651
|
Tumbula D, Vothknecht UC, Kim HS, Ibba M, Min B, Li T, Pelaschier J, Stathopoulos C, Becker H, Söll D. Archaeal aminoacyl-tRNA synthesis: diversity replaces dogma. Genetics 1999; 152:1269-76. [PMID: 10430557 PMCID: PMC1460689 DOI: 10.1093/genetics/152.4.1269] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Accurate aminoacyl-tRNA synthesis is essential for faithful translation of the genetic code and consequently has been intensively studied for over three decades. Until recently, the study of aminoacyl-tRNA synthesis in archaea had received little attention. However, as in so many areas of molecular biology, the advent of archaeal genome sequencing has now drawn researchers to this field. Investigations with archaea have already led to the discovery of novel pathways and enzymes for the synthesis of numerous aminoacyl-tRNAs. The most surprising of these findings has been a transamidation pathway for the synthesis of asparaginyl-tRNA and a novel lysyl-tRNA synthetase. In addition, seryl- and phenylalanyl-tRNA synthetases that are only marginally related to known examples outside the archaea have been characterized, and the mechanism of cysteinyl-tRNA formation in Methanococcus jannaschii and Methanobacterium thermoautotrophicum is still unknown. These results have revealed completely unexpected levels of complexity and diversity, questioning the notion that aminoacyl-tRNA synthesis is one of the most conserved functions in gene expression. It has now become clear that the distribution of the various mechanisms of aminoacyl-tRNA synthesis in extant organisms has been determined by numerous gene transfer events, indicating that, while the process of protein biosynthesis is orthologous, its constituents are not.
Collapse
Affiliation(s)
- D Tumbula
- Department of Molecular Biophysics and Biochemistry, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
652
|
Macario AJ, Conway de Macario E. The archaeal molecular chaperone machine: peculiarities and paradoxes. Genetics 1999; 152:1277-83. [PMID: 10430558 PMCID: PMC1460693 DOI: 10.1093/genetics/152.4.1277] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A major finding within the field of archaea and molecular chaperones has been the demonstration that, while some species have the stress (heat-shock) gene hsp70(dnaK), others do not. This gene encodes Hsp70(DnaK), an essential molecular chaperone in bacteria and eukaryotes. Due to the physiological importance and the high degree of conservation of this protein, its absence in archaeal organisms has raised intriguing questions pertaining to the evolution of the chaperone machine as a whole and that of its components in particular, namely, Hsp70(DnaK), Hsp40(DnaJ), and GrpE. Another archaeal paradox is that the proteins coded by these genes are very similar to bacterial homologs, as if the genes had been received via lateral transfer from bacteria, whereas the upstream flanking regions have no bacterial markers, but instead have typical archaeal promoters, which are like those of eukaryotes. Furthermore, the chaperonin system in all archaea studied to the present, including those that possess a bacterial-like chaperone machine, is similar to that of the eukaryotic-cell cytosol. Thus, two chaperoning systems that are designed to interact with a compatible partner, e.g., the bacterial chaperone machine physiologically interacts with the bacterial but not with the eucaryal chaperonins, coexist in archaeal cells in spite of their apparent functional incompatibility. It is difficult to understand how these hybrid characteristics of the archaeal chaperoning system became established and work, if one bears in mind the classical ideas learned from studying bacteria and eukaryotes. No doubt, archaea are intriguing organisms that offer an opportunity to find novel molecules and mechanisms that will, most likely, enhance our understanding of the stress response and the protein folding and refolding processes in the three phylogenetic domains.
Collapse
Affiliation(s)
- A J Macario
- Wadsworth Center, Division of Molecular Medicine, New York State Department of Health and Department of Biomedical Sciences, School of Public Health, The University at Albany (SUNY), Albany, New York 12201-0509, USA.
| | | |
Collapse
|
653
|
Kim W, Whitman WB. Isolation of acetate auxotrophs of the methane-producing archaeon Methanococcus maripaludis by random insertional mutagenesis. Genetics 1999; 152:1429-37. [PMID: 10430573 PMCID: PMC1460683 DOI: 10.1093/genetics/152.4.1429] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To learn more about autotrophic growth of methanococci, we isolated nine conditional mutants of Methanococcus maripaludis after transformation of the wild type with a random library in pMEB.2, a suicide plasmid bearing the puromycin-resistance cassette pac. These mutants grew poorly in mineral medium and required acetate or complex organic supplements such as yeast extract for normal growth. One mutant, JJ104, was a leaky acetate auxotroph. A plasmid, pWDK104, was recovered from this mutant by electroporation of a plasmid preparation into Escherichia coli. Transformation of wild-type M. maripaludis with pWDK104 produced JJ104-1, a mutant with the same phenotype as JJ104, thus establishing that insertion of pWDK104 into the genome was responsible for the phenotype. pWDK104 contained portions of the methanococcal genes encoding an ABC transporter closely related to MJ1367-MJ1368 of M. jannaschii. Because high levels of molybdate, tungstate, and selenite restored growth to wild-type levels, this transporter may be specific for these oxyanions. A second acetate auxotroph, JJ117, had an absolute growth requirement for either acetate or cobalamin, and wild-type growth was observed only in the presence of both. Cobinamide, 5', 6'-dimethylbenzimidazole, and 2-aminopropanol did not replace cobalamin. This phenotype was correlated with tandem insertions in the genome but not single insertions and appeared to have resulted from an indirect effect on cobamide metabolism. Plasmids rescued from other mutants contained portions of ORFs denoted in M. jannaschii as endoglucanase (MJ0555), transketolase (MJ0681), thiamine biosynthetic protein thiI (MJ0931), and several hypothetical proteins (MJ1031, MJ0835, and MJ0835.1).
Collapse
Affiliation(s)
- W Kim
- Department of Microbiology, University of Georgia, Athens, Georgia 30602-2605, USA
| | | |
Collapse
|
654
|
Kraft A, Lutz C, Lingenhel A, Gröbner P, Piendl W. Control of ribosomal protein L1 synthesis in mesophilic and thermophilic archaea. Genetics 1999; 152:1363-72. [PMID: 10430567 PMCID: PMC1460717 DOI: 10.1093/genetics/152.4.1363] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The mechanisms for the control of ribosomal protein synthesis have been characterized in detail in Eukarya and in Bacteria. In Archaea, only the regulation of the MvaL1 operon (encoding ribosomal proteins MvaL1, MvaL10, and MvaL12) of the mesophilic Methanococcus vannielii has been extensively investigated. As in Bacteria, regulation takes place at the level of translation. The regulator protein MvaL1 binds preferentially to its binding site on the 23S rRNA, and, when in excess, binds to the regulatory target site on its mRNA and thus inhibits translation of all three cistrons of the operon. The regulatory binding site on the mRNA, a structural mimic of the respective binding site on the 23S rRNA, is located within the structural gene about 30 nucleotides downstream of the ATG start codon. MvaL1 blocks a step before or at the formation of the first peptide bond of MvaL1. Here we demonstrate that a similar regulatory mechanism exists in the thermophilic M. thermolithotrophicus and M. jannaschii. The L1 gene is cotranscribed together with the L10 and L11 gene, in all genera of the Euryarchaeota branch of the Archaea studied so far. A potential regulatory L1 binding site located within the structural gene, as in Methanococcus, was found in Methanobacterium thermoautotrophicum and in Pyrococcus horikoshii. In contrast, in Archaeoglobus fulgidus a typical L1 binding site is located in the untranslated leader of the L1 gene as described for the halophilic Archaea. In Sulfolobus, a member of the Crenarchaeota, the L1 gene is part of a long transcript (encoding SecE, NusG, L11, L1, L10, L12). A previously suggested regulatory L1 target site located within the L11 structural gene could not be confirmed as an L1 binding site.
Collapse
Affiliation(s)
- A Kraft
- Institute of Medical Chemistry and Biochemistry, University of Innsbruck, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
655
|
Huang J, He Z, Wiegel J. Cloning, characterization, and expression of a novel gene encoding a reversible 4-hydroxybenzoate decarboxylase from Clostridium hydroxybenzoicum. J Bacteriol 1999; 181:5119-22. [PMID: 10438791 PMCID: PMC94008 DOI: 10.1128/jb.181.16.5119-5122.1999] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel gene, designated ohb1, which encodes the oxygen-sensitive and biotin-, ATP-, thiamin-, pyridoxal phosphate-, and metal-ion-independent, reversible 4-hydroxybenzoate decarboxylase (4-HOB-DC) from the obligate anaerobe Clostridium hydroxybenzoicum JW/Z-1(T) was sequenced (GenBank accession no. AF128880) and expressed. The 1,440-bp open reading frame (ORF) (ohb1) encodes 480 amino acids. Major properties of the heterologous enzyme (Ohb1) expressed in Escherichia coli DH5alpha were the same as those described for the native 4-HOB-DC (Z. He and J. Wiegel, J. Bacteriol. 178:3539-3543, 1996). The deduced amino acid sequence shows up to 57% identity and up to 74% similarity to hypothetical proteins deduced from ORFs in genomes from bacteria and archaea, suggesting a possible novel gene family.
Collapse
Affiliation(s)
- J Huang
- Department of Microbiology and Center for Biological Resource Recovery, University of Georgia, Athens, Georgia 30602-2605, USA
| | | | | |
Collapse
|
656
|
Durbecq V, Thia-Toong TL, Charlier D, Villeret V, Roovers M, Wattiez R, Legrain C, Glansdorff N. Aspartate carbamoyltransferase from the thermoacidophilic archaeon Sulfolobus acidocaldarius. Cloning, sequence analysis, enzyme purification and characterization. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 264:233-41. [PMID: 10447693 DOI: 10.1046/j.1432-1327.1999.00619.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The genes coding for aspartate carbamoyltransferase (ATCase) in the extremely thermophilic archaeon Sulfolobus acidocaldarius have been cloned by complementation of a pyrBI deletion mutant of Escherichia coli. Sequencing revealed the existence of an enterobacterial-like pyrBI operon encoding a catalytic chain of 299 amino acids (34 kDa) and a regulatory chain of 170 amino acids (17.9 kDa). The deduced amino acid sequences of the pyrB and pyrI genes showed 27.6-50% identity with archaeal and enterobacterial ATCases. The recombinant S. acidocaldarius ATCase was purified to homogeneity, allowing the first detailed studies of an ATCase isolated from a thermophilic organism. The recombinant enzyme displayed the same properties as the ATCase synthesized in the native host. It is highly thermostable and exhibits Michaelian saturation kinetics for carbamoylphosphate (CP) and positive homotropic cooperative interactions for the binding of L-aspartate. Moreover, it is activated by nucleoside triphosphates whereas the catalytic subunits alone are inhibited. The holoenzyme purified from recombinant E. coli cells or present in crude extract of the native host have an Mr of 340 000 as estimated by gel filtration, suggesting that it has a quaternary structure similar to that of E. coli ATCase. Only monomers could be found in extracts of recombinant E. coli or Saccharomyces cerevisiae cells expressing the pyrB gene alone. In the presence of CP these monomers assembled into trimers. The stability of S. acidocaldarius ATCase and the allosteric properties of the enzyme are discussed in function of a modeling study.
Collapse
Affiliation(s)
- V Durbecq
- Laboratoire de Microbiologie, Université de Libre de Bruxelles, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
657
|
Abstract
We have used genetic methods in Methanococcus maripaludis to study nitrogen metabolism and its regulation. We present evidence for a "nitrogen regulon" in Methanococcus and Methanobacterium species containing genes of nitrogen metabolism that are regulated coordinately at the transcriptional level via a common repressor binding site sequence, or operator. The implied mechanism for regulation resembles the general bacterial paradigm for repression, but contrasts with well-known mechanisms of nitrogen regulation in bacteria, which occur by activation. Genes in the nitrogen regulons include those for nitrogen fixation, glutamine synthetase, (methyl)ammonia transport, the regulatory protein GlnB, and ammonia-dependent NAD synthetase, as well as a gene of unknown function. We also studied the function of two novel GlnB homologues that are encoded within the nif gene cluster of diazotrophic methanogens. The phenotype resulting from a glnB null mutation in M. maripaludis provides direct evidence that glnB-like genes are involved in "ammonia switch-off," the post-transcriptional inhibition of nitrogen fixation upon addition of ammonia. Finally, we show that the gene nifX is not required for nitrogen fixation, in agreement with findings in several bacteria. These studies illustrate the utility of genetic methods in M. maripaludis and show the enhanced perspective that studies in the Archaea can bring to known biological systems.
Collapse
Affiliation(s)
- P S Kessler
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
658
|
Abstract
Archaeal organisms are currently recognized as very exciting and useful experimental materials. A major challenge to molecular biologists studying the biology of Archaea is their DNA replication mechanism. Undoubtedly, a full understanding of DNA replication in Archaea requires the identification of all the proteins involved. In each of four completely sequenced genomes, only one DNA polymerase (Pol BI proposed in this review from family B enzyme) was reported. This observation suggested that either a single DNA polymerase performs the task of replicating the genome and repairing the mutations or these genomes contain other DNA polymerases that cannot be identified by amino acid sequence. Recently, a heterodimeric DNA polymerase (Pol II, or Pol D as proposed in this review) was discovered in the hyperthermophilic archaeon, Pyrococcus furiosus. The genes coding for DP1 and DP2, the subunits of this DNA polymerase, are highly conserved in the Euryarchaeota. Euryarchaeotic DP1, the small subunit of Pol II (Pol D), has sequence similarity with the small subunit of eukaryotic DNA polymerase delta. DP2 protein, the large subunit of Pol II (Pol D), seems to be a catalytic subunit. Despite possessing an excellent primer extension ability in vitro, Pol II (Pol D) may yet require accessory proteins to perform all of its functions in euryarchaeotic cells. This review summarizes our present knowledge about archaeal DNA polymerases and their relationship with those accessory proteins, which were predicted from the genome sequences.
Collapse
Affiliation(s)
- I K Cann
- Department of Molecular Biology, Biomolecular Engineering Research Institute, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan
| | | |
Collapse
|
659
|
Schröder I, Thauer RK. Methylcobalamin:homocysteine methyltransferase from Methanobacterium thermoautotrophicum. Identification as the metE gene product. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 263:789-96. [PMID: 10469143 DOI: 10.1046/j.1432-1327.1999.00559.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Methanobacterium thermoautotrophicum is a methane-forming archaeon that grows on H2 and CO2 as sole carbon and energy source. Cell extracts of the methanogen were found to contain methylcobalamin: homocysteine methyltransferase activity which was purified 3000-fold to a specific activity of approximately 500 U.mg-1 protein. SDS/PAGE revealed the presence of a polypeptide with an apparent molecular mass of 34 kDa. Via its N-terminal amino acid sequence, the 34-kDa polypeptide was identified as the metE gene product. The metE gene was heterologously expressed in Escherichia coli. The overproduced protein was recovered in the inclusion body fraction and was found to be inactive. The protein could be partially solubilized by unfolding in 8 M urea and then refolding. The solubilized protein had a specific activity of 450 U.mg-1. It exhibited first-order kinetics with respect to methylcobalamin concentration and Michaelis-Menten kinetics with respect to L-homocysteine concentration (apparent Km 0.1 mM). The enzyme was specific for L-homocysteine as methyl acceptor. Methylcobalamin could be substituted with methylcobinamide as methyl donor.
Collapse
Affiliation(s)
- I Schröder
- Max-Planck-Institut für terrestrische Mikrobiologie, Laboratorium für Mikrobiologie des Fachbereichs Biologie der Philipps-Universität, Marburg, Germany
| | | |
Collapse
|
660
|
Siedow A, Cramm R, Siddiqui RA, Friedrich B. A megaplasmid-borne anaerobic ribonucleotide reductase in Alcaligenes eutrophus H16. J Bacteriol 1999; 181:4919-28. [PMID: 10438763 PMCID: PMC93980 DOI: 10.1128/jb.181.16.4919-4928.1999] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The conjugative 450-kb megaplasmid pHG1 is essential for the anaerobic growth of Alcaligenes eutrophus H16 in the presence of nitrate as the terminal electron acceptor. We identified two megaplasmid-borne genes (nrdD and nrdG) which are indispensable under these conditions. Sequence alignment identified significant similarity of the 76.2-kDa gene product NrdD and the 30.9-kDa gene product NrdG with anaerobic class III ribonucleotide reductases and their corresponding activases. Deletion of nrdD and nrdG in A. eutrophus abolished anaerobic growth and led to the formation of nondividing filamentous cells, a typical feature of bacteria whose DNA synthesis is blocked. Enzyme activity of NrdD-like ribonucleotide reductases is dependent on a stable radical at a glycine residue in a conserved C-terminal motif. A mutant of A. eutrophus with a G650A exchange in NrdD showed the DNA-deficient phenotype as the deletion strain, suggesting that G650 forms the glycyl radical. Analysis of transcriptional and translational fusions indicate that nrdD and nrdG are cotranscribed and that the translation efficiency of nrdD is 40-fold higher than that of nrdG. Thus, the two proteins NrdD and NrdG are not synthesized at a stoichiometric level.
Collapse
Affiliation(s)
- A Siedow
- Institut für Biologie der Humboldt-Universität zu Berlin, D-10115 Berlin, Germany
| | | | | | | |
Collapse
|
661
|
Maeder DL, Weiss RB, Dunn DM, Cherry JL, González JM, DiRuggiero J, Robb FT. Divergence of the hyperthermophilic archaea Pyrococcus furiosus and P. horikoshii inferred from complete genomic sequences. Genetics 1999; 152:1299-305. [PMID: 10430560 PMCID: PMC1460691 DOI: 10.1093/genetics/152.4.1299] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Divergence of the hyperthermophilic Archaea, Pyrococcus furiosus and Pyrococcus horikoshii, was assessed by analysis of complete genomic sequences of both species. The average nucleotide identity between the genomic sequences is 70-75% within ORFs. The P. furiosus genome (1.908 mbp) is 170 kbp larger than the P. horikoshii genome (1.738 mbp) and the latter displays significant deletions in coding regions, including the trp, his, aro, leu-ile-val, arg, pro, cys, thr, and mal operons. P. horikoshii is auxotrophic for tryptophan and histidine and is unable to utilize maltose, unlike P. furiosus. In addition, the genomes differ considerably in gene order, displaying displacements and inversions. Six allelic intein sites are common to both Pyrococcus genomes, and two intein insertions occur in each species and not the other. The bacteria-like methylated chemotaxis proteins form a functional group in P. horikoshii, but are absent in P. furiosus. Two paralogous families of ferredoxin oxidoreductases provide evidence of gene duplication preceding the divergence of the Pyrococcus species.
Collapse
Affiliation(s)
- D L Maeder
- The Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, Maryland 21202, USA
| | | | | | | | | | | | | |
Collapse
|
662
|
Abstract
Using the sequences of all the known transcription-associated proteins from Bacteria and Eucarya (a total of 4,147), we have identified their homologous counterparts in the four complete archaeal genomes. Through extensive sequence comparisons, we establish the presence of 280 predicted transcription factors or transcription-associated proteins in the four archaeal genomes, of which 168 have homologs only in Bacteria, 51 have homologs only in Eucarya, and the remaining 61 have homologs in both phylogenetic domains. Although bacterial and eukaryotic transcription have very few factors in common, each exclusively shares a significantly greater number with the Archaea, especially the Bacteria. This last fact contrasts with the obvious close relationship between the archaeal and eukaryotic transcription mechanisms per se, and in particular, basic transcription initiation. We interpret these results to mean that the archaeal transcription system has retained more ancestral characteristics than have the transcription mechanisms in either of the other two domains.
Collapse
Affiliation(s)
- N C Kyrpides
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 Chemistry and Life Sciences, MC 110, 407 South Goodwin Avenue, Urbana, IL 61801, USA
| | | |
Collapse
|
663
|
Thompson MJ, Eisenberg D. Transproteomic evidence of a loop-deletion mechanism for enhancing protein thermostability. J Mol Biol 1999; 290:595-604. [PMID: 10390356 DOI: 10.1006/jmbi.1999.2889] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Understanding the molecular determinants of protein thermostability is of theoretical and practical importance. While numerous determinants have been suggested, no molecular feature has been judged of paramount importance, with the possible exception of ion-pair networks. The difficulty in identifying the main determinants may have been the limited structural information available on the thermostable proteins. Recently the complete genomes for mesophilic, thermophilic and hyperthermophilic organisms have been sequenced, vastly improving the potential for uncovering general trends in sequence and structure evolution related to thermostability and, thus, for isolating the more important determinants. From a comparative analysis of 20 complete genomes, we find a trend towards shortened thermophilic proteins relative to their mesophilic homologs. Moreover, sequence alignments to proteins of known structure indicate that thermophilic sequences are more likely than their mesophilic homologs to have deletions in exposed loop regions. The new genomes offer enough comparable sequences to compute meaningful statistics that point to loop deletion as a general evolutionary strategy for increasing thermostability.
Collapse
Affiliation(s)
- M J Thompson
- University of California Los Angeles, Los Angeles, CA 90095-1570, USA
| | | |
Collapse
|
664
|
Frishman D, Mironov A, Gelfand M. Starts of bacterial genes: estimating the reliability of computer predictions. Gene 1999; 234:257-65. [PMID: 10395898 DOI: 10.1016/s0378-1119(99)00200-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Exact mapping of gene starts is an important problem in the computer-assisted functional analysis of newly sequenced prokaryotic genomes. We describe an algorithm for finding ribosomal binding sites without a learning sample. This algorithm is particularly useful for analysis of genomes with little or no experimentally mapped genes. There is a clear correlation between the ribosomal binding site (RBS) properties of a given genome and the potential gene start prediction accuracy. This correlation is of considerable predictive power and may be useful for estimating the expected success of future genome analysis efforts. We also demonstrate that the RBS properties depend on the phylogenetic position of a genome.
Collapse
Affiliation(s)
- D Frishman
- GSF-Forschungszentrum f. Umwelt und Gesundheit, Munich Information Center for Protein Sequences am Max-Planck-Institut für Biochemie, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| | | | | |
Collapse
|
665
|
Pannucci JA, Haas ES, Hall TA, Harris JK, Brown JW. RNase P RNAs from some Archaea are catalytically active. Proc Natl Acad Sci U S A 1999; 96:7803-8. [PMID: 10393902 PMCID: PMC22142 DOI: 10.1073/pnas.96.14.7803] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RNA subunits of RNase Ps of Archaea and eukaryotes have been thought to depend fundamentally on protein for activity, unlike those of Bacteria that are capable of efficient catalysis in the absence of protein. Although the eukaryotic RNase P RNAs are quite different than those of Bacteria in both sequence and structure, the archaeal RNAs generally contain the sequences and structures of the bacterial, phylogenetically conserved catalytic core. A spectrum of archaeal RNase P RNAs were therefore tested for activity in a wide range of conditions. Many remain inactive in ionically extreme conditions, but catalytic activity could be detected from those of the methanobacteria, thermococci, and halobacteria. Chimeric holoenzymes, reconstituted from the Methanobacterium RNase P RNA and the Bacillus subtilis RNase P protein subunits, were functional at low ionic strength. The properties of the archaeal RNase P RNAs (high ionic-strength requirement, low affinity for substrate, and catalytic reconstitution by bacterial RNase P protein) are similar to synthetic RNase P RNAs that contain all of the catalytic core of the bacterial RNA but lack phylogenetically variable, stabilizing elements.
Collapse
Affiliation(s)
- J A Pannucci
- Department of Microbiology, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
666
|
Jordan A, Torrents E, Sala I, Hellman U, Gibert I, Reichard P. Ribonucleotide reduction in Pseudomonas species: simultaneous presence of active enzymes from different classes. J Bacteriol 1999; 181:3974-80. [PMID: 10383965 PMCID: PMC93887 DOI: 10.1128/jb.181.13.3974-3980.1999] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three separate classes of ribonucleotide reductases exist in nature. They differ widely in protein structure. Class I enzymes are found in aerobic bacteria and eukaryotes; class II enzymes are found in aerobic and anaerobic bacteria; class III enzymes are found in strict and facultative anaerobic bacteria. Usually, but not always, one organism contains only one or two (in facultative anaerobes) classes. Surprisingly, the genomic sequence of Pseudomonas aeruginosa contains sequences for each of the three classes. Here, we show by DNA hybridization that other species of Pseudomonas also contain the genes for three classes. Extracts from P. aeruginosa and P. stutzeri grown aerobically or microaerobically contain active class I and II enzymes, whereas we could not demonstrate class III activity. Unexpectedly, class I activity increased greatly during microaerobic conditions. The enzymes were separated, and the large proteins of the class I enzymes were obtained in close to homogeneous form. The catalytic properties of all enzymes are similar to those of other bacterial reductases. However, the Pseudomonas class I reductases required the continuous presence of oxygen during catalysis, unlike the corresponding Escherichia coli enzyme but similar to the mouse enzyme. In similarity searches, the amino acid sequence of the class I enzyme of P. aeruginosa was more related to that of eukaryotes than to that of E. coli or other proteobacteria, with the large protein showing 42% identity to that of the mouse, suggesting the possibility of a horizontal transfer of the gene. The results raise many questions concerning the physiological function and evolution of the three classes in Pseudomonas species.
Collapse
Affiliation(s)
- A Jordan
- Department of Genetics and Microbiology, Faculty of Sciences, Autonomous University of Barcelona, E-08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
667
|
Bayley DP, Jarrell KF. Overexpression of Methanococcus voltae flagellin subunits in Escherichia coli and Pseudomonas aeruginosa: a source of archaeal preflagellin. J Bacteriol 1999; 181:4146-53. [PMID: 10400569 PMCID: PMC93913 DOI: 10.1128/jb.181.14.4146-4153.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methanococcus voltae is a flagellated member of the Archaea. Four highly similar flagellin genes have previously been cloned and sequenced, and the presence of leader peptides has been demonstrated. While the flagellins of M. voltae are predicted from their gene sequences to be approximately 22 to 25 kDa, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of purified flagella revealed flagellin subunits with apparent molecular masses of 31 and 33 kDa. Here we describe the expression of a M. voltae flagellin in the bacteria Escherichia coli and Pseudomonas aeruginosa. Both of these systems successfully generated a specific expression product with an apparently uncleaved leader peptide migrating at approximately 26.5 kDa. This source of preflagellin was used to detect the presence of preflagellin peptidase activity in the membranes of M. voltae. In addition to the native flagellin, a hybrid flagellin gene containing the sequence encoding the M. voltae FlaB2 mature protein fused to the P. aeruginosa pilin (PilA) leader peptide was constructed and transformed into both wild-type P. aeruginosa and a prepilin peptidase (pilD) mutant of P. aeruginosa. Based on migration in SDS-PAGE, the leader peptide appeared to be cleaved in the wild-type cells. However, the archaeal flagellin could not be detected by immunoblotting when expressed in the pilD mutant, indicating a role of the peptidase in the ultimate stability of the fusion product. When the +5 position of the mature flagellin portion of the pilin-flagellin fusion was changed from glycine to glutamic acid (as in the P. aeruginosa pilin) and expressed in both wild-type and pilD mutant P. aeruginosa, the product detected by immunoblotting migrated slightly more slowly in the pilD mutant, indicating that the fusion was likely processed by the prepilin peptidase present in the wild type. Potential assembly of the cleaved fusion product by the type IV pilin assembly system in a P. aeruginosa PilA-deficient strain was tested, but no filaments were noted on the cell surface by electron microscopy.
Collapse
Affiliation(s)
- D P Bayley
- Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
668
|
Darcy TJ, Hausner W, Awery DE, Edwards AM, Thomm M, Reeve JN. Methanobacterium thermoautotrophicum RNA polymerase and transcription in vitro. J Bacteriol 1999; 181:4424-9. [PMID: 10400604 PMCID: PMC93948 DOI: 10.1128/jb.181.14.4424-4429.1999] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RNA polymerase (RNAP) purified from Methanobacterium thermoautotrophicum DeltaH has been shown to initiate transcription accurately in vitro from the hmtB archaeal histone promoter with either native or recombinant forms of the M. thermoautotrophicum TATA-binding protein and transcription factor TFB. Efforts to obtain transcription initiation from hydrogen-regulated methane gene promoters were, however, unsuccessful. Two previously unrecognized archaeal RNAP subunits have been identified, and complex formation by the M. thermoautotrophicum RNAP and TFB has been demonstrated.
Collapse
Affiliation(s)
- T J Darcy
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | |
Collapse
|
669
|
Martinis SA, Plateau P, Cavarelli J, Florentz C. Aminoacyl-tRNA synthetases: a new image for a classical family. Biochimie 1999; 81:683-700. [PMID: 10492015 DOI: 10.1016/s0300-9084(99)80126-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The aminoacyl-tRNA synthetases (aaRSs) are a family of enzymes well known for their role in protein synthesis. More recent investigations have discovered that this classic family of enzymes is actually capable of a broad repertoire of functions which not only impact protein synthesis, but extend to a number of other critical cellular activities. Specific aaRSs play roles in cellular fidelity, tRNA processing, RNA splicing, RNA trafficking, apoptosis, transcriptional and translational regulation. A recent EMBO workshop entitled 'Structure and Function of Aminoacyl-tRNA Synthetases' (Mittelwihr, France, October 10-15, 1998), highlighted the diversity of the aaRSs' role within the cell. These novel activities as well as significant advances in delineating mechanisms of substrate specificity and the aminoacylation reaction affirm the family of aaRSs as pharmaceutical targets.
Collapse
Affiliation(s)
- S A Martinis
- Department of Biology and Biochemistry, University of Houston, TX 77204-5513, USA
| | | | | | | |
Collapse
|
670
|
Makarova KS, Aravind L, Galperin MY, Grishin NV, Tatusov RL, Wolf YI, Koonin EV. Comparative Genomics of the Archaea (Euryarchaeota): Evolution of Conserved Protein Families, the Stable Core, and the Variable Shell. Genome Res 1999. [DOI: 10.1101/gr.9.7.608] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Comparative analysis of the protein sequences encoded in the four euryarchaeal species whose genomes have been sequenced completely (Methanococcus jannaschii, Methanobacterium thermoautotrophicum, Archaeoglobus fulgidus, andPyrococcus horikoshii) revealed 1326 orthologous sets, of which 543 are represented in all four species. The proteins that belong to these conserved euryarchaeal families comprise 31%–35% of the gene complement and may be considered the evolutionarily stable core of the archaeal genomes. The core gene set includes the great majority of genes coding for proteins involved in genome replication and expression, but only a relatively small subset of metabolic functions. For many gene families that are conserved in all euryarchaea, previously undetected orthologs in bacteria and eukaryotes were identified. A number of euryarchaeal synapomorphies (unique shared characters) were identified; these are protein families that possess sequence signatures or domain architectures that are conserved in all euryarchaea but are not found in bacteria or eukaryotes. In addition, euryarchaea-specific expansions of several protein and domain families were detected. In terms of their apparent phylogenetic affinities, the archaeal protein families split into bacterial and eukaryotic families. The majority of the proteins that have only eukaryotic orthologs or show the greatest similarity to their eukaryotic counterparts belong to the core set. The families of euryarchaeal genes that are conserved in only two or three species constitute a relatively mobile component of the genomes whose evolution should have involved multiple events of lineage-specific gene loss and horizontal gene transfer. Frequently these proteins have detectable orthologs only in bacteria or show the greatest similarity to the bacterial homologs, which might suggest a significant role of horizontal gene transfer from bacteria in the evolution of the euryarchaeota.
Collapse
|
671
|
Jarrell KF, Bayley DP, Correia JD, Thomas NA. Recent Excitement about the Archaea. Bioscience 1999. [DOI: 10.2307/1313474] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
672
|
Pereira AS, Tavares P, Krebs C, Huynh BH, Rusnak F, Moura I, Moura JJ. Biochemical and spectroscopic characterization of overexpressed fuscoredoxin from Escherichia coli. Biochem Biophys Res Commun 1999; 260:209-15. [PMID: 10381368 DOI: 10.1006/bbrc.1999.0748] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fuscoredoxin is a unique iron containing protein of yet unknown function originally discovered in the sulfate reducers of the genus Desulfovibrio. It contains two iron-sulfur clusters: a cubane [4Fe-4S] and a mixed oxo- and sulfido-bridged 4Fe cluster of unprecedented structure. The recent determination of the genomic sequence of Escherichia coli (E. coli) has revealed a homologue of fuscoredoxin in this facultative microbe. The presence of this gene in E. coli raises interesting questions regarding the function of fuscoredoxin and whether this gene represents a structural homologue of the better-characterized Desulfovibrio proteins. In order to explore the latter, an overexpression system for the E. coli fuscoredoxin gene was devised. The gene was cloned from genomic DNA by use of the polymerase chain reaction into the expression vector pT7-7 and overexpressed in E. coli BL21(DE3) cells. After two chromatographic steps a good yield of recombinant protein was obtained (approximately 4 mg of pure protein per liter of culture). The purified protein exhibits an optical spectrum characteristic of the homologue from D. desulfuricans, indicating that cofactor assembly was accomplished. Iron analysis indicated that the protein contains circa 8 iron atoms/molecule which were shown by EPR and Mössbauer spectroscopies to be present as two multinuclear clusters, albeit with slightly altered spectroscopic features. A comparison of the primary sequences of fuscoredoxins is presented and differences on cluster coordination modes are discussed on the light of the spectroscopic data.
Collapse
Affiliation(s)
- A S Pereira
- Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Monte de Caparica, 2825-114, Portugal
| | | | | | | | | | | | | |
Collapse
|
673
|
Abstract
DNA in Methanothermus fervidus, a hyperthermophilic archaeon, is constrained into archaeal nucleosomes in vivo by the archaeal histones HMfA and HMfB. Here, we document the translational and rotational positioning of archaeal nucleosome assembly in vitro by a sequence from the 7S RNA encoding region of the M. fervidus genome. The minor groove of the DNA at the center of the DNA sequence, protected from micrococcal nuclease digestion by incorporation into a positioned archaeal nucleosome, faces away from the archaeal histone core.
Collapse
Affiliation(s)
- S L Pereira
- Department of Microbiology, Ohio State University, Columbus, OH, 43210, USA
| | | |
Collapse
|
674
|
Salgado-Garrido J, Bragado-Nilsson E, Kandels-Lewis S, Séraphin B. Sm and Sm-like proteins assemble in two related complexes of deep evolutionary origin. EMBO J 1999; 18:3451-62. [PMID: 10369684 PMCID: PMC1171424 DOI: 10.1093/emboj/18.12.3451] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A group of seven Sm proteins forms a complex that binds to several RNAs in metazoans. All Sm proteins contain a sequence signature, the Sm domain, also found in two yeast Sm-like proteins associated with the U6 snRNA. We have performed database searches revealing the presence of 16 proteins carrying an Sm domain in the yeast genome. Analysis of this protein family confirmed that seven of its members, encoded by essential genes, are homologues of metazoan Sm proteins. Immunoprecipitation revealed that an evolutionarily related subgroup of seven Sm-like proteins is directly associated with the nuclear U6 and pre-RNase P RNAs. The corresponding genes are essential or required for normal vegetative growth. These proteins appear functionally important to stabilize U6 snRNA. The two last yeast Sm-like proteins were not found associated with RNA, and neither was essential for vegetative growth. To investigate whether U6-associated Sm-like protein function is widespread, we cloned several cDNAs encoding homologous human proteins. Two representative human proteins were shown to associate with U6 snRNA-containing complexes. We also identified archaeal proteins related to Sm and Sm-like proteins. Our results demonstrate that Sm and Sm-like proteins assemble in at least two functionally conserved complexes of deep evolutionary origin.
Collapse
MESH Headings
- Animals
- Archaeal Proteins/chemistry
- Archaeal Proteins/genetics
- Autoantigens/chemistry
- Autoantigens/genetics
- Autoantigens/metabolism
- Cell Line
- Cloning, Molecular
- Conserved Sequence/genetics
- Databases, Factual
- Endoribonucleases/genetics
- Evolution, Molecular
- Fungal Proteins/chemistry
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Genes, Essential/genetics
- Genome, Fungal
- Humans
- Mice
- Mutation
- Phylogeny
- Precipitin Tests
- Protein Binding
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Ribonuclease P
- Ribonucleoproteins, Small Nuclear
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/growth & development
- Saccharomyces cerevisiae/metabolism
- Sequence Homology, Amino Acid
- Transfection
- snRNP Core Proteins
Collapse
|
675
|
Li W. Statistical properties of open reading frames in complete genome sequences. COMPUTERS & CHEMISTRY 1999; 23:283-301. [PMID: 10404621 DOI: 10.1016/s0097-8485(99)00014-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Some statistical properties of open reading frames in all currently available complete genome sequences are analyzed (seventeen prokatyotic genomes, and 16 chromosome sequences from the yeast genome). The size distribution of open reading frames is characterized by various techniques, such as quantile tables, QQ-plots, rank-size plots (Zipf's plots), and spatial densities. The issue of the influence of CG% on the size distribution is addressed. When yeast chromosomes are compared with archaeal and eubacterial genomes, they tend to have more long open reading frames. There is little or no evidence to reject the null hypothesis that open reading frames on six different reading frames and two strands distribute similarly. A topic of current interest, the base composition asymmetry in open reading frames between the two strands, is studied using regression analysis. The base composition asymmetry at three codon positions is analyzed separately. It was shown in these genome sequences that the first codon position is G- and A-rich (i.e. purine-rich); there is a co-existence of A- and T-rich branches at the second codon position; and the third codon position is weakly T-rich.
Collapse
Affiliation(s)
- W Li
- Laboratory of Statistical Genetics, Rockefeller University, New York, NY 10021, USA.
| |
Collapse
|
676
|
Uriarte M, Marina A, Ramón-Maiques S, Fita I, Rubio V. The carbamoyl-phosphate synthetase of Pyrococcus furiosus is enzymologically and structurally a carbamate kinase. J Biol Chem 1999; 274:16295-303. [PMID: 10347186 DOI: 10.1074/jbc.274.23.16295] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hyperthermophiles Pyrococcus furiosus and Pyrococcus abyssi make pyrimidines and arginine from carbamoyl phosphate (CP) synthesized by an enzyme that differs from other carbamoyl-phosphate synthetases and that resembles carbamate kinase (CK) in polypeptide mass, amino acid sequence, and oligomeric organization. This enzyme was reported to use ammonia, bicarbonate, and two ATP molecules as carbamoyl-phosphate synthetases to make CP and to exhibit bicarbonatedependent ATPase activity. We have reexamined these findings using the enzyme of P. furiosus expressed in Escherichia coli from the corresponding gene cloned in a plasmid. We show that the enzyme uses chemically made carbamate rather than ammonia and bicarbonate and catalyzes a reaction with the stoichiometry and equilibrium that are typical for CK. Furthermore, the enzyme catalyzes actively full reversion of the CK reaction and exhibits little bicarbonate-dependent ATPase. In addition, it cross-reacts with antibodies raised against CK from Enterococcus faecium, and its three-dimensional structure, judged by x-ray crystallography of enzyme crystals, is very similar to that of CK. Thus, the enzyme is, in all respects other than its function in vivo, a CK. Because in other organisms the function of CK is to make ATP from ADP and CP derived from arginine catabolism, this is the first example of using CK for making rather than using CP. The reasons for this use and the adaptation of the enzyme to this new function are discussed.
Collapse
Affiliation(s)
- M Uriarte
- Instituto de Biomedicina de Valencia (Consejo Superior de Investigaciones Científicas), C/Jaime Roig 11, 46010 Valencia, Spain
| | | | | | | | | |
Collapse
|
677
|
Tekaia F, Lazcano A, Dujon B. The genomic tree as revealed from whole proteome comparisons. Genome Res 1999; 9:550-7. [PMID: 10400922 PMCID: PMC310764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
The availability of a number of complete cellular genome sequences allows the development of organisms' classification, taking into account their genome content, the loss or acquisition of genes, and overall gene similarities as signatures of common ancestry. On the basis of correspondence analysis and hierarchical classification methods, a methodological framework is introduced here for the classification of the available 20 completely sequenced genomes and partial information for Schizosaccharomyces pombe, Homo sapiens, and Mus musculus. The outcome of such an analysis leads to a classification of genomes that we call a genomic tree. Although these trees are phenograms, they carry with them strong phylogenetic signatures and are remarkably similar to 16S-like rRNA-based phylogenies. Our results suggest that duplication and deletion events that took place through evolutionary time were globally similar in related organisms. The genomic trees presented here place the Archaea in the proximity of the Bacteria when the whole gene content of each organism is considered, and when ancestral gene duplications are eliminated. Genomic trees represent an additional approach for the understanding of evolution at the genomic level and may contribute to the proper assessment of the evolutionary relationships between extant species.
Collapse
Affiliation(s)
- F Tekaia
- Unité de Génétique Moléculaire des Levures [URA1300 Centre National de la Recherche Scientifique (CNRS) and UFR927 University Pierre and Marie Curie], Institut Pasteur, 75724 Paris Cedex 15, France.
| | | | | |
Collapse
|
678
|
Abstract
Histidyl-tRNA synthetase (HisRS) is responsible for the synthesis of histidyl-transfer RNA, which is essential for the incorporation of histidine into proteins. This amino acid has uniquely moderate basic properties and is an important group in many catalytic functions of enzymes. A compilation of currently known primary structures of HisRS shows that the subunits of these homo-dimeric enzymes consist of 420-550 amino acid residues. This represents a relatively short chain length among aminoacyl-tRNA synthetases (aaRS), whose peptide chain sizes range from about 300 to 1100 amino acid residues. The crystal structures of HisRS from two organisms and their complexes with histidine, histidyl-adenylate and histidinol with ATP have been solved. HisRS from Escherichia coli and Thermus thermophilus are very similar dimeric enzymes consisting of three domains: the N-terminal catalytic domain containing the six-stranded antiparallel beta-sheet and the three motifs characteristic of class II aaRS, a HisRS-specific helical domain inserted between motifs 2 and 3 that may contact the acceptor stem of the tRNA, and a C-terminal alpha/beta domain that may be involved in the recognition of the anticodon stem and loop of tRNA(His). The aminoacylation reaction follows the standard two-step mechanism. HisRS also belongs to the group of aaRS that can rapidly synthesize diadenosine tetraphosphate, a compound that is suspected to be involved in several regulatory mechanisms of cell metabolism. Many analogs of histidine have been tested for their properties as substrates or inhibitors of HisRS, leading to the elucidation of structure-activity relationships concerning configuration, importance of the carboxy and amino group, and the nature of the side chain. HisRS has been found to act as a particularly important antigen in autoimmune diseases such as rheumatic arthritis or myositis. Successful attempts have been made to identify epitopes responsible for the complexation with such auto-antibodies.
Collapse
Affiliation(s)
- W Freist
- Max-Planck-Institut für experimentelle Medizin, Abteilung Molekulare Biologie Neuronaler Signale, Göttingen, Germany
| | | | | | | | | |
Collapse
|
679
|
Affiliation(s)
- J N Reeve
- Department of Microbiology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
680
|
Abstract
The availability of a number of complete cellular genome sequences allows the development of organisms’ classification, taking into account their genome content, the loss or acquisition of genes, and overall gene similarities as signatures of common ancestry. On the basis of correspondence analysis and hierarchical classification methods, a methodological framework is introduced here for the classification of the available 20 completely sequenced genomes and partial information for Schizosaccharomyces pombe, Homo sapiens, and Mus musculus. The outcome of such an analysis leads to a classification of genomes that we call a genomic tree. Although these trees are phenograms, they carry with them strong phylogenetic signatures and are remarkably similar to 16S-like rRNA-based phylogenies. Our results suggest that duplication and deletion events that took place through evolutionary time were globally similar in related organisms. The genomic trees presented here place the Archaea in the proximity of the Bacteria when the whole gene content of each organism is considered, and when ancestral gene duplications are eliminated. Genomic trees represent an additional approach for the understanding of evolution at the genomic level and may contribute to the proper assessment of the evolutionary relationships between extant species.
Collapse
|
681
|
Abstract
PAS domains are newly recognized signaling domains that are widely distributed in proteins from members of the Archaea and Bacteria and from fungi, plants, insects, and vertebrates. They function as input modules in proteins that sense oxygen, redox potential, light, and some other stimuli. Specificity in sensing arises, in part, from different cofactors that may be associated with the PAS fold. Transduction of redox signals may be a common mechanistic theme in many different PAS domains. PAS proteins are always located intracellularly but may monitor the external as well as the internal environment. One way in which prokaryotic PAS proteins sense the environment is by detecting changes in the electron transport system. This serves as an early warning system for any reduction in cellular energy levels. Human PAS proteins include hypoxia-inducible factors and voltage-sensitive ion channels; other PAS proteins are integral components of circadian clocks. Although PAS domains were only recently identified, the signaling functions with which they are associated have long been recognized as fundamental properties of living cells.
Collapse
Affiliation(s)
- B L Taylor
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350, USA.
| | | |
Collapse
|
682
|
Wendt UK, Hauschild R, Lange C, Pietersma M, Wenderoth I, von Schaewen A. Evidence for functional convergence of redox regulation in G6PDH isoforms of cyanobacteria and higher plants. PLANT MOLECULAR BIOLOGY 1999; 40:487-494. [PMID: 10437832 DOI: 10.1023/a:1006257230779] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In a recent paper (Wenderoth et al., J Biol Chem 272: 26985-26990, 1997) we reported that the positions of the two redox regulatory cysteines identified in a plastidic G6PD isoform from potato (Solanum tuberosum L.) differ substantially from those conserved in cyanobacterial G6PDH sequences. To investigate the origin of redox regulation in G6PDH enzymes from photoautotrophic organisms, we isolated and characterized several G6PD cDNA sequences from higher plants and from a green and a red alga. Alignments of the deduced amino acid sequences showed that the cysteine residues cluster in the coenzyme-binding domain of the plastidic isoforms and are conserved at three out of six positions. Comparison of the mature proteins and the signal peptides revealed that two different plastidic G6PDH classes (P1 and P2) evolved from a common ancestral gene. The two algal sequences branch off prior to this class separation in higher plants, sharing about similar amino acid identity with either of the two plastidic G6PDH classes. The genes for cytosolic plant isoforms clearly share a common ancestor with animal and fungal G6PDH homologues, whereas the cyanobacterial isoforms branch within the eubacterial G6PDH sequences. The data suggest that cysteine-mediated redox regulation arose independently in G6PDH isoenzymes of eubacterial and eukaryotic lineages.
Collapse
Affiliation(s)
- U K Wendt
- Pflanzenphysiologie, Biologie/Chemie, Universität Osnabrück, Germany
| | | | | | | | | | | |
Collapse
|
683
|
Abstract
Mutations are the source of genetic variation and diversity; by their effect, some are neutral, others are pathogenic. In contemporary genetics, mutations appear at the interface between genomics (structural and functional) and genetics (heredity), where they serve gene discovery and mapping (genomics) and generate challenges to modify their phenotypic effects (medical genetics). Assuming the human genome harbours 80,000 transcribed genes each possessing at least 100 different (germline) alleles in a typical population, how then to record and recover data on at least 8 million human alleles? Bioinformatics is the essential resource to create the corresponding accessible digital libraries (genomic and locus-specific mutation databases) for this purpose, a goal to which The HUGO Mutation Database Initiative (Science 279: 10-11, 1998) aspires. Guidelines now exist for naming alleles (Hum Mutat 11: 1-3, 1998). The principles behind the practice are illustrated by PAHdb (http:/(/)www.mcgill.ca/ pahdb), a prototype locus-specific mutation database (NAR 26: 220-225, 1998), and by prototype genomic mutation databases (HGMD (NAR 26: 285-287, 1998), http:/(/)www.uwcm.ac.uk/uwcm/mg/hgmd0.h tml; the EBI mutation database, http:/(/)www2.ebi.ac.uk/mutations/; and OMIM, http:/(/)www.ncbi.nlm. nih.gov/Omim.html).
Collapse
Affiliation(s)
- C R Scriver
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
684
|
Jurgens G, Saano A. Diversity of soil Archaea in boreal forest before, and after clear-cutting and prescribed burning1. FEMS Microbiol Ecol 1999. [DOI: 10.1111/j.1574-6941.1999.tb00612.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
685
|
Katayama M, Tsinoremas NF, Kondo T, Golden SS. cpmA, a gene involved in an output pathway of the cyanobacterial circadian system. J Bacteriol 1999; 181:3516-24. [PMID: 10348865 PMCID: PMC93820 DOI: 10.1128/jb.181.11.3516-3524.1999] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We generated random mutations in Synechococcus sp. strain PCC 7942 to look for genes of output pathways in the cyanobacterial circadian system. A derivative of transposon Tn5 was introduced into the chromosomes of reporter strains in which cyanobacterial promoters drive the Vibrio harveyi luxAB genes and produce an oscillation of bioluminescence as a function of circadian gene expression. Among low-amplitude mutants, one mutant, tnp6, had an insertion in a 780-bp open reading frame. The tnp6 mutation produced an altered circadian phasing phenotype in the expression rhythms of psbAI::luxAB, psbAII::luxAB, and kaiA::luxAB but had no or little effect on those of psbAIII::luxAB, purF::luxAB, kaiB::luxAB, rpoD2::luxAB, ndhD::luxAB, and conII::luxAB. This suggests that the interrupted gene in tnp6, named cpmA (circadian phase modifier), is part of a circadian output pathway that regulates the expression rhythms of psbAI, psbAII, and kaiA.
Collapse
Affiliation(s)
- M Katayama
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | | | | | | |
Collapse
|
686
|
Voorhorst WG, Gueguen Y, Geerling AC, Schut G, Dahlke I, Thomm M, van der Oost J, de Vos WM. Transcriptional regulation in the hyperthermophilic archaeon Pyrococcus furiosus: coordinated expression of divergently oriented genes in response to beta-linked glucose polymers. J Bacteriol 1999; 181:3777-83. [PMID: 10368153 PMCID: PMC93856 DOI: 10.1128/jb.181.12.3777-3783.1999] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/1999] [Accepted: 04/19/1999] [Indexed: 11/20/2022] Open
Abstract
The genetic organization, expression, and regulation of the celB locus of the hyperthermophilic archaeon Pyrococcus furiosus were analyzed. This locus includes the celB gene, which codes for an intracellular beta-glucosidase, and a divergently orientated gene cluster, adhA-adhB-lamA, which codes for two alcohol dehydrogenases and an extracellular beta-1,3-endoglucanase that is transcribed as a polycistronic messenger (the lamA operon). During growth of P. furiosus on either the beta-1,4-linked glucose dimer cellobiose or the beta-1,3-linked glucose polymer laminarin, the activities of both beta-glucosidase and endoglucanase were increased at least fivefold compared with levels during growth on maltose or pyruvate. Northern blot analysis revealed an enhanced transcription of both the celB gene and the lamA operon in the presence of these glucose-containing substrates. The in vivo and in vitro transcription initiation sites of both the celB gene and the lamA operon were identified 25 nucleotides downstream of conserved TATA box motifs. A number of repeating sequences have been recognized in the celB-adhA intergenic region, some of which might be part of a transcriptional regulator-binding site.
Collapse
Affiliation(s)
- W G Voorhorst
- Laboratory of Microbiology, Department of Biomolecular Sciences, Wageningen Agricultural University, NL-6703 CT Wageningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
687
|
Abstract
New technologies for enzyme discovery are changing the rules of the game for industrial biocatalysis. More kinds of enzymes are available, their hardiness is increasing, and their costs are coming down. These changes are the key drivers for a rebirth of interest in industrial applications of enzymes. The major enabling discovery approaches include screening of biodiversity, genomic sequencing, directed evolution and phage display.
Collapse
Affiliation(s)
- B Marrs
- Hercules Incorporated, Hercules Research Center, 500 Hercules Road, Wilmington, DE 19808, USA
| | | | | |
Collapse
|
688
|
Vizcaíno N, Cloeckaert A, Zygmunt MS, Fernández-Lago L. Molecular characterization of a Brucella species large DNA fragment deleted in Brucella abortus strains: evidence for a locus involved in the synthesis of a polysaccharide. Infect Immun 1999; 67:2700-12. [PMID: 10338472 PMCID: PMC96573 DOI: 10.1128/iai.67.6.2700-2712.1999] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Brucella melitensis 16M DNA fragment of 17,119 bp, which contains a large region deleted in B. abortus strains and DNA flanking one side of the deletion, has been characterized. In addition to the previously identified omp31 gene, 14 hypothetical genes have been identified in the B. melitensis fragment, most of them showing homology to genes involved in the synthesis of a polysaccharide. Considering that 10 of the 15 genes are missing in B. abortus and that all the polysaccharides described in the Brucella genus (lipopolysaccharide, native hapten, and polysaccharide B) have been detected in all the species, it seems likely that the genes described here might be part of a cluster for the synthesis of a novel Brucella polysaccharide. Several polysaccharides have been identified as important virulence factors, and the discovery of a novel polysaccharide in the brucellae which is probably not synthesized in B. abortus might be interesting for a better understanding of the pathogenicity and host preference differences observed between the Brucella species. However, the possibility that the genes described in this paper no longer encode the synthesis of a polysaccharide cannot be excluded. Brucellae belong to the alpha-2 subdivision of the class Proteobacteria, which includes other microorganisms living in association with eucaryotic cells, some of them synthesizing extracellular polysaccharides involved in the interaction with the host cell. The genes described in this paper might be a remnant of the common ancestor of the alpha-2 subdivision of the class Proteobacteria, and the brucellae might have lost such extracellular polysaccharide during evolution if it was not necessary for survival or for establishment of the infectious process. Nevertheless, further studies are necessary to identify the entire DNA fragment missing in B. abortus strains and to elucidate the mechanism responsible for such deletion, since only 9,948 bp of the deletion was present in the sequenced B. melitensis DNA fragment.
Collapse
Affiliation(s)
- N Vizcaíno
- Departamento de Microbiología y Genética, Edificio Departamental, Universidad de Salamanca, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
689
|
Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 1999; 399:323-9. [PMID: 10360571 DOI: 10.1038/20601] [Citation(s) in RCA: 1023] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The 1,860,725-base-pair genome of Thermotoga maritima MSB8 contains 1,877 predicted coding regions, 1,014 (54%) of which have functional assignments and 863 (46%) of which are of unknown function. Genome analysis reveals numerous pathways involved in degradation of sugars and plant polysaccharides, and 108 genes that have orthologues only in the genomes of other thermophilic Eubacteria and Archaea. Of the Eubacteria sequenced to date, T. maritima has the highest percentage (24%) of genes that are most similar to archaeal genes. Eighty-one archaeal-like genes are clustered in 15 regions of the T. maritima genome that range in size from 4 to 20 kilobases. Conservation of gene order between T. maritima and Archaea in many of the clustered regions suggests that lateral gene transfer may have occurred between thermophilic Eubacteria and Archaea.
Collapse
Affiliation(s)
- K E Nelson
- Institute for Genomic Research, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
690
|
Walker KW, Bradshaw RA. Yeast methionine aminopeptidase I. Alteration of substrate specificity by site-directed mutagenesis. J Biol Chem 1999; 274:13403-9. [PMID: 10224104 DOI: 10.1074/jbc.274.19.13403] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, two isozymes (I and II) of methionine aminopeptidase (MetAP) catalyze the removal of the initiator methionine if the penultimate residue has a small radius of gyration (glycine, alanine, serine, threonine, proline, valine, and cysteine). Using site-directed mutagenesis, recombinant yeast MetAP I derivatives that are able to cleave N-terminal methionine from substrates that have larger penultimate residues have been expressed. A Met to Ala change at 329 (Met206 in Escherichia coli enzyme) produces an average catalytic efficiency 1.5-fold higher than the native enzyme on normal substrates and cleaves substrates containing penultimate asparagine, glutamine, isoleucine, leucine, methionine, and phenylalanine. Interestingly, the native enzyme also has significant activity with the asparagine peptide not previously identified as a substrate. Mutation of Gln356 (Gln233 in E. coli MetAP) to alanine results in a catalytic efficiency about one-third that of native with normal substrates but which can cleave methionine from substrates with penultimate histidine, asparagine, glutamine, leucine, methionine, phenylalanine, and tryptophan. Mutation of Ser195 to alanine had no effect on substrate specificity. None of the altered enzymes produced cleaved substrates with a fully charged residue (lysine, arginine, aspartic acid, or glutamic acid) or tyrosine in the penultimate position.
Collapse
Affiliation(s)
- K W Walker
- Department of Physiology and Biophysics, College of Medicine, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
691
|
Chang HK, Zylstra GJ. Role of quinolinate phosphoribosyl transferase in degradation of phthalate by Burkholderia cepacia DBO1. J Bacteriol 1999; 181:3069-75. [PMID: 10322007 PMCID: PMC93761 DOI: 10.1128/jb.181.10.3069-3075.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two distinct regions of DNA encode the enzymes needed for phthalate degradation by Burkholderia cepacia DBO1. A gene coding for an enzyme (quinolinate phosphoribosyl transferase) involved in the biosynthesis of NAD+ was identified between these two regions by sequence analysis and functional assays. Southern hybridization experiments indicate that DBO1 and other phthalate-degrading B. cepacia strains have two dissimilar genes for this enzyme, while non-phthalate-degrading B. cepacia strains have only a single gene. The sequenced gene was labeled ophE, due to the fact that it is specifically induced by phthalate as shown by lacZ gene fusions. Insertional knockout mutants lacking ophE grow noticeably slower on phthalate while exhibiting normal rates of growth on other substrates. The fact that elevated levels of quinolinate phosphoribosyl transferase enhance growth on phthalate stems from the structural similarities between phthalate and quinolinate: phthalate is a competitive inhibitor of this enzyme and the phthalate catabolic pathway cometabolizes quinolinate. The recruitment of this gene for growth on phthalate thus gives B. cepacia an advantage over other phthalate-degrading bacteria in the environment.
Collapse
Affiliation(s)
- H K Chang
- Biotechnology Center for Agriculture and the Environment, Cook College, Rutgers University, New Brunswick, New Jersey 08901-8520, USA
| | | |
Collapse
|
692
|
Thorsted PB, Thomas CM, Poluektova EU, Prozorov AA. Complete sequence of Bacillus subtilis plasmid p1414 and comparison with seven other plasmid types found in Russian soil isolates of Bacillus subtilis. Plasmid 1999; 41:274-81. [PMID: 10366533 DOI: 10.1006/plas.1999.1393] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We determined the complete sequence of a cryptic 7949-bp plasmid isolated from naturally occurring Bacillus subtilis found in Russian soil from Moscow. We found 15 putative open reading frames (ORFs), all of which were preceded by a ribosome binding site. One encodes the gene (rep) which should be essential for vegetative rolling circle replication (RCR). The putative double-stranded origin as well as a palT1-like single-stranded origin was also identified. The predicted product of another ORF showed similarity to a moblization protein while a third showed similarity to a ubiquitous family of small proteins whose members have so far been associated with stress response. We used fragments with these latter ORFs to probe representatives of seven other groups of cryptic RCR plasmids from geographically related B. subtilis isolates. All plasmids carried the mob function, suggesting a common ancestor for the rep/mob region but the putative hsp was present only on some of the plasmids. This suggests that the putative hsp gene is not an essential plasmid component and may therefore be present as a phenotypic marker-perhaps providing response to stress. This adds weight to the growing evidence that these small Bacillus plasmids may not be cryptic but may provide an adaptive advantage for the host in its natural environment.
Collapse
Affiliation(s)
- P B Thorsted
- School of Biological Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | | | | | | |
Collapse
|
693
|
Abstract
The recent focus on exobiology and the potential for life in extreme environments has generated a great deal of interest in the Archaea because of their adaptation to extremes of temperature, salinity and anaerobicity. Recent advances in the development of genetic transfer systems for the Archaea provide the first glimpse of their genetic mechanisms and have the potential to serve as powerful tools for studying their unique adaptive strategies.
Collapse
Affiliation(s)
- K R Sowers
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD 21202, USA.
| | | |
Collapse
|
694
|
Hochuli M, Patzelt H, Oesterhelt D, Wüthrich K, Szyperski T. Amino acid biosynthesis in the halophilic archaeon Haloarcula hispanica. J Bacteriol 1999; 181:3226-37. [PMID: 10322026 PMCID: PMC93780 DOI: 10.1128/jb.181.10.3226-3237.1999] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biosynthesis of proteinogenic amino acids in the extremely halophilic archaeon Haloarcula hispanica was explored by using biosynthetically directed fractional 13C labeling with a mixture of 90% unlabeled and 10% uniformly 13C-labeled glycerol. The resulting 13C-labeling patterns in the amino acids were analyzed by two-dimensional 13C,1H correlation spectroscopy. The experimental data provided evidence for a split pathway for isoleucine biosynthesis, with 56% of the total Ile originating from threonine and pyruvate via the threonine pathway and 44% originating from pyruvate and acetyl coenzyme A via the pyruvate pathway. In addition, the diaminopimelate pathway involving diaminopimelate dehydrogenase was shown to lead to lysine biosynthesis and an analysis of the 13C-labeling pattern in tyrosine indicated novel biosynthetic pathways that have so far not been further characterized. For the 17 other proteinogenic amino acids, the data were consistent with data for commonly found biosynthetic pathways. A comparison of our data with the amino acid metabolisms of eucarya and bacteria supports the theory that pathways for synthesis of proteinogenic amino acids were established before ancient cells diverged into archaea, bacteria, and eucarya.
Collapse
Affiliation(s)
- M Hochuli
- Institut für Molekularbiologie und Biophysik, Eidgenössische Technische Hochschule Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
695
|
Menon S, Ragsdale SW. The role of an iron-sulfur cluster in an enzymatic methylation reaction. Methylation of CO dehydrogenase/acetyl-CoA synthase by the methylated corrinoid iron-sulfur protein. J Biol Chem 1999; 274:11513-8. [PMID: 10206956 DOI: 10.1074/jbc.274.17.11513] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
This paper focuses on how a methyl group is transferred from a methyl-cobalt(III) species on one protein (the corrinoid iron-sulfur protein (CFeSP)) to a nickel iron-sulfur cluster on another protein (carbon monoxide dehydrogenase/acetyl-CoA synthase). This is an essential step in the Wood-Ljungdahl pathway of anaerobic CO and CO2 fixation. The results described here strongly indicate that transfer of methyl group to carbon monoxide dehydrogenase/acetyl-CoA synthase occurs by an SN2 pathway. They also provide convincing evidence that oxidative inactivation of Co(I) competes with methylation. Under the conditions of our anaerobic assay, Co(I) escapes from the catalytic cycle one in every 100 turnover cycles. Reductive activation of the CFeSP is required to regenerate Co(I) and recruit the protein back into the catalytic cycle. Our results strongly indicate that the [4Fe-4S] cluster of the CFeSP is required for reductive activation. They support the hypothesis that the [4Fe-4S] cluster of the CFeSP does not participate directly in the methyl transfer step but provides a conduit for electron flow from physiological reductants to the cobalt center.
Collapse
Affiliation(s)
- S Menon
- Department of Biochemistry, Beadle Center, University of Nebraska, Lincoln, Nebraska 68588-0664, USA
| | | |
Collapse
|
696
|
Hippler B, Thauer RK. The energy conserving methyltetrahydromethanopterin:coenzyme M methyltransferase complex from methanogenic archaea: function of the subunit MtrH. FEBS Lett 1999; 449:165-8. [PMID: 10338124 DOI: 10.1016/s0014-5793(99)00429-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In methanogenic archaea the transfer of the methyl group of N5-methyltetrahydromethanopterin to coenzyme M is coupled with energy conservation. The reaction is catalyzed by a membrane associated multienzyme complex composed of eight different subunits MtrA-H. The 23 kDa subunit MtrA harbors a corrinoid prosthetic group which is methylated and demethylated in the catalytic cycle. We report here that the 34 kDa subunit MtrH catalyzes the methylation reaction. MtrH was purified and shown to exhibit methyltetrahydromethanopterin:cob(I)alamin methyltransferase activity. Sequence comparison revealed similarity of MtrH with MetH from Escherichia coli and AcsE from Clostridium thermoaceticum: both enzymes exhibit methyltetrahydrofolate:cob(I)alamin methyltransferase activity.
Collapse
Affiliation(s)
- B Hippler
- Max-Planck-Institut für terrestrische Mikrobiologie and Laboratorium für Mikrobiologie des Fachbereichs Biologie der Philipps-Universität, Marburg, Germany
| | | |
Collapse
|
697
|
Quentin Y, Fichant G, Denizot F. Inventory, assembly and analysis of Bacillus subtilis ABC transport systems. J Mol Biol 1999; 287:467-84. [PMID: 10092453 DOI: 10.1006/jmbi.1999.2624] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have undertaken the inventory and assembly of the ATP binding cassette (ABC) transporter systems in the complete genome of Bacillus subtilis. We combined the identification of the three protein partners that compose an ABC transporter (nucleotide-binding domain, NBD; membrane spanning domain, MSD; and solute-binding protein, SBP) with constraints on the genetic organization. This strategy allowed the identification of 86 NBDs in 78 proteins, 103 MSD proteins and 37 SBPs. The analysis of transcriptional units allows the reconstruction of 59 ABC transporters, which include at least one NBD and one MSD. A particular class of five dimeric ATPases was not associated to MSD partners and is assumed to be involved either in macrolide resistance or regulation of translation elongation. In addition, we have detected five genes encoding ATPases without any gene coding for MSD protein in their neighborhood and 11 operons that encode only the membrane and solute-binding proteins. On the bases of similarities, three ATP-binding proteins are proposed to energize ten incomplete systems, suggesting that one ATPase may be recruited by more than one transporter. Finally, we estimate that the B. subtilis genome encodes for at least 78 ABC transporters that have been split in 38 importers and 40 extruders. The ABC systems have been further classified into 11 sub-families according to the tree obtained from the NBDs and the clustering of the MSDs and the SBPs. Comparisons with Escherichia coli show that the extruders are over-represented in B. subtilis, corresponding to an expansion of the sub-families of antibiotic and drug resistance systems.
Collapse
Affiliation(s)
- Y Quentin
- Laboratoire de Chimie Bactérienne, Institut de Biologie Structurale et Microbiologie CNRS, 31, Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France.
| | | | | |
Collapse
|
698
|
Abstract
Analysis of 15 complete bacterial chromosomes revealed important biases in gene organization. Strong compositional asymmetries between the genes lying on the leading versus lagging strands were observed at the level of nucleotides, codons and, surprisingly, amino acids. For some species, the bias is so high that the sole knowledge of a protein sequence allows one to predict with almost no errors whether the gene is transcribed from one strand or the other. Furthermore, we show that these biases are not species specific but appear to be universal. These findings may have important consequences in our understanding of fundamental biological processes in bacteria, such as replication fidelity, codon usage in genes and even amino acid usage in proteins.
Collapse
|
699
|
Affiliation(s)
- U C Vothknecht
- Dept of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA.
| | | |
Collapse
|
700
|
Hurtado A, Rodríguez-Valera F. Accessory DNA in the genomes of representatives of the Escherichia coli reference collection. J Bacteriol 1999; 181:2548-54. [PMID: 10198021 PMCID: PMC93683 DOI: 10.1128/jb.181.8.2548-2554.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Different strains of the Escherichia coli reference collection (ECOR) differ widely in chromosomal size. To analyze the nature of the differential gene pool carried by different strains, we have followed an approach in which random amplified polymorphic DNA (RAPD) was used to generate several PCR fragments. Those present in some but not all the strains were screened by hybridization to assess their distribution throughout the ECOR collection. Thirteen fragments with various degrees of occurrence were sequenced. Three of them corresponded to RAPD markers of widespread distribution. Of these, two were housekeeping genes shown by hybridization to be present in all the E. coli strains and in Salmonella enterica LT2; the third fragment contained a paralogous copy of dnaK with widespread, but not global, distribution. The other 10 RAPD markers were found in only a few strains. However, hybridization results demonstrated that four of them were actually present in a large selection of the ECOR collection (between 42 and 97% of the strains); three of these fragments contained open reading frames associated with phages or plasmids known in E. coli K-12. The remaining six fragments were present in only between one and four strains; of these, four fragments showed no similarity to any sequence in the databases, and the other two had low but significant similarity to a protein involved in the Klebsiella capsule synthesis and to RNA helicases of archaeal genomes, respectively. Their percent GC, dinucleotide content, and codon adaptation index suggested an exogenous origin by horizontal transfer. These results can be interpreted as reflecting the presence of a large pool of strain-specific genes, whose origin could be outside the species boundaries.
Collapse
Affiliation(s)
- A Hurtado
- División de Microbiología, Centro de Biología Molecular y Celular, Campus de San Juan, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain
| | | |
Collapse
|