurch
- The ithree Institute, The University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, 558-8585 Osaka, Japan.,OCU Advanced Research Institute for Natural Science and Technology (OCARNA), Osaka City University, 558-8585 Osaka, Japan
| | - Marc A Marti-Renom
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.,Gene Regulation, Stem Cells and Cancer Program. Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Baldiri Reixac 4, Barcelona 08028, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Maria Lluch-Senar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Luís Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain.,Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
662
|
Lu Y. Cell-free synthetic biology: Engineering in an open world. Synth Syst Biotechnol 2017; 2:23-27. [PMID: 29062958 PMCID: PMC5625795 DOI: 10.1016/j.synbio.2017.02.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/06/2017] [Indexed: 10/26/2022] Open
Abstract
Cell-free synthetic biology emerges as a powerful and flexible enabling technology that can engineer biological parts and systems for life science applications without using living cells. It provides simpler and faster engineering solutions with an unprecedented freedom of design in an open environment than cell system. This review focuses on recent developments of cell-free synthetic biology on biological engineering fields at molecular and cellular levels, including protein engineering, metabolic engineering, and artificial cell engineering. In cell-free protein engineering, the direct control of reaction conditions in cell-free system allows for easy synthesis of complex proteins, toxic proteins, membrane proteins, and novel proteins with unnatural amino acids. Cell-free systems offer the ability to design metabolic pathways towards the production of desired products. Buildup of artificial cells based on cell-free systems will improve our understanding of life and use them for environmental and biomedical applications.
Collapse
Affiliation(s)
- Yuan Lu
- Key Lab of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.,Institute of Biochemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
663
|
Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, Wang W, Usaj M, Hanchard J, Lee SD, Pelechano V, Styles EB, Billmann M, van Leeuwen J, van Dyk N, Lin ZY, Kuzmin E, Nelson J, Piotrowski JS, Srikumar T, Bahr S, Chen Y, Deshpande R, Kurat CF, Li SC, Li Z, Usaj MM, Okada H, Pascoe N, San Luis BJ, Sharifpoor S, Shuteriqi E, Simpkins SW, Snider J, Suresh HG, Tan Y, Zhu H, Malod-Dognin N, Janjic V, Przulj N, Troyanskaya OG, Stagljar I, Xia T, Ohya Y, Gingras AC, Raught B, Boutros M, Steinmetz LM, Moore CL, Rosebrock AP, Caudy AA, Myers CL, Andrews B, Boone C. A global genetic interaction network maps a wiring diagram of cellular function. Science 2017; 353:353/6306/aaf1420. [PMID: 27708008 DOI: 10.1126/science.aaf1420] [Citation(s) in RCA: 791] [Impact Index Per Article: 113.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing more than 23 million double mutants, identifying about 550,000 negative and about 350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell.
Collapse
Affiliation(s)
- Michael Costanzo
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Benjamin VanderSluis
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. Simons Center for Data Analysis, Simons Foundation, 160 Fifth Avenue, New York, NY 10010, USA
| | - Elizabeth N Koch
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Anastasia Baryshnikova
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Carles Pons
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Guihong Tan
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Wen Wang
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Matej Usaj
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Julia Hanchard
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Susan D Lee
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Vicent Pelechano
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Erin B Styles
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Maximilian Billmann
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Jolanda van Leeuwen
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Nydia van Dyk
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Zhen-Yuan Lin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto ON, Canada
| | - Elena Kuzmin
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Justin Nelson
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. Program in Biomedical Informatics and Computational Biology, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Jeff S Piotrowski
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Sciences (CSRS), Saitama, Japan
| | - Tharan Srikumar
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto ON, Canada
| | - Sondra Bahr
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Yiqun Chen
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Raamesh Deshpande
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Christoph F Kurat
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Sheena C Li
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Sciences (CSRS), Saitama, Japan
| | - Zhijian Li
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Mojca Mattiazzi Usaj
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Hiroki Okada
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan 277-8561
| | - Natasha Pascoe
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Bryan-Joseph San Luis
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Sara Sharifpoor
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Emira Shuteriqi
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Scott W Simpkins
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. Program in Biomedical Informatics and Computational Biology, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA
| | - Jamie Snider
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Harsha Garadi Suresh
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Yizhao Tan
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Hongwei Zhu
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Noel Malod-Dognin
- Computer Science Deptartment, University College London, London WC1E 6BT, UK
| | - Vuk Janjic
- Department of Computing, Imperial College London, UK
| | - Natasa Przulj
- Computer Science Deptartment, University College London, London WC1E 6BT, UK. School of Computing (RAF), Union University, Belgrade, Serbia
| | - Olga G Troyanskaya
- Simons Center for Data Analysis, Simons Foundation, 160 Fifth Avenue, New York, NY 10010, USA. Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Igor Stagljar
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Tian Xia
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China, 430074
| | - Yoshikazu Ohya
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan 277-8561
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto ON, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network and Department of Medical Biophysics, University of Toronto, Toronto ON, Canada
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Heidelberg, Germany
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany. Department of Genetics, School of Medicine and Stanford Genome Technology Center Stanford University, Palo Alto, CA 94304, USA
| | - Claire L Moore
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Adam P Rosebrock
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Amy A Caudy
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA. Program in Biomedical Informatics and Computational Biology, University of Minnesota-Twin Cities, 200 Union Street, Minneapolis, MN 55455, USA.
| | - Brenda Andrews
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1.
| | - Charles Boone
- The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto ON, Canada M5S 3E1. Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Sciences (CSRS), Saitama, Japan.
| |
Collapse
|
664
|
Synthetische Biologie. J Verbrauch Lebensm 2017. [DOI: 10.1007/s00003-016-1068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
665
|
The Proximity of Ribosomal Protein Genes to oriC Enhances Vibrio cholerae Fitness in the Absence of Multifork Replication. mBio 2017; 8:mBio.00097-17. [PMID: 28246358 PMCID: PMC5347342 DOI: 10.1128/mbio.00097-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Recent works suggest that bacterial gene order links chromosome structure to cell homeostasis. Comparative genomics showed that, in fast-growing bacteria, ribosomal protein genes (RP) locate near the replication origin (oriC). We recently showed that Vibrio cholerae employs this positional bias as a growth optimization strategy: under fast-growth conditions, multifork replication increases RP dosage and expression. However, RP location may provide advantages in a dosage-independent manner: for example, the physical proximity of the many ribosomal components, in the context of a crowded cytoplasm, may favor ribosome biogenesis. To uncover putative dosage-independent effects, we studied isogenic V. cholerae derivatives in which the major RP locus, S10-spc-α (S10), was relocated to alternative genomic positions. When bacteria grew fast, bacterial fitness was reduced according to the S10 relative distance to oriC The growth of wild-type V. cholerae could not be improved by additional copies of the locus, suggesting a physiologically optimized genomic location. Slow growth is expected to uncouple RP position from dosage, since multifork replication does not occur. Under these conditions, we detected a fitness impairment when S10 was far from oriC Deep sequencing followed by marker frequency analysis in the absence of multifork replication revealed an up to 30% S10 dosage reduction associated with its relocation that closely correlated with fitness alterations. Hence, the impact of S10 location goes beyond a growth optimization strategy during feast periods. RP location may be important during the whole life cycle of this pathogen.IMPORTANCE The role of gene order within the bacterial chromosome is poorly understood. In fast growers, the location of genes linked with the expression of genetic information (i.e., transcription and translation) is biased toward oriC It was proposed that the location of these genes helps to maximize their expression by recruiting multifork replication during fast growth. Our results show that such genomic positioning impacts cell fitness beyond fast-growth conditions, probably across the whole life cycle of fast growers. Thus, the genomic position of key highly expressed genes, such as RP, was finely tuned during the evolution of fast-growing bacteria and may also be important in slow growers. In the near future, many more genes whose genomic position impacts bacterial phenotype will be described. These studies will contribute to discovery the rules of genome organization and application of them for the design of synthetic chromosomes and the creation of artificial life forms.
Collapse
|
666
|
Seistrup KH, Rose S, Birkedal U, Nielsen H, Huber H, Douthwaite S. Bypassing rRNA methylation by RsmA/Dim1during ribosome maturation in the hyperthermophilic archaeon Nanoarchaeum equitans. Nucleic Acids Res 2017; 45:2007-2015. [PMID: 28204608 PMCID: PMC5389701 DOI: 10.1093/nar/gkw839] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/10/2016] [Indexed: 12/16/2022] Open
Abstract
In all free-living organisms a late-stage checkpoint in the biogenesis of the small ribosomal subunit involves rRNA modification by an RsmA/Dim1 methyltransferase. The hyperthermophilic archaeon Nanoarchaeum equitans, whose existence is confined to the surface of a second archaeon, Ignicoccus hospitalis, lacks an RsmA/Dim1 homolog. We demonstrate here that the I. hospitalis host possesses the homolog Igni_1059, which dimethylates the N6-positions of two invariant adenosines within helix 45 of 16S rRNA in a manner identical to other RsmA/Dim1 enzymes. However, Igni_1059 is not transferred from I. hospitalis to N. equitans across their fused cell membrane structures and the corresponding nucleotides in N. equitans 16S rRNA remain unmethylated. An alternative mechanism for ribosomal subunit maturation in N. equitans is suggested by sRNA interactions that span the redundant RsmA/Dim1 site to introduce 2΄-O-ribose methylations within helices 44 and 45 of the rRNA.
Collapse
Affiliation(s)
- Kenneth H. Seistrup
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Simon Rose
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ulf Birkedal
- Department of Cellular & Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Henrik Nielsen
- Department of Cellular & Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen N, Denmark
| | - Harald Huber
- Lehrstuhl für Mikrobiologie und Archaeenzentrum Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany
| | - Stephen Douthwaite
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
667
|
Abstract
Wobble uridines (U34) are generally modified in all species. U34 modifications can be essential in metazoans but are not required for viability in fungi. In this review, we provide an overview on the types of modifications and how they affect the physico-chemical properties of wobble uridines. We describe the molecular machinery required to introduce these modifications into tRNA posttranscriptionally and discuss how posttranslational regulation may affect the activity of the modifying enzymes. We highlight the activity of anticodon specific RNases that target U34 containing tRNA. Finally, we discuss how defects in wobble uridine modifications lead to phenotypes in different species. Importantly, this review will mainly focus on the cytoplasmic tRNAs of eukaryotes. A recent review has extensively covered their bacterial and mitochondrial counterparts.1
Collapse
Affiliation(s)
- Raffael Schaffrath
- a Institut für Biologie, FG Mikrobiologie , Universität Kassel , Germany
| | - Sebastian A Leidel
- b Max Planck Institute for Molecular Biomedicine , Germany.,c Cells-in-Motion Cluster of Excellence , University of Münster , Münster , Germany.,d Medical Faculty , University of Münster , Albert-Schweitzer-Campus 1, Münster , Germany
| |
Collapse
|
668
|
Lentini R, Martín NY, Forlin M, Belmonte L, Fontana J, Cornella M, Martini L, Tamburini S, Bentley WE, Jousson O, Mansy SS. Two-Way Chemical Communication between Artificial and Natural Cells. ACS CENTRAL SCIENCE 2017; 3:117-123. [PMID: 28280778 PMCID: PMC5324081 DOI: 10.1021/acscentsci.6b00330] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Indexed: 05/02/2023]
Abstract
Artificial cells capable of both sensing and sending chemical messages to bacteria have yet to be built. Here we show that artificial cells that are able to sense and synthesize quorum signaling molecules can chemically communicate with V. fischeri, V. harveyi, E. coli, and P. aeruginosa. Activity was assessed by fluorescence, luminescence, RT-qPCR, and RNA-seq. Two potential applications for this technology were demonstrated. First, the extent to which artificial cells could imitate natural cells was quantified by a type of cellular Turing test. Artificial cells capable of sensing and in response synthesizing and releasing N-3-(oxohexanoyl)homoserine lactone showed a high degree of likeness to natural V. fischeri under specific test conditions. Second, artificial cells that sensed V. fischeri and in response degraded a quorum signaling molecule of P. aeruginosa (N-(3-oxododecanoyl)homoserine lactone) were constructed, laying the foundation for future technologies that control complex networks of natural cells.
Collapse
Affiliation(s)
- Roberta Lentini
- CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Italy
| | - Noël Yeh Martín
- CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Italy
| | - Michele Forlin
- CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Italy
| | - Luca Belmonte
- CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Italy
| | - Jason Fontana
- CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Italy
| | | | - Laura Martini
- CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Italy
| | | | - William E. Bentley
- Institute
for Bioscience and Biotechnology Research, University of Maryland, College
Park, Maryland 20742, United States
| | - Olivier Jousson
- CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Italy
| | - Sheref S. Mansy
- CIBIO, University of Trento, via Sommarive 9, 38123 Povo, Italy
- E-mail:
| |
Collapse
|
669
|
Kamminga T, Koehorst JJ, Vermeij P, Slagman SJ, Martins Dos Santos VAP, Bijlsma JJE, Schaap PJ. Persistence of Functional Protein Domains in Mycoplasma Species and their Role in Host Specificity and Synthetic Minimal Life. Front Cell Infect Microbiol 2017; 7:31. [PMID: 28224116 PMCID: PMC5293770 DOI: 10.3389/fcimb.2017.00031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/23/2017] [Indexed: 11/26/2022] Open
Abstract
Mycoplasmas are the smallest self-replicating organisms and obligate parasites of a specific vertebrate host. An in-depth analysis of the functional capabilities of mycoplasma species is fundamental to understand how some of simplest forms of life on Earth succeeded in subverting complex hosts with highly sophisticated immune systems. In this study we present a genome-scale comparison, focused on identification of functional protein domains, of 80 publically available mycoplasma genomes which were consistently re-annotated using a standardized annotation pipeline embedded in a semantic framework to keep track of the data provenance. We examined the pan- and core-domainome and studied predicted functional capability in relation to host specificity and phylogenetic distance. We show that the pan- and core-domainome of mycoplasma species is closed. A comparison with the proteome of the “minimal” synthetic bacterium JCVI-Syn3.0 allowed us to classify domains and proteins essential for minimal life. Many of those essential protein domains, essential Domains of Unknown Function (DUFs) and essential hypothetical proteins are not persistent across mycoplasma genomes suggesting that mycoplasma species support alternative domain configurations that bypass their essentiality. Based on the protein domain composition, we could separate mycoplasma species infecting blood and tissue. For selected genomes of tissue infecting mycoplasmas, we could also predict whether the host is ruminant, pig or human. Functionally closely related mycoplasma species, which have a highly similar protein domain repertoire, but different hosts could not be separated. This study provides a concise overview of the functional capabilities of mycoplasma species, which can be used as a basis to further understand host-pathogen interaction or to design synthetic minimal life.
Collapse
Affiliation(s)
- Tjerko Kamminga
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and ResearchWageningen, Netherlands; Bioprocess Technology and Support, MSD Animal HealthBoxmeer, Netherlands
| | - Jasper J Koehorst
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research Wageningen, Netherlands
| | - Paul Vermeij
- Discovery and Technology, MSD Animal Health Boxmeer, Netherlands
| | - Simen-Jan Slagman
- Bioprocess Technology and Support, MSD Animal Health Boxmeer, Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research Wageningen, Netherlands
| | | | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research Wageningen, Netherlands
| |
Collapse
|
670
|
Zhi XY, Jiang Z, Yang LL, Huang Y. The underlying mechanisms of genetic innovation and speciation in the family Corynebacteriaceae: A phylogenomics approach. Mol Phylogenet Evol 2017; 107:246-255. [DOI: 10.1016/j.ympev.2016.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/04/2016] [Accepted: 11/14/2016] [Indexed: 01/01/2023]
|
671
|
Stevens S. Synthetic Biology in Cell and Organ Transplantation. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a029561. [PMID: 28003184 DOI: 10.1101/cshperspect.a029561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The transplantation of cells and organs has an extensive history, with blood transfusion and skin grafts described as some of the earliest medical interventions. The speed and efficiency of the human immune system evolved to rapidly recognize and remove pathogens; the human immune system also serves as a barrier against the transplant of cells and organs from even highly related donors. Although this shows the remarkable effectiveness of the immune system, the engineering of cells and organs that will survive in a host patient over the long term remains a steep challenge. Progress in the understanding of host immune responses to donor cells and organs, combined with the rapid advancement in synthetic biology applications, allows the rational engineering of more effective solutions for transplantation.
Collapse
Affiliation(s)
- Sean Stevens
- Mammalian Synthetic Biology, Synthetic Genomics, Inc., La Jolla, California 92037
| |
Collapse
|
672
|
|
673
|
Stein LY. Accessories make the microbe. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:21-22. [PMID: 27775875 DOI: 10.1111/1758-2229.12492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6H 2E9, Canada
| |
Collapse
|
674
|
Sola-Oladokun B, Culligan EP, Sleator RD. Engineered Probiotics: Applications and Biological Containment. Annu Rev Food Sci Technol 2017; 8:353-370. [PMID: 28125354 DOI: 10.1146/annurev-food-030216-030256] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bioengineered probiotics represent the next generation of whole cell-mediated biotherapeutics. Advances in synthetic biology, genome engineering, and DNA sequencing and synthesis have enabled scientists to design and develop probiotics with increased stress tolerance and the ability to target specific pathogens and their associated toxins, as well as to mediate targeted delivery of vaccines, drugs, and immunomodulators directly to host cells. Herein, we review the most significant advances in the development of this field. We discuss the critical issue of biological containment and consider the role of synthetic biology in the design and construction of the probiotics of the future.
Collapse
Affiliation(s)
- Babasola Sola-Oladokun
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland; , ,
| | - Eamonn P Culligan
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland; , ,
| | - Roy D Sleator
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland; , , .,APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
675
|
Clomburg JM, Crumbley AM, Gonzalez R. Industrial biomanufacturing: The future of chemical production. Science 2017; 355:355/6320/aag0804. [DOI: 10.1126/science.aag0804] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/21/2016] [Indexed: 12/18/2022]
Abstract
The current model for industrial chemical manufacturing employs large-scale megafacilities that benefit from economies of unit scale. However, this strategy faces environmental, geographical, political, and economic challenges associated with energy and manufacturing demands. We review how exploiting biological processes for manufacturing (i.e., industrial biomanufacturing) addresses these concerns while also supporting and benefiting from economies of unit number. Key to this approach is the inherent small scale and capital efficiency of bioprocesses and the ability of engineered biocatalysts to produce designer products at high carbon and energy efficiency with adjustable output, at high selectivity, and under mild process conditions. The biological conversion of single-carbon compounds represents a test bed to establish this paradigm, enabling rapid, mobile, and widespread deployment, access to remote and distributed resources, and adaptation to new and changing markets.
Collapse
|
676
|
Hughes RA, Ellington AD. Synthetic DNA Synthesis and Assembly: Putting the Synthetic in Synthetic Biology. Cold Spring Harb Perspect Biol 2017; 9:9/1/a023812. [PMID: 28049645 DOI: 10.1101/cshperspect.a023812] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The chemical synthesis of DNA oligonucleotides and their assembly into synthons, genes, circuits, and even entire genomes by gene synthesis methods has become an enabling technology for modern molecular biology and enables the design, build, test, learn, and repeat cycle underpinning innovations in synthetic biology. In this perspective, we briefly review the techniques and technologies that enable the synthesis of DNA oligonucleotides and their assembly into larger DNA constructs with a focus on recent advancements that have sought to reduce synthesis cost and increase sequence fidelity. The development of lower-cost methods to produce high-quality synthetic DNA will allow for the exploration of larger biological hypotheses by lowering the cost of use and help to close the DNA read-write cost gap.
Collapse
Affiliation(s)
- Randall A Hughes
- Applied Research Laboratories, The University of Texas at Austin, Austin, Texas 78758
| | - Andrew D Ellington
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
677
|
Exploring the potential of genome editing CRISPR-Cas9 technology. Gene 2017; 599:1-18. [DOI: 10.1016/j.gene.2016.11.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/18/2016] [Accepted: 11/06/2016] [Indexed: 12/26/2022]
|
678
|
Yu Y, Yang L, Liu Z, Zhu C. Gene essentiality prediction based on fractal features and machine learning. MOLECULAR BIOSYSTEMS 2017; 13:577-584. [PMID: 28145541 DOI: 10.1039/c6mb00806b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Predicting bacterial essential genes using only fractal features.
Collapse
Affiliation(s)
- Yongming Yu
- Department of Biomedical Engineering
- Shandong University
- Jinan
- China
| | - Licai Yang
- Department of Biomedical Engineering
- Shandong University
- Jinan
- China
| | - Zhiping Liu
- Department of Biomedical Engineering
- Shandong University
- Jinan
- China
| | - Chuansheng Zhu
- Department of Hematology
- Shandong University Affiliated Qianfoshan Hospital
- Jinan
- China
| |
Collapse
|
679
|
Abstract
This introductory chapter provides a brief historical survey of the key elements incorporated into commonly used E. coli-based expression systems. The highest impact in expression technology is associated with innovations that were based on extensively studied biological systems, and where the tools were widely distributed in the academic community.
Collapse
Affiliation(s)
- Opher Gileadi
- Structural Genomics Consortium, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford, OX3 7DQ, UK.
| |
Collapse
|
680
|
The genome of serotype VI Streptococcus agalactiae serotype VI and comparative analysis. Gene 2017; 597:59-65. [DOI: 10.1016/j.gene.2016.10.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/12/2016] [Accepted: 10/19/2016] [Indexed: 01/21/2023]
|
681
|
Hartley CJ, Wilding M, Scott C. Hacking nature: genetic tools for reprograming enzymes. MICROBIOLOGY AUSTRALIA 2017. [DOI: 10.1071/ma17032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Enzymes have many modern industrial applications, from biomass decomposition in the production of biofuels to highly stereospecific biotransformations in pharmaceutical manufacture. The capacity to find or engineer enzymes with activities pertinent to specific applications has been essential for the growth of a multibillion dollar enzyme industry. Over the course of the past 50–60 years our capacity to address this issue has become increasingly sophisticated, supported by innumerable advances, from early discoveries such as the co-linearity of DNA and protein sequence1 to modern computational technologies for enzyme design. The design of enzyme function is an exciting nexus of fundamental biochemical understanding and applied engineering. Herein, we will cover some of the methods used in discovery and design, including some ‘next generation’ tools.
Collapse
|
682
|
Development of Synthetic Microbial Platforms to Convert Lignocellulosic Biomass to Biofuels. ADVANCES IN BIOENERGY 2017. [DOI: 10.1016/bs.aibe.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
683
|
Liu Y, Li J, Du G, Chen J, Liu L. Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future directions. Biotechnol Adv 2017; 35:20-30. [DOI: 10.1016/j.biotechadv.2016.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/21/2016] [Accepted: 11/16/2016] [Indexed: 12/25/2022]
|
684
|
Kamiya K, Takeuchi S. Giant liposome formation toward the synthesis of well-defined artificial cells. J Mater Chem B 2017; 5:5911-5923. [DOI: 10.1039/c7tb01322a] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review focuses on microfluidic technologies for giant liposome formations which emulate environments of biological cells.
Collapse
Affiliation(s)
- Koki Kamiya
- Artificial Cell Membrane Systems Group
- Kanagawa Institute of Industrial Science and Technology
- Kawasaki
- Japan
| | - Shoji Takeuchi
- Artificial Cell Membrane Systems Group
- Kanagawa Institute of Industrial Science and Technology
- Kawasaki
- Japan
- Institute of Industrial Science
| |
Collapse
|
685
|
Vickers C. Bespoke design of whole-cell microbial machines. Microb Biotechnol 2017; 10:35-36. [PMID: 27860240 PMCID: PMC5270718 DOI: 10.1111/1751-7915.12460] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 12/01/2022] Open
Affiliation(s)
- Claudia Vickers
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
| |
Collapse
|
686
|
Mandel MJ, Dunn AK. Impact and Influence of the Natural Vibrio-Squid Symbiosis in Understanding Bacterial-Animal Interactions. Front Microbiol 2016; 7:1982. [PMID: 28018314 PMCID: PMC5156696 DOI: 10.3389/fmicb.2016.01982] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/25/2016] [Indexed: 11/13/2022] Open
Abstract
Animals are colonized by bacteria, and in many cases partners have co-evolved to perform mutually beneficial functions. An exciting and ongoing legacy of the past decade has been an expansion of technology to enable study of natural associations in situ/in vivo. As a result, more symbioses are being examined, and additional details are being revealed for well-studied systems with a focus on the interactions between partners in the native context. With this framing, we review recent literature from the Vibrio fischeri-Euprymna scolopes symbiosis and focus on key studies that have had an impact on understanding bacteria-animal interactions broadly. This is not intended to be a comprehensive review of the system, but rather to focus on particular studies that have excelled at moving from pattern to process in facilitating an understanding of the molecular basis to intriguing observations in the field of host-microbe interactions. In this review we discuss the following topics: processes regulating strain and species specificity; bacterial signaling to host morphogenesis; multiple roles for nitric oxide; flagellar motility and chemotaxis; and efforts to understand unannotated and poorly annotated genes. Overall these studies demonstrate how functional approaches in vivo in a tractable system have provided valuable insight into general principles of microbe-host interactions.
Collapse
Affiliation(s)
- Mark J Mandel
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine Chicago, IL, USA
| | - Anne K Dunn
- Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA
| |
Collapse
|
687
|
Reuß DR, Altenbuchner J, Mäder U, Rath H, Ischebeck T, Sappa PK, Thürmer A, Guérin C, Nicolas P, Steil L, Zhu B, Feussner I, Klumpp S, Daniel R, Commichau FM, Völker U, Stülke J. Large-scale reduction of the Bacillus subtilis genome: consequences for the transcriptional network, resource allocation, and metabolism. Genome Res 2016; 27:289-299. [PMID: 27965289 PMCID: PMC5287234 DOI: 10.1101/gr.215293.116] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/01/2016] [Indexed: 11/24/2022]
Abstract
Understanding cellular life requires a comprehensive knowledge of the essential cellular functions, the components involved, and their interactions. Minimized genomes are an important tool to gain this knowledge. We have constructed strains of the model bacterium, Bacillus subtilis, whose genomes have been reduced by ∼36%. These strains are fully viable, and their growth rates in complex medium are comparable to those of wild type strains. An in-depth multi-omics analysis of the genome reduced strains revealed how the deletions affect the transcription regulatory network of the cell, translation resource allocation, and metabolism. A comparison of gene counts and resource allocation demonstrates drastic differences in the two parameters, with 50% of the genes using as little as 10% of translation capacity, whereas the 6% essential genes require 57% of the translation resources. Taken together, the results are a valuable resource on gene dispensability in B. subtilis, and they suggest the roads to further genome reduction to approach the final aim of a minimal cell in which all functions are understood.
Collapse
Affiliation(s)
- Daniel R Reuß
- Department of General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Josef Altenbuchner
- Institute for Industrial Genetics, University of Stuttgart, 70569 Stuttgart, Germany
| | - Ulrike Mäder
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17487 Greifswald, Germany
| | - Hermann Rath
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17487 Greifswald, Germany
| | - Till Ischebeck
- Department of Plant Biochemistry, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Praveen Kumar Sappa
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17487 Greifswald, Germany
| | - Andrea Thürmer
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Cyprien Guérin
- MaIAGE, INRA Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Pierre Nicolas
- MaIAGE, INRA Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Leif Steil
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17487 Greifswald, Germany
| | - Bingyao Zhu
- Department of General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Georg-August-University Göttingen, 37077 Göttingen, Germany.,Georg-August-University, Göttingen Center for Molecular Biosciences (GZMB), 37077 Göttingen, Germany
| | - Stefan Klumpp
- Institute for Nonlinear Dynamics, Georg-August-University Göttingen, 37077 Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Georg-August-University Göttingen, 37077 Göttingen, Germany.,Georg-August-University, Göttingen Center for Molecular Biosciences (GZMB), 37077 Göttingen, Germany
| | - Fabian M Commichau
- Department of General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany.,Georg-August-University, Göttingen Center for Molecular Biosciences (GZMB), 37077 Göttingen, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, 17487 Greifswald, Germany
| | - Jörg Stülke
- Department of General Microbiology, Georg-August-University Göttingen, 37077 Göttingen, Germany.,Georg-August-University, Göttingen Center for Molecular Biosciences (GZMB), 37077 Göttingen, Germany
| |
Collapse
|
688
|
Fisunov GY, Garanina IA, Evsyutina DV, Semashko TA, Nikitina AS, Govorun VM. Reconstruction of Transcription Control Networks in Mollicutes by High-Throughput Identification of Promoters. Front Microbiol 2016; 7:1977. [PMID: 27999573 PMCID: PMC5138195 DOI: 10.3389/fmicb.2016.01977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/25/2016] [Indexed: 01/05/2023] Open
Abstract
Bacteria of the class Mollicutes have significantly reduced genomes and gene expression control systems. They are also efficient pathogens that can colonize a broad range of hosts including plants and animals. Despite their simplicity, Mollicutes demonstrate complex transcriptional responses to various conditions, which contradicts their reduction in gene expression regulation mechanisms. We analyzed the conservation and distribution of transcription regulators across the 50 Mollicutes species. The majority of the transcription factors regulate transport and metabolism, and there are four transcription factors that demonstrate significant conservation across the analyzed bacteria. These factors include repressors of chaperone HrcA, cell cycle regulator MraZ and two regulators with unclear function from the WhiA and YebC/PmpR families. We then used three representative species of the major clades of Mollicutes (Acholeplasma laidlawii, Spiroplasma melliferum, and Mycoplasma gallisepticum) to perform promoter mapping and activity quantitation. We revealed that Mollicutes evolved towards a promoter architecture simplification that correlates with a diminishing role of transcription regulation and an increase in transcriptional noise. Using the identified operons structure and a comparative genomics approach, we reconstructed the transcription control networks for these three species. The organization of the networks reflects the adaptation of bacteria to specific conditions and hosts.
Collapse
Affiliation(s)
- Gleb Y Fisunov
- Federal Research and Clinical Centre of Physical-Chemical Medicine Moscow, Russia
| | - Irina A Garanina
- Federal Research and Clinical Centre of Physical-Chemical MedicineMoscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of SciencesMoscow, Russia
| | - Daria V Evsyutina
- Federal Research and Clinical Centre of Physical-Chemical Medicine Moscow, Russia
| | - Tatiana A Semashko
- Federal Research and Clinical Centre of Physical-Chemical Medicine Moscow, Russia
| | - Anastasia S Nikitina
- Federal Research and Clinical Centre of Physical-Chemical MedicineMoscow, Russia; Moscow Institute of Physics and TechnologyMoscow, Russia
| | - Vadim M Govorun
- Federal Research and Clinical Centre of Physical-Chemical MedicineMoscow, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, the Russian Academy of SciencesMoscow, Russia; Moscow Institute of Physics and TechnologyMoscow, Russia
| |
Collapse
|
689
|
Vedyaykin AD, Sabantsev AV, Khodorkovskii MA, Kayumov AR, Vishnyakov IE. Recombinant FtsZ Proteins from Mollicutes Interact with Escherichia coli Division Machinery. BIONANOSCIENCE 2016. [DOI: 10.1007/s12668-016-0248-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
690
|
Abstract
Parallel DNA assembly methods allow multiple fragments of DNA to be compiled in a desired order in a single reaction. Several methods enable the efficient one-step assembly of multiple DNA parts into a suitable plasmid acceptor at high efficiency. Type IIS-mediated assembly offers the specific advantage of a one-step reaction that does not require proprietary reagents or the amplification and purification of linear DNA fragments. Instead, multiple plasmids housing standardized DNA parts of interest are combined in an enzyme cocktail. To make these standard parts, DNA sequences with defined functions are assigned specific sequence features. This allows parts to be interoperable and reusable. The availability of collections of DNA parts and molecular toolkits that allow the facile assembly of multigene binary constructs and the establishment of standards for the creation of new parts means Type IIS-mediated assembly has become a powerful technology for modern plant molecular biologists. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Nicola J Patron
- The Earlham Institute, Norwich Research Park, Norwich, Norfolk, United Kingdom
| |
Collapse
|
691
|
Martínez-García E, de Lorenzo V. The quest for the minimal bacterial genome. Curr Opin Biotechnol 2016; 42:216-224. [DOI: 10.1016/j.copbio.2016.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/09/2023]
|
692
|
Torres L, Krüger A, Csibra E, Gianni E, Pinheiro VB. Synthetic biology approaches to biological containment: pre-emptively tackling potential risks. Essays Biochem 2016; 60:393-410. [PMID: 27903826 PMCID: PMC5264511 DOI: 10.1042/ebc20160013] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/21/2016] [Accepted: 10/24/2016] [Indexed: 12/29/2022]
Abstract
Biocontainment comprises any strategy applied to ensure that harmful organisms are confined to controlled laboratory conditions and not allowed to escape into the environment. Genetically engineered microorganisms (GEMs), regardless of the nature of the modification and how it was established, have potential human or ecological impact if accidentally leaked or voluntarily released into a natural setting. Although all evidence to date is that GEMs are unable to compete in the environment, the power of synthetic biology to rewrite life requires a pre-emptive strategy to tackle possible unknown risks. Physical containment barriers have proven effective but a number of strategies have been developed to further strengthen biocontainment. Research on complex genetic circuits, lethal genes, alternative nucleic acids, genome recoding and synthetic auxotrophies aim to design more effective routes towards biocontainment. Here, we describe recent advances in synthetic biology that contribute to the ongoing efforts to develop new and improved genetic, semantic, metabolic and mechanistic plans for the containment of GEMs.
Collapse
Affiliation(s)
- Leticia Torres
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K.
| | - Antje Krüger
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Eszter Csibra
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Edoardo Gianni
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K
| | - Vitor B Pinheiro
- Department of Structural and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, U.K.
- Birkbeck, Department of Biological Sciences, University of London, Malet Street, WC1E 7HX, U.K
| |
Collapse
|
693
|
Construction of a minimal genome as a chassis for synthetic biology. Essays Biochem 2016; 60:337-346. [DOI: 10.1042/ebc20160024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 09/26/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022]
Abstract
Microbial diversity and complexity pose challenges in understanding the voluminous genetic information produced from whole-genome sequences, bioinformatics and high-throughput ‘-omics’ research. These challenges can be overcome by a core blueprint of a genome drawn with a minimal gene set, which is essential for life. Systems biology and large-scale gene inactivation studies have estimated the number of essential genes to be ∼300–500 in many microbial genomes. On the basis of the essential gene set information, minimal-genome strains have been generated using sophisticated genome engineering techniques, such as genome reduction and chemical genome synthesis. Current size-reduced genomes are not perfect minimal genomes, but chemically synthesized genomes have just been constructed. Some minimal genomes provide various desirable functions for bioindustry, such as improved genome stability, increased transformation efficacy and improved production of biomaterials. The minimal genome as a chassis genome for synthetic biology can be used to construct custom-designed genomes for various practical and industrial applications.
Collapse
|
694
|
Nesbeth DN, Zaikin A, Saka Y, Romano MC, Giuraniuc CV, Kanakov O, Laptyeva T. Synthetic biology routes to bio-artificial intelligence. Essays Biochem 2016; 60:381-391. [PMID: 27903825 PMCID: PMC5264507 DOI: 10.1042/ebc20160014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 10/19/2016] [Accepted: 10/21/2016] [Indexed: 11/17/2022]
Abstract
The design of synthetic gene networks (SGNs) has advanced to the extent that novel genetic circuits are now being tested for their ability to recapitulate archetypal learning behaviours first defined in the fields of machine and animal learning. Here, we discuss the biological implementation of a perceptron algorithm for linear classification of input data. An expansion of this biological design that encompasses cellular 'teachers' and 'students' is also examined. We also discuss implementation of Pavlovian associative learning using SGNs and present an example of such a scheme and in silico simulation of its performance. In addition to designed SGNs, we also consider the option to establish conditions in which a population of SGNs can evolve diversity in order to better contend with complex input data. Finally, we compare recent ethical concerns in the field of artificial intelligence (AI) and the future challenges raised by bio-artificial intelligence (BI).
Collapse
Affiliation(s)
- Darren N Nesbeth
- Department of Biochemical Engineering, University College London, Bernard Katz Building, London WC1E 6BT, U.K.
| | - Alexey Zaikin
- Department of Mathematics, University College London, Gower Street, London WC1E 6BT, U.K
- Institute for Women's Health, University College London, London WC1E 6AU, U.K
| | - Yasushi Saka
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, U.K
| | - M Carmen Romano
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, U.K
- Department of Physics, Institute for Complex Systems and Mathematical Biology, Meston Building, Old Aberdeen, Aberdeen, U.K
| | - Claudiu V Giuraniuc
- School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, U.K
| | - Oleg Kanakov
- Oscillation Theory Department, Lobachevsky State University of Nizhniy Novgorod, Novgorod, Russia
| | - Tetyana Laptyeva
- Department of Control Theory and Systems Dynamics, Lobachevsky State University of Nizhniy Novgorod, Novgorod, Russia
| |
Collapse
|
695
|
Affiliation(s)
- Alan S.L. Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Gigi C.G. Choi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Pokfulam, Hong Kong
| | - Timothy K. Lu
- Synthetic Biology Group, Research Laboratory of Electronics, Department of Biological Engineering and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139;
| |
Collapse
|
696
|
Schwander T, Schada von Borzyskowski L, Burgener S, Cortina NS, Erb TJ. A synthetic pathway for the fixation of carbon dioxide in vitro. Science 2016; 354:900-904. [PMID: 27856910 PMCID: PMC5892708 DOI: 10.1126/science.aah5237] [Citation(s) in RCA: 359] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/05/2016] [Indexed: 01/20/2023]
Abstract
Carbon dioxide (CO2) is an important carbon feedstock for a future green economy. This requires the development of efficient strategies for its conversion into multicarbon compounds. We describe a synthetic cycle for the continuous fixation of CO2 in vitro. The crotonyl-coenzyme A (CoA)/ethylmalonyl-CoA/hydroxybutyryl-CoA (CETCH) cycle is a reaction network of 17 enzymes that converts CO2 into organic molecules at a rate of 5 nanomoles of CO2 per minute per milligram of protein. The CETCH cycle was drafted by metabolic retrosynthesis, established with enzymes originating from nine different organisms of all three domains of life, and optimized in several rounds by enzyme engineering and metabolic proofreading. The CETCH cycle adds a seventh, synthetic alternative to the six naturally evolved CO2 fixation pathways, thereby opening the way for in vitro and in vivo applications.
Collapse
Affiliation(s)
- Thomas Schwander
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology Marburg, D-35043 Marburg, Germany
| | - Lennart Schada von Borzyskowski
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology Marburg, D-35043 Marburg, Germany
- Institute for Microbiology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Simon Burgener
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology Marburg, D-35043 Marburg, Germany
- Institute for Microbiology, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Niña Socorro Cortina
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology Marburg, D-35043 Marburg, Germany
| | - Tobias J Erb
- Biochemistry and Synthetic Biology of Microbial Metabolism Group, Max Planck Institute for Terrestrial Microbiology Marburg, D-35043 Marburg, Germany.
- Institute for Microbiology, ETH Zürich, CH-8093 Zürich, Switzerland
- LOEWE Center for Synthetic Microbiology, Universität Marburg, D-35037 Marburg, Germany
| |
Collapse
|
697
|
Krishnamurthy M, Moore RT, Rajamani S, Panchal RG. Bacterial genome engineering and synthetic biology: combating pathogens. BMC Microbiol 2016; 16:258. [PMID: 27814687 PMCID: PMC5097395 DOI: 10.1186/s12866-016-0876-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 10/28/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The emergence and prevalence of multidrug resistant (MDR) pathogenic bacteria poses a serious threat to human and animal health globally. Nosocomial infections and common ailments such as pneumonia, wound, urinary tract, and bloodstream infections are becoming more challenging to treat due to the rapid spread of MDR pathogenic bacteria. According to recent reports by the World Health Organization (WHO) and Centers for Disease Control and Prevention (CDC), there is an unprecedented increase in the occurrence of MDR infections worldwide. The rise in these infections has generated an economic strain worldwide, prompting the WHO to endorse a global action plan to improve awareness and understanding of antimicrobial resistance. This health crisis necessitates an immediate action to target the underlying mechanisms of drug resistance in bacteria. RESEARCH The advent of new bacterial genome engineering and synthetic biology (SB) tools is providing promising diagnostic and treatment plans to monitor and treat widespread recalcitrant bacterial infections. Key advances in genetic engineering approaches can successfully aid in targeting and editing pathogenic bacterial genomes for understanding and mitigating drug resistance mechanisms. In this review, we discuss the application of specific genome engineering and SB methods such as recombineering, clustered regularly interspaced short palindromic repeats (CRISPR), and bacterial cell-cell signaling mechanisms for pathogen targeting. The utility of these tools in developing antibacterial strategies such as novel antibiotic production, phage therapy, diagnostics and vaccine production to name a few, are also highlighted. CONCLUSIONS The prevalent use of antibiotics and the spread of MDR bacteria raise the prospect of a post-antibiotic era, which underscores the need for developing novel therapeutics to target MDR pathogens. The development of enabling SB technologies offers promising solutions to deliver safe and effective antibacterial therapies.
Collapse
Affiliation(s)
- Malathy Krishnamurthy
- Department of Target Discovery and Experimental Microbiology, Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702 USA
| | - Richard T. Moore
- Department of Target Discovery and Experimental Microbiology, Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702 USA
| | - Sathish Rajamani
- Department of Target Discovery and Experimental Microbiology, Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702 USA
| | - Rekha G. Panchal
- Department of Target Discovery and Experimental Microbiology, Division of Molecular and Translational Sciences, U. S. Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD 21702 USA
| |
Collapse
|
698
|
Trinh CT, Mendoza B. Modular cell design for rapid, efficient strain engineering toward industrialization of biology. Curr Opin Chem Eng 2016. [DOI: 10.1016/j.coche.2016.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
699
|
Higgins NP. Species-specific supercoil dynamics of the bacterial nucleoid. Biophys Rev 2016; 8:113-121. [PMID: 28510215 PMCID: PMC5425795 DOI: 10.1007/s12551-016-0207-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022] Open
Abstract
Bacteria organize DNA into self-adherent conglomerates called nucleoids that are replicated, transcribed, and partitioned within the cytoplasm during growth and cell division. Three classes of proteins help condense nucleoids: (1) DNA gyrase generates diffusible negative supercoils that help compact DNA into a dynamic interwound and multiply branched structure; (2) RNA polymerase and abundant small basic nucleoid-associated proteins (NAPs) create constrained supercoils by binding, bending, and forming cooperative protein-DNA complexes; (3) a multi-protein DNA condensin organizes chromosome structure to assist sister chromosome segregation after replication. Most bacteria have four topoisomerases that participate in DNA dynamics during replication and transcription. Gyrase and topoisomerase I (Topo I) are intimately involved in transcription; Topo III and Topo IV play critical roles in decatenating and unknotting DNA during and immediately after replication. RNA polymerase generates positive (+) supercoils downstream and negative (-) supercoils upstream of highly transcribed operons. Supercoil levels vary under fast versus slow growth conditions, but what surprises many investigators is that it also varies significantly between different bacterial species. The MukFEB condensin is dispensable in the high supercoil density (σ) organism Escherichia coli but is essential in Salmonella spp. which has 15 % fewer supercoils. These observations raise two questions: (1) How do different species regulate supercoil density? (2) Why do closely related species evolve different optimal supercoil levels? Control of supercoil density in E. coli and Salmonella is largely determined by differences encoded within the gyrase subunits. Supercoil differences may arise to minimalize toxicity of mobile DNA elements in the genome.
Collapse
Affiliation(s)
- N Patrick Higgins
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 720 20th Street South, Kaul Human Genetics Bldg. 524a, Birmingham, AL, 35233, USA.
| |
Collapse
|
700
|
A robust gene-stacking method utilizing yeast assembly for plant synthetic biology. Nat Commun 2016; 7:13215. [PMID: 27782150 PMCID: PMC5095168 DOI: 10.1038/ncomms13215] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/09/2016] [Indexed: 12/21/2022] Open
Abstract
The advent and growth of synthetic biology has demonstrated its potential as a promising avenue of research to address many societal needs. However, plant synthetic biology efforts have been hampered by a dearth of DNA part libraries, versatile transformation vectors and efficient assembly strategies. Here, we describe a versatile system (named jStack) utilizing yeast homologous recombination to efficiently assemble DNA into plant transformation vectors. We demonstrate how this method can facilitate pathway engineering of molecules of pharmaceutical interest, production of potential biofuels and shuffling of disease-resistance traits between crop species. Our approach provides a powerful alternative to conventional strategies for stacking genes and traits to address many impending environmental and agricultural challenges. Plant synthetic biology offers the potential to re-engineer crops, but requires efficient methods to prepare constructs for transformation. Here Shih et al. develop jStack, a method that utilizes yeast homologous recombination and a library of DNA parts, to efficiently assemble plant transformation vectors.
Collapse
|