651
|
Mitchell-Olds T, Schmitt J. Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 2006; 441:947-52. [PMID: 16791187 DOI: 10.1038/nature04878] [Citation(s) in RCA: 251] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genomic studies of natural variation in model organisms provide a bridge between molecular analyses of gene function and evolutionary investigations of adaptation and natural selection. In the model plant species Arabidopsis thaliana, recent studies of natural variation have led to the identification of genes underlying ecologically important complex traits, and provided new insights about the processes of genome evolution, geographic population structure, and the selective mechanisms shaping complex trait variation in natural populations. These advances illustrate the potential for a new synthesis to elucidate mechanisms for the adaptive evolution of complex traits from nucleotide sequences to real-world environments.
Collapse
Affiliation(s)
- Thomas Mitchell-Olds
- Department of Biology, PO Box 91000, Duke University, Durham, North Carolina 27708, USA.
| | | |
Collapse
|
652
|
Jiang R, Marjoram P, Borevitz JO, Tavaré S. Inferring population parameters from single-feature polymorphism data. Genetics 2006; 173:2257-67. [PMID: 16702439 PMCID: PMC1569697 DOI: 10.1534/genetics.105.047472] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This article is concerned with a statistical modeling procedure to call single-feature polymorphisms from microarray experiments. We use this new type of polymorphism data to estimate the mutation and recombination parameters in a population. The mutation parameter can be estimated via the number of single-feature polymorphisms called in the sample. For the recombination parameter, a two-feature sampling distribution is derived in a way analogous to that for the two-locus sampling distribution with SNP data. The approximate-likelihood approach using the two-feature sampling distribution is examined and found to work well. A coalescent simulation study is used to investigate the accuracy and robustness of our method. Our approach allows the utilization of single-feature polymorphism data for inference in population genetics.
Collapse
Affiliation(s)
- Rong Jiang
- Molecular and Computational Biology Program, Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles 90089, USA
| | | | | | | |
Collapse
|
653
|
West MAL, van Leeuwen H, Kozik A, Kliebenstein DJ, Doerge RW, St Clair DA, Michelmore RW. High-density haplotyping with microarray-based expression and single feature polymorphism markers in Arabidopsis. Genome Res 2006; 16:787-95. [PMID: 16702412 PMCID: PMC1473188 DOI: 10.1101/gr.5011206] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Expression microarrays hybridized with RNA can simultaneously provide both phenotypic (gene expression) and genotypic (marker) data. We developed two types of genetic markers from Affymetrix GeneChip expression data to generate detailed haplotypes for 148 recombinant inbred lines (RILs) derived from Arabidopsis thaliana accessions Bayreuth and Shahdara. Gene expression markers (GEMs) are based on differences in transcript levels that exhibit bimodal distributions in segregating progeny, while single feature polymorphism (SFP) markers rely on differences in hybridization to individual oligonucleotide probes. Unlike SFPs, GEMs can be derived from any type of DNA-based expression microarray. Our method identifies SFPs independent of a gene's expression level. Alleles for each GEM and SFP marker were ascertained with GeneChip data from parental accessions as well as RILs; a novel algorithm for allele determination using RIL distributions capitalized on the high level of genetic replication per locus. GEMs and SFP markers provided robust markers in 187 and 968 genes, respectively, which allowed estimation of gene order consistent with that predicted from the Col-0 genomic sequence. Using microarrays on a population to simultaneously measure gene expression variation and obtain genotypic data for a linkage map will facilitate expression QTL analyses without the need for separate genotyping. We have demonstrated that gene expression measurements from microarrays can be leveraged to identify polymorphisms across the genome and can be efficiently developed into genetic markers that are verifiable in a large segregating RIL population. Both marker types also offer opportunities for massively parallel mapping in unsequenced and less studied species.
Collapse
Affiliation(s)
- Marilyn A L West
- Department of Plant Sciences, University of California-Davis 95616-8780, USA.
| | | | | | | | | | | | | |
Collapse
|
654
|
Le Corre V. Variation at two flowering time genes within and among populations of Arabidopsis thaliana: comparison with markers and traits. Mol Ecol 2006; 14:4181-92. [PMID: 16262868 DOI: 10.1111/j.1365-294x.2005.02722.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Flowering Locus C (FLC) and Frigida are two interacting genes controlling flowering time variation in Arabidopsis thaliana. Variation at these genes was surveyed in 12 A. thaliana populations sampled in France. These populations were also screened for variation at molecular markers [12 microsatellites and 19 cleaved amplified polymorphic sequence (CAPS) markers] and at seven quantitative traits measured with and without vernalization. Seven populations were highly polymorphic at markers (H(S) = 0.57 at microsatellites, 0.24 at CAPS) and showed heritable variation for bolting time and some other traits. Five populations were genetically fixed or nearly fixed. Q(ST) for bolting time without vernalization was significantly higher than F(ST), suggesting local divergent selection. One of the two haplotype groups at FLC (FLC(A)) was very predominant (frequency of 99%). The first exon of Frigida showed elevated nonsynonymous variation, and nine loss-of-function mutations were found throughout the gene. The association between loss-of-function and earlier bolting was confirmed. Overall, 18 Frigida haplotypes were detected. The pattern of variation at Frigida was largely similar to that found at markers and traits, with the same populations being fixed or highly diverse. Metapopulation dynamics is thus probably the main factor shaping genetic variation in A. thaliana. However, F(ST) for functional (FRI) vs. nonfunctional (FRI(Delta)) haplotypes was significantly higher than F(ST) at markers. This suggested that loss-of-function at Frigida is under local selection for flowering time.
Collapse
Affiliation(s)
- V Le Corre
- UMR Biologie et Gestion des Adventices, INRA, BP 86510, 21065 Dijon cedex, France.
| |
Collapse
|
655
|
Kamau E, Charlesworth D. Balancing selection and low recombination affect diversity near the self-incompatibility loci of the plant Arabidopsis lyrata. Curr Biol 2006; 15:1773-8. [PMID: 16213826 DOI: 10.1016/j.cub.2005.08.062] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 08/24/2005] [Accepted: 08/24/2005] [Indexed: 10/25/2022]
Abstract
The self-incompatibility (S-) locus region of plants in the Brassica family is a small genome region. In Arabidopsis lyrata, the S-genes, SRK and SCR, encode the functional female and pollen recognition proteins, which must be coadapted to maintain correct associations between the two component genes, and thus self-incompatibility (SI). Recombinants would be self-compatible and thus probably disadvantageous in self-incompatible species. Therefore, tight linkage between the two genes in incompatibility systems is predicted to evolve to avoid producing such recombinant haplotypes. The evolution of low recombination in S-locus regions has not been rigorously tested. To test whether these regions' per-nucleotide recombination rates differ from those elsewhere in the genome, and to investigate whether the A. lyrata S-loci have the predicted effect on diversity in their immediate genome region, we studied diversity in genes that are linked to the S-loci but are not involved in incompatibility and are not under balancing selection. Compared with other A. lyrata loci, genes linked to the S-loci have extraordinarily high polymorphism. Our estimated recombination in this region, from fitting a model of the effects of S-allele polymorphism on linked neutral sites, supports the hypothesis of locally suppressed recombination around the S-locus.
Collapse
Affiliation(s)
- Esther Kamau
- Institute of Evolutionary Biology, University of Edinburgh, UK
| | | |
Collapse
|
656
|
McNally KL, Bruskiewich R, Mackill D, Buell CR, Leach JE, Leung H. Sequencing multiple and diverse rice varieties. Connecting whole-genome variation with phenotypes. PLANT PHYSIOLOGY 2006; 141:26-31. [PMID: 16684934 PMCID: PMC1459310 DOI: 10.1104/pp.106.077313] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Kenneth L McNally
- International Rice Research Institute, Metro Manila, The Philippines.
| | | | | | | | | | | |
Collapse
|
657
|
Kuo HF, Olsen KM, Richards EJ. Natural variation in a subtelomeric region of Arabidopsis: implications for the genomic dynamics of a chromosome end. Genetics 2006; 173:401-17. [PMID: 16547105 PMCID: PMC1461430 DOI: 10.1534/genetics.105.055202] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Accepted: 03/07/2006] [Indexed: 11/18/2022] Open
Abstract
We investigated genome dynamics at a chromosome end in the model plant Arabidopsis thaliana through a study of natural variation in 35 wild accessions. We focused on the single-copy subtelomeric region of chromosome 1 north (approximately 3.5 kb), which represents the relatively simple organization of subtelomeric regions in this species. PCR fragment-length variation across the subtelomeric region indicated that the 1.4-kb distal region showed elevated structural variation relative to the centromere-proximal region. Examination of nucleotide sequences from this 1.4-kb region revealed diverse DNA rearrangements, including an inversion, several deletions, and an insertion of a retrotransposon LTR. The structures at the deletion and inversion breakpoints are characteristic of simple deletion-associated nonhomologous end-joining (NHEJ) events. There was strong linkage disequilibrium between the distal subtelomeric region and the proximal telomere, which contains degenerate and variant telomeric repeats. Variation in the proximal telomere was characterized by the expansion and deletion of blocks of repeats. Our sample of accessions documented two independent chromosome-healing events associated with terminal deletions of the subtelomeric region as well as the capture of a scrambled mitochondrial DNA segment in the proximal telomeric array. This natural variation study highlights the variety of genomic events that drive the fluidity of chromosome termini.
Collapse
Affiliation(s)
- Hui-Fen Kuo
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | |
Collapse
|
658
|
Toomajian C, Hu TT, Aranzana MJ, Lister C, Tang C, Zheng H, Zhao K, Calabrese P, Dean C, Nordborg M. A nonparametric test reveals selection for rapid flowering in the Arabidopsis genome. PLoS Biol 2006; 4:e137. [PMID: 16623598 PMCID: PMC1440937 DOI: 10.1371/journal.pbio.0040137] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Accepted: 02/28/2006] [Indexed: 11/18/2022] Open
Abstract
The detection of footprints of natural selection in genetic polymorphism data is fundamental to understanding the genetic basis of adaptation, and has important implications for human health. The standard approach has been to reject neutrality in favor of selection if the pattern of variation at a candidate locus was significantly different from the predictions of the standard neutral model. The problem is that the standard neutral model assumes more than just neutrality, and it is almost always possible to explain the data using an alternative neutral model with more complex demography. Today's wealth of genomic polymorphism data, however, makes it possible to dispense with models altogether by simply comparing the pattern observed at a candidate locus to the genomic pattern, and rejecting neutrality if the pattern is extreme. Here, we utilize this approach on a truly genomic scale, comparing a candidate locus to thousands of alleles throughout the Arabidopsis thaliana genome. We demonstrate that selection has acted to increase the frequency of early-flowering alleles at the vernalization requirement locus FRIGIDA. Selection seems to have occurred during the last several thousand years, possibly in response to the spread of agriculture. We introduce a novel test statistic based on haplotype sharing that embraces the problem of population structure, and so should be widely applicable.
Collapse
Affiliation(s)
- Christopher Toomajian
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
659
|
Abstract
There are a number of polymorphism-based statistical tests of neutrality, but most of them focus on either the amount or the pattern of polymorphism. In this article, a new test called the two-dimensional (2D) test is developed. This test evaluates a pair of summary statistics in a two-dimensional field. One statistic should summarize the pattern of polymorphism, while the other could be a measure of the level of polymorphism. For the latter summary statistic, the polymorphism-divergence ratio is used following the idea of the Hudson-Kreitman-Aguadé (HKA) test. To incorporate the HKA test in the 2D test, a summary statistic-based version of the HKA test is developed such that the polymorphism-divergence ratio at a particular region of interest is examined if it is consistent with the average of those in other independent regions.
Collapse
Affiliation(s)
- Hideki Innan
- Human Genetics Center, School of Public Health, University of Texas Health Science Center, Houston, Texas 77030, USA.
| |
Collapse
|
660
|
Song BH, Clauss MJ, Pepper A, Mitchell-Olds T. Geographic patterns of microsatellite variation in Boechera stricta, a close relative of Arabidopsis. Mol Ecol 2006; 15:357-69. [PMID: 16448406 DOI: 10.1111/j.1365-294x.2005.02817.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The genus Boechera is a widespread North American group with great potential for studies of ecology and evolution: Boechera is closely related to Arabidopsis and exhibits different ecological and reproductive strategies. Boechera stricta (previously Arabis drummondii) is a morphologically and genetically well-defined, perennial crucifer species. Fifteen natural populations of diploid individuals from the Rocky Mountains were analysed using 21 microsatellite loci. In accordance with our expectation for this predominately inbreeding species, a high F IS value (0.89) was observed. Furthermore, populations of B. stricta were highly differentiated, as indicated by F ST = 0.56. Three clusters were identified using structure- the majority of populations belonged to either the Northern or Southern cluster. Together, the north-south partitioning and evenness of genetic variation across the two clusters suggested multiple refugia for this perennial herb in the Rocky Mountains. Pleistocene glaciation, together with the topographically and climatologically heterogeneous cordillera, has profoundly influenced the genetic architecture of B. stricta. Genetic population structure was also influenced by relatively recent genome admixture at two levels: within species (involving individuals from the Northern and Southern clusters) and between species (with the hybridization of B. stricta and Boechera holboellii). This complexity of population structure at presumably neutral microsatellite loci located throughout the genome in B. stricta provides a baseline against which to test whether functional genetic variation is undergoing local adaptive evolution throughout the natural species range.
Collapse
Affiliation(s)
- Bao-Hua Song
- Department of Genetics and Evolution, Max-Planck-Institute of Chemical Ecology, 07745 Jena, Germany
| | | | | | | |
Collapse
|
661
|
Hagenblad J, Bechsgaard J, Charlesworth D. Linkage disequilibrium between incompatibility locus region genes in the plant Arabidopsis lyrata. Genetics 2006; 173:1057-73. [PMID: 16582433 PMCID: PMC1526524 DOI: 10.1534/genetics.106.055780] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have studied diversity in Arabidopsis lyrata of sequences orthologous to the ARK3 gene of A. thaliana. Our main goal was to test for recombination in the S-locus region. In A. thaliana, the single-copy ARK3 gene is closely linked to the non-functional copies of the self-incompatibility loci, and the ortholog in A. lyrata (a self-incompatible species) is in the homologous genome region and is known as Aly8. It is thus of interest to test whether Aly8 sequence diversity is elevated due to close linkage to the highly polymorphic incompatibility locus, as is theoretically predicted. However, Aly8 is not a single-copy gene, and the presence of paralogs could also lead to the appearance of elevated diversity. We established a typing approach based on different lengths of Aly8 PCR products and show that most A. lyrata haplotypes have a single copy, but some have two gene copies, both closely linked to the incompatibility locus, one being a pseudogene. We determined the phase of multiple haplotypes in families of plants from Icelandic and other populations. Different Aly8 sequence types are associated with different SRK alleles, while haplotypes with the same SRK sequences tend to have the same Aly8 sequence. There is evidence of some exchange of sequences between different Aly8 sequences, making it difficult to determine which ones are allelic or to estimate the diversity. However, the homogeneity of the Aly8 sequences of each S-haplotype suggests that recombination between the loci has been very infrequent over the evolutionary history of these populations. Overall, the results suggest that recombination rarely occurs in the interval between the S-loci and Aly8 and that linkage to the S-loci can probably account for the observed high Aly8 diversity.
Collapse
Affiliation(s)
- Jenny Hagenblad
- Institute of Evolutionary Biology, University of Edinburgh, UK
| | | | | |
Collapse
|
662
|
Schmid KJ, Törjék O, Meyer R, Schmuths H, Hoffmann MH, Altmann T. Evidence for a large-scale population structure of Arabidopsis thaliana from genome-wide single nucleotide polymorphism markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2006; 112:1104-14. [PMID: 16453134 DOI: 10.1007/s00122-006-0212-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 12/28/2005] [Indexed: 05/06/2023]
Abstract
Population-based methods for the genetic mapping of adaptive traits and the analysis of natural selection require that the population structure and demographic history of a species are taken into account. We characterized geographic patterns of genetic variation in the model plant Arabidopsis thaliana by genotyping 115 genome-wide single nucleotide polymorphism (SNP) markers in 351 accessions from the whole species range using a matrix-assisted laser desorption/ionization time-of-flight assay, and by sequencing of nine unlinked short genomic regions in a subset of 64 accessions. The observed frequency distribution of SNPs is not consistent with a constant-size neutral model of sequence polymorphism due to an excess of rare polymorphisms. There is evidence for a significant population structure as indicated by differences in genetic diversity between geographic regions. Accessions from Central Asia have a low level of polymorphism and an increased level of genome-wide linkage disequilibrium (LD) relative to accessions from the Iberian Peninsula and Central Europe. Cluster analysis with the structure program grouped Eurasian accessions into K = 6 clusters. Accessions from the Iberian Peninsula and from Central Asia constitute distinct populations, whereas Central and Eastern European accessions represent admixed populations in which genomes were reshuffled by historical recombination events. These patterns likely result from a rapid postglacial recolonization of Eurasia from glacial refugial populations. Our analyses suggest that mapping populations for association or LD mapping should be chosen from regional rather than a species-wide sample or identified genetically as sets of individuals with similar average genetic distances.
Collapse
Affiliation(s)
- Karl J Schmid
- Department of Genetics and Evolution, Max-Planck-Institute of Chemical Ecology, Jena, Germany.
| | | | | | | | | | | |
Collapse
|
663
|
Plagnol V, Padhukasahasram B, Wall JD, Marjoram P, Nordborg M. Relative influences of crossing over and gene conversion on the pattern of linkage disequilibrium in Arabidopsis thaliana. Genetics 2006; 172:2441-8. [PMID: 16299388 PMCID: PMC1456404 DOI: 10.1534/genetics.104.040311] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 11/01/2005] [Indexed: 01/16/2023] Open
Abstract
In this article we infer the rates of gene conversion and crossing over in Arabidopsis thaliana from population genetic data. Our data set is a genomewide survey consisting of 1347 fragments of length 600 bp sequenced in 96 accessions. It has several orders of magnitude more markers than any previous nonhuman study. This allows for more accurate inference as well as a detailed comparison between theoretical expectations and observations. Our methodology is specifically set to account for deviations such as recurrent mutations or a skewed frequency spectrum. We found that even if some components of the model clearly do not fit, the pattern of LD conforms to theoretical expectations quite well. The ratio of gene conversion to crossing over is estimated to be around one. We also find evidence for fine-scale variations of the crossing-over rate.
Collapse
Affiliation(s)
- Vincent Plagnol
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California 90089-2910, USA.
| | | | | | | | | |
Collapse
|
664
|
Jakobsson M, Hagenblad J, Tavaré S, Säll T, Halldén C, Lind-Halldén C, Nordborg M. A unique recent origin of the allotetraploid species Arabidopsis suecica: Evidence from nuclear DNA markers. Mol Biol Evol 2006; 23:1217-31. [PMID: 16549398 DOI: 10.1093/molbev/msk006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A coalescent-based method was used to investigate the origins of the allotetraploid Arabidopsis suecica, using 52 nuclear microsatellite loci typed in eight individuals of A. suecica and 14 individuals of its maternal parent Arabidopsis thaliana, and four short fragments of genomic DNA sequenced in a sample of four individuals of A. suecica and in both its parental species A. thaliana and Arabidopsis arenosa. All loci were variable in A. thaliana but only 24 of the 52 microsatellite loci and none of the four sequence fragments were variable in A. suecica. We explore a number of possible evolutionary scenarios for A. suecica and conclude that it is likely that A. suecica has a recent, unique origin between 12,000 and 300,000 years ago. The time estimates depend strongly on what is assumed about population growth and rates of mutation. When combined with what is known about the history of glaciations, our results suggest that A. suecica originated south of its present distribution in Sweden and Finland and then migrated north, perhaps in the wake of the retreating ice.
Collapse
Affiliation(s)
- Mattias Jakobsson
- Bioinformatics Program, Department of Human Genetics, University of Michigan, USA.
| | | | | | | | | | | | | |
Collapse
|
665
|
el-Lithy ME, Bentsink L, Hanhart CJ, Ruys GJ, Rovito D, Broekhof JLM, van der Poel HJA, van Eijk MJT, Vreugdenhil D, Koornneef M. New Arabidopsis recombinant inbred line populations genotyped using SNPWave and their use for mapping flowering-time quantitative trait loci. Genetics 2006; 172:1867-76. [PMID: 16361234 PMCID: PMC1456291 DOI: 10.1534/genetics.105.050617] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 11/29/2005] [Indexed: 11/18/2022] Open
Abstract
The SNPWave marker system, based on SNPs between the reference accessions Colombia-0 and Landsberg erecta (Ler), was used to distinguish a set of 92 Arabidopsis accessions from various parts of the world. In addition, we used these markers to genotype three new recombinant inbred line populations for Arabidopsis, having Ler as a common parent that was crossed with the accessions Antwerp-1, Kashmir-2, and Kondara. The benefit of using multiple populations that contain many similar markers and the fact that all markers are linked to the physical map of Arabidopsis facilitates the quantitative comparison of maps. Flowering-time variation was analyzed in the three recombinant inbred line populations. Per population, four to eight quantitative trait loci (QTL) were detected. The comparison of the QTL positions related to the physical map allowed the estimate of 12 different QTL segregating for flowering time for which Ler has an allele different from one, two, or three of the other accessions.
Collapse
|
666
|
Yu J, Buckler ES. Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 2006; 17:155-60. [PMID: 16504497 DOI: 10.1016/j.copbio.2006.02.003] [Citation(s) in RCA: 461] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/31/2005] [Accepted: 02/15/2006] [Indexed: 11/15/2022]
Abstract
Association mapping, a high-resolution method for mapping quantitative trait loci based on linkage disequilibrium, holds great promise for the dissection of complex genetic traits. The recent assembly and characterization of maize association mapping panels, development of improved statistical methods, and successful association of candidate genes have begun to realize the power of candidate-gene association mapping. Although the complexity of the maize genome poses several significant challenges to the application of association mapping, the ongoing genome sequencing project will ultimately allow for a thorough genome-wide examination of nucleotide polymorphism-trait association.
Collapse
Affiliation(s)
- Jianming Yu
- Institute for Genomic Diversity and United States Department of Agriculture--Agricultural Research Service, Ithaca, NY 14853, USA
| | | |
Collapse
|
667
|
Shen J, Araki H, Chen L, Chen JQ, Tian D. Unique evolutionary mechanism in R-genes under the presence/absence polymorphism in Arabidopsis thaliana. Genetics 2006; 172:1243-50. [PMID: 16452149 PMCID: PMC1456222 DOI: 10.1534/genetics.105.047290] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While the presence/absence polymorphism is commonly observed in disease resistance (R-) genes in Arabidopsis, only a few R-genes under the presence/absence polymorphism (R-P/A) have been investigated. To understand the mechanism of the molecular evolution of R-P/A, we investigated genetic variation of nine R-P/A in A. thaliana from worldwide populations. The number of possessed R-genes varied widely among accessions (two to nine, on average 4.3 +/- 1.6/accession). No pair of accessions shared the same haplotype, and no clear geographic differentiation was observed with respect to the pattern of presence/absence of the R-genes investigated. Presence allele frequencies also varied among loci (25-70%), and no linkage disequilibrium was detected among them. Although the LRR region in regular R-genes is known to be highly polymorphic and has a high Ka/Ks ratio in A. thaliana, nucleotide sequences of this region in the R-P/A showed a relatively low level of genetic variation (pi = 0.0002-0.016) and low Ka/Ks (0.03-0.70, <1). In contrast, the nucleotide diversities around the deletion junction of R-P/A were constantly high between presence and absence accessions for the R-genes (D(xy) = 0.031-0.103). Our results suggest that R-P/A loci evolved differently from other R-gene loci and that balancing selection plays an important role in molecular evolution of R-P/A.
Collapse
Affiliation(s)
- Jingdan Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biology, Nanjing University, China
| | | | | | | | | |
Collapse
|
668
|
Robaglia C, Caranta C. Translation initiation factors: a weak link in plant RNA virus infection. TRENDS IN PLANT SCIENCE 2006; 11:40-5. [PMID: 16343979 DOI: 10.1016/j.tplants.2005.11.004] [Citation(s) in RCA: 278] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Revised: 10/11/2005] [Accepted: 11/25/2005] [Indexed: 05/05/2023]
Abstract
Recessive resistance genes against plant viruses have been recognized for a long time but their molecular nature has only recently been linked to components of the eukaryotic translation initiation complex. Translation initiation factors, and particularly the eIF4E and eIF4G protein families, were found to be essential determinants in the outcome of RNA virus infections. Viruses affected by these genes belong mainly to potyviruses; natural viral resistance mechanisms as well as mutagenesis analysis in Arabidopsis all converged to identify the same set of translation initiation factors. Their role in plant resistance against RNA viruses remains to be elucidated. Although the interaction with the protein synthesis machinery is probably a key element for successful RNA virus infection, other possible mechanisms will also be discussed.
Collapse
Affiliation(s)
- Christophe Robaglia
- Laboratoire de Génétique et Biophysique des Plantes, CEA-CNRS-Université Aix-Marseille II, Faculté des Sciences de Luminy, F-13009 Marseille, France.
| | | |
Collapse
|
669
|
Goss EM, Bergelson J. VARIATION IN RESISTANCE AND VIRULENCE IN THE INTERACTION BETWEEN ARABIDOPSIS THALIANA AND A BACTERIAL PATHOGEN. Evolution 2006. [DOI: 10.1554/06-200.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
670
|
Rosenberg NA, Mahajan S, Ramachandran S, Zhao C, Pritchard JK, Feldman MW. Clines, clusters, and the effect of study design on the inference of human population structure. PLoS Genet 2005; 1:e70. [PMID: 16355252 PMCID: PMC1310579 DOI: 10.1371/journal.pgen.0010070] [Citation(s) in RCA: 373] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 10/24/2005] [Indexed: 11/30/2022] Open
Abstract
Previously, we observed that without using prior information about individual sampling locations, a clustering algorithm applied to multilocus genotypes from worldwide human populations produced genetic clusters largely coincident with major geographic regions. It has been argued, however, that the degree of clustering is diminished by use of samples with greater uniformity in geographic distribution, and that the clusters we identified were a consequence of uneven sampling along genetic clines. Expanding our earlier dataset from 377 to 993 markers, we systematically examine the influence of several study design variables--sample size, number of loci, number of clusters, assumptions about correlations in allele frequencies across populations, and the geographic dispersion of the sample--on the "clusteredness" of individuals. With all other variables held constant, geographic dispersion is seen to have comparatively little effect on the degree of clustering. Examination of the relationship between genetic and geographic distance supports a view in which the clusters arise not as an artifact of the sampling scheme, but from small discontinuous jumps in genetic distance for most population pairs on opposite sides of geographic barriers, in comparison with genetic distance for pairs on the same side. Thus, analysis of the 993-locus dataset corroborates our earlier results: if enough markers are used with a sufficiently large worldwide sample, individuals can be partitioned into genetic clusters that match major geographic subdivisions of the globe, with some individuals from intermediate geographic locations having mixed membership in the clusters that correspond to neighboring regions.
Collapse
Affiliation(s)
- Noah A Rosenberg
- Department of Human Genetics, Bioinformatics Program, and the Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | | | | | | | |
Collapse
|
671
|
Abstract
The sequence of the first plant genome was completed and published at the end of 2000. This spawned a series of large-scale projects aimed at discovering the functions of the 25,000+ genes identified in Arabidopsis thaliana (Arabidopsis). This review summarizes progress made in the past five years and speculates about future developments in Arabidopsis research and its implications for crop science. The provision of large populations of gene disruption lines to the research community has greatly accelerated the impact of genomics on many areas of plant science. The tools and community organization required for plant integrative and systems biology approaches are now ready to accomplish the next big step in plant biology--the integration of knowledge and modeling of biological processes. In the future, plant science will continue to be enriched by the alignment of high-quality basic research (generally conducted in Arabidopsis), with strategic objectives in crop plants. The sequence and analysis of an increasing number of crop plant genomes enhance this alignment and provide new insights into genome evolution and crop plant domestication.
Collapse
Affiliation(s)
- Michael Bevan
- Cell and Developmental Biology Department, John Innes Centre, Norwich NR4 7UJ, United Kingdom.
| | | |
Collapse
|
672
|
Cutter AD. Nucleotide polymorphism and linkage disequilibrium in wild populations of the partial selfer Caenorhabditis elegans. Genetics 2005; 172:171-84. [PMID: 16272415 PMCID: PMC1456145 DOI: 10.1534/genetics.105.048207] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An understanding of the relative contributions of different evolutionary forces on an organism's genome requires an accurate description of the patterns of genetic variation within and between natural populations. To this end, I report a survey of nucleotide polymorphism in six loci from 118 strains of the nematode Caenorhabditis elegans. These strains derive from wild populations of several regions within France, Germany, and new localities in Scotland, in addition to stock center isolates. Overall levels of silent-site diversity are low within and between populations of this self-fertile species, averaging 0.2% in European samples and 0.3% worldwide. Population structure is present despite a lack of association of sequences with geography, and migration appears to occur at all geographic scales. Linkage disequilibrium is extensive in the C. elegans genome, extending even between chromosomes. Nevertheless, recombination is clearly present in the pattern of polymorphisms, indicating that outcrossing is an infrequent, but important, feature in this species ancestry. The range of outcrossing rates consistent with the data is inferred from linkage disequilibrium, using "scattered" samples representing the collecting phase of the coalescent process in a subdivided population. I propose that genetic variation in this species is shaped largely by population subdivision due to self-fertilization coupled with long- and short-range migration between subpopulations.
Collapse
Affiliation(s)
- Asher D Cutter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| |
Collapse
|
673
|
Aranzana MJ, Kim S, Zhao K, Bakker E, Horton M, Jakob K, Lister C, Molitor J, Shindo C, Tang C, Toomajian C, Traw B, Zheng H, Bergelson J, Dean C, Marjoram P, Nordborg M. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet 2005; 1:e60. [PMID: 16292355 PMCID: PMC1283159 DOI: 10.1371/journal.pgen.0010060] [Citation(s) in RCA: 274] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2005] [Accepted: 10/10/2005] [Indexed: 11/19/2022] Open
Abstract
There is currently tremendous interest in the possibility of using genome-wide association mapping to identify genes responsible for natural variation, particularly for human disease susceptibility. The model plant Arabidopsis thaliana is in many ways an ideal candidate for such studies, because it is a highly selfing hermaphrodite. As a result, the species largely exists as a collection of naturally occurring inbred lines, or accessions, which can be genotyped once and phenotyped repeatedly. Furthermore, linkage disequilibrium in such a species will be much more extensive than in a comparable outcrossing species. We tested the feasibility of genome-wide association mapping in A. thaliana by searching for associations with flowering time and pathogen resistance in a sample of 95 accessions for which genome-wide polymorphism data were available. In spite of an extremely high rate of false positives due to population structure, we were able to identify known major genes for all phenotypes tested, thus demonstrating the potential of genome-wide association mapping in A. thaliana and other species with similar patterns of variation. The rate of false positives differed strongly between traits, with more clinal traits showing the highest rate. However, the false positive rates were always substantial regardless of the trait, highlighting the necessity of an appropriate genomic control in association studies.
Collapse
Affiliation(s)
- María José Aranzana
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Sung Kim
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Keyan Zhao
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Erica Bakker
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Matthew Horton
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Katrin Jakob
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Clare Lister
- Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - John Molitor
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Chikako Shindo
- Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Chunlao Tang
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Christopher Toomajian
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Brian Traw
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Honggang Zheng
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Joy Bergelson
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
| | - Caroline Dean
- Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Paul Marjoram
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Magnus Nordborg
- Molecular and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
674
|
Clark AG, Hubisz MJ, Bustamante CD, Williamson SH, Nielsen R. Ascertainment bias in studies of human genome-wide polymorphism. Genome Res 2005; 15:1496-502. [PMID: 16251459 PMCID: PMC1310637 DOI: 10.1101/gr.4107905] [Citation(s) in RCA: 330] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2005] [Accepted: 09/06/2005] [Indexed: 11/25/2022]
Abstract
Large-scale SNP genotyping studies rely on an initial assessment of nucleotide variation to identify sites in the DNA sequence that harbor variation among individuals. This "SNP discovery" sample may be quite variable in size and composition, and it has been well established that properties of the SNPs that are found are influenced by the discovery sampling effort. The International HapMap project relied on nearly any piece of information available to identify SNPs-including BAC end sequences, shotgun reads, and differences between public and private sequences-and even made use of chimpanzee data to confirm human sequence differences. In addition, the ascertainment criteria shifted from using only SNPs that had been validated in population samples, to double-hit SNPs, to finally accepting SNPs that were singletons in small discovery samples. In contrast, Perlegen's primary discovery was a resequencing-by-hybridization effort using the 24 people of diverse origin in the Polymorphism Discovery Resource. Here we take these two data sets and contrast two basic summary statistics, heterozygosity and F(ST), as well as the site frequency spectra, for 500-kb windows spanning the genome. The magnitude of disparity between these samples in these measures of variability indicates that population genetic analysis on the raw genotype data is ill advised. Given the knowledge of the discovery samples, we perform an ascertainment correction and show how the post-correction data are more consistent across these studies. However, discrepancies persist, suggesting that the heterogeneity in the SNP discovery process of the HapMap project resulted in a data set resistant to complete ascertainment correction. Ascertainment bias will likely erode the power of tests of association between SNPs and complex disorders, but the effect will likely be small, and perhaps more importantly, it is unlikely that the bias will introduce false-positive inferences.
Collapse
Affiliation(s)
- Andrew G Clark
- Molecular Biology and Genetics and Computational Biology, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | | | |
Collapse
|
675
|
Bustamante CD, Fledel-Alon A, Williamson S, Nielsen R, Hubisz MT, Glanowski S, Tanenbaum DM, White TJ, Sninsky JJ, Hernandez RD, Civello D, Adams MD, Cargill M, Clark AG. Natural selection on protein-coding genes in the human genome. Nature 2005; 437:1153-7. [PMID: 16237444 DOI: 10.1038/nature04240] [Citation(s) in RCA: 577] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2005] [Accepted: 09/14/2005] [Indexed: 11/09/2022]
Abstract
Comparisons of DNA polymorphism within species to divergence between species enables the discovery of molecular adaptation in evolutionarily constrained genes as well as the differentiation of weak from strong purifying selection. The extent to which weak negative and positive darwinian selection have driven the molecular evolution of different species varies greatly, with some species, such as Drosophila melanogaster, showing strong evidence of pervasive positive selection, and others, such as the selfing weed Arabidopsis thaliana, showing an excess of deleterious variation within local populations. Here we contrast patterns of coding sequence polymorphism identified by direct sequencing of 39 humans for over 11,000 genes to divergence between humans and chimpanzees, and find strong evidence that natural selection has shaped the recent molecular evolution of our species. Our analysis discovered 304 (9.0%) out of 3,377 potentially informative loci showing evidence of rapid amino acid evolution. Furthermore, 813 (13.5%) out of 6,033 potentially informative loci show a paucity of amino acid differences between humans and chimpanzees, indicating weak negative selection and/or balancing selection operating on mutations at these loci. We find that the distribution of negatively and positively selected genes varies greatly among biological processes and molecular functions, and that some classes, such as transcription factors, show an excess of rapidly evolving genes, whereas others, such as cytoskeletal proteins, show an excess of genes with extensive amino acid polymorphism within humans and yet little amino acid divergence between humans and chimpanzees.
Collapse
Affiliation(s)
- Carlos D Bustamante
- Department of Biological Statistics and Computational Biology, 101 Biotechnology Building, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
676
|
Kliebenstein DJ, West MAL, van Leeuwen H, Kim K, Doerge RW, Michelmore RW, St Clair DA. Genomic survey of gene expression diversity in Arabidopsis thaliana. Genetics 2005; 172:1179-89. [PMID: 16204207 PMCID: PMC1456216 DOI: 10.1534/genetics.105.049353] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Differential gene expression controls variation in numerous plant traits, such as flowering time and plant/pest interactions, but little is known about the genomic distribution of the determinants of transcript levels and their associated variation. Affymetrix ATH1 GeneChip microarrays representing 22,810 genes were used to survey the transcriptome of seven Arabidopsis thaliana accessions in the presence and absence of exogenously applied salicylic acid (SA). These accessions encompassed approximately 80% of the moderate- to high-frequency nucleotide polymorphisms in Arabidopsis. A factorial design, consisting of three biological replicates per accession for the two treatments at three time points (4, 28, and 52 hr post-treatment), and a total of 126 microarrays were used. Between any pair of Arabidopsis accessions, we detected on average 2234 genes (ranging from 1428 to 3334) that were significantly differentially expressed under the conditions of this experiment, using a split-plot analysis of variance. Upward of 6433 genes were differentially expressed between at least one pair of accessions. These results suggest that analysis of additional genetic, developmental, and environmental conditions may show that a significant fraction of the Arabidopsis genome is differentially expressed. Examination of sequence diversity demonstrated a significant positive association with diversity in gene expression.
Collapse
Affiliation(s)
- Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, California 95616-8780, USA
| | | | | | | | | | | | | |
Collapse
|
677
|
Hamblin MT, Salas Fernandez MG, Casa AM, Mitchell SE, Paterson AH, Kresovich S. Equilibrium processes cannot explain high levels of short- and medium-range linkage disequilibrium in the domesticated grass Sorghum bicolor. Genetics 2005; 171:1247-56. [PMID: 16157678 PMCID: PMC1456844 DOI: 10.1534/genetics.105.041566] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Patterns of linkage disequilibrium (LD) are of interest because they provide evidence of both equilibrium (e.g., mating system or long-term population structure) and nonequilibrium (e.g., demographic or selective) processes, as well as because of their importance in strategies for identifying the genetic basis of complex phenotypes. We report patterns of short and medium range (up to 100 kb) LD in six unlinked genomic regions in the partially selfing domesticated grass, Sorghum bicolor. The extent of allelic associations in S. bicolor, as assessed by pairwise measures of LD, is higher than in maize but lower than in Arabidopsis, in qualitative agreement with expectations based on mating system. Quantitative analyses of the population recombination parameter, rho, however, based on empirical estimates of rates of recombination, mutation, and self-pollination, show that LD is more extensive than expected under a neutral equilibrium model. The disparity between rho and the population mutation parameter, , is similar to that observed in other species whose population history appears to be complex. From a practical standpoint, these results suggest that S. bicolor is well suited for association studies using reasonable numbers of markers, since LD typically extends at least several kilobases but has largely decayed by 15 kb.
Collapse
Affiliation(s)
- Martha T Hamblin
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
678
|
In Brief. Nat Rev Genet 2005. [DOI: 10.1038/nrg1702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
679
|
Shindo C, Aranzana MJ, Lister C, Baxter C, Nicholls C, Nordborg M, Dean C. Role of FRIGIDA and FLOWERING LOCUS C in determining variation in flowering time of Arabidopsis. PLANT PHYSIOLOGY 2005; 138:1163-73. [PMID: 15908596 PMCID: PMC1150429 DOI: 10.1104/pp.105.061309] [Citation(s) in RCA: 287] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) accessions provide an excellent resource to dissect the molecular basis of adaptation. We have selected 192 Arabidopsis accessions collected to represent worldwide and local variation and analyzed two adaptively important traits, flowering time and vernalization response. There was huge variation in the flowering habit of the different accessions, with no simple relationship to latitude of collection site and considerable diversity occurring within local regions. We explored the contribution to this variation from the two genes FRIGIDA (FRI) and FLOWERING LOCUS C (FLC), previously shown to be important determinants in natural variation of flowering time. A correlation of FLC expression with flowering time and vernalization was observed, but it was not as strong as anticipated due to many late-flowering/vernalization-requiring accessions being associated with low FLC expression and early-flowering accessions with high FLC expression. Sequence analysis of FRI revealed which accessions were likely to carry functional alleles, and, from comparison of flowering time with allelic type, we estimate that approximately 70% of flowering time variation can be accounted for by allelic variation of FRI. The maintenance and propagation of 20 independent nonfunctional FRI haplotypes suggest that the loss-of-function mutations can confer a strong selective advantage. Accessions with a common FRI haplotype were, in some cases, associated with very different FLC levels and wide variation in flowering time, suggesting additional variation at FLC itself or other genes regulating FLC. These data reveal how useful these Arabidopsis accessions will be in dissecting the complex molecular variation that has led to the adaptive phenotypic variation in flowering time.
Collapse
Affiliation(s)
- Chikako Shindo
- Cell and Developmental Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
680
|
Weigel D, Nordborg M. Natural variation in Arabidopsis. How do we find the causal genes? PLANT PHYSIOLOGY 2005; 138:567-8. [PMID: 15955918 PMCID: PMC1150374 DOI: 10.1104/pp.104.900157] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Affiliation(s)
- Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tuebingen, Germany.
| | | |
Collapse
|