651
|
Tachaudomdach C, Kantachuvesiri S, Changsirikulchai S, Wimolluck S, Pinpradap K, Kitiyakara C. Connective tissue growth factor gene expression and decline in renal function in lupus nephritis. Exp Ther Med 2012; 3:713-718. [PMID: 22969957 DOI: 10.3892/etm.2012.473] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/18/2012] [Indexed: 01/23/2023] Open
Abstract
In lupus nephritis (LN), kidney inflammation may be followed by fibrosis and progressive decline in function. Transforming growth factor (TGF)-β is a notable mediator of fibrosis, but it has other beneficial roles, thus indicating a need for alternate therapeutic targets for inhibition of fibrosis. Connective tissue growth factor (CTGF) acts as a downstream mediator of TGF-β in promoting fibrosis, without mediating the immunosuppressive effects of TGF-β. Animal studies show that CTGF may have important roles in renal fibrosis, but data are limited in human subjects. The present study tested the hypothesis that renal CTGF mRNA expression is related to TGF-β1 and collagen I expression and is predictive of renal function deterioration in patients with LN (n=39). Gene expression was measured using multiplex real-time quantitative RT-PCR and renal function was estimated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) glomerular filtration rate (GFR) equation. Decline in GFR was assessed by regression of GFR at biopsy to 1 year following biopsy. CTGF mRNA expression was significantly correlated with TGF-β1 and collagen I. GFR at biopsy was 89.2±39.2 ml/ min. Renal CTGF mRNA expression correlated inversely with baseline GFR. Renal CTGF mRNA was significantly higher in patients with moderate to severe CKD compared to those in the milder CKD group (low GFR 4.92±4.34 vs. high GFR 1.52±1.94, p<0.005). CTGF mRNA was also higher in patients with subsequent decline in GFR [GFR decline (5.19±4.46) vs. no GFR decline (1.79±1.97); P<0.01]. In conclusion, renal expression of CTGF was positively related to TGF-β1 and collagen I in patients with LN. Furthermore, high CTGF mRNA expression was associated with poor GFR at baseline and subsequent deterioration of kidney function. CTGF expression in the kidney may serve as an early marker for renal disease progression and could be evaluated as a target for therapeutic intervention to prevent renal failure in LN.
Collapse
|
652
|
Ding H, Zhou D, Hao S, Zhou L, He W, Nie J, Hou FF, Liu Y. Sonic hedgehog signaling mediates epithelial-mesenchymal communication and promotes renal fibrosis. J Am Soc Nephrol 2012; 23:801-13. [PMID: 22302193 DOI: 10.1681/asn.2011060614] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Sonic hedgehog (Shh) signaling is a developmental signal cascade that plays an essential role in regulating embryogenesis and tissue homeostasis. Here, we investigated the potential role of Shh signaling in renal interstitial fibrogenesis. Ureteral obstruction induced Shh, predominantly in the renal tubular epithelium of the fibrotic kidneys. Using Gli1(lacZ) knock-in mice, we identified renal interstitial fibroblasts as Shh-responding cells. In cultured renal fibroblasts, recombinant Shh protein activated Gli1 and induced α-smooth muscle actin (α-SMA), desmin, fibronectin, and collagen I expression, suggesting that Shh signaling promotes myofibroblast activation and matrix production. Blockade of Shh signaling with cyclopamine abolished the Shh-mediated induction of Gli1, Snail1, α-SMA, fibronectin, and collagen I. In vivo, the kidneys of Gli1-deficient mice were protected against the development of interstitial fibrosis after obstructive injury. In wild-type mice, cyclopamine did not affect renal Shh expression but did inhibit induction of Gli1, Snail1, and α-SMA. In addition, cyclopamine reduced matrix expression and mitigated fibrotic lesions. These results suggest that tubule-derived Shh mediates epithelial-mesenchymal communication by targeting interstitial fibroblasts after kidney injury. We conclude that Shh/Gli1 signaling plays a critical role in promoting fibroblast activation, production of extracellular matrix, and development of renal interstitial fibrosis.
Collapse
Affiliation(s)
- Hong Ding
- Department of Pathology, University of Pittsburgh School of Medicine, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
653
|
Dolman MEM, Harmsen S, Pieters EHE, Sparidans RW, Lacombe M, Szokol B, Orfi L, Kéri G, Storm G, Hennink WE, Kok RJ. Targeting of a platinum-bound sunitinib analog to renal proximal tubular cells. Int J Nanomedicine 2012; 7:417-33. [PMID: 22334775 PMCID: PMC3273977 DOI: 10.2147/ijn.s26485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background Activated proximal tubular cells play an important role in renal fibrosis. We investigated whether sunitinib and a kidney-targeted conjugate of sunitinib were capable of attenuating fibrogenic events in tubulointerstitial fibrosis. Methods A kidney-targeted conjugate was prepared by linkage of a sunitinib analog (named 17864) via a platinum-based linker to the kidney-specific carrier lysozyme. Pharmacological activity of 17864-lysozyme was evaluated in human kidney proximal tubular cells (HK-2); the capability of the kidney-directed conjugate to accumulate in the kidneys was studied in mice. Potential antifibrotic effects of a single-dose treatment were evaluated in the unilateral ureteral obstruction (UUO) model in mice. Results The 17864-lysozyme conjugate and its metabolites strongly inhibited tyrosine kinase activity. Upon intravenous injection, 17864-lysozyme rapidly accumulated in the kidneys and provided sustained renal drug levels for up to 3 days after a single dose. Renal drug level area under the curve was increased 28-fold versus an equimolar dose of sunitinib malate. Daily treatment of UUO mice with a high dose of sunitinib malate (50 mg/kg) resulted in antifibrotic responses, but also induced drug-related toxicity. A single dose of 17864-lysozyme (equivalent to 1.8 mg/kg sunitinib) was safe but showed no antifibrotic effects. Conclusion Multikinase inhibitors like sunitinib can be of benefit in the treatment of fibrotic diseases, provided that their safety can be improved by strategies as presented in this paper, and sustained renal levels can be achieved.
Collapse
Affiliation(s)
- M E M Dolman
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
654
|
Tubular cell dedifferentiation and peritubular inflammation are coupled by the transcription regulator Id1 in renal fibrogenesis. Kidney Int 2012; 81:880-91. [PMID: 22278018 PMCID: PMC3326205 DOI: 10.1038/ki.2011.469] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During renal fibrogenesis, tubular epithelial-mesenchymal transition is closely associated with peritubular inflammation; however, it is not clear whether these two processes are connected. We previously identified the inhibitor of differentiation-1 (Id1), a dominant negative antagonist of basic helix-loop-helix transcription factors, as a major trigger of tubular cell dedifferentiation after injury. Id1 was induced selectively in degenerated proximal tubule and collecting duct epithelia after injury and was present in both the cytoplasm and nucleus, suggesting shuttling between these two compartments. Interestingly, the upregulation of Id1 was associated with peritubular inflammation in mouse and human nephropathies. In vitro, Id1 potentiated NF-κB signaling and augmented RANTES expression in kidney epithelial cells, which led to an enhanced recruitment of inflammatory cells. Id1 also induced Snail1 expression and triggered tubular epithelial dedifferentiation. In vivo, genetic ablation of Id1 in mice reduced peritubular inflammation and decreased tubular expression of RANTES following ureteral obstruction. Mice lacking Id1 were also protected against myofibroblast activation and matrix expression, leading to a reduced total collagen deposition in obstructive nephropathy. Thus, these results indicate that Id1 shuttles between nucleus and cytoplasm and promotes peritubular inflammation and tubular epithelial dedifferentiation, suggesting that these two events are intrinsically coupled during renal fibrogenesis.
Collapse
|
655
|
Xiao L, Ge Y, Sun L, Xu X, Xie P, Zhan M, Wang M, Dong Z, Li J, Duan S, Liu F, Xiao P. Cordycepin inhibits albumin-induced epithelial-mesenchymal transition of renal tubular epithelial cells by reducing reactive oxygen species production. Free Radic Res 2012; 46:174-83. [PMID: 22149621 DOI: 10.3109/10715762.2011.647688] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Albumin induced epithelial-mesenchymal transition (EMT) of renal tubular cells through reactive oxygen species (ROS) pathway plays an important role in tubulointerstitial fibrosis. Cordycepin (3 -deoxyadenosine), a potential antioxidant, was demonstrated to have various pharmacological effects and could inhibit EMT of some cells. However, the role of cordycepin on albumin-induced EMT in renal tubular cells (HK2) is unclear. In this study, we investigated the effect of cordycepin on albumin-induced EMT of HK2 cells and its mechanisms. HK-2 cells were exposed to bovine serum albumin with or without pretreatment with cordycepin. Results showed that albumin significantly induced EMT formation of HK-2 which associated with NADPH oxidase activation and intracellular ROS overproduction through increased Rac1 activity and expression of NOX4, p22phox and p47phox, while these effects were abolished in that pretreated with cordycepin. In conclusion, cordycepin could ameliorate albumin-induced EMT of HK2 cells by decreasing NADPH oxidase activity and inhibiting ROS production.
Collapse
Affiliation(s)
- Li Xiao
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
656
|
Zeisberg M, Müller GA. Mechanistic insights into the antifibrotic activity of aliskiren in the kidney. Hypertens Res 2012; 35:266-8. [PMID: 22258024 DOI: 10.1038/hr.2011.226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michael Zeisberg
- Department of Nephrology and Rheumatology, Göttingen University Medical Center, Georg August University, Robert Koch Strasse 40, Göttingen 37075, Germany.
| | | |
Collapse
|
657
|
Kriegel AJ, Liu Y, Cohen B, Usa K, Liu Y, Liang M. MiR-382 targeting of kallikrein 5 contributes to renal inner medullary interstitial fibrosis. Physiol Genomics 2011; 44:259-67. [PMID: 22202692 DOI: 10.1152/physiolgenomics.00173.2011] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previously we have shown that microRNA miR-382 can facilitate loss of renal epithelial characteristics in cultured cells. This study examined the in vivo role of miR-382 in the development of renal interstitial fibrosis in a mouse model. Unilateral ureteral obstruction was used to induce renal interstitial fibrosis in mice. With 3 days of unilateral ureteral obstruction, expression of miR-382 in the obstructed kidney was increased severalfold compared with sham-operated controls. Intravenous delivery of locked nucleic acid-modified anti-miR-382 blocked the increase in miR-382 expression and significantly reduced inner medullary fibrosis. Expression of predicted miR-382 target kallikrein 5, a proteolytic enzyme capable of degrading several extracellular matrix proteins, was reduced with unilateral ureteral obstruction. Anti-miR-382 treatment prevented the reduction of kallikrein 5 in the inner medulla. Furthermore, the protective effect of the anti-miR-382 treatment against fibrosis was abolished by renal knockdown of kallikrein 5. Targeting of kallikrein 5 by miR-382 was confirmed by 3'-untranslated region luciferase assay. These data support a completely novel mechanism in which miR-382 targets kallikrein 5 and contributes to the development of renal inner medullary interstitial fibrosis. The study provided the first demonstration of an in vivo functional role of miR-382 in any species and any organ system.
Collapse
Affiliation(s)
- Alison J Kriegel
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
658
|
Choukroun G, Kamar N, Dussol B, Etienne I, Cassuto-Viguier E, Toupance O, Glowacki F, Moulin B, Lebranchu Y, Touchard G, Jaureguy M, Pallet N, Le Meur Y, Rostaing L, Martinez F. Correction of postkidney transplant anemia reduces progression of allograft nephropathy. J Am Soc Nephrol 2011; 23:360-8. [PMID: 22193388 DOI: 10.1681/asn.2011060546] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Retrospective studies suggest that chronic allograft nephropathy might progress more rapidly in patients with post-transplant anemia, but whether correction of anemia improves renal outcomes is unknown. An open-label, multicenter, randomized controlled trial investigated the effect of epoetin-β to normalize hemoglobin values (13.0-15.0 g/dl, n=63) compared with partial correction of anemia (10.5-11.5 g/dl, n=62) on progression of nephropathy in transplant recipients with hemoglobin <11.5 g/dl and an estimated creatinine clearance (eCrCl) <50 ml/min per 1.73 m(2). After 2 years, the mean hemoglobin was 12.9 and 11.3 g/dl in the normalization and partial correction groups, respectively (P<0.001). From baseline to year 2, the eCrCl decreased by a mean 2.4 ml/min per 1.73 m(2) in the normalization group compared with 5.9 ml/min per 1.73 m(2) in the partial correction group (P=0.03). Furthermore, fewer patients in the normalization group progressed to ESRD (3 versus 13, P<0.01). Cumulative death-censored graft survival was 95% and 80% in the normalization and partial correction groups, respectively (P<0.01). Complete correction was associated with a significant improvement in quality of life at 6 and 12 months. The number of cardiovascular events was low and similar between groups. In conclusion, this prospective study suggests that targeting hemoglobin values ≥13 g/dl reduces progression of chronic allograft nephropathy in kidney transplant recipients.
Collapse
Affiliation(s)
- Gabriel Choukroun
- Nephrology, Dialysis, Transplantation and Intensive Care Department, Centre Hospitalier Universitaire (CHU) Amiens, Hôpital Sud, ERI-12 Institut National de la Santé et de la Recherche Médicale, Jules Verne University, 80054 Amiens Cedex 1, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
659
|
Homma T, Sonoda H, Manabe K, Arai K, Mizuno M, Sada T, Ikeda M. Activation of renal angiotensin type 1 receptor contributes to the pathogenesis of progressive renal injury in a rat model of chronic cardiorenal syndrome. Am J Physiol Renal Physiol 2011; 302:F750-61. [PMID: 22160776 DOI: 10.1152/ajprenal.00494.2011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although chronic cardiac dysfunction is known to progressively exacerbate renal injury, a condition known as type 2 cardiorenal syndrome (CRS), the mechanism responsible is largely unknown. The present study was undertaken to clarify the mechanism of renal injury in rats with both unilateral nephrectomy (NX) and surgically induced myocardial infarction (MI), corresponding to a model of type 2 CRS. Compared with a control group, rats with both MI and NX (MI+NX) exhibited progressive proteinuria during the experimental period (34 wk after MI surgery), whereas proteinuria was not observed in rats with MI alone and was moderate in rats with NX alone. The proteinuria in rats with MI+NX was associated with renal lesions such as glomerulosclerosis and infiltration of mononuclear cells and upregulation of the renal proinflammatory and -fibrotic cytokine and angiotensin II type 1a receptor (AT1aR) genes. In contrast, plasma renin activity was lowered in rats with MI+NX. Immunohistochemistry revealed that the increased AT1R protein was present mainly in renal interstitial mononuclear cells. Olmesartan medoxomil, an AT1R blocker, markedly reduced the proteinuria and infiltration of mononuclear cells, whereas spironolactone, a mineralocorticoid receptor blocker, did not. The present findings demonstrate the pathogenetic role of renal interstitial AT1R signaling in a model of type 2 CRS, providing evidence that AT1R blockade can be a useful therapeutic option for this syndrome.
Collapse
Affiliation(s)
- Tsuyoshi Homma
- Department of Veterinary Pharmacology, Faculty of Agriculture, Univ. of Miyazaki, Gakuenkibanadai-Nishi 1-1, Miyazaki 889-2192, Japan
| | | | | | | | | | | | | |
Collapse
|
660
|
Floege J. The Pathogenesis of IgA Nephropathy: What Is New and How Does It Change Therapeutic Approaches? Am J Kidney Dis 2011; 58:992-1004. [DOI: 10.1053/j.ajkd.2011.05.033] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 05/26/2011] [Indexed: 02/07/2023]
|
661
|
Erbin inhibits TGF-β1-induced EMT in renal tubular epithelial cells through an ERK-dependent pathway. J Mol Med (Berl) 2011; 90:563-74. [DOI: 10.1007/s00109-011-0833-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 10/17/2011] [Accepted: 10/31/2011] [Indexed: 01/24/2023]
|
662
|
van Beuge MM, Poelstra K, Prakash J. Specific delivery of kinase inhibitors in nonmalignant and malignant diseases. Expert Opin Drug Deliv 2011; 9:59-70. [PMID: 22111941 DOI: 10.1517/17425247.2012.638625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Kinase inhibitors have been hailed as a breakthrough in the treatment of cancer. Extensive research is now being devoted to the development of kinase inhibitors as a treatment for many nonmalignant diseases. However, the use of kinase inhibitors in both malignant and nonmalignant diseases is also associated with side effects and the development of resistance. It may be worthwhile to explore whether cell-specific delivery of kinase inhibitors improves therapeutic efficacy and reduces side effects. AREAS COVERED This review aims to provide an overview of the preclinical studies performed to examine the specific targeting of kinase inhibitors in vitro and in vivo. It gives an introduction to kinase signaling pathways induced during disease, along with the possible problems associated with their inhibition. It also discusses the studies on specific delivery and shows that altering the specificity of kinase inhibitors by targeting methods improves their effectivity and safety. EXPERT OPINION Compared with the delivery of cytotoxic compounds, the specific delivery of kinase inhibitors has not yet been studied extensively. The studies discussed in this review provide an insight into methods used to target kinase inhibitors to different organs. The targeting of different kinase inhibitors has improved their therapeutic possibilities, but many questions still remain to be studied.
Collapse
Affiliation(s)
- Marike Marjolijn van Beuge
- University of Groningen, University Centre for Pharmacy, Department of Pharmacokinetics, Toxicology & Targeting, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | | | | |
Collapse
|
663
|
Cernaro V, Lacquaniti A, Donato V, Fazio MR, Buemi A, Buemi M. Fibrosis, regeneration and cancer: what is the link? Nephrol Dial Transplant 2011; 27:21-7. [DOI: 10.1093/ndt/gfr567] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
664
|
Chen J, Chen JK, Nagai K, Plieth D, Tan M, Lee TC, Threadgill DW, Neilson EG, Harris RC. EGFR signaling promotes TGFβ-dependent renal fibrosis. J Am Soc Nephrol 2011; 23:215-24. [PMID: 22095949 DOI: 10.1681/asn.2011070645] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The mechanisms by which angiotensin II (Ang II) promotes renal fibrosis remain incompletely understood. Ang II both stimulates TGFβ signaling and activates the EGF receptor (EGFR), but the relative contribution of these pathways to renal fibrogenesis is unknown. Using a murine model with EGFR-deficient proximal tubules, we demonstrate that upstream activation of EGFR-dependent ERK signaling is critical for mediating sustained TGFβ expression in renal fibrosis. Persistent activation of the Ang II receptor stimulated ROS-dependent phosphorylation of Src, leading to sustained EGFR-dependent signaling for TGFβ expression. Either genetic or pharmacologic inhibition of EGFR significantly decreased TGFβ-mediated fibrogenesis. We conclude that TGFβ-mediated tissue fibrosis relies on a persistent feed-forward mechanism of EGFR/ERK activation through an unexpected signaling pathway, highlighting EGFR as a potential therapeutic target for modulating tissue fibrogenesis.
Collapse
Affiliation(s)
- Jianchun Chen
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
665
|
Sun CY, Cherng WJ, Jian HZ, Hsu HH, Wu IW, Hsu HJ, Wu MS. Aliskiren reduced renal fibrosis in mice with chronic ischemic kidney injury--beyond the direct renin inhibition. Hypertens Res 2011; 35:304-11. [PMID: 22089535 DOI: 10.1038/hr.2011.181] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic renal ischemia leads to renal fibrosis and atrophy. Activation of the renin-angiotensin-aldosterone system is one of the main mechanisms driving chronic renal ischemic injury. The aim of the present study was to define the effect of aliskiren in chronic ischemia of the kidney. Two-kidney, one-clip mice were used to study chronic renal ischemia. Aliskiren significantly lowered the blood pressure in mice with renal artery constriction (92.1±1.1 vs. 81.0±1.8 mm Hg, P<0.05). Renin expression was significantly increased in ischemic kidneys when treated with aliskiren. In addition, (Pro)renin receptor expression was decreased by aliskiren in ischemic kidneys. Aliskiren treatment significantly increased klotho expression and reduced the expression of fibrogenic cystokines, caspase-3 and Bax in ischemic kidneys. Histological examination revealed that aliskiren significantly reduced the nephrosclerosis score (4.5±1.9 vs. 7.3±0.4, P<0.05). Immunofluorescence staining also showed that aliskiren decreased the deposition of interstitial collagen I in ischemic kidneys. In conclusion, direct renin inhibition significantly reduced renal fibrosis and apoptosis following chronic renal ischemia.
Collapse
Affiliation(s)
- Chiao-Yin Sun
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
666
|
Abstract
The kidney is a highly vascularized organ that normally receives a fifth of the cardiac output. The unique spatial arrangement of the kidney vasculature with each nephron is crucial for the regulation of renal blood flow, GFR, urine concentration, and other specialized kidney functions. Thus, the proper and timely assembly of kidney vessels with their respective nephrons is a crucial morphogenetic event leading to the formation of a functioning kidney necessary for independent extrauterine life. Mechanisms that govern the development of the kidney vasculature are poorly understood. In this review, we discuss the anatomical development, embryological origin, lineage relationships, and key regulators of the kidney arterioles and postglomerular circulation. Because renal disease is associated with deterioration of the kidney microvasculature and/or the reenactment of embryonic pathways, understanding the morphogenetic events and processes that maintain the renal vasculature may open new avenues for the preservation of renal structure and function and prevent the progression of renal disease.
Collapse
Affiliation(s)
- Maria Luisa S Sequeira Lopez
- University of Virginia School of Medicine, 409 Lane Road, MR4 Building, Room 2001, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
667
|
Anders HJ, Ryu M. Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int 2011; 80:915-925. [DOI: 10.1038/ki.2011.217] [Citation(s) in RCA: 325] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
668
|
Xiong M, Jiang L, Zhou Y, Qiu W, Fang L, Tan R, Wen P, Yang J. The miR-200 family regulates TGF-β1-induced renal tubular epithelial to mesenchymal transition through Smad pathway by targeting ZEB1 and ZEB2 expression. Am J Physiol Renal Physiol 2011; 302:F369-79. [PMID: 22012804 DOI: 10.1152/ajprenal.00268.2011] [Citation(s) in RCA: 205] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Most chronic kidney injuries inevitably progress to irreversible renal fibrosis. Tubular epithelial-to-mesenchymal transition (EMT) is recognized to play pivotal roles in the process of renal fibrosis. However, a comprehensive understanding of the pathogenesis of renal scar formation and progression remains an urgent task for renal researchers. The endogenously produced microRNAs (miRNAs), proved to play important roles in gene regulation, probably regulate most genes involved in EMT. In this study, we applied microarray analysis to investigate the expression profiles of miRNA in murine interstitial fibrotic kidneys induced by unilateral ureteral obstruction (UUO). It was found that miR-200a and miR-141, two members of the miR-200 family, were downregulated at the early phase of UUO. In TGF-β1-induced tubular EMT in vitro, it was also found that the members of the miR-200 family were downregulated in a Smad signaling-dependent manner. It was demonstrated that the miR-200 family was responsible for protecting tubular epithelial cells from mesenchymal transition by target suppression of zinc finger E-box-binding homeobox (ZEB) 1 and ZEB2, which are E-cadherin transcriptional repressors. The results suggest that downregulation of the miR-200 family initiates the dedifferentiation of renal tubules and progression of renal fibrosis, which might provide important targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Mingxia Xiong
- Jiangsu Diabetes Center; Center of Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical Univ., Nanjing, Jiangsu Province, China
| | | | | | | | | | | | | | | |
Collapse
|
669
|
Abstract
Renal fibrosis, particularly tubulointerstitial fibrosis, is the common final outcome of almost all progressive chronic kidney diseases. Renal fibrosis is also a reliable predictor of prognosis and a major determinant of renal insufficiency. Irrespective of the initial causes, renal fibrogenesis is a dynamic and converging process that consists of four overlapping phases: priming, activation, execution and progression. Nonresolving inflammation after a sustained injury sets up the fibrogenic stage (priming) and triggers the activation and expansion of matrix-producing cells from multiple sources through diverse mechanisms, including activation of interstitial fibroblasts and pericytes, phenotypic conversion of tubular epithelial and endothelial cells and recruitment of circulating fibrocytes. Upon activation, matrix-producing cells assemble a multicomponent, integrin-associated protein complex that integrates input from various fibrogenic signals and orchestrates the production of matrix components and their extracellular assembly. Multiple cellular and molecular events, such as tubular atrophy, microvascular rarefaction and tissue hypoxia, promote scar formation and ensure a vicious progression to end-stage kidney failure. This Review outlines our current understanding of the cellular and molecular mechanisms of renal fibrosis, which could offer novel insights into the development of new therapeutic strategies.
Collapse
|
670
|
Graciano ML, Mitchell KD. Imatinib ameliorates renal morphological changes in Cyp1a1-Ren2 transgenic rats with inducible ANG II-dependent malignant hypertension. Am J Physiol Renal Physiol 2011; 302:F60-9. [PMID: 21975872 DOI: 10.1152/ajprenal.00218.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study was performed to assess the effects of the platelet-derived growth factor (PDGF) receptor kinase inhibitor imatinib mesylate on the renal morphological changes occurring during the development of malignant hypertension in transgenic rats with inducible expression of the Ren2 gene [TGR(Cyp1a1Ren2)]. Arterial blood pressure was measured by radiotelemetry in male Cyp1a1-Ren2 rats during control conditions and during dietary administration of indole-3-carbinol (I3C; 0.3%) for 14 days to induce malignant hypertension. Rats induced with I3C (n = 5) had higher mean arterial pressures (178 ± 4 vs. 109 ± 2 mmHg, P < 0.001) and increased urinary albumin excretion (Ualb; 13 ± 5 vs. 0.6 ± 0.2 mg/day) compared with noninduced rats (n = 5). Chronic administration of imatinib (60 mg·kg(-1)·day(-1) in drinking water, n = 5) did not alter the magnitude of the hypertension (176 ± 8 mmHg) but prevented the increase in Ualb (1.6 ± 0.3 mg/day). Quantitative analysis of proliferating cell nuclear antigen using immunohistochemistry demonstrated increased proliferating cell number in cortical tubules (38 ± 5 vs. 18 ± 1 cells/mm(2)) and cortical interstitium (40 ± 7 vs. 13 ± 6 cells/mm(2)) of hypertensive rat kidneys. Renal cortical fibrosis evaluated by picrosirius red staining showed increased collagen deposition in kidneys of the hypertensive rats (1.6 ± 0.1 vs. 0.4 ± 0.1% of cortical area). Imatinib attenuated the increase in proliferating cell number in cortical tubules and interstitium (22 ± 5 vs. 38 ± 5 and 22 ± 6 vs. 40 ± 7 cells/mm(2), respectively) and reduced the degree of collagen deposition (0.8 ± 0.2 vs. 1.6 ± 0.1%) in the kidneys of hypertensive rats. These findings demonstrate that the renal pathological changes that occur during the development of malignant hypertension in Cyp1a1-Ren2 rats involve activation of PDGF receptor kinase.
Collapse
Affiliation(s)
- Miguel L Graciano
- Dept. of Physiology, Tulane Univ. Health Sciences Center, 1430 Tulane Ave., SL39, New Orleans, LA 70112, USA
| | | |
Collapse
|
671
|
Transcriptional networks in epithelial-mesenchymal transition. PLoS One 2011; 6:e25354. [PMID: 21980432 PMCID: PMC3184133 DOI: 10.1371/journal.pone.0025354] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 09/01/2011] [Indexed: 12/22/2022] Open
Abstract
Backround Epithelial-mesenchymal transition (EMT) changes polarized epithelial cells into migratory phenotypes associated with loss of cell-cell adhesion molecules and cytoskeletal rearrangements. This form of plasticity is seen in mesodermal development, fibroblast formation, and cancer metastasis. Methods and Findings Here we identify prominent transcriptional networks active during three time points of this transitional process, as epithelial cells become fibroblasts. DNA microarray in cultured epithelia undergoing EMT, validated in vivo, were used to detect various patterns of gene expression. In particular, the promoter sequences of differentially expressed genes and their transcription factors were analyzed to identify potential binding sites and partners. The four most frequent cis-regulatory elements (CREs) in up-regulated genes were SRY, FTS-1, Evi-1, and GC-Box, and RNA inhibition of the four transcription factors, Atf2, Klf10, Sox11, and SP1, most frequently binding these CREs, establish their importance in the initiation and propagation of EMT. Oligonucleotides that block the most frequent CREs restrain EMT at early and intermediate stages through apoptosis of the cells. Conclusions Our results identify new transcriptional interactions with high frequency CREs that modulate the stability of cellular plasticity, and may serve as targets for modulating these transitional states in fibroblasts.
Collapse
|
672
|
Li Y, Ge Y, Liu FY, Peng YM, Sun L, Li J, Chen Q, Sun Y, Ye K. Norcantharidin, a protective therapeutic agent in renal tubulointerstitial fibrosis. Mol Cell Biochem 2011; 361:79-83. [DOI: 10.1007/s11010-011-1091-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
|
673
|
Dolman MEM, van Dorenmalen KMA, Pieters EHE, Lacombe M, Pato J, Storm G, Hennink WE, Kok RJ. Imatinib-ULS-lysozyme: a proximal tubular cell-targeted conjugate of imatinib for the treatment of renal diseases. J Control Release 2011; 157:461-8. [PMID: 21911014 DOI: 10.1016/j.jconrel.2011.08.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/26/2011] [Accepted: 08/27/2011] [Indexed: 01/07/2023]
Abstract
The anticancer drug imatinib is an inhibitor of the platelet-derived growth factor receptor (PDGFR) kinases, which are involved in the pathogenesis of fibrotic diseases. In the current study we investigated the delivery of imatinib to the proximal tubular cells of the kidneys and evaluated the potential antifibrotic effects of imatinib in tubulointerstitial fibrosis. Coupling of imatinib to the low molecular weight protein lysozyme via the platinum (II)-based linker ULS yielded a 0.8:1 drug-carrier conjugate that rapidly accumulated in the proximal tubular cells upon intravenous and intraperitoneal administration. The bioavailability of intraperitoneally administered imatinib-ULS-lysozyme was 100%. Renal imatinib levels persisted for up to 3 days after a single injection of imatinib-ULS-lysozyme. Compared with an equal dose imatinib mesylate, imatinib-ULS-lysozyme resulted in a 30- and 15-fold higher renal exposure of imatinib, for intravenous and intraperitoneal administration respectively. Imatinib-ULS-lysozyme could not be detected in the heart, which is the organ at risk for side-effects of prolonged treatment with imatinib. The efficacy of imatinib-ULS-lysozyme in the treatment of tubulointerstitial fibrosis was evaluated in the unilateral ureteral obstruction (UUO) model in mice. Three days UUO resulted in all signs of early fibrosis, i.e. an increased deposition of matrix and production of profibrotic factors. Although a moderately increased activity of PDGFR-β was observed, the profibrotic phenotype could not be inhibited with imatinib mesylate or with imatinib-ULS-lysozyme. Further evaluation of imatinib mesylate and imatinib-ULS-lysozyme is therefore warranted in an animal model of renal disease in which the activation of PDGFR-β is more pronounced.
Collapse
Affiliation(s)
- M E M Dolman
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
674
|
Sun L, Zhang D, Liu F, Xiang X, Ling G, Xiao L, Liu Y, Zhu X, Zhan M, Yang Y, Kondeti VK, Kanwar YS. Low-dose paclitaxel ameliorates fibrosis in the remnant kidney model by down-regulating miR-192. J Pathol 2011; 225:364-77. [PMID: 21984124 PMCID: PMC3258545 DOI: 10.1002/path.2961] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/29/2011] [Accepted: 06/27/2011] [Indexed: 11/29/2022]
Abstract
Transforming growth factor (TGF)-β has been shown to play a central role in the development of tubulointerstitial fibrosis, which can be corrected via treatment with paclitaxel. The biology of microRNA (miR) can be modulated by paclitaxel. We hypothesized that paclitaxel may attenuate renal fibrosis in a rat model of remnant kidney disease by inhibiting TGF-β induced-miRs. Rats in groups of 12 were subjected to 5/6 nephrectomy and received low-dose intraperitoneal injection of paclitaxel. Renal functions were assessed at 8 weeks. The TGF-β signalling cascade and ECM proteins were evaluated by real-time polymerase chain reaction (TRT–PCR) and immunofluorescence microscopy. Animals with remnant kidneys developed hypertension, which was not relieved with paclitaxel treatment. However, paclitaxel treatment resulted in dampening the proteinuric response, reduction in serum BUN, creatinine levels and urine protein : creatinine ratio and normalization of creatinine clearance. These effects were accompanied by the inhibition of Smad2/3 activation, attenuation of renal fibrosis and normalization of integrin-linked kinase (ILK), COL(I)A1, COL(IV)A2 and α-SMA expression. Also, paclitaxel down-regulated the expression of miR-192, miR-217 and miR -377, while miR-15 was up-regulated in the remnant kidney. In vitro, in tubular epithelial cells (NRK-52E), paclitaxel also inhibited TGF-β1-induced Smad2/3 activation and normalized ILK, COL(I)A1, COL(IV)A2 and α-SMA expression. Furthermore, ChIP analyses indicated that Taxol suppressed Smad3-mediated miR-192 transcriptional activity. Over-expression of miR-192 in NRK-52E mimicked the changes seen in the remnant kidney, while inclusion of miR-192 inhibitor in the culture medium blocked TGF-β1-induced COL(I)A1 and COL(IV)A2 expression, while ILK and α-SMA were unaffected. These data suggest that low-dose paclitaxel ameliorates renal fibrosis via modulating miR-192 pathobiology and TGF-β/Smad signalling. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lin Sun
- Department of Nephrology, Second Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
675
|
Abstract
The weight of evidence gathered from studies in humans with hereditary polycystic kidney disease (PKD)1 and PKD2 disorders, as well as from experimental animal models, indicates that cysts are primarily responsible for the decline in glomerular filtration rate that occurs fairly late in the course of the disease. The processes underlying this decline include anatomic disruption of glomerular filtration and urinary concentration mechanisms on a massive scale, coupled with compression and obstruction by cysts of adjacent nephrons in the cortex, medulla and papilla. Cysts prevent the drainage of urine from upstream tributaries, which leads to tubule atrophy and loss of functioning kidney parenchyma by mechanisms similar to those found in ureteral obstruction. Cyst-derived chemokines, cytokines and growth factors result in a progression to fibrosis that is comparable with the development of other progressive end-stage renal diseases. Treatment of renal cystic disorders early enough to prevent or reduce cyst formation or slow cyst growth, before the secondary changes become widespread, is a reasonable strategy to prolong the useful function of kidneys in patients with autosomal dominant polycystic kidney disease.
Collapse
|
676
|
|
677
|
Hao S, He W, Li Y, Ding H, Hou Y, Nie J, Hou FF, Kahn M, Liu Y. Targeted inhibition of β-catenin/CBP signaling ameliorates renal interstitial fibrosis. J Am Soc Nephrol 2011; 22:1642-53. [PMID: 21816937 DOI: 10.1681/asn.2010101079] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Because fibrotic kidneys exhibit aberrant activation of β-catenin signaling, this pathway may be a potential target for antifibrotic therapy. In this study, we examined the effects of β-catenin activation on tubular epithelial-mesenchymal transition (EMT) in vitro and evaluated the therapeutic efficacy of the peptidomimetic small molecule ICG-001, which specifically disrupts β-catenin-mediated gene transcription, in obstructive nephropathy. In vitro, ectopic expression of stabilized β-catenin in tubular epithelial (HKC-8) cells suppressed E-cadherin and induced Snail1, fibronectin, and plasminogen activator inhibitor-1 (PAI-1) expression. ICG-001 suppressed β-catenin-driven gene transcription in a dose-dependent manner and abolished TGF-β1-induced expression of Snail1, PAI-1, collagen I, fibronectin, and α-smooth muscle actin (α-SMA). This antifibrotic effect of ICG-001 did not involve disruption of Smad signaling. In the unilateral ureteral obstruction model, ICG-001 ameliorated renal interstitial fibrosis and suppressed renal expression of fibronectin, collagen I, collagen III, α-SMA, PAI-1, fibroblast-specific protein-1, Snail1, and Snail2. Late administration of ICG-001 also effectively attenuated fibrotic lesions in obstructive nephropathy. In conclusion, inhibiting β-catenin signaling may be an effective approach to the treatment of fibrotic kidney diseases.
Collapse
Affiliation(s)
- Sha Hao
- Department of Pathology, University of Pittsburgh School of Medicine, S-405 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
678
|
Zarjou A, Yang S, Abraham E, Agarwal A, Liu G. Identification of a microRNA signature in renal fibrosis: role of miR-21. Am J Physiol Renal Physiol 2011; 301:F793-801. [PMID: 21775484 DOI: 10.1152/ajprenal.00273.2011] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Renal fibrosis is a final stage of many forms of kidney disease and leads to impairment of kidney function. The molecular pathogenesis of renal fibrosis is currently not well-understood. microRNAs (miRNAs) are important players in initiation and progression of many pathologic processes including diabetes, cancer, and cardiovascular disease. However, the role of miRNAs in kidney injury and repair is not well-characterized. In the present study, we found a unique miRNA signature associated with unilateral ureteral obstruction (UUO)-induced renal fibrosis. We found altered expression in UUO kidneys of miRNAs that have been shown to be responsive to stimulation by transforming growth factor (TGF)-β1 or TNF-α. Among these miRNAs, miR-21 demonstrated the greatest increase in UUO kidneys. The enhanced expression of miR-21 was located mainly in distal tubular epithelial cells. miR-21 expression was upregulated in response to treatment with TGF-β1 or TNF-α in human renal tubular epithelial cells in vitro. Furthermore, we found that blocking miR-21 in vivo attenuated UUO-induced renal fibrosis, presumably through diminishing the expression of profibrotic proteins and reducing infiltration of inflammatory macrophages in UUO kidneys. Our data suggest that targeting specific miRNAs could be a novel therapeutic approach to treat renal fibrosis.
Collapse
Affiliation(s)
- Abolfazl Zarjou
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | |
Collapse
|
679
|
Torres VE, Leof EB. Fibrosis, regeneration, and aging: playing chess with evolution. J Am Soc Nephrol 2011; 22:1393-6. [PMID: 21757767 DOI: 10.1681/asn.2011060603] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
680
|
Rüster C, Wolf G. Angiotensin II as a morphogenic cytokine stimulating renal fibrogenesis. J Am Soc Nephrol 2011; 22:1189-99. [PMID: 21719784 DOI: 10.1681/asn.2010040384] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inhibitors of the renin-angiotensin-aldosterone system attenuate glomerulosclerosis and interstitial fibrosis. Although the mechanisms underlying their antifibrotic effects are complex, angiotensin II (Ang II) emerges as a major profibrogenic cytokine. Ang II modulates renal cell growth, extracellular matrix synthesis, and degradation by multiple fibrotic pathways. One of the main targets of Ang II in renal fibrosis is TGFβ. Many, but not all, of the stimulatory effects of Ang II on fibrogenesis depend on the induction of TGFβ and its downstream mediators of matrix accumulation, inflammation, and apoptosis. However because of the difficulty in targeting TGFβ, connective tissue growth factor β (CTGF), a downstream mediator of TGFβ, has become a more promising antifibrotic target. Ang II can directly induce expression of renal CTGF and mediate epithelial-mesenchymal transition. Other profibrotic factors stimulated by Ang II include endothelin-1, plasminogen activator inhibitor-1, matrix metalloproteinase (MMP)-2, and a tissue inhibitor of metalloproteinase-2. Finally, connections among Ang II, hypoxia, and the induction of hypoxia-inducible factor-1α contribute to fibrogenesis. A better understanding of the multiple morphogenic effects of Ang II may be necessary to develop better strategies to halt the progression of renal disease.
Collapse
Affiliation(s)
- Christiane Rüster
- Department of Internal Medicine III, Friedrich Schiller University, Erlanger-Allee 101, D-07740 Jena, Germany
| | | |
Collapse
|
681
|
Prunotto M, Ghiggeri G, Bruschi M, Gabbiani G, Lescuyer P, Hocher B, Chaykovska L, Berrera M, Moll S. Renal fibrosis and proteomics: current knowledge and still key open questions for proteomic investigation. J Proteomics 2011; 74:1855-70. [PMID: 21642026 DOI: 10.1016/j.jprot.2011.05.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 04/27/2011] [Accepted: 05/22/2011] [Indexed: 12/25/2022]
Abstract
Renal tubulo-interstitial fibrosis is a non-specific process, representing the final common pathway for all kidney diseases, irrespective of their initial cause, histological injury, or etiology, leading to gradual expansion of the fibrotic mass which destroys the normal structure of the tissue and results in organ dysfunction and, ultimately, in end-stage organ failure. Proteomic studies of the fibrotic pathophysiological mechanisms have been performed in cell cultures, animal models and human tissues, addressing some of the key issues. This article will review proteomic contribution to the raising current knowledge on renal fibrosis biology and also mention seminal open questions to which proteomic techniques and proteomists could fruitfully contribute.
Collapse
Affiliation(s)
- Marco Prunotto
- RenalChild Foundation, G. Gaslini Children Hospital, Genoa, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
682
|
Levin A, Beaulieu MC. Trials and Tribulations of New Agents, Novel Biomarkers, and Retarding Renal Progression. J Am Soc Nephrol 2011; 22:992-3. [DOI: 10.1681/asn.2011040402] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
683
|
Skuginna V, Lech M, Allam R, Ryu M, Clauss S, Susanti HE, Römmele C, Garlanda C, Mantovani A, Anders HJ. Toll-like receptor signaling and SIGIRR in renal fibrosis upon unilateral ureteral obstruction. PLoS One 2011; 6:e19204. [PMID: 21544241 PMCID: PMC3081345 DOI: 10.1371/journal.pone.0019204] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 03/28/2011] [Indexed: 12/03/2022] Open
Abstract
Innate immune activation via IL-1R or Toll-like receptors (TLR) contibutes to acute kidney injury but its role in tissue remodeling during chronic kidney disease is unclear. SIGIRR is an inhibitor of TLR-induced cytokine and chemokine expression in intrarenal immune cells, therefore, we hypothesized that Sigirr-deficiency would aggravate postobstructive renal fibrosis. The expression of TLRs as well as endogenous TLR agonists increased within six days after UUO in obstructed compared to unobstructed kidneys while SIGIRR itself was downregulated by day 10. However, lack of SIGIRR did not affect the intrarenal mRNA expression of proinflammatory and profibrotic mediators as well as the numbers of intrarenal macrophages and T cells or morphometric markers of tubular atrophy and interstitial fibrosis. Because SIGIRR is known to block TLR/IL-1R signaling at the level of the intracellular adaptor molecule MyD88 UUO experiments were also performed in mice deficient for either MyD88, TLR2 or TLR9. After UUO there was no significant change of tubular interstitial damage and interstitial fibrosis in neither of these mice compared to wildtype counterparts. Additional in-vitro studies with CD90+ renal fibroblasts revealed that TLR agonists induce the expression of IL-6 and MCP-1/CCL2 but not of TGF-β, collagen-1α or smooth muscle actin. Together, postobstructive renal interstitial fibrosis and tubular atrophy develop independent of SIGIRR, TLR2, TLR9, and MyD88. These data argue against a significant role of these molecules in renal fibrosis.
Collapse
Affiliation(s)
- Veronika Skuginna
- Department of Nephrology, Medizinische Poliklinik, University of Munich, Munich, Germany
| | - Maciej Lech
- Department of Nephrology, Medizinische Poliklinik, University of Munich, Munich, Germany
| | - Ramanjaneyulu Allam
- Department of Nephrology, Medizinische Poliklinik, University of Munich, Munich, Germany
| | - Mi Ryu
- Department of Nephrology, Medizinische Poliklinik, University of Munich, Munich, Germany
| | - Sebastian Clauss
- Department of Nephrology, Medizinische Poliklinik, University of Munich, Munich, Germany
- Medizinische Klinik und Poliklinik I Grosshadern, University of Munich, Munich, Germany
| | - Heni Eka Susanti
- Department of Nephrology, Medizinische Poliklinik, University of Munich, Munich, Germany
| | - Christoph Römmele
- Department of Nephrology, Medizinische Poliklinik, University of Munich, Munich, Germany
| | - Cecilia Garlanda
- Istituto Clinico Humanitas and Fondazione Humanitas per la Ricerca, Rozzano, Italy
| | - Alberto Mantovani
- Istituto Clinico Humanitas and Fondazione Humanitas per la Ricerca, Rozzano, Italy
| | - Hans-Joachim Anders
- Department of Nephrology, Medizinische Poliklinik, University of Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
684
|
Kriz W, Kaissling B, Le Hir M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J Clin Invest 2011; 121:468-74. [PMID: 21370523 DOI: 10.1172/jci44595] [Citation(s) in RCA: 347] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) has become widely accepted as a mechanism by which injured renal tubular cells transform into mesenchymal cells that contribute to the development of fibrosis in chronic renal failure. However, an increasing number of studies raise doubts about the existence of this process in vivo. Herein, we review and summarize both sides of this debate, but it is our view that unequivocal evidence supporting EMT as an in vivo process in kidney fibrosis is lacking.
Collapse
Affiliation(s)
- Wilhelm Kriz
- Department of Anatomy and Developmental Biology, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| | | | | |
Collapse
|
685
|
Forbes MS, Thornhill BA, Chevalier RL. Proximal tubular injury and rapid formation of atubular glomeruli in mice with unilateral ureteral obstruction: a new look at an old model. Am J Physiol Renal Physiol 2011; 301:F110-7. [PMID: 21429968 DOI: 10.1152/ajprenal.00022.2011] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Unilateral ureteral obstruction (UUO), employed extensively as a model of progressive renal interstitial fibrosis, results in rapid parenchymal deterioration. Atubular glomeruli are formed in many renal disorders, but their identification has been limited by labor-intensive available techniques. The formation of atubular glomeruli was therefore investigated in adult male mice subjected to complete UUO under general anesthesia. In this species, the urinary pole of Bowman's capsule is normally lined by tall parietal epithelial cells similar to those of the proximal tubule, and both avidly bind Lotus tetragonolobus lectin. Following UUO, these cells became flattened, lost their affinity for Lotus lectin, and no longer generated superoxide (revealed by nitroblue tetrazolium infusion). Based on Lotus lectin staining, stereological measurements, and serial section analysis, over 80% of glomeruli underwent marked transformation after 14 days of UUO. The glomerulotubular junction became stenotic and atrophic due to cell death by apoptosis and autophagy, with concomitant remodeling of Bowman's capsule to form atubular glomeruli. In this degenerative process, transformed epithelial cells sealing the urinary pole expressed α-smooth muscle actin, vimentin, and nestin. Although atubular glomeruli remained perfused, renin immunostaining was markedly increased along afferent arterioles, and associated maculae densae disappeared. Numerous progressive kidney disorders, including diabetic nephropathy, are characterized by the formation of atubular glomeruli. The rapidity with which glomerulotubular junctions degenerate, coupled with Lotus lectin as a marker of glomerular integrity, points to new investigative uses for the model of murine UUO focusing on mechanisms of epithelial cell injury and remodeling in addition to fibrogenesis.
Collapse
Affiliation(s)
- Michael S Forbes
- Dept. of Pediatrics, University of Virginia, Box 800386, Charlottesville, VA 22908, USA
| | | | | |
Collapse
|
686
|
|
687
|
Anderson S, Eldadah B, Halter JB, Hazzard WR, Himmelfarb J, Horne FM, Kimmel PL, Molitoris BA, Murthy M, O'Hare AM, Schmader KE, High KP. Acute kidney injury in older adults. J Am Soc Nephrol 2011; 22:28-38. [PMID: 21209252 DOI: 10.1681/asn.2010090934] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Aging kidneys undergo structural and functional changes that decrease autoregulatory capacity and increase susceptibility to acute injury. Acute kidney injury associates with duration and location of hospitalization, mortality risk, progression to chronic kidney disease, and functional status in daily living. Definition and diagnosis of acute kidney injury are based on changes in creatinine, which is an inadequate marker and might identify patients when it is too late. The incidence of acute kidney injury is rising and increases with advancing age, yet clinical studies have been slow to address geriatric issues or the heterogeneity in etiologies, outcomes, or patient preferences among the elderly. Here we examine some of the current literature, identify knowledge gaps, and suggest potential research questions regarding acute kidney injury in older adults. Answering these questions will facilitate the integration of geriatric issues into future mechanistic and clinical studies that affect management and care of acute kidney injury.
Collapse
Affiliation(s)
- Sharon Anderson
- Section on Infectious Diseases, Department of Internal Medicine, Wake Forest University School of Medicine, 100 Medical Center Boulevard, Winston-Salem, NC 27157-1042, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
688
|
Fogo AB, Alpers CE. Navigating the Challenges of Fibrosis Assessment: Land in Sight? J Am Soc Nephrol 2010; 22:11-3. [DOI: 10.1681/asn.2010111132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|