651
|
Ganji SH, Qin S, Zhang L, Kamanna VS, Kashyap ML. Niacin inhibits vascular oxidative stress, redox-sensitive genes, and monocyte adhesion to human aortic endothelial cells. Atherosclerosis 2008; 202:68-75. [PMID: 18550065 DOI: 10.1016/j.atherosclerosis.2008.04.044] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 04/08/2008] [Accepted: 04/10/2008] [Indexed: 11/28/2022]
Abstract
In pharmacological doses, nicotinic acid (niacin) reduces myocardial infarction, stroke and atherosclerosis. The beneficial effects of niacin on lipoproteins are thought to mediate these effects. We hypothesized that niacin inhibits oxidative stress and redox-sensitive inflammatory genes that play a critical role in early atherogenesis. In cultured human aortic endothelial cells (HAEC), niacin increased nicotinamide adenine dinucleotide phosphate (NAD(P)H) levels by 54% and reduced glutathione (GSH) by 98%. Niacin inhibited: (a) angiotensin II (ANG II)-induced reactive oxygen species (ROS) production by 24-86%, (b) low density lipoprotein (LDL) oxidation by 60%, (c) tumor necrosis factor alpha (TNF-alpha)-induced NF-kappaB activation by 46%, vascular cell adhesion molecule-1 (VCAM-1) by 77-93%, monocyte chemotactic protein-1 (MCP-1) secretion by 34-124%, and (d) in a functional assay TNF-alpha-induced monocyte adhesion to HAEC (41-54%). These findings indicate for the first time that niacin inhibits vascular inflammation by decreasing endothelial ROS production and subsequent LDL oxidation and inflammatory cytokine production, key events involved in atherogenesis. Initial data presented herein support the novel concept that niacin has vascular anti-inflammatory and potentially anti-atherosclerotic properties independent of its effects on lipid regulation.
Collapse
Affiliation(s)
- Shobha H Ganji
- Atherosclerosis Research Center, Department of Veterans Affairs Healthcare System, Long Beach, CA 90822, United States
| | | | | | | | | |
Collapse
|
652
|
Abstract
Stem cells can differentiate into a variety of cells to replace dead cells or to repair damaged tissues. Recent evidence indicates that stem cells are involved in the pathogenesis of transplant arteriosclerosis, an alloimmune initiated vascular stenosis that often results in transplant organ failure. Although the pathogenesis of transplant arteriosclerosis is not yet fully understood, recent developments in stem cell research have suggested novel mechanisms of vascular remodeling in allografts. For example, stem cells derived from the recipient may repair damaged endothelial cells of arteries in transplant organs. Further evidence suggests that stem cells or endothelial progenitor cells may be released from both bone marrow and non–bone marrow tissues. Vascular stem cells appear to replenish cells that died in donor vessels. Concomitantly, stem/progenitor cells may also accumulate in the intima, where they differentiate into smooth muscle cells. However, several issues concerning the contribution of stem cells to the pathogenesis of transplant arteriosclerosis are controversial, eg, whether bone marrow–derived stem cells can differentiate into smooth muscle cells that form neointimal lesions of the vessel wall. This review summarizes recent research on the role of stem cells in transplant arteriosclerosis, discusses the mechanisms of stem cell homing and differentiation into mature endothelial and smooth muscle cells, and highlights the controversial issues in the field.
Collapse
Affiliation(s)
- Qingbo Xu
- From the Cardiovascular Division, King’s College London, United Kingdom
| |
Collapse
|
653
|
Tsou JK, Gower RM, Ting HJ, Schaff UY, Insana MF, Passerini AG, Simon SI. Spatial regulation of inflammation by human aortic endothelial cells in a linear gradient of shear stress. Microcirculation 2008; 15:311-23. [PMID: 18464160 PMCID: PMC2733907 DOI: 10.1080/10739680701724359] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Atherosclerosis is a focal disease that develops at sites of low and oscillatory shear stress in arteries. This study aimed to understand how endothelial cells sense a gradient of fluid shear stress and transduce signals that regulate membrane expression of cell adhesion molecules and monocyte recruitment. METHODS Human aortic endothelial cells were stimulated with TNF-alpha and simultaneously exposed to a linear gradient of shear stress that increased from 0 to 16 dyne/cm2. Cell adhesion molecule expression and activation of NFkappa B were quantified by immunofluorescence microscopy with resolution at the level of a single endothelial cell. Monocyte recruitment was imaged using custom microfluidic flow chambers. RESULTS VCAM-1 and E-selectin upregulation was greatest between 2-4 dyne/cm2 (6 and 4-fold, respectively) and above 8 dyne/cm2 expression was suppressed below that of untreated endothelial cells. In contrast, ICAM-1 expression and NFkappa B nuclear translocation increased with shear stress up to a maximum at 9 dyne/cm2. Monocyte recruitment was most efficient in regions where E-selectin and VCAM-1 expression was greatest. CONCLUSIONS We found that the endothelium can sense a change in shear stress on the order of 0.25 dyne/cm2 over a length of approximately 10 cells, regulating the level of protein transcription, cellular adhesion molecule expression, and leukocyte recruitment during inflammation.
Collapse
Affiliation(s)
- Jean K Tsou
- Department of Biomedical Engineering, University of California, Davis, California, USA
| | | | | | | | | | | | | |
Collapse
|
654
|
Chan B, Yuan HT, Ananth Karumanchi S, Sukhatme VP. Receptor tyrosine kinase Tie-1 overexpression in endothelial cells upregulates adhesion molecules. Biochem Biophys Res Commun 2008; 371:475-9. [PMID: 18448073 DOI: 10.1016/j.bbrc.2008.04.091] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 04/18/2008] [Indexed: 10/22/2022]
Abstract
Tie-1 is an endothelial specific cell surface protein whose biology remains poorly understood. Using an overexpression system in vitro, we examined whether Tie-1 activity in endothelial cells in vitro would elicit a proinflammatory response. We found that when overexpressed in endothelial cells in vitro, Tie-1 is tyrosine-phosphorylated. We also showed that Tie-1 upregulates VCAM-1, E-selectin, and ICAM-1, partly through a p38-dependent mechanism. Interestingly, upregulation of VCAM-1 and E-selectin by Tie-1 is significantly higher in human aortic endothelial cells than in human umbilical vein endothelial cells. Additionally, attachment of cells of monocytic lineage to endothelial cells is also enhanced by Tie-1 expression. Collectively, our data show that Tie-1 has a proinflammatory property and may play a role in the endothelial inflammatory diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Barden Chan
- Division of Interdisciplinary Medicine and Biotechnology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RW 563, Boston, MA 02215, USA
| | | | | | | |
Collapse
|
655
|
Molecular mechanism of PPAR in the regulation of age-related inflammation. Ageing Res Rev 2008; 7:126-36. [PMID: 18313368 DOI: 10.1016/j.arr.2008.01.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 01/15/2008] [Accepted: 01/15/2008] [Indexed: 11/22/2022]
Abstract
Evidence from many recent studies has linked uncontrolled inflammatory processes to aging and aging-related diseases. Decreased a nuclear receptor subfamily of transcription factors, peroxisome proliferator-activated receptors (PPARs) activity is closely associated with increased levels of inflammatory mediators during the aging process. The anti-inflammatory action of PPARs is substantiated by both in vitro and in vivo studies that signify the importance of PPARs as major players in the pathogenesis of many inflammatory diseases. In this review, we highlight the molecular mechanisms and roles of PPARalpha, gamma in regulation of age-related inflammation. By understanding these current findings of PPARs, we open up the possibility of developing new therapeutic agents that modulate these nuclear receptors to control various inflammatory diseases such as atherosclerosis, vascular diseases, Alzheimer's disease, and cancer.
Collapse
|
656
|
Rader DJ, Daugherty A. Translating molecular discoveries into new therapies for atherosclerosis. Nature 2008; 451:904-13. [PMID: 18288179 DOI: 10.1038/nature06796] [Citation(s) in RCA: 376] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Atherosclerosis is characterized by the thickening of the arterial wall and is the primary cause of coronary artery disease and cerebrovascular disease, two of the most common causes of illness and death worldwide. Clinical trials have confirmed that certain lipoproteins and the renin-angiotensin-aldosterone system are important in the pathogenesis of atherosclerotic cardiovascular disease, and that interventions targeted towards these are beneficial. Furthermore, efforts to understand how risk factors such as high blood pressure, dysregulated blood lipids and diabetes contribute to atherosclerotic disease, as well as to understand the molecular pathogenesis of atherosclerotic plaques, are leading to new targets for therapy.
Collapse
Affiliation(s)
- Daniel J Rader
- Cardiovascular Institute and Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, 654 BRBII/III, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
657
|
Abstract
It is well known that the steroid hormone glucocorticoid and its nuclear receptor regulate the inflammatory process, a crucial component in the pathophysiological process related to human diseases that include atherosclerosis, obesity and type II diabetes, inflammatory bowel disease, Alzheimer's disease, multiple sclerosis, and liver tumors. Growing evidence demonstrates that orphan and adopted orphan nuclear receptors, such as peroxisome proliferator-activated receptors, liver x receptors, the farnesoid x receptor, NR4As, retinoid x receptors, and the pregnane x receptor, regulate the inflammatory and metabolic profiles in a ligand-dependent or -independent manner in human and animal models. This review summarizes the regulatory roles of these nuclear receptors in the inflammatory process and the underlying mechanisms.
Collapse
Affiliation(s)
- Kun Wang
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | | |
Collapse
|
658
|
Tsao KC, Wu TL, Chang PY, Sun CF, Wu LL, Wu JT. Multiple risk markers for atherogenesis associated with chronic inflammation are detectable in patients with renal stones. J Clin Lab Anal 2008; 21:426-31. [PMID: 18022927 DOI: 10.1002/jcla.20215] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Patients with renal stones are known to be at risk of clinical complications such as cardiovascular disease (CVD), nephropathy, and cancer. Recently, it has been realized that almost all risk markers for CVD, nephropathy, etc. are all markers associated with the sequence of reactions of chronic inflammation. It has been reported that chronic inflammation is involved not only in the pathogenesis of nephrolithiasis but also contributes to the development of clinical complications in this condition; therefore, we decided to find out whether these multiple markers are detectable in patients with renal stones so that they can be used to predict the risk of clinical complications in these patients. There were 33 patients with nephrolithiasis included in this study. We found that almost all major markers of chronic inflammation were elevated in patients with renal stones, including proinflammatory cytokine, acute inflammation markers, adhesion molecules, urinary microalbumin (uMA), myeloperoxidase (MPO), 8-hydroxydeoxyguanosine (8-OHdG), 3-nitrotyrosine (3NT), and monocyte chemoattractant protein. It appears that it is possible to assess the risk of clinical complications by monitoring these markers in patients with renal stones.
Collapse
Affiliation(s)
- Kuo-Chien Tsao
- Department of Pathology, Chang Gung Memorial Hospital, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
659
|
Impact of cancers and cardiovascular diseases in chronic obstructive pulmonary disease. Curr Opin Pulm Med 2008; 14:115-21. [DOI: 10.1097/mcp.0b013e3282f45ffb] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
660
|
Song YJ, Lee JY, Joo HK, Kim HS, Lee SK, Lee KH, Cho CH, Park JB, Jeon BH. Tat-APE1/ref-1 protein inhibits TNF-α-induced endothelial cell activation. Biochem Biophys Res Commun 2008; 368:68-73. [DOI: 10.1016/j.bbrc.2008.01.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Accepted: 01/09/2008] [Indexed: 10/22/2022]
|
661
|
Matsui T, Yamagishi S, Nakamura K, Inoue H. Bay w 9798, a dihydropyridine structurally related to nifedipine with no calcium channel-blocking properties, inhibits tumour necrosis factor-alpha-induced vascular cell adhesion molecule-1 expression in endothelial cells by suppressing reactive oxygen species generation. J Int Med Res 2008; 35:886-91. [PMID: 18084847 DOI: 10.1177/147323000703500617] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dihydropyridine-based calcium antagonists (DHPs) are widely used to treat hypertension. We have previously shown that nifedipine, one of the most popular DHPs, blocks tumour necrosis factor-alpha (TNF-alpha)-induced monocyte chemoattractant protein-1 as well as vascular cell adhesion molecule-1 (VCAM-1) expression in endothelial cells by suppressing reactive oxygen species generation (ROS). The molecular mechanism is still to be elucidated, however, because endothelial cells do not possess voltage-operated L-type calcium channels. The aim of this study was to determine in TNF-alpha-exposed human umbilical vein endothelial cells (HUVECs) whether and how Bay w 9798, a dihydropyridine structurally related to nifedipine with no calcium antagonistic properties, may suppress VCAM-1 expression, a key molecule which mediates the adhesion of monocytes to vasculature in the early stages of atherosclerosis. In HUVECs, 10 ng/ml TNF-alpha for 4 h stimulated ROS generation and subsequently upregulated VCAM-1 mRNA levels, both of which were dose-dependently blocked by Bay w 9798. The results demonstrated that Bay w 9798 inhibited VCAM-1 expression in TNF-alpha-exposed cells by suppressing ROS generation. They suggest that the anti-inflammatory and anti-oxidative properties of nifedipine and Bay w 9798 may be ascribed to the dihydropyridine structure, which is common to both molecules and has no calcium antagonistic ability.
Collapse
Affiliation(s)
- T Matsui
- Department of Medicine, Institute for Basic and Clinical Medicine, Kurume University School of Medicine, Japan
| | | | | | | |
Collapse
|
662
|
Palinski W, Yamashita T, Freigang S, Napoli C. Developmental programming: maternal hypercholesterolemia and immunity influence susceptibility to atherosclerosis. Nutr Rev 2008; 65:S182-7. [PMID: 18240546 DOI: 10.1111/j.1753-4887.2007.tb00360.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
It is increasingly recognized that the in utero environment is an important determinant of adult disease, and extensive epidemiological evidence links dysmetabolic conditions during pregnancy with increased hypertension, cardiovascular disease, and diabetes later in life. The original Barker Hypothesis focused on low birth weight as the primary indicator of postnatal risk, but low birth weight may arise from other, non-metabolic conditions. This has impeded the identification of developmental programming mechanisms. More recently, the focus has shifted to the impact of specific maternal risk factors, such as obesity, metabolic syndrome, and diabetes, on cardiovascular risk in offspring. Inflammation plays a central role in these maternal conditions as well as in offspring atherogenesis, and two key factors that influence inflammation, maternal hypercholesterolemia and maternal immune mechanisms, have been shown to affect the developmental programming of atherosclerosis. Maternal hypercholesterolemia in pregnancy, even if only temporary, is associated with increased fatty streak formation in human fetal arteries and accelerated progression of atherosclerosis in normocholesterolemic children. Conversely, immunization of experimental animals with oxidized low-density lipoprotein cholesterol, an antigen prevalent in atherosclerotic lesions, inhibits the progression of atherosclerosis in the offspring of hypercholesterolemic mothers. These findings indicate it is possible, in principle, to program postnatal immune responses and to reduce atherosclerosis, and potentially other immunomodulated diseases, by targeted maternal immunomodulation.
Collapse
Affiliation(s)
- Wulf Palinski
- Department of Medicine, University of California, San Diego, La Jolla 92093-0682, USA.
| | | | | | | |
Collapse
|
663
|
Bayat H, Xu S, Pimentel D, Cohen RA, Jiang B. Activation of Thromboxane Receptor Upregulates Interleukin (IL)-1β–Induced VCAM-1 Expression Through JNK Signaling. Arterioscler Thromb Vasc Biol 2008; 28:127-34. [DOI: 10.1161/atvbaha.107.150250] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Activation of thromboxane receptors (TPr) is implicated in atherosclerosis and inflammation. This study examined how activation of TPr modulates IL-1β–induced vascular cell adhesion molecule (VCAM)-1 expression in aortic vascular smooth muscle cells (VSMCs).
Methods and Results—
In VSMCs, activation of TPr with U46619, a stable thromboxane A
2
mimetic, alone did not induce VCAM-1 expression, but enhanced that caused by IL-1β. The enhancement of VCAM-1 expression caused by U46619 occurred at the transcriptional level and was inhibited either by SP600125, a c-Jun N-terminal kinase (JNK) inhibitor, or by overexpression of a dominant-negative JNK1, but not by SB203580, a p38 mitogen-activated protein kinase inhibitor. The activation of JNK by U46619 resulted in enhanced phosphorylation and nuclear translocation of c-Jun associated with an enhanced activation of activator protein (AP)-1, which were abolished by SQ29548, a TPr antagonist, or the JNK inhibitor. Treatment of the cells with U46619 alone did not induce NF-κB activation. Furthermore, U46619 enhanced IL-1β–induced THP-1 monocyte binding to VSMCs, which was inhibited by SQ29548 or SP600125.
Conclusion—
This study demonstrates that activation of TPr upregulates IL-1β–induced VCAM-1 expression by enhancing the activation of JNK pathway that leads to enhanced AP-1 activation.
Collapse
Affiliation(s)
- Hossein Bayat
- From the Whitaker Cardiovascular Institute, Vascular Biology Unit, Department of Medicine, Boston University School of Medicine, Mass
| | - Shanqin Xu
- From the Whitaker Cardiovascular Institute, Vascular Biology Unit, Department of Medicine, Boston University School of Medicine, Mass
| | - David Pimentel
- From the Whitaker Cardiovascular Institute, Vascular Biology Unit, Department of Medicine, Boston University School of Medicine, Mass
| | - Richard A. Cohen
- From the Whitaker Cardiovascular Institute, Vascular Biology Unit, Department of Medicine, Boston University School of Medicine, Mass
| | - Bingbing Jiang
- From the Whitaker Cardiovascular Institute, Vascular Biology Unit, Department of Medicine, Boston University School of Medicine, Mass
| |
Collapse
|
664
|
Packard RRS, Libby P. Inflammation in atherosclerosis: from vascular biology to biomarker discovery and risk prediction. Clin Chem 2008; 54:24-38. [PMID: 18160725 DOI: 10.1373/clinchem.2007.097360] [Citation(s) in RCA: 619] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent investigations of atherosclerosis have focused on inflammation, providing new insight into mechanisms of disease. Inflammatory cytokines involved in vascular inflammation stimulate the generation of endothelial adhesion molecules, proteases, and other mediators, which may enter the circulation in soluble form. These primary cytokines also induce production of the messenger cytokine interleukin-6, which stimulates the liver to increase production of acute-phase reactants such as C-reactive protein. In addition, platelets and adipose tissue can generate inflammatory mediators relevant to atherothrombosis. Despite the irreplaceable utility of plasma lipid profiles in assessment of atherosclerotic risk, these profiles provide an incomplete picture. Indeed, many cardiovascular events occur in individuals with plasma cholesterol concentrations below the National Cholesterol Education Program thresholds of 200 mg/dL for total cholesterol and 130 mg/dL for low-density lipoprotein (LDL) cholesterol. The concept of the involvement of inflammation in atherosclerosis has spurred the discovery and adoption of inflammatory biomarkers for cardiovascular risk prediction. C-reactive protein is currently the best validated inflammatory biomarker; in addition, soluble CD40 ligand, adiponectin, interleukin 18, and matrix metalloproteinase 9 may provide additional information for cardiovascular risk stratification and prediction. This review retraces the biology of atherothrombosis and the evidence supporting the role of inflammatory biomarkers in predicting primary cardiovascular events in this biologic context.
Collapse
Affiliation(s)
- René R S Packard
- Leducq Center for Cardiovascular Research, Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
665
|
Zerfaoui M, Suzuki Y, Naura AS, Hans CP, Nichols C, Boulares AH. Nuclear translocation of p65 NF-kappaB is sufficient for VCAM-1, but not ICAM-1, expression in TNF-stimulated smooth muscle cells: Differential requirement for PARP-1 expression and interaction. Cell Signal 2008; 20:186-94. [PMID: 17993261 PMCID: PMC2278030 DOI: 10.1016/j.cellsig.2007.10.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 09/27/2007] [Accepted: 10/03/2007] [Indexed: 01/09/2023]
Abstract
Although nuclear translocation of NF-kappaB and subsequent binding to promoters of ICAM-1 and VCAM-1 have been shown to be decisive for their expression, a number of discrepancies in the expression patterns of these adhesion molecules have been reported in both cell culture systems and disease settings, including atherosclerosis, asthma, and autoimmune diseases. Here we show that while p65 NF-kappaB nuclear translocation in TNF-treated smooth muscle cells (SMCs) was sufficient for the expression of VCAM-1, expression of ICAM-1 showed a critical requirement for PARP-1. I-kappaBalpha phosphorylation and subsequent degradation were virtually identical in both TNF-treated wild-type and PARP-1-/- SMCs. VCAM-1 expression in TNF-treated PARP-1-/- SMCs was completely inhibited by the NF-kappaB inhibitor, pyrrolidine dithiocarbamate, confirming that VCAM-1 expression was indeed NF-kappaB-dependent. The expression of both VCAM-1 and ICAM-1 was associated with a transient interaction between PARP-1 and p65 NF-kappaB when examined in the fibroblastic cell line, COS-7, and in the airway epithelial cell line, A549. Such interactions were confirmed using florescence resonance energy transfer analysis. Protein acetylation activity, mediated by p300/CBP, was required for both VCAM-1 and ICAM-1 expression in TNF-treated SMCs; however, the interaction of PARP-1 with p300/CBP was dispensable for VCAM-1 expression. These findings indicate that p65 NF-kappaB nuclear translocation may be sufficient for certain genes (e.g., VCAM-1) while insufficient for others (e.g., ICAM-1), thus providing a novel insight into the role of NF-kappaB in driving target gene expression. Furthermore, the data suggest a differential requirement for PARP-1 expression in inflammatory processes.
Collapse
Affiliation(s)
- Mourad Zerfaoui
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | | | | | | | |
Collapse
|
666
|
McAteer MA, Schneider JE, Ali ZA, Warrick N, Bursill CA, von zur Muhlen C, Greaves DR, Neubauer S, Channon KM, Choudhury RP. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol 2008; 28:77-83. [PMID: 17962629 PMCID: PMC3481783 DOI: 10.1161/atvbaha.107.145466] [Citation(s) in RCA: 197] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Microparticles of iron oxide (MPIO) distort magnetic field creating marked contrast effects far exceeding their physical size. We hypothesized that antibody-conjugated MPIO would enable magnetic resonance imaging (MRI) of endothelial cell adhesion molecules in mouse atherosclerosis. METHODS AND RESULTS MPIO (4.5 microm) were conjugated to monoclonal antibodies against vascular cell adhesion molecule-1 (VCAM-MPIO) or P-selectin (P-selectin-MPIO). In vitro, VCAM-MPIO bound, in dose-dependent manner, to tumor necrosis factor (TNF)-alpha stimulated sEND-1 endothelial cells, as quantified by light microscopy (R2=0.94, P=0.03) and by MRI (R2=0.98, P=0.01). VCAM-MPIO binding was blocked by preincubation with soluble VCAM-1. To mimic leukocyte binding, MPIO targeting both VCAM-1 and P-selectin were administered in apolipoprotein E-/- mice. By light microscopy, dual-targeted MPIO binding to endothelium overlying aortic root atherosclerosis was 5- to 7-fold more than P-selectin-MPIO (P<0.05) or VCAM-MPIO (P<0.01) alone. Dual-targeted MPIO, injected intravenously in vivo bound aortic root endothelium and were quantifiable by MRI ex vivo (3.5-fold increase versus control; P<0.01). MPIO were well-tolerated in vivo, with sequestration in the spleen after 24 hours. CONCLUSIONS Dual-ligand MPIO bound to endothelium over atherosclerosis in vivo, under flow conditions. MPIO may provide a functional MRI probe for detecting endothelial-specific markers in a range of vascular pathologies.
Collapse
Affiliation(s)
- Martina A McAteer
- Department of Cardiovascular Medicine, University of Oxford, Oxford, OX3 9DU, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
667
|
Walker SE, Adams MR, Franke AA, Register TC. Effects of dietary soy protein on iliac and carotid artery atherosclerosis and gene expression in male monkeys. Atherosclerosis 2008; 196:106-113. [PMID: 17367795 PMCID: PMC2657082 DOI: 10.1016/j.atherosclerosis.2007.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 01/23/2007] [Accepted: 02/08/2007] [Indexed: 10/23/2022]
Abstract
Male cynomolgus macaques (n=91) consumed an isoflavone (IF)-free, atherogenic control diet containing casein/lactalbumin for 5 months, then were randomized to three groups: control (n=30) continued on the control diet; low IF (n=30) received a mixture of unmodified and IF-depleted soy protein isolate (SPI) (0.94 mg IF/g protein, approximating a human intake of 75 mg/day); high IF (n=31) received unmodified SPI (1.88 mg IF/g protein, approximating a human intake of 150 mg/day) for 31 months. Iliac and carotid artery atherosclerosis, and arterial and hepatic mRNA transcripts related to inflammation and estrogen receptors (ER) were measured. Trend analysis identified a significant inverse relationship between dietary IF content and plaque area in the iliac (p<0.05) but not carotid arteries (p>0.13). No significant effect of diet on inflammatory gene or estrogen receptor expression was observed. Plaque area was positively correlated with the mRNA transcript levels for arterial MCP-1, ICAM-1, and the macrophage marker CD68 (all r>0.25, p<0.03), and negatively correlated with ER alpha and ER beta (all r<-0.23, p<0.03). Coronary artery plaque area appeared to be more closely associated with gene expression patterns of the iliac arteries than the carotid arteries. The data suggests benefits of dietary soy on atherosclerotic plaque development in males may be mediated through inflammation-independent pathways. The negative associations of arterial ER alpha expression with atherosclerosis lend support to a mechanistic role for estrogen receptors in atherosclerosis susceptibility which merits further study.
Collapse
Affiliation(s)
- Sara E Walker
- Comparative Medicine Clinical Research Center (SEW, TCR,MRA), Wake Forest University School of Medicine, Medical Center Boulevard., Winston-Salem, NC 27157-1040, USA
| | - Michael R Adams
- Comparative Medicine Clinical Research Center (SEW, TCR,MRA), Wake Forest University School of Medicine, Medical Center Boulevard., Winston-Salem, NC 27157-1040, USA
| | - Adrian A Franke
- The Cancer Research Center of Hawaii, Honolulu, HI 96813, USA
| | - Thomas C Register
- Comparative Medicine Clinical Research Center (SEW, TCR,MRA), Wake Forest University School of Medicine, Medical Center Boulevard., Winston-Salem, NC 27157-1040, USA.
| |
Collapse
|
668
|
Ley K. The Microcirculation in Inflammation. Microcirculation 2008. [DOI: 10.1016/b978-0-12-374530-9.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
669
|
Zhang WJ, Bird KE, McMillen TS, LeBoeuf RC, Hagen TM, Frei B. Dietary alpha-lipoic acid supplementation inhibits atherosclerotic lesion development in apolipoprotein E-deficient and apolipoprotein E/low-density lipoprotein receptor-deficient mice. Circulation 2007; 117:421-8. [PMID: 18158360 DOI: 10.1161/circulationaha.107.725275] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Vascular inflammation and lipid deposition are prominent features of atherosclerotic lesion formation. We have shown previously that the dithiol compound alpha-lipoic acid (LA) exerts antiinflammatory effects by inhibiting tumor necrosis factor-alpha- and lipopolysaccharide-induced endothelial and monocyte activation in vitro and lipopolysaccharide-induced acute inflammatory responses in vivo. Here, we investigated whether LA inhibits atherosclerosis in apolipoprotein E-deficient (apoE-/-) and apoE/low-density lipoprotein receptor-deficient mice, 2 well-established animal models of human atherosclerosis. METHODS AND RESULTS Four-week-old female apoE-/- mice (n=20 per group) or apoE/low-density lipoprotein receptor-deficient mice (n=21 per group) were fed for 10 weeks a Western-type chow diet containing 15% fat and 0.125% cholesterol without or with 0.2% (wt/wt) R,S-LA or a normal chow diet containing 4% fat without or with 0.2% (wt/wt) R-LA, respectively. Supplementation with LA significantly reduced atherosclerotic lesion formation in the aortic sinus of both mouse models by approximately 20% and in the aortic arch and thoracic aorta of apoE-/- and apoE/low-density lipoprotein receptor-deficient mice by approximately 55% and 40%, respectively. This strong antiatherogenic effect of LA was associated with almost 40% less body weight gain and lower serum and very low-density lipoprotein levels of triglycerides but not cholesterol. In addition, LA supplementation reduced aortic expression of adhesion molecules and proinflammatory cytokines and aortic macrophage accumulation. These antiinflammatory effects of LA were more pronounced in the aortic arch and the thoracic aorta than in the aortic sinus, reflecting the corresponding reductions in atherosclerosis. CONCLUSIONS Our study shows that dietary LA supplementation inhibits atherosclerotic lesion formation in 2 mouse models of human atherosclerosis, an inhibition that appears to be due to the "antiobesity," antihypertriglyceridemic, and antiinflammatory effects of LA. LA may be a useful adjunct in the prevention and treatment of atherosclerotic vascular diseases.
Collapse
Affiliation(s)
- Wei-Jian Zhang
- Linus Pauling Institute, Oregon State University, 571 Weniger Hall, Corvallis, OR 97331, USA.
| | | | | | | | | | | |
Collapse
|
670
|
von Lukowicz T, Hassa PO, Lohmann C, Borén J, Braunersreuther V, Mach F, Odermatt B, Gersbach M, Camici GG, Stähli BE, Tanner FC, Hottiger MO, Lüscher TF, Matter CM. PARP1 is required for adhesion molecule expression in atherogenesis. Cardiovasc Res 2007; 78:158-66. [PMID: 18093987 DOI: 10.1093/cvr/cvm110] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Atherosclerosis is the leading cause of death in Western societies and a chronic inflammatory disease. However, the key mediators linking recruitment of inflammatory cells to atherogenesis remain poorly defined. Poly(ADP-ribose) polymerase 1 (PARP1) is a nuclear enzyme, which plays a role in acute inflammatory diseases. METHODS AND RESULTS In order to test the role of PARP in atherogenesis, we applied chronic pharmacological PARP inhibition or genetic PARP1 deletion in atherosclerosis-prone apolipoprotein E-deficient mice and measured plaque formation, adhesion molecules, and features of plaque vulnerability. After 12 weeks of high-cholesterol diet, plaque formation in male apolipoprotein E-deficient mice was decreased by chronic inhibition of enzymatic PARP activity or genetic deletion of PARP1 by 46 or 51%, respectively (P < 0.05, n >or= 9). PARP inhibition or PARP1 deletion reduced PARP activity and diminished expression of inducible nitric oxide synthase, vascular cell adhesion molecule-1, and P- and E-selectin. Furthermore, chronic PARP inhibition reduced plaque macrophage (CD68) and T-cell infiltration (CD3), increased fibrous cap thickness, and decreased necrotic core size and cell death (P < 0.05, n >or= 6). CONCLUSION Our data provide pharmacological and genetic evidence that endogenous PARP1 is required for atherogenesis in vivo by increasing adhesion molecules with endothelial activation, enhancing inflammation, and inducing features of plaque vulnerability. Thus, inhibition of PARP1 may represent a promising therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Tobias von Lukowicz
- Cardiovascular Research, Institute of Physiology, University of Zurich and Cardiology, Cardiovascular Center, University Hospital Zurich, Winterthurerstrasse 190, Zurich CH-8057, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
671
|
van Eeden SF, Sin DD. Chronic obstructive pulmonary disease: a chronic systemic inflammatory disease. Respiration 2007; 75:224-38. [PMID: 18042978 DOI: 10.1159/000111820] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 09/14/2007] [Indexed: 12/17/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation in both the airways causing airway obstruction and the lung tissues causing emphysema. The disease is induced by inhalation of noxious gasses and particulate matter resulting in a chronic persistent inflammatory response in the lung, and the extent of the inflammatory reaction correlates with the severity of the disease. This chronic inflammatory response in the lung is also associated with a significant systemic inflammatory response with downstream adverse clinical health effects. The systemic response in COPD is associated with mortality, specifically cardiovascular mortality. This review describes the nature of the systemic inflammatory response in COPD and the clinical manifestations associated with the systemic response, with a focus on the potential mechanisms for these adverse health effects.
Collapse
Affiliation(s)
- Stephan F van Eeden
- James Hogg iCapture Centre for Cardiovascular and Pulmonary Research, University of British Columbia, and Respiratory Division, St. Paul's Hospital, Vancouver, B.C., Canada.
| | | |
Collapse
|
672
|
Szanto A, Rőszer T. Nuclear receptors in macrophages: A link between metabolism and inflammation. FEBS Lett 2007; 582:106-16. [DOI: 10.1016/j.febslet.2007.11.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 11/06/2007] [Indexed: 10/22/2022]
|
673
|
The protective effect of A20 on atherosclerosis in apolipoprotein E-deficient mice is associated with reduced expression of NF-kappaB target genes. Proc Natl Acad Sci U S A 2007; 104:18601-6. [PMID: 18006655 DOI: 10.1073/pnas.0709011104] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Up-regulation of inflammatory responses is considered a driving force of atherosclerotic lesion development. One key regulator of inflammation is the A20 (also called TNF-alpha-induced protein 3 or Tnfaip3) gene, which is responsible for NF-kappaB termination and maps to an atherosclerosis susceptibility locus revealed by quantitative trait locus-mapping studies at mouse proximal chromosome 10. In the current study, we examined the role of A20 in atherosclerotic lesion development. At the aortic root lesion size was found to be increased in C57BL/6 (BG) apolipoprotein E-deficient (ApoE(-/-)) mice haploinsufficient for A20, compared with B6 ApoE(-/-) controls that expressed A20 normally (60% in males and 23% in females; P < 0.001 and P < 0.05, respectively). In contrast, lesion size was found to be decreased in F(1) (B6 x FVB/N) mice overexpressing A20 by virtue of containing an A20 BAC transgene compared with nontransgenic controls (30% in males, P < 0.001, and 17% in females, P = 0.02). The increase in lesions in the A20 haploinsufficient mice correlated with increased expression of proatherosclerotic NF-kappaB target genes, such as vascular cell adhesion molecule 1, intercellular adhesion molecule 1, and macrophage-colony-stimulating factor, and elevated plasma levels of NF-kappaB-driven cytokines. These findings suggest that A20 diminishes atherosclerosis by decreasing NF-kappaB activity, thereby modulating the proinflammatory state associated with lesion development.
Collapse
|
674
|
Miller SJ, Watson WC, Kerr KA, Labarrere CA, Chen NX, Deeg MA, Unthank JL. Development of progressive aortic vasculopathy in a rat model of aging. Am J Physiol Heart Circ Physiol 2007; 293:H2634-43. [PMID: 17873024 DOI: 10.1152/ajpheart.00397.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have established that age is the major risk factor for vascular disease. Numerous aberrant changes occur in vascular structure and function during aging, and animal models are the primary means to determine the underlying mechanisms of age-mediated vascular pathology. The Fischer 344/Brown Norway F1 hybrid (F344xBN) rat thoracic aorta has been shown to display age-related pathology similar to what occurs in humans. This study utilized the F344xBN rat aorta and both morphometric and global gene expression analyses to identify appropriate time points to study vascular aging and to identify molecules associated with the development and progression of vascular pathology. In contrast to some previous studies that indicated age-related abrupt changes, a progressive increase in intimal and medial thickness, as well as smooth muscle cell-containing intimal protrusions, was observed in thoracic aorta. This structural vascular pathology was associated with a progressive, but nonlinear, increase in global differential gene expression. Gene products with altered mRNA and protein expression included inflammation-related molecules: specifically, the adhesion molecules ICAM-1 and VCAM-1 and the bone morphogenic proteins osteopontin and bone sialoprotein-1. Intimal-associated macrophages were found to increase significantly in number with age. Both systemic and tissue markers of oxidant stress, serum 8-isoprostane and 3-nitrotyrosine, respectively, were also found to increase during aging. The results demonstrate that major structural abnormalities and altered gene expression develop after 6 mo and that the progressive pathological development is associated with increased inflammation and oxidant stress.
Collapse
Affiliation(s)
- Steven J Miller
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202-2879, USA.
| | | | | | | | | | | | | |
Collapse
|
675
|
Opitz CA, Rimmerman N, Zhang Y, Mead LE, Yoder MC, Ingram DA, Walker JM, Rehman J. Production of the endocannabinoids anandamide and 2-arachidonoylglycerol by endothelial progenitor cells. FEBS Lett 2007; 581:4927-31. [PMID: 17904123 PMCID: PMC2072933 DOI: 10.1016/j.febslet.2007.09.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 09/05/2007] [Accepted: 09/16/2007] [Indexed: 12/19/2022]
Abstract
Recent studies have highlighted the importance of paracrine growth factors as mediators of pro-angiogenic effects by endothelial progenitor cells (EPCs), but little is known about the release of lipid-based factors like endocannabinoids by EPCs. In the current study, the release of the endocannabinoids anandamide and 2-arachidonoylglycerol by distinct human EPC sub-types was measured using HPLC/tandem mass-spectrometry. Anandamide release was highest by adult blood colony-forming EPCs at baseline and they also demonstrated increased 2-arachidonoylglycerol release with TNF-alpha stimulation. Treatment of mature endothelial cells with endocannabinoids significantly reduced the induction of the pro-inflammatory adhesion molecule CD106 (VCAM-1) by TNF-alpha.
Collapse
Affiliation(s)
- Christiane A. Opitz
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN
| | - Neta Rimmerman
- The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | - Yanmin Zhang
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN
| | - Laura E. Mead
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Mervin C. Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - David A. Ingram
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - J. Michael Walker
- The Gill Center for Biomolecular Science and the Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN
| | - Jalees Rehman
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
676
|
Hastings NE, Simmers MB, McDonald OG, Wamhoff BR, Blackman BR. Atherosclerosis-prone hemodynamics differentially regulates endothelial and smooth muscle cell phenotypes and promotes pro-inflammatory priming. Am J Physiol Cell Physiol 2007; 293:C1824-33. [PMID: 17913848 DOI: 10.1152/ajpcell.00385.2007] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Atherosclerosis is an inflammatory disease that preferentially forms at hemodynamically compromised regions of altered shear stress patterns. Endothelial cells (EC) and smooth muscle cells (SMC) undergo phenotypic modulation during atherosclerosis. An in vitro coculture model was developed to determine the role of hemodynamic regulation of EC and SMC phenotypes in coculture. Human ECs and SMCs were plated on a synthetic elastic lamina and human-derived atheroprone, and atheroprotective shear stresses were imposed on ECs. Atheroprone flow decreased genes associated with differentiated ECs (endothelial nitric oxide synthase, Tie2, and Kruppel-like factor 2) and SMCs (smooth muscle alpha-actin and myocardin) and induced a proinflammatory phenotype in ECs and SMCs (VCAM-1, IL-8, and monocyte chemoattractant protein-1). Atheroprone flow-induced changes in SMC differentiation markers were regulated at the chromatin level, as indicated by decreased serum response factor (SRF) binding to the smooth muscle alpha-actin-CC(a/T)(6)GG (CArG) promoter region and decreased histone H(4) acetylation. Conversely, SRF and histone H(4) acetylation were enriched at the c-fos promoter in SMCs. In the presence of atheroprotective shear stresses, ECs aligned with the direction of flow and SMCs aligned more perpendicular to flow, similar to in vivo vessel organization. These results provide a novel mechanism whereby modulation of the EC phenotype by hemodynamic shear stresses, atheroprone or atheroprotective, play a critical role in mechanical-transcriptional coupling and regulation of the SMC phenotype.
Collapse
Affiliation(s)
- Nicole E Hastings
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
677
|
McAteer MA, Sibson NR, von Zur Muhlen C, Schneider JE, Lowe AS, Warrick N, Channon KM, Anthony DC, Choudhury RP. In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide. Nat Med 2007; 13:1253-8. [PMID: 17891147 PMCID: PMC2917758 DOI: 10.1038/nm1631] [Citation(s) in RCA: 206] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 07/13/2007] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis is a disease of the central nervous system that is associated with leukocyte recruitment and subsequent inflammation, demyelination and axonal loss. Endothelial vascular cell adhesion molecule-1 (VCAM-1) and its ligand, alpha4beta1 integrin, are key mediators of leukocyte recruitment, and selective inhibitors that bind to the alpha4 subunit of alpha4beta1 substantially reduce clinical relapse in multiple sclerosis. Urgently needed is a molecular imaging technique to accelerate diagnosis, to quantify disease activity and to guide specific therapy. Here we report in vivo detection of VCAM-1 in acute brain inflammation, by magnetic resonance imaging in a mouse model, at a time when pathology is otherwise undetectable. Antibody-conjugated microparticles carrying a large amount of iron oxide provide potent, quantifiable contrast effects that delineate the architecture of activated cerebral blood vessels. Their rapid clearance from blood results in minimal background contrast. This technology is adaptable to monitor the expression of endovascular molecules in vivo in various pathologies.
Collapse
Affiliation(s)
- Martina A McAteer
- Department of Cardiovascular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
678
|
Matsumoto M, Kunimitsu S, Wada K, Ikeda M, Yokogawa M, Keyama A, Kodama H. Vascular endothelial cell distribution and adhesion molecule expression in xanthoma. J Cutan Pathol 2007; 34:754-61. [PMID: 17880580 DOI: 10.1111/j.1600-0560.2006.00701.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The migration of circulating monocytes into the dermis is considered to be essential for both the initiation and the progression of xanthoma. The contribution of vascular endothelial cells to the migration process is unclear. METHODS Twenty cases of xanthelasma and six cases of tuberous xanthoma lesions were analyzed using immunohistochemical staining. RESULTS Xanthoma lesions contained up to 25-fold more von Willebrand factor-stained endothelial cells than normal skin. The prevalence of E-selectin-positive endothelial cells increased by up to threefold more in xanthoma lesions than in normal skin. In contrast, the prevalence of intercellular cell adhesion molecule-1 (ICAM-1) decreased up to 3.5-fold more in xanthoma lesions than in normal skin. In xanthoma lesions, almost all ICAM-1-positive endothelial cells co-expressed with E-selectin but many endothelial cells, which only expressed E-selectin, were also found in the lesions and the ratio of macrophages to endothelial cells was higher (10:1) than that in normal skin (5:1). CONCLUSIONS Endothelial cells proliferate and express E-selectin rather than ICAM-1 under a microenvironment in which macrophages predominate rather than endothelial cells, thereby promoting macrophage migration into xanthoma lesions.
Collapse
Affiliation(s)
- Masaaki Matsumoto
- Department of Dermatology, Kochi Medical School, Okohcho, Nankoku, Kochi, Japan.
| | | | | | | | | | | | | |
Collapse
|
679
|
Effect of hyperlipidemia on endothelial VCAM-1 expression and the protective role of fenofibrate. ACTA ACUST UNITED AC 2007; 1:356-8. [DOI: 10.1007/s11684-007-0068-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
680
|
Jagavelu K, Tietge UJF, Gaestel M, Drexler H, Schieffer B, Bavendiek U. Systemic deficiency of the MAP kinase-activated protein kinase 2 reduces atherosclerosis in hypercholesterolemic mice. Circ Res 2007; 101:1104-12. [PMID: 17885219 DOI: 10.1161/circresaha.107.156075] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease and represents the major cause of cardiovascular morbidity and mortality. A critical regulator of inflammatory processes represents the mitogen-activated protein kinase-activated protein kinase-2 (MK2). Therefore, we investigated the functional role of MK2 in atherogenesis in hypercholesterolemic mice as well as potentially underlying mechanisms in vivo and in vitro. Activation of MK2 (phospho-MK2) was predominantly detected in the endothelium and macrophage-rich plaque areas within aortas of hypercholesterolemic LDL receptor-deficient mice (ldlr(-/-)). Systemic MK2 deficiency of hypercholesterolemic ldlr(-/-) mice (ldlr(-/-)/mk2(-/-)) significantly decreased the accumulation of lipids and macrophages in the aorta after feeding an atherogenic diet for 8 and 16 weeks despite a significant increase in proatherogenic plasma lipoproteins compared with ldlr(-/-) mice. Deficiency of MK2 significantly decreased oxLDL-induced foam cell formation in vitro, diet-induced foam cell formation in vivo, and expression of scavenger receptor A in primary macrophages. In addition, systemic MK2 deficiency of hypercholesterolemic ldlr(-/-) mice significantly decreased the aortic expression of the adhesion molecule VCAM-1 and the chemokine MCP-1, key mediators of macrophage recruitment into the vessel wall. Furthermore, silencing of MK2 in endothelial cells by siRNA reduced the IL-1beta-induced expression of VCAM-1 and MCP-1. MK2 critically promotes atherogenesis by fostering foam cell formation and recruitment of monocytes/macrophages into the vessel wall. Therefore, MK2 might represent an attractive novel target for the treatment of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Kumaravelu Jagavelu
- Department of Cardiology & Angiology, Hannover Medical School, Carl-Neuberg-Str. 01, 30625 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
681
|
Fernandez P, Bourget C, Bareille R, Daculsi R, Bordenave L. Gene response in endothelial cells cultured on engineered surfaces is regulated by shear stress. ACTA ACUST UNITED AC 2007; 13:1607-14. [PMID: 17518757 DOI: 10.1089/ten.2006.0399] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In vitro endothelialization of small-diameter synthetic vascular prostheses confluently lined with cultured autologous endothelial cells (ECs) before implantation has been shown to increase their patency. Many authors have studied the effects of shear stress on EC gene response seeded on various substrates showing different gene expression profiles according to cell type, flow times, or shear type with different molecular biology techniques, but few studies have reported any EC gene response to shear stress when cells are seeded on vascular grafts. The purpose of this in vitro study was to investigate whether ECs were able to transduce shear stress at the level of the nucleus. Human saphenous vein ECs were seeded on glass slides coated with gelatin or fibrin glue or on 6-mm fibrin-glue-coated grafts. Then cells were exposed to 12 dyn/cm(2) for 4 h and ribonucleic acid (RNA) were extracted. The relative messenger RNA (mRNA) expression was studied using real-time quantitative polymerase chain reaction for the following mRNAs: von Willebrand Factor, tissue-plasminogen activator, CD31, vascular endothelial (VE)-cadherin, beta(1) integrin, and vascular endothelial growth factor receptor type 2. From parallel flow chambers, results have shown similar EC gene response on gelatin and fibrin glue under laminar shear stress with downregulation of prothrombotic genes, as well as upregulation of nonthrombotic genes and upregulation of adhesion molecules such as VE-cadherin, but some discrepancies are noted, with a downregulation of CD31 and kinase insert domain receptor (KDR) for the former, without significant variation for the latter. In comparison, results show upregulation of tissue type plasminogen activator gene and downregulation of KDR, VE-cadherin, and beta(1) integrin genes in ECs lining grafts. To conclude, the major finding of our study is to show that human saphenous vein ECs seeded on fibrin glue (in planar flow chambers or in tubular grafts) can be regulated using shear stress via gene expression changes in a nonthrombotic way.
Collapse
Affiliation(s)
- Philippe Fernandez
- INSERM-U.577, Bordeaux, F-33076 France; Université Victor Segalen Bordeaux 2, Bordeaux, F-33076 France.
| | | | | | | | | |
Collapse
|
682
|
Postadzhiyan AS, Tzontcheva AV, Kehayov I, Finkov B. Circulating soluble adhesion molecules ICAM-1 and VCAM-1 and their association with clinical outcome, troponin T and C-reactive protein in patients with acute coronary syndromes. Clin Biochem 2007; 41:126-33. [PMID: 18061588 DOI: 10.1016/j.clinbiochem.2007.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 08/14/2007] [Accepted: 09/08/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The aim of this study was to compare concentrations of soluble intercellular adhesion molecule (ICAM-1) and vascular cell adhesion molecule (VCAM-1) in patients with coronary artery disease and healthy control and to evaluate the usefulness of the inflammatory markers as predictors of adverse prognosis in patients with acute coronary syndromes (ACS). DESIGN AND METHODS ELISA was used to measure sICAM-1 and sVCAM-1 levels in 75 patients with ACS, 36 patients with stable angina pectoris (SAP) and 25 healthy subjects. hsCRP was measured with immunoturbidimetric assay, cardiac troponin T-with electrochemiluminescence immunoassay. RESULTS All soluble ICAM-1 and VCAM-1 significantly discriminated between patients with ACS and SAP (p=0.014 and 0.05, respectively) and control subjects (p<0.001 and 0.05). During the 6-month follow-up of the patients with ACS, there were 28 major cardiac events (37.3%). The odds ratio associated with the highest value of sVCAM-1 was 4.62 (95% CI 1.8-11.4, p=0.0009) without adjustment and remained significantly elevated after adjustment for cTnT (RR 3.93, 1.5-10, p=0.04) and hsCRP (RR 2.22, 0.8-5.7, p=0.05). In contrast, an elevated level of sICAM-1 was not associated with future coronary risk after adjustment for cTnT and hsCRP. CONCLUSIONS In patients with acute coronary syndromes, VCAM-1 serum levels powerfully predict an increased risk for subsequent cardiovascular events and extend the prognostic information gained from traditional biochemical markers.
Collapse
|
683
|
Rao RM, Yang L, Garcia-Cardena G, Luscinskas FW. Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circ Res 2007; 101:234-47. [PMID: 17673684 DOI: 10.1161/circresaha.107.151860b] [Citation(s) in RCA: 299] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammation is a fundamental process that protects organisms by removing or neutralizing injurious agents. A key event in the inflammatory response is the localized recruitment of various leukocyte subsets. Here we address the cellular and regulatory mechanisms of leukocyte recruitment to the vessel wall in cardiovascular disease and discuss our evolving understanding of the role of the vascular endothelium in this process. The vascular endothelium is the continuous single-cell lining of the cardiovascular system that forms a critical interface between the blood and its components on one side and the tissues and organs on the other. It is heterogeneous and has many synthetic and metabolic functions including secretion of platelet-derived growth factor, von Willebrand factor, prostacyclin, NO, endothelin-1, and chemokines and the expression of adhesion molecules. It also acts as a nonthrombogenic and selective permeable barrier. Endothelial cells also interact closely with the extracellular matrix and with adjacent cells including pericytes and smooth muscle cells within the vessel wall. A central question in vascular biology is the role of the endothelium in the initiation of inflammatory response, the extent of its "molecular conversations" with recruited leukocytes, and its influence on the extent and/or outcome of this response.
Collapse
Affiliation(s)
- Ravi M Rao
- Vascular Science, National Heart and Lung Institute, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| | | | | | | |
Collapse
|
684
|
Romeo GR, Moulton KS, Kazlauskas A. Attenuated Expression of Profilin-1 Confers Protection From Atherosclerosis in the LDL Receptor–Null Mouse. Circ Res 2007; 101:357-67. [PMID: 17615372 DOI: 10.1161/circresaha.107.151399] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Atherosclerosis-related events are a major cause of morbidity and death worldwide, but the mechanisms underlying atherogenesis are not fully understood. We showed in previous studies that the actin-binding protein profilin-1 (pfn) was upregulated in atherosclerotic plaques and in endothelial cells (ECs) treated with oxidized low-density lipoproteins (oxLDL). The present study addressed the role of pfn in atheroma formation. To this end, mice with heterozygous deficiency of pfn,
Pfn
+/−
, were crossed with
Ldlr
−/−
mice. After 2 months under a 1.25% cholesterol atherogenic diet,
Pfn
+/−
Ldlr
−/−
(PfnHet) exhibited a significant reduction in lesion burden compared with
Ldlr
−/−
control mice (PfnWT), whereas total cholesterol and triglyceride levels were similar in the 2 groups. Relevant atheroprotective changes were identified in PfnHet. When compared with PfnWT, aortas from PfnHet mice showed preserved endothelial nitric oxide synthase (eNOS) activation and nitric oxide (NO)-dependent signaling, and reduced vascular cell adhesion molecule (VCAM)-1 expression and macrophage accumulation at lesion-prone sites. Similarly, knockdown of pfn in cultured aortic ECs was protective against endothelial dysfunction triggered by oxLDL. Finally, bone marrow–derived macrophages from PfnHet showed blunted internalization of oxLDL and oxLDL-induced inflammation. These studies demonstrate that pfn levels modulate processes critical for early atheroma formation and suggest that pfn heterozygosity confers atheroprotection through combined endothelial- and macrophage-dependent mechanisms.
Collapse
MESH Headings
- Animals
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/physiopathology
- CD36 Antigens/metabolism
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/pathology
- Endothelium, Vascular/physiopathology
- Female
- Heterozygote
- Lipoproteins, LDL/metabolism
- Macrophages/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Nitric Oxide Synthase Type II/metabolism
- Nitric Oxide Synthase Type III
- Profilins/genetics
- Profilins/metabolism
- Receptors, LDL/genetics
- Signal Transduction/physiology
- Vascular Cell Adhesion Molecule-1/metabolism
- Vasculitis/metabolism
- Vasculitis/pathology
- Vasculitis/physiopathology
Collapse
Affiliation(s)
- Giulio R Romeo
- Schepens Eye Research Institute, Harvard Medical School, Boston, MA 02114, USA.
| | | | | |
Collapse
|
685
|
Koga M, Kai H, Yasukawa H, Yamamoto T, Kawai Y, Kato S, Kusaba K, Kai M, Egashira K, Kataoka Y, Imaizumi T. Inhibition of progression and stabilization of plaques by postnatal interferon-gamma function blocking in ApoE-knockout mice. Circ Res 2007; 101:348-56. [PMID: 17495225 DOI: 10.1161/circresaha.106.147256] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A role of interferon-gamma is suggested in early development of atherosclerosis. However, the role of interferon-gamma in progression and destabilization of advanced atherosclerotic plaques remains unknown. Thus, the aim of this study was to determine whether postnatal inhibition of interferon-gamma signaling could inhibit progression of atherosclerotic plaques and stabilize the lipid- and macrophage-rich advanced plaques. Atherosclerotic plaques were induced in ApoE-knockout (KO) mice by feeding high-fat diet from 8 weeks old (w). Interferon-gamma function was postnatally inhibited by repeated gene transfers of a soluble mutant of interferon-gamma receptors (sIFNgammaR), an interferon-gamma inhibitory protein, into the thigh muscle every 2 weeks. When sIFNgammaR treatment was started at 12 w (atherosclerotic stage), sIFNgammaR not only prevented plaque progression but also stabilized advanced plaques at 16 w: sIFNgammaR decreased accumulations of the lipid and macrophages and increased fibrotic area with more smooth muscle cells. Moreover, sIFNgammaR downregulated expressions of proinflammatory cytokines, chemokines, adhesion molecules, and matrix metalloproteinases but upregulated procollagen type I. sIFNgammaR did not affect serum cholesterol levels. In conclusion, postnatal blocking of interferon-gamma function by sIFNgammaR treatment would be a new strategy to inhibit plaque progression and to stabilize advanced plaques through the antiinflammatory effects.
Collapse
Affiliation(s)
- Mitsuhisa Koga
- Department of Internal Medicine, Division of Cardiovascular Medicine, Kurume University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
686
|
Abstract
Numerous reports document the role of vascular adhesion molecules in the development and progression of atherosclerosis. Recent novel findings in the field of adhesion molecules require an updated summary of current research. In this review, we highlight the role of vascular adhesion molecules including selectins, vascular cell adhesion molecule (VCAM)-1, intercellular adhesion molecule1 (ICAM-1), PECAM-1, JAMs, and connexins in atherosclerosis. The immune system is important in atherosclerosis, and significant efforts are under way to understand the vascular adhesion molecule-dependent mechanisms of immune cell trafficking into healthy and atherosclerosis-prone arterial walls. This review focuses on the role of vascular adhesion molecules in the regulation of immune cell homing during atherosclerosis and discusses future directions that will lead to better understanding of this disease.
Collapse
Affiliation(s)
- Elena Galkina
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
687
|
Orlandi A, Francesconi A, Ferlosio A, Di Lascio A, Marcellini M, Pisano C, Spagnoli LG. Propionyl-L-Carnitine Prevents Age-Related Myocardial Remodeling in the Rabbit. J Cardiovasc Pharmacol 2007; 50:168-75. [PMID: 17703133 DOI: 10.1097/fjc.0b013e31805d8ee9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Age-related cardiac remodeling is characterized by changes in myocardial structure, which include fibrosis (ie, increased collagen concentration). The pathogenetic mechanisms of age-related cardiac changes and possible pharmacologic interventions are still a matter of investigation. A morphometric analysis of collagen accumulation was performed in Sirius Red-stained left ventricular sections of 3-month-old and 5-6-year-old animals after a 9-month period of propionyl-L-carnitine treatment (PLC; 120 mg Kg(-1) day(-1) per os); aged rabbits showed decreased interstitial collagen accumulation and no changes in cellularity and apoptotic rate compared to controls. Age-related expression of vascular cell adhesion molecule-1 (VCAM-1)-positive microvessels was also reduced in PLC-treated rabbits. In vitro, the 16-hour, 10-microM PLC treatment reduced collagen type 1 and VCAM-1 transcripts, which were investigated by reverse transcription-polymerase chain reaction, more markedly in cardiac fibroblasts from aged donors. In the latter, the anti-VCAM-1 antibody treatment was found to be associated with a reduction in collagen type I transcripts. Our results demonstrated that long-term PLC treatment partially prevents age-related interstitial remodeling and suggests that a more complex interstitial cell-to-cell signaling regulates senescent myocardium properties.
Collapse
Affiliation(s)
- Augusto Orlandi
- Department of Biopathology and Image Diagnostics, Anatomic Pathology Institute, Tor Vergata University, Italy.
| | | | | | | | | | | | | |
Collapse
|
688
|
Nachtigal P, Pospisilova N, Jamborova G, Pospechova K, Solichova D, Andrys C, Zdansky P, Semecky V. Endothelial expression of endoglin in normocholesterolemic and hypercholesterolemic C57BL/6J mice before and after atorvastatin treatment. Can J Physiol Pharmacol 2007; 85:767-73. [PMID: 17901886 DOI: 10.1139/y07-068] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endoglin (CD105) is a homodimeric transmembrane glycoprotein strongly related to transforming growth factor (TGF)-β signaling and many pathological states. In this study, we wanted to evaluate whether endoglin is expressed in normocholesterolemic and hypercholesterolemic C57BL/6J mice as well as whether it is affected by atorvastatin treatment in these mice. C57BL/6J mice were fed with chow diet or an atherogenic diet for 12 weeks after weaning. In 2 atorvastatin-treated groups, mice were fed the same diets (chow or atherogenic) as described above except atorvastatin was added at the dosage of 10 mg·kg–1·day–1for the last 8 weeks before euthanasia. Biochemical analysis of blood samples revealed that administration of atherogenic diet significantly increased levels of total cholesterol, VLDL, LDL, and decreased levels of HDL. Atorvastatin treatment resulted in a significant decrease in total cholesterol and VLDL only in mice fed by atherogenic diet. Quantitative stereological analysis revealed that atorvastatin significantly decreased endothelial expression of endoglin in C57BL/6J mice fed the atherogenic diet. In conclusion, we demonstrated that endothelial expression of endoglin is upregulated by hypercholesterolemia and decreased by the hypolipidemic effect of atorvastatin in C57BL/6J mice, suggesting that endoglin expression could be involved in atherogenesis.
Collapse
Affiliation(s)
- Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy, Charles University, Hradec Kralove, Heyrovskeho 1203, Hradec Kralove 50005, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
689
|
Preusch MR, Bea F, Yang SH, Kreuzer J, Isermann B, Pedal I, Rosenfeld ME, Katus HA, Blessing E. Long-term Administration of 3-deazaadenosine Does Not Alter Progression of Advanced Atherosclerotic Lesions in Apolipoprotein E-deficient Mice. J Cardiovasc Pharmacol 2007; 50:206-12. [PMID: 17703138 DOI: 10.1097/fjc.0b013e318070c66a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Inflammatory mechanisms are involved in initiation and progression of atherosclerotic lesions. Previous studies demonstrated antiinflammatory and consecutive antiatherosclerotic effects of the adenosine analogue 3-Deazaadenosine (c(3) Ado) on early lesion development. The present study evaluated the effect of long-term administration of c(3) Ado in a mouse model of advanced atherosclerosis. Apolipoprotein E-deficient mice (age, 35 weeks; n = 31) with already established advanced atherosclerotic lesions were fed either a diet supplemented with c Ado or a regular chow diet for 21 weeks. Treatment resulted in a significant reduction of serum homocysteine levels. Lesion size and lesion morphology, such as frequency of intraplaque hemorrhage, size of necrotic cores, thickness of fibrous caps, and macrophage content within the plaque, were not different between the groups. Lesion calcification, expression of alpha-actin, and intercellular adhesion molecule-1, but not vascular cell adhesion molecule-1, were inhibited by treatment with c(3) Ado. We could not detect any effect on serum concentrations of interleukin-10 (IL-10) and interleukin-1beta (IL-1beta) or on soluble adhesion molecules intercellular adhesion molecule (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). Electromobility shift assays of protein extracts isolated from aortas did not demonstrate different binding activities of nuclear factor-kappaB (NF-kappaB) and activator protein-1 (AP-1) after treatment with c Ado. Long-term treatment with the adenosine analogue 3-Deazaadenosine did not show significant effects on progression and stability of advanced atherosclerotic lesions in older apolipoprotein E-deficient mice. A potential antiatherosclerotic effect of c(3)Ado (eg, mediated through inhibition of adhesion molecules) might therefore be limited to prevention of early lesion formation and does not seem to play a relevant role in modifying advanced atherosclerotic disease.
Collapse
Affiliation(s)
- Michael R Preusch
- Department of Internal Medicine III, University of Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
690
|
Zandbergen F, Plutzky J. PPARalpha in atherosclerosis and inflammation. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1771:972-82. [PMID: 17631413 PMCID: PMC2083576 DOI: 10.1016/j.bbalip.2007.04.021] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Accepted: 04/30/2007] [Indexed: 02/01/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR)alpha is a nuclear receptor activated by natural ligands such as fatty acids as well as by synthetic ligands such as fibrates currently used to treat dyslipidemia. PPARalpha regulates the expression of genes encoding proteins that are involved in lipid metabolism, fatty acid oxidation, and glucose homeostasis, thereby improving markers for atherosclerosis and insulin resistance. In addition, PPARalpha exerts anti-inflammatory effects both in the vascular wall and the liver. Here we provide an overview of the mechanisms through which PPARalpha affects the initiation and progression of atherosclerosis, with emphasis on the modulation of atherosclerosis-associated inflammatory responses. PPARalpha activation interferes with early steps in atherosclerosis by reducing leukocyte adhesion to activated endothelial cells of the arterial vessel wall and inhibiting subsequent transendothelial leukocyte migration. In later stages of atherosclerosis, evidence suggests activation of PPARalpha inhibits the formation of macrophage foam cells by regulating expression of genes involved in reverse cholesterol transport, formation of reactive oxygen species (ROS), and associated lipoprotein oxidative modification among others. Furthermore, PPARalpha may increase the stability of atherosclerotic plaques and limit plaque thrombogenicity. These various effects may be linked to the generation of PPARalpha ligands by endogenous mechanisms of lipoprotein metabolism. In spite of this dataset, other reports implicate PPARalpha in responses such as hypertension and diabetic cardiomyopathy. Although some clinical trials data with fibrates suggest that fibrates may decrease cardiovascular events, other studies have been less clear, in terms of benefit. Independent of the clinical effects of currently used drugs purported to achieve PPARalpha, extensive data establish the importance of PPARalpha in the transcriptional regulation of lipid metabolism, atherosclerosis, and inflammation.
Collapse
Affiliation(s)
- Fokko Zandbergen
- From the Donald W. Reynolds Cardiovascular Clinical Research Center, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, U.S.A
| | - Jorge Plutzky
- From the Donald W. Reynolds Cardiovascular Clinical Research Center, Cardiovascular Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, U.S.A
| |
Collapse
|
691
|
Bassi N, Ghirardello A, Iaccarino L, Zampieri S, Rampudda ME, Atzeni F, Sarzi-Puttini P, Shoenfeld Y, Doria A. OxLDL/beta2GPI-anti-oxLDL/beta2GPI complex and atherosclerosis in SLE patients. Autoimmun Rev 2007; 7:52-58. [PMID: 17967726 DOI: 10.1016/j.autrev.2007.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Accepted: 06/28/2007] [Indexed: 10/23/2022]
Abstract
It has been demonstrated that atherosclerosis (ATS) is enhanced in autoimmune rheumatic diseases, such as systemic lupus erythematosus (SLE). The reason for this accelerated process is still debatable and, although traditional risk factors are more prevalent in SLE patients than in general population, they do not seem to fully explain the enhanced risk. ATS has the characteristics of an autoimmune chronic disease, involving both the innate and the adaptive immunity. Moreover, it satisfies the four criteria defining an autoimmune disease, proposed by Witebsky and Rose. It has been shown that some autoantibodies, including anti-oxLDL, anti-beta(2)GPI, anti-HSP60/65, and more recently anti-oxLDL/beta(2)GPI, play a key role in the pathogenesis of ATS. However the role of these autoantibodies in accelerated ATS in SLE patients is still controversial. In fact, some of them seem to be proatherogenic and other protective; moreover, it has been demonstrated that induced oral tolerance has a protective role against ATS. We have recently observed that the levels of oxLDL/beta(2)GPI antigenic complexes and their antibodies were higher in patients with SLE than in healthy subjects, but we did not find a clear association between oxLDL/beta(2)GPI complexes and IgG or IgM anti-oxLDL/beta(2)GPI autoantibodies and subclinical ATS in SLE patients. Many other studies are required to explain the role of autoantibodies in the pathogenesis of ATS in SLE patients, because the characteristics of SLE seem to mask their effects for atherogenesis.
Collapse
Affiliation(s)
- N Bassi
- Division of Rheumatology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - A Ghirardello
- Division of Rheumatology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - L Iaccarino
- Division of Rheumatology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - S Zampieri
- Division of Rheumatology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - M E Rampudda
- Division of Rheumatology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - F Atzeni
- Rheumatology Unit, L Sacco University Hospital, Milan, Italy
| | - P Sarzi-Puttini
- Rheumatology Unit, L Sacco University Hospital, Milan, Italy
| | - Y Shoenfeld
- Department of Medicine 'B', Chaim Sheba Medical Center, Tel-Hashomer, Sakler Faculty of Medicine, Tel-Aviv University, Israel
| | - A Doria
- Division of Rheumatology, University of Padova, Via Giustiniani 2, 35128 Padova, Italy.
| |
Collapse
|
692
|
Nozaki K, Goto H, Nakagawa T, Hikiami H, Koizumi K, Shibahara N, Shimada Y. Effects of keishibukuryogan on vascular function in adjuvant-induced arthritis rats. Biol Pharm Bull 2007; 30:1042-7. [PMID: 17541151 DOI: 10.1248/bpb.30.1042] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is known that rheumatoid arthritis (RA) accelerates atherosclerosis. Further, the soluble form of vascular adhesion molecule-1 (VCAM-1) is known as a predictive marker of atherosclerosis in RA patients. We reported that keishibukuryogan, one of the Kampo formulas, improved articular symptoms and decreased soluble VCAM-1 in patients with RA. In adjuvant-induced arthritis (AIA) rats, an animal model of RA, it is known that endothelial function is injured by inflammation. So, we investigated the effect of keishibukuryogan on endothelial function in AIA rats. Lewis rats were divided into control, AIA control, and AIA with keishibukuryogan groups. The AIA with keishibukuryogan group was fed 3% keishibukuryogan contained in normal chow. On day 25 after injection of Mycobacterium butyricum, endothelium-dependent relaxation by acetylcholine in the AIA control group was suppressed, but it was improved in the AIA with keishibukuryogan group. The contractions by xanthine/xanthine oxidase in both AIA rats increased, but that in keishibukuryogan decreased compared to the AIA control group. Plasma levels of lipid peroxide increased in the AIA control group, but keishibukuryogan decreased these levels. Plasma levels of nitric oxide (NO) increased in both AIA groups. The expressions of endothelial NO synthase, inducible NO synthase and VCAM-1 of thoracic aorta were investigated by western blotting. These expressions increased in the AIA control group, but were restricted in the AIA with keishibukuryogan group. We considered that keishibukuryogan protected the endothelial function of AIA rats mainly by its anti-oxidative effect.
Collapse
Affiliation(s)
- Kazuya Nozaki
- Department of Japanese Oriental Medicine, Faculty of Medicine, University of Toyama, Sugitani, Japan
| | | | | | | | | | | | | |
Collapse
|
693
|
Abstract
An expanding body of evidence continues to build on the role of platelets as initial actors in the development of atherosclerotic lesions. Platelets bind to leukocytes and endothelial cells, and initiate monocyte transformation into macrophages. Platelets internalize oxidized phospholipids and promote foam cell formation. Platelets also recruit progenitor cells to the scene that are able to differentiate into foam cells or endothelial cells depending on conditions. Platelets tip the scales in the initiation, development and total extent of atherosclerotic lesions.
Collapse
Affiliation(s)
- S Lindemann
- Medizinische Klinik III, Eberhard Karls-Universität Tübingen, Tübingen, Germany
| | | | | | | |
Collapse
|
694
|
Paquette DW, Brodala N, Nichols TC. Cardiovascular disease, inflammation, and periodontal infection. Periodontol 2000 2007; 44:113-26. [PMID: 17474929 DOI: 10.1111/j.1600-0757.2006.00196.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- David W Paquette
- Department of Periodontology, Center for Oral and Systemic Diseases, School of Dentistry, University of North Carolina at Chapel Hill, USA
| | | | | |
Collapse
|
695
|
Carluccio MA, Ancora MA, Massaro M, Carluccio M, Scoditti E, Distante A, Storelli C, De Caterina R. Homocysteine induces VCAM-1 gene expression through NF-kappaB and NAD(P)H oxidase activation: protective role of Mediterranean diet polyphenolic antioxidants. Am J Physiol Heart Circ Physiol 2007; 293:H2344-54. [PMID: 17586618 DOI: 10.1152/ajpheart.00432.2007] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperhomocysteinemia is a recognized risk factor for vascular disease, but pathogenetic mechanisms involved in its vascular actions are largely unknown. Because VCAM-1 expression is crucial in monocyte adhesion and early atherogenesis, we evaluated the NF-kappaB-related induction of VCAM-1 by homocysteine (Hcy) and the possible inhibitory effect of dietary polyphenolic antioxidants, such as trans-resveratrol (RSV) and hydroxytyrosol (HT), which are known inhibitors of NF-kappaB-mediated VCAM-1 induction. In human umbilical vein endothelial cells (HUVEC), Hcy, at 100 micromol/l, but not cysteine, induced VCAM-1 expression at the protein and mRNA levels, as shown by enzyme immunoassay and Northern analysis, respectively. Transfection studies with deletional VCAM-1 promoter constructs demonstrated that the two tandem NF-kappaB motifs in the VCAM-1 promoter are necessary for Hcy-induced VCAM-1 gene expression. Hcy-induced NF-kappaB activation was confirmed by EMSA, as shown by the nuclear translocation of its p65 (RelA) subunit and the degradation of the inhibitors IkappaB-alpha and IkappaB-beta by Western analysis. Hcy also increased intracellular reactive oxygen species by NAD(P)H oxidase activation, as shown by the membrane translocation of its p47(phox) subunit. NF-kappaB inhibitors decreased Hcy-induced intracellular reactive oxygen species and VCAM-1 expression. Finally, we found that nutritionally relevant concentrations of RSV and HT, but not folate and vitamin B6, reduce (by >60% at 10(-6) mol/l) Hcy-induced VCAM-1 expression and monocytoid cell adhesion to the endothelium. These data indicate that pathophysiologically relevant Hcy concentrations induce VCAM-1 expression through a prooxidant mechanism involving NF-kappaB. Natural Mediterranean diet antioxidants can inhibit such activation, suggesting their possible therapeutic role in Hcy-induced vascular damage.
Collapse
|
696
|
Affiliation(s)
- Jonathan Jun
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | | |
Collapse
|
697
|
Abstract
The emigration of leucocytes into the tissue as a crucial step in the response to inflammatory signals has been acknowledged for more than 100 years. The endothelium does not only represent a mechanical barrier between blood and tissue, the circulatory system also connects different organ systems with each other, thus allowing the communication between remote systems. Leukocytes can function as messengers and messages at the same time. Failure or dysregulation of leucocyte-endothelial communication can severely affect the integrity of the organism. The interaction between leucocytes and the vascular endothelium has been recognised as an attractive target for the therapy of numerous disorders and diseases, including excessive inflammatory responses and autoimmune diseases, both associated with enormous consequences for patients and the health care system. There is promising evidence that the success rate of such treatments will increase as the understanding of the molecular mechanisms keeps improving. This chapter reviews the current knowledge about leucocyte-endothelial interaction. It will also display examples of both physiological and dysregulated leucocyte-endothelial interactions and identify potential therapeutical approaches.
Collapse
Affiliation(s)
- K Ley
- Robert M. Berne Cardiovascular Research Center, University of Virginia Health System, 415 Lane Road, MR5 Building, Charlottesville, VA 22903, USA.
| | | |
Collapse
|
698
|
Zhang L, Peppel K, Sivashanmugam P, Orman ES, Brian L, Exum ST, Freedman NJ. Expression of tumor necrosis factor receptor-1 in arterial wall cells promotes atherosclerosis. Arterioscler Thromb Vasc Biol 2007. [PMID: 17442899 DOI: 10.1161/01.atv.0000261548.49790.63] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Mechanisms by which tumor necrosis factor-alpha (TNF) contributes to atherosclerosis remain largely obscure. We therefore sought to determine the role of the arterial wall TNF receptor-1 (TNFR1) in atherogenesis. METHODS AND RESULTS Carotid artery-to-carotid artery interposition grafting was performed with tnfr1-/- and congenic (C57Bl/6) wild-type (WT) mice as graft donors, and congenic chow-fed apolipoprotein E-deficient mice as recipients. Advanced atherosclerotic graft lesions developed within 8 weeks, and had 2-fold greater area in WT than in tnfr1-/- grafts. While the prevalence of specific atheroma cells was equivalent in WT and tnfr1-/- grafts, the overall abundance of cells was substantially greater in WT grafts. WT grafts demonstrated greater MCP-1, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 expression at both early and late time points, and proliferating cell nuclear antigen expression at early time points. Aortic atherosclerosis was also reduced in 14-month-old apoe(-/-)/tnfr1(-/-) mice, as compared with cognate apoe-/- mice. In coculture with activated macrophages, smooth muscle cells expressing the TNFR1 demonstrated enhanced migration and reduced scavenger receptor activity. CONCLUSIONS TNFR1 signaling, just in arterial wall cells, contributes to the pathogenesis of atherosclerosis by enhancing arterial wall chemokine and adhesion molecule expression, as well as by augmenting medial smooth muscle cell proliferation and migration.
Collapse
Affiliation(s)
- Lisheng Zhang
- Departments of Medicine (Cardiology), Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
699
|
Zhang L, Peppel K, Sivashanmugam P, Orman ES, Brian L, Exum ST, Freedman NJ. Expression of tumor necrosis factor receptor-1 in arterial wall cells promotes atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27:1087-94. [PMID: 17442899 PMCID: PMC2522308 DOI: 10.1161/atvbaha.0000261548.49790.63] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Mechanisms by which tumor necrosis factor-alpha (TNF) contributes to atherosclerosis remain largely obscure. We therefore sought to determine the role of the arterial wall TNF receptor-1 (TNFR1) in atherogenesis. METHODS AND RESULTS Carotid artery-to-carotid artery interposition grafting was performed with tnfr1-/- and congenic (C57Bl/6) wild-type (WT) mice as graft donors, and congenic chow-fed apolipoprotein E-deficient mice as recipients. Advanced atherosclerotic graft lesions developed within 8 weeks, and had 2-fold greater area in WT than in tnfr1-/- grafts. While the prevalence of specific atheroma cells was equivalent in WT and tnfr1-/- grafts, the overall abundance of cells was substantially greater in WT grafts. WT grafts demonstrated greater MCP-1, vascular cell adhesion molecule-1, and intercellular adhesion molecule-1 expression at both early and late time points, and proliferating cell nuclear antigen expression at early time points. Aortic atherosclerosis was also reduced in 14-month-old apoe(-/-)/tnfr1(-/-) mice, as compared with cognate apoe-/- mice. In coculture with activated macrophages, smooth muscle cells expressing the TNFR1 demonstrated enhanced migration and reduced scavenger receptor activity. CONCLUSIONS TNFR1 signaling, just in arterial wall cells, contributes to the pathogenesis of atherosclerosis by enhancing arterial wall chemokine and adhesion molecule expression, as well as by augmenting medial smooth muscle cell proliferation and migration.
Collapse
Affiliation(s)
- Lisheng Zhang
- Departments of Medicine (Cardiology), Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | |
Collapse
|
700
|
Abe Y, Fornage M, Yang CY, Bui-Thanh NA, Wise V, Chen HH, Rangaraj G, Ballantyne CM. L5, the most electronegative subfraction of plasma LDL, induces endothelial vascular cell adhesion molecule 1 and CXC chemokines, which mediate mononuclear leukocyte adhesion. Atherosclerosis 2007; 192:56-66. [DOI: 10.1016/j.atherosclerosis.2006.06.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Revised: 02/22/2006] [Accepted: 06/06/2006] [Indexed: 10/24/2022]
|