7351
|
Cui J, Gong Z, Shen HM. The role of autophagy in liver cancer: molecular mechanisms and potential therapeutic targets. Biochim Biophys Acta Rev Cancer 2013; 1836:15-26. [PMID: 23428608 DOI: 10.1016/j.bbcan.2013.02.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/08/2013] [Accepted: 02/08/2013] [Indexed: 02/07/2023]
Abstract
Autophagy is an evolutionarily conserved pathway for degradation of cytoplasmic proteins and organelles via lysosome. Proteins coded by the autophagy-related genes (Atgs) are the core molecular machinery in control of autophagy. Among the various biological functions of autophagy identified so far, the link between autophagy and cancer is probably among the most extensively studied and is often viewed as controversial. Autophagy might exert a dual role in cancer development: autophagy can serve as an anti-tumor mechanism, as defective autophagy (e.g., heterozygous knockdown Beclin 1 and Atg7 in mice) promotes the malignant transformation and spontaneous tumors. On the other hand, autophagy functions as a protective or survival mechanism in cancer cells against cellular stress (e.g., nutrient deprivation, hypoxia and DNA damage) and hence promotes tumorigenesis and causes resistance to therapeutic agents. Liver cancer is one of the common cancers with well-established etiological factors including hepatitis virus infection and environmental carcinogens such as aflatoxin and alcohol exposure. In recent years, the involvement of autophagy in liver cancer has been increasingly studied. Here, we aim to provide a systematic review on the close cross-talks between autophagy and liver cancer, and summarize the current status in development of novel liver cancer therapeutic approaches by targeting autophagy. It is believed that understanding the molecular mechanisms underlying the autophagy modulation and liver cancer development may provoke the translational studies that ultimately lead to new therapeutic strategies for liver cancer.
Collapse
Affiliation(s)
- Jianzhou Cui
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | |
Collapse
|
7352
|
Cheng G, Kong RH, Zhang LM, Zhang JN. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br J Pharmacol 2013; 167:699-719. [PMID: 23003569 DOI: 10.1111/j.1476-5381.2012.02025.x] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a major health and socioeconomic problem throughout the world. It is a complicated pathological process that consists of primary insults and a secondary insult characterized by a set of biochemical cascades. The imbalance between a higher energy demand for repair of cell damage and decreased energy production led by mitochondrial dysfunction aggravates cell damage. At the cellular level, the main cause of the secondary deleterious cascades is cell damage that is centred in the mitochondria. Excitotoxicity, Ca(2+) overload, reactive oxygen species (ROS), Bcl-2 family, caspases and apoptosis inducing factor (AIF) are the main participants in mitochondria-centred cell damage following TBI. Some preclinical and clinical results of mitochondria-targeted therapy show promise. Mitochondria- targeted multipotential therapeutic strategies offer new hope for the successful treatment of TBI and other acute brain injuries.
Collapse
Affiliation(s)
- Gang Cheng
- Neurosurgical Department, PLA Navy General Hospital, Beijing, China
| | | | | | | |
Collapse
|
7353
|
Manghera M, Douville RN. Endogenous retrovirus-K promoter: a landing strip for inflammatory transcription factors? Retrovirology 2013; 10:16. [PMID: 23394165 PMCID: PMC3598470 DOI: 10.1186/1742-4690-10-16] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 02/01/2013] [Indexed: 12/24/2022] Open
Abstract
Humans are symbiotic organisms; our genome is populated with a substantial number of endogenous retroviruses (ERVs), some remarkably intact, while others are remnants of their former selves. Current research indicates that not all ERVs remain silent passengers within our genomes; re-activation of ERVs is often associated with inflammatory diseases. ERVK is the most recently endogenized and transcriptionally active ERV in humans, and as such may potentially contribute to the pathology of inflammatory disease. Here, we showcase the transcriptional regulation of ERVK. Expression of ERVs is regulated in part by epigenetic mechanisms, but also depends on transcriptional regulatory elements present within retroviral long terminal repeats (LTRs). These LTRs are responsive to both viral and cellular transcription factors; and we are just beginning to appreciate the full complexity of transcription factor interaction with the viral promoter. In this review, an exploration into the inflammatory transcription factor sites within the ERVK LTR will highlight the possible mechanisms by which ERVK is induced in inflammatory diseases.
Collapse
Affiliation(s)
- Mamneet Manghera
- Department of Biology, The University of Winnipeg, Winnipeg, MB, Canada
| | | |
Collapse
|
7354
|
Yin F, Liu X, Li D, Wang Q, Zhang W, Li L. Bioinformatic analysis of chemokine (C-C motif) ligand 21 and SPARC-like protein 1 revealing their associations with drug resistance in ovarian cancer. Int J Oncol 2013; 42:1305-16. [PMID: 23404140 DOI: 10.3892/ijo.2013.1819] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/14/2013] [Indexed: 11/06/2022] Open
Abstract
Chemokine (C-C motif) ligand 21 (CCL21) and SPARC-like protein 1 (SPARCL1/MAST9/hevin/SC-1) are associated with various biological behavior in the development of cancers. Although the expression of CCL21 and SPARCL1 is downregulated in many solid tumors, their roles in ovarian cancer and their associations with drug resistance have rarely been studied. We performed a comprehensive bioinformatic analysis consisting of motif analysis, literature co-occurrence, gene/protein-gene/protein interaction network, protein-small molecule interaction network, and microRNAs enrichments which revealed that CCL21 and SPARCL1 directly or indirectly interact with a number of genes, proteins, small molecules and pathways associated with drug resistance in ovarian and other cancers. These results suggested that CCL21 and SPARCL1 may contribute to drug resistance in ovarian cancer. This study provided important information for further investigation of drug resistance-related functions of CCL21 and SPARCL1 in ovarian cancer.
Collapse
Affiliation(s)
- Fuqiang Yin
- Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | | | | | | | | | | |
Collapse
|
7355
|
KIM SOY, KANG SUJIN, SONG JAEJ, KIM JOOHANG. The effectiveness of the oncolytic activity induced by Ad5/F35 adenoviral vector is dependent on the cumulative cellular conditions of survival and autophagy. Int J Oncol 2013; 42:1337-48. [DOI: 10.3892/ijo.2013.1812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/22/2013] [Indexed: 11/05/2022] Open
|
7356
|
Regulation of inositol 1,4,5-trisphosphate receptors during endoplasmic reticulum stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1612-24. [PMID: 23380704 DOI: 10.1016/j.bbamcr.2013.01.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Revised: 01/13/2013] [Accepted: 01/21/2013] [Indexed: 12/15/2022]
Abstract
The endoplasmic reticulum (ER) performs multiple functions in the cell: it is the major site of protein and lipid synthesis as well as the most important intracellular Ca(2+) reservoir. Adverse conditions, including a decrease in the ER Ca(2+) level or an increase in oxidative stress, impair the formation of new proteins, resulting in ER stress. The subsequent unfolded protein response (UPR) is a cellular attempt to lower the burden on the ER and to restore ER homeostasis by imposing a general arrest in protein synthesis, upregulating chaperone proteins and degrading misfolded proteins. This response can also lead to autophagy and, if the stress can not be alleviated, to apoptosis. The inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and IP3-induced Ca(2+) signaling are important players in these processes. Not only is the IP3R activity modulated in a dual way during ER stress, but also other key proteins involved in Ca(2+) signaling are modulated. Changes also occur at the structural level with a strengthening of the contacts between the ER and the mitochondria, which are important determinants of mitochondrial Ca(2+) uptake. The resulting cytoplasmic and mitochondrial Ca(2+) signals will control cellular decisions that either promote cell survival or cause their elimination via apoptosis. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
7357
|
Selenium content in seafood in Japan. Nutrients 2013; 5:388-95. [PMID: 23434904 PMCID: PMC3635200 DOI: 10.3390/nu5020388] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 11/17/2022] Open
Abstract
Selenium is an essential micronutrient for humans, and seafood is one of the major selenium sources, as well as red meat, grains, eggs, chicken, liver and garlic. A substantial proportion of the total amount of selenium is present as selenium containing imidazole compound, selenoneine, in the muscles of ocean fish. In order to characterize the selenium content in seafood, the total selenium levels were measured in the edible portions of commercially important fish and shellfish species. Among the tested edible portions, alfonsino muscle had the highest selenium levels (concentration of 1.27 mg/kg tissue). High levels of selenium (1.20–1.07 mg/kg) were also found in the salted ovary products of mullet and Pacific herring. In other fish muscles, the selenium levels ranged between 0.12 and 0.77 mg/kg tissue. The selenium levels were closely correlated with the mercury levels in the white and red muscles in alfonsino. The selenium content in spleen, blood, hepatopancreas, heart, red muscle, white muscle, brain, ovary and testis ranged between 1.10 and 24.8 mg/kg tissue in alfonsino.
Collapse
|
7358
|
Honsa ES, Owens CP, Goulding CW, Maresso AW. The near-iron transporter (NEAT) domains of the anthrax hemophore IsdX2 require a critical glutamine to extract heme from methemoglobin. J Biol Chem 2013; 288:8479-8490. [PMID: 23364793 DOI: 10.1074/jbc.m112.430009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Several gram-positive pathogenic bacteria employ near-iron transporter (NEAT) domains to acquire heme from hemoglobin during infection. However, the structural requirements and mechanism of action for NEAT-mediated heme extraction remains unknown. Bacillus anthracis exhibits a rapid growth rate during systemic infection, suggesting that the bacterium expresses efficient iron acquisition systems. To understand how B. anthracis acquires iron from heme sources, which account for 80% of mammalian iron stores, we investigated the properties of the five-NEAT domain hemophore IsdX2. Using a combination of bioinformatics and site-directed mutagenesis, we determined that the heme extraction properties of IsdX2 are dependent on an amino acid with an amide side chain within the 310-helix of the NEAT domain. Additionally, we used a spectroscopic analysis to show that IsdX2 NEAT domains only scavenge heme from methemoglobin (metHb) and that autoxidation of oxyhemoglobin to metHb must occur prior to extraction. We also report the crystal structures of NEAT5 wild type and a Q29T mutant and present surface plasmon resonance data that indicate that the loss of this amide side chain reduces the affinity of the NEAT domain for metHb. We propose a model whereby the amide side chain is first required to drive an interaction with metHb that destabilizes heme, which is subsequently extracted and coordinated in the aliphatic heme-binding environment of the NEAT domain. Because an amino acid with an amide side chain in this position is observed in NEAT domains of several genera of gram-positive pathogenic bacteria, these results suggest that specific targeting of this or nearby residues may be an entry point for inhibitor development aimed at blocking bacterial iron acquisition during infection.
Collapse
Affiliation(s)
- Erin S Honsa
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030
| | - Cedric P Owens
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92617
| | - Celia W Goulding
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92617
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030.
| |
Collapse
|
7359
|
Tong X, Peng H, Liu D, Ji L, Niu C, Ren J, Pan B, Hu J, Zheng L, Huang Y. High-density lipoprotein of patients with type 2 diabetes mellitus upregulates cyclooxgenase-2 expression and prostacyclin I-2 release in endothelial cells: relationship with HDL-associated sphingosine-1-phosphate. Cardiovasc Diabetol 2013; 12:27. [PMID: 23360427 PMCID: PMC3599898 DOI: 10.1186/1475-2840-12-27] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 01/28/2013] [Indexed: 12/21/2022] Open
Abstract
Background Dysfunctional high-density lipoprotein (HDL) may have pro-inflammatory effects on the endothelial cells,which causes atherosclerosis in type 2 diabetes mellitus (T2DM). HDL is a major carrier of sphingosine-1-phosphate (S1P) in plasma while S1P exhibits multiple biological activities. However, potential role of HDL and S1P in T2DM remains unexplored. We hypothesized that diabetic HDL with higher contents of S1P exerts beneficial effects on the vascular system. Methods Subjects with T2DM with or without proved large arteries atherosclerosis and normal controls (n=15 for each group) were recruited in the present study. HDL was isolated from the subjects by ultracentrifugation. The levels of HDL-associated S1P were determined by UPLC-MS/MS. The protective function of diabetic HDL and S1P was evaluated by measuring cyclooxygenase-2 (COX-2) expression and prostacyclin I-2 (PGI-2) release by human umbilical vein endothelial cells (HUVECs) using western blot and enzyme-linked immunosorbent assay (ELISA), respectively. Results The S1P levels in isolated HDL were significantly increased in T2DM subjects compared with controls (235.6 ± 13.4 vs 195.0 ± 6.4 ng/mg, P< 0.05). The diabetic HDL exerted greater protective effects on inducing COX-2 expression and PGI-2 release by HUVECs than those of control HDL (p < 0.05, p < 0.01, respectively). Pertussis toxin, a common inhibitor of G-couple protein receptors, and VPC 23019, an antagonist of S1P receptor 1 and 3 significantly attenuated HDL-induced COX-2 expression and PGI-2 release. Conclusions Diabetic HDL carries higher level of S1P compared with normal HDL, which has the potential to contribute to protective effects on endothelial cells by inducing COX-2 expression and PGI-2 release. These findings provide a new insight of S1P function in T2DM patients, possibly leading to a new therapeutic target.
Collapse
Affiliation(s)
- Xunliang Tong
- Department of Neurology, Peking University First Hospital, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7360
|
Liu H, Jia D, Li A, Chau J, He D, Ruan X, Liu F, Li J, He L, Li B. p53 regulates neural stem cell proliferation and differentiation via BMP-Smad1 signaling and Id1. Stem Cells Dev 2013. [PMID: 23199293 DOI: 10.1089/scd.2012.0370] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neural stem cells (NSCs) play essential roles in nervous system development and postnatal neuroregeneration and their deregulation underlies the development of neurodegenerative disorders. Yet how NSC proliferation and differentiation are controlled is not fully understood. Here we present evidence that tumor suppressor p53 regulates NSC proliferation and differentiation via the bone morphogenetic proteins (BMP)-Smad1 pathway and its target gene inhibitor of DNA binding 1 (Id1). p53 deficiency led to increased neurogenesis in vivo, and biased neuronal differentiation and augmented NSC proliferation of ex vivo NSCs. This is accompanied by elevated Smad1 expression/activation in the brain and NSC, which contributes to accelerated neuronal differentiation of p53(-/-) NSCs. p53 deficiency also leads to upregulation of Id1, whose expression is repressed by p53 in BMP-Smad1-dependent and -independent manners. Elevated Id1 expression contributes to augmented proliferation and, unexpectedly, accelerated neuronal differentiation of p53(-/-) NSCs as well. This study reveals a molecular mechanism by which tumor suppressor p53 controls NSC proliferation and differentiation and establishes a connection between p53 and Id1.
Collapse
Affiliation(s)
- Huijuan Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7361
|
Ye J, Liu H, Hu Y, Wan G, Li J, Wang Z, Li P, Zhang G, Li Y. The clinical implication of tumoral Gal-1 expression in laryngeal squamous cell carcinomas. Clin Transl Oncol 2013; 15:608-18. [PMID: 23359172 DOI: 10.1007/s12094-012-0975-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 11/18/2012] [Indexed: 12/25/2022]
Abstract
PURPOSE To explore the expression of tumoral Gal-1 in association with clinical parameters and outcome in a large population with laryngeal squamous cell carcinomas (LSCCs). METHODS A total of 187 patients with LSCC were retrospectively enrolled. Immunohistochemistry was performed to evaluate the tumoral expression of Gal-1, apoptosis-related proteins and the density of tumor infiltrating lymphocytes (TILs) in tumor tissues before any intervene. Survival curves were estimated by the Kaplan-Meier method, and differences in survival between groups were determined using the log-rank test. Prognostic effects were evaluated by Cox regression analysis. RESULTS A total of 102 carcinomas (54.5 %) were identified as high Gal-1 expression, and 85 carcinomas (45.5 %) as low expression. Tumoral Gal-1 expression was not significantly related with clinical stage and histology differentiation. No correlation of Gal-1 expression with apoptosis-related protein was identified. Instead, Gal-1 status was correlated positively with the ratio of FOXP3(+)/CD8(+) TILs (P = 0.024). In multivariate regression analysis, advanced clinical stage and the presence of metastases were identified as the independent predictors for poor survival in entire cohort. Especially, the statistical correlation between the Gal-1 expression and prognosis was particularly due to the late-stage tumors (P < 0.05). CONCLUSION Current results represent valuable advancements in Gal-1 research and provided further support for using Gal-1 as a diagnostic biomarker and immunotherapeutic target for LSCC.
Collapse
Affiliation(s)
- J Ye
- Department of Otolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-sen University, No. 600 Tianhe Street, Guangzhou, 510630, Guangdong, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
7362
|
Pandey KB, Jha R, Rizvi SI. Erythrocyte membrane transporters during human ageing: Modulatory role of tea catechins. Clin Exp Pharmacol Physiol 2013; 40:83-9. [DOI: 10.1111/1440-1681.12041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/12/2012] [Indexed: 12/16/2022]
Affiliation(s)
| | - Rashmi Jha
- Department of Biochemistry; University of Allahabad; Allahabad; India
| | | |
Collapse
|
7363
|
The impact of oxidative stress in thiamine deficiency: a multifactorial targeting issue. Neurochem Int 2013; 62:796-802. [PMID: 23333339 DOI: 10.1016/j.neuint.2013.01.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 12/22/2012] [Accepted: 01/08/2013] [Indexed: 11/23/2022]
Abstract
Thiamine (vitamin B1) deficiency, the underlying cause of Wernicke-Korsakoff syndrome, is associated with the development of focal neuronal loss in vulnerable areas of the brain. Although the actual mechanism(s) that lead to the selective histological lesions characteristic of this disorder remain unresolved, oxidative stress has been shown to play a major role in its pathophysiology. In this review, the multifactorial influence of oxidative stress on a variety of processes known to take part in the development of structural lesions in TD including excitotoxicity, neuroinflammation, blood-brain barrier integrity, mitochondrial integrity, apoptosis, nucleic acid function, and neural stem cells will be discussed, and therapeutic strategies undertaken for treating neurodegeneration examined which may have an impact on the future treatment of this important vitamin deficiency.
Collapse
|
7364
|
Ikaros inhibits megakaryopoiesis through functional interaction with GATA-1 and NOTCH signaling. Blood 2013; 121:2440-51. [PMID: 23335373 DOI: 10.1182/blood-2012-08-450627] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor Ikaros regulates the development of hematopoietic cells. Ikaros-deficient animals fail to develop B cells and display a T-cell malignancy, which is correlated with altered Notch signaling. Recently, loss of Ikaros was associated with progression of myeloproliferative neoplasms to acute myeloid leukemia and increasing evidence shows that Ikaros is also critical for the regulation of myeloid development. Previous studies showed that Ikaros-deficient mice have increased megakaryopoiesis, but the molecular mechanism of this phenomenon remains unknown. Here, we show that Ikaros overexpression decreases NOTCH-induced megakaryocytic specification, and represses expression of several megakaryocytic genes including GATA-1 to block differentiation and terminal maturation. We also demonstrate that Ikaros expression is differentially regulated by GATA-2 and GATA-1 during megakaryocytic differentiation and reveal that the combined loss of Ikzf1 and Gata1 leads to synthetic lethality in vivo associated with prominent defects in erythroid cells and an expansion of megakaryocyte progenitors. Taken together, our observations demonstrate an important functional interplay between Ikaros, GATA factors, and the NOTCH signaling pathway in specification and homeostasis of the megakaryocyte lineage.
Collapse
|
7365
|
Kastner P, Dupuis A, Gaub MP, Herbrecht R, Lutz P, Chan S. Function of Ikaros as a tumor suppressor in B cell acute lymphoblastic leukemia. AMERICAN JOURNAL OF BLOOD RESEARCH 2013; 3:1-13. [PMID: 23358883 PMCID: PMC3555193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/06/2013] [Indexed: 06/01/2023]
Abstract
The Ikaros transcription factor is crucial for many aspects of hematopoiesis. Loss of function mutations in IKZF1, the gene encoding Ikaros, have been implicated in adult and pediatric B cell acute lymphoblastic leukemia (B-ALL). These mutations result in haploinsufficiency of the Ikaros gene in approximately half of the cases. The remaining cases contain more severe or compound mutations that lead to the generation of dominant-negative proteins or complete loss of function. All IKZF1 mutations are associated with a poor prognosis. Here we review the current genetic, clinical and mechanistic evidence for the role of Ikaros as a tumor suppressor in B-ALL.
Collapse
Affiliation(s)
- Philippe Kastner
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg67404 Illkirch, France
- Université de Strasbourg, Faculté de MédecineStrasbourg, France
| | - Arnaud Dupuis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg67404 Illkirch, France
- Hôpital de Hautepierre, Hôpitaux Universitaires de StrasbourgAvenue Molière, 67100 Strasbourg, France
| | - Marie-Pierre Gaub
- Université de Strasbourg, Faculté de MédecineStrasbourg, France
- Hôpital de Hautepierre, Hôpitaux Universitaires de StrasbourgAvenue Molière, 67100 Strasbourg, France
- Plate-forme Régionale INCa de Génétique Moléculaire des Cancers d’AlsaceAvenue Molière, 67098 Strasbourg, France
| | - Raoul Herbrecht
- Université de Strasbourg, Faculté de MédecineStrasbourg, France
- Hôpital de Hautepierre, Hôpitaux Universitaires de StrasbourgAvenue Molière, 67100 Strasbourg, France
| | - Patrick Lutz
- Université de Strasbourg, Faculté de MédecineStrasbourg, France
- Hôpital de Hautepierre, Hôpitaux Universitaires de StrasbourgAvenue Molière, 67100 Strasbourg, France
| | - Susan Chan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg67404 Illkirch, France
| |
Collapse
|
7366
|
Hirano S, Kakinuma S, Amasaki Y, Nishimura M, Imaoka T, Fujimoto S, Hino O, Shimada Y. Ikaros is a critical target during simultaneous exposure to X-rays and N-ethyl-N-nitrosourea in mouse T-cell lymphomagenesis. Int J Cancer 2013; 132:259-68. [PMID: 22684892 DOI: 10.1002/ijc.27668] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 05/21/2012] [Indexed: 11/09/2022]
Abstract
Cancer risk associated with radiation exposure is considered the result of concurrent exposure to other natural and manmade carcinogens. Available data on the molecular characteristics of cancer after simultaneous exposure to radiation and chemicals are insufficient. In our study, we used a mouse thymic lymphoma (TL) model that was synergistically induced by simultaneous exposure to X-rays and N-ethyl-N-nitrosourea (ENU) at subcarcinogenic doses and analyzed the mutation frequency and spectrum of the TL-associated genes Ikaros, Notch1, p53 and Kras. We found that the point mutation frequency in Ikaros was significantly increased to 47% for simultaneous exposure compared to 13 and 0% for X-ray and ENU exposure alone, respectively. These mutations were mostly G:C > A:T at non-CpG sites and T:A > C:G, both of which are characteristic of ENU mutagenesis. About half of the point mutations were accompanied by loss of heterozygosity (LOH), typical of X-irradiation. The remaining half did not include LOH, which suggests that they were dominant-negative mutations. In Notch1, the frequency of abnormalities was high (>58%) regardless of the treatment, suggesting that Notch1 aberration may be important for T-cell lymphomagenesis. The p53 and Kras mutation frequencies were low for all treatments (<23%). Importantly, the frequency of TLs containing mutations in multiple genes, especially both Ikaros and Notch1, increased after simultaneous exposure. Thus, after simultaneous exposure, Ikaros is a critical target and is inactivated by ENU-induced point mutations and/or X-ray-induced LOH in T-cell lymphomagenesis. Furthermore, concomitant alterations of multiple tumor-associated genes may contribute to enhanced lymphomagenesis after simultaneous exposure.
Collapse
Affiliation(s)
- Shinobu Hirano
- Radiobiology for Children's Health Program, Research Center for Radiation Protection, National Institute of Radiological Sciences, Inage-Ku, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
7367
|
Maxillary sinus augmentation with adult mesenchymal stem cells: a review of the current literature. Oral Surg Oral Med Oral Pathol Oral Radiol 2013; 115:717-23. [PMID: 23313230 DOI: 10.1016/j.oooo.2012.09.087] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/07/2012] [Accepted: 09/16/2012] [Indexed: 12/22/2022]
Abstract
PURPOSE Mesenchymal stem cells (MSCs) have been applied in maxillary sinus augmentation (MSA) with clinically successful results. The purpose of this article was to evaluate the systematically acquired evidence for the effectiveness of cell-based approaches in MSA with various scaffolds, and to narratively assess evidence from additional articles that report effectiveness of cell-based approaches in MSA. MATERIALS AND METHODS Electronic database searches were performed. Inclusion criteria were studies of cell-based approaches in MSA with various scaffolds, in humans, with at least 3 to 4 months of follow-up. Meta-analysis was performed for randomized controlled trials (RCTs) with histologic/histomorphometric evaluation. RESULTS Fifteen studies (4 RCTs) were considered to be eligible for inclusion in the review. The meta-analysis suggested a marginal, nonstatistically significant positive effect of MSCs on the bone regrowth. CONCLUSIONS A number of studies have demonstrated the potential for cell-based approaches in MSA; further RCTs that clearly demonstrate benefits of cell-based approach are needed.
Collapse
|
7368
|
Scarano A, Degidi M, Perrotti V, Degidi D, Piattelli A, Iezzi G. Experimental Evaluation in Rabbits of the Effects of Thread Concavities in Bone Formation with Different Titanium Implant Surfaces. Clin Implant Dent Relat Res 2013; 16:572-81. [DOI: 10.1111/cid.12033] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Antonio Scarano
- Department of Medical; Oral and Biotechnological Sciences, Dental School, University of Chieti-Pescara; Italy
| | | | - Vittoria Perrotti
- Department of Medical; Oral and Biotechnological Sciences, Dental School, University of Chieti-Pescara; Italy
| | | | - Adriano Piattelli
- Department of Medical; Oral and Biotechnological Sciences, Dental School, University of Chieti-Pescara; Italy
| | - Giovanna Iezzi
- Department of Medical; Oral and Biotechnological Sciences, Dental School, University of Chieti-Pescara; Italy
| |
Collapse
|
7369
|
Quint P, Ruan M, Pederson L, Kassem M, Westendorf JJ, Khosla S, Oursler MJ. Sphingosine 1-phosphate (S1P) receptors 1 and 2 coordinately induce mesenchymal cell migration through S1P activation of complementary kinase pathways. J Biol Chem 2013; 288:5398-406. [PMID: 23300082 DOI: 10.1074/jbc.m112.413583] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Normal bone turnover requires tight coupling of bone resorption and bone formation to preserve bone quantity and structure. With aging and during several pathological conditions, this coupling breaks down, leading to either net bone loss or excess bone formation. To preserve or restore normal bone metabolism, it is crucial to determine the mechanisms by which osteoclasts and osteoblast precursors interact and contribute to coupling. We showed that osteoclasts produce the chemokine sphingosine 1-phosphate (S1P), which stimulates osteoblast migration. Thus, osteoclast-derived S1P may recruit osteoblasts to sites of bone resorption as an initial step in replacing lost bone. In this study we investigated the mechanisms by which S1P stimulates mesenchymal (skeletal) cell chemotaxis. S1P treatment of mesenchymal (skeletal) cells activated RhoA GTPase, but this small G protein did not contribute to migration. Rather, two S1P receptors, S1PR1 and S1PR2, coordinately promoted migration through activation of the JAK/STAT3 and FAK/PI3K/AKT signaling pathways, respectively. These data demonstrate that the chemokine S1P couples bone formation to bone resorption through activation of kinase signaling pathways.
Collapse
Affiliation(s)
- Patrick Quint
- Endocrine Research Unit and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
7370
|
Prevarskaya N, Skryma R, Shuba Y. Targeting Ca2+transport in cancer: close reality or long perspective? Expert Opin Ther Targets 2013; 17:225-41. [DOI: 10.1517/14728222.2013.741594] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
7371
|
Razin SV, Borunova VV, Maksimenko OG, Kantidze OL. Cys2His2 zinc finger protein family: classification, functions, and major members. BIOCHEMISTRY (MOSCOW) 2013; 77:217-26. [PMID: 22803940 DOI: 10.1134/s0006297912030017] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cys2His2 (C2H2)-type zinc fingers are widespread DNA binding motifs in eukaryotic transcription factors. Zinc fingers are short protein motifs composed of two or three β-layers and one α-helix. Two cysteine and two histidine residues located in certain positions bind zinc to stabilize the structure. Four other amino acid residues localized in specific positions in the N-terminal region of the α-helix participate in DNA binding by interacting with hydrogen donors and acceptors exposed in the DNA major groove. The number of zinc fingers in a single protein can vary over a wide range, thus enabling variability of target DNA sequences. Besides DNA binding, zinc fingers can also provide protein-protein and RNA-protein interactions. For the most part, proteins containing the C2H2-type zinc fingers are trans regulators of gene expression that play an important role in cellular processes such as development, differentiation, and suppression of malignant cell transformation (oncosuppression).
Collapse
Affiliation(s)
- S V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | |
Collapse
|
7372
|
Ramachandran A, Gangopadhyay SS, Krishnan R, Ranpura SA, Rajendran K, Ram-Mohan S, Mulone M, Gong EM, Adam RM. JunB mediates basal- and TGFβ1-induced smooth muscle cell contractility. PLoS One 2013; 8:e53430. [PMID: 23308222 PMCID: PMC3537614 DOI: 10.1371/journal.pone.0053430] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 11/30/2012] [Indexed: 01/17/2023] Open
Abstract
Smooth muscle contraction is a dynamic process driven by acto-myosin interactions that are controlled by multiple regulatory proteins. Our studies have shown that members of the AP-1 transcription factor family control discrete behaviors of smooth muscle cells (SMC) such as growth, migration and fibrosis. However, the role of AP-1 in regulation of smooth muscle contractility is incompletely understood. In this study we show that the AP-1 family member JunB regulates contractility in visceral SMC by altering actin polymerization and myosin light chain phosphorylation. JunB levels are robustly upregulated downstream of transforming growth factor beta-1 (TGFβ1), a known inducer of SMC contractility. RNAi-mediated silencing of JunB in primary human bladder SMC (pBSMC) inhibited cell contractility under both basal and TGFβ1-stimulated conditions, as determined using gel contraction and traction force microscopy assays. JunB knockdown did not alter expression of the contractile proteins α-SMA, calponin or SM22α. However, JunB silencing decreased levels of Rho kinase (ROCK) and myosin light chain (MLC20). Moreover, JunB silencing attenuated phosphorylation of the MLC20 regulatory phosphatase subunit MYPT1 and the actin severing protein cofilin. Consistent with these changes, cells in which JunB was knocked down showed a reduction in the F:G actin ratio in response to TGFβ1. Together these findings demonstrate a novel function for JunB in regulating visceral smooth muscle cell contractility through effects on both myosin and the actin cytoskeleton.
Collapse
Affiliation(s)
- Aruna Ramachandran
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Samudra S. Gangopadhyay
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ramaswamy Krishnan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sandeep A. Ranpura
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kavitha Rajendran
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Sumati Ram-Mohan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Michelle Mulone
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| | - Edward M. Gong
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rosalyn M. Adam
- Urological Diseases Research Center, Boston Children’s Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
7373
|
Musarò A. Understanding ALS: new therapeutic approaches. FEBS J 2013; 280:4315-22. [PMID: 23217177 DOI: 10.1111/febs.12087] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease associated with motor neuron degeneration, muscle atrophy and paralysis. Although numerous pathological mechanisms have been elucidated, ALS remains an invariably fatal disease in the absence of any effective therapy. The heterogeneity of the disease and the failure to develop satisfactory therapeutic protocols reinforce the view that ALS is a multi-factorial and multi-systemic disease. Thus, a better understanding of the pathogenic mechanisms and study of the potential pathological relationship between the various cellular processes is required to ensure efficacious therapy. The pathogenic mechanisms associated with ALS are reviewed, and the strengths and limitations of some new therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Antonio Musarò
- Institute Pasteur Cenci Bolognetti, Istituto Italiano di Tecnologia, Department of Anatomy, Histology, Forensic Medicine and Orthopedics - Unit of Histology and Medical Embryology, Istituto Interuniversitario di Miologia, Sapienza University of Rome, Italy.
| |
Collapse
|
7374
|
Strehler EE. Plasma membrane calcium ATPases as novel candidates for therapeutic agent development. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2013; 16:190-206. [PMID: 23958189 PMCID: PMC3869240 DOI: 10.18433/j3z011] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Plasma membrane Ca2+ ATPases (PMCAs) are highly regulated transporters responsible for Ca2+ extrusion from all eukaryotic cells. Different PMCA isoforms are implicated in various tasks of Ca2+ regulation including bulk Ca2+ transport and localized Ca2+ signaling in specific membrane microdomains. Accumulating evidence shows that loss, mutation or inappropriate expression of different PMCAs is associated with pathologies ranging from hypertension, low bone density and male infertility to hearing loss and cerebellar ataxia. Compared to Ca2+ influx channels, PMCAs have lagged far behind as targets for drug development, mainly due to the lack of detailed understanding of their structure and specific function. This is rapidly changing thanks to integrated efforts combining biochemical, structural, cellular and physiological studies suggesting that selective modulation of PMCA isoforms may be of therapeutic value in the management of different and complex diseases. Both structurally informed rational design and high-throughput small molecule library screenings are promising strategies that are expected to lead to specific and isoform-selective modulators of PMCA function. This short review will provide an overview of the diverse roles played by PMCA isoforms in different cells and tissues and their emerging involvement in pathophysiological processes, summarize recent progress in obtaining structural information on the PMCAs, and discuss current and future strategies to develop specific PMCA inhibitors and activators for potential therapeutic applications.
Collapse
Affiliation(s)
- Emanuel E Strehler
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN, USA.
| |
Collapse
|
7375
|
Suzuki H, Shiba M, Fujimoto M, Kawamura K, Nanpei M, Tekeuchi E, Matsushima S, Kanamaru K, Imanaka-Yoshida K, Yoshida T, Taki W. Matricellular protein: a new player in cerebral vasospasm following subarachnoid hemorrhage. ACTA NEUROCHIRURGICA. SUPPLEMENT 2013; 115:213-218. [PMID: 22890671 DOI: 10.1007/978-3-7091-1192-5_39] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
INTRODUCTION Matricellular protein (MCP) is a class of nonstructural and secreted extracellular matrix proteins that exert diverse functions, but its role in vascular smooth muscle contraction has not been investigated. MATERIAL AND METHODS First, rat subarachnoid hemorrhage (SAH) models were produced by endovascular perforation and examined for tenascin-C (TNC) and osteopontin (OPN) induction (representatives of MCPs) in vasospastic cerebral arteries using immunostaining. Second, recombinant TNC (r-TNC), recombinant OPN (r-OPN), or both were injected into a cisterna magna in healthy rats, and the effects on the diameter of basilar arteries were determined using India ink angiography. RESULTS In SAH rats, TNC immunoreactivity was markedly induced in the smooth muscle cell layers of spastic cerebral arteries on day 1 but not in control animals. The TNC immunoreactivity decreased on day 3 as vasospasm improved: OPN immunoreactivity, on the other hand, was more induced in the arterial wall on day 3. r-TNC injections caused prolonged contractions of rat basilar arteries, which were reversed by r-OPN, although r-OPN itself had no effect on the vessel diameter. CONCLUSIONS MCPs, including TNC and OPN, may contribute to the pathophysiology of cerebral vasospasm and provide a novel therapeutic approach against it.
Collapse
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7376
|
Characterization of critical reagents in ligand-binding assays: enabling robust bioanalytical methods and lifecycle management. Bioanalysis 2013; 5:227-44. [DOI: 10.4155/bio.12.304] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The effective management of validated ligand-binding assays used for PK, PD and immunogenicity assessments of biotherapeutics is vital to ensuring robust and consistent assay performance throughout the lifetime of the method. The structural integrity and functional quality of critical reagents is often linked to ligand-binding assay performance; therefore, physicochemical and biophysical characterization coupled with assessment of assay performance can enable the highest degree of reagent quality. The implementation of a systematic characterization process for monitoring critical reagent attributes, utilizing detailed analytical techniques such as LC–MS, can expedite assay troubleshooting and identify deleterious trends. In addition, this minimizes the potential for costly delays in drug development due to reagent instability or batch-to-batch variability. This article provides our perspectives on a proactive critical reagent QC process. Case studies highlight the analytical techniques used to identify chemical and molecular factors and the interdependencies that can contribute to protein heterogeneity and integrity.
Collapse
|
7377
|
Hosseini MJ, Shaki F, Ghazi-Khansari M, Pourahmad J. Toxicity of vanadium on isolated rat liver mitochondria: a new mechanistic approach. Metallomics 2013; 5:152-66. [DOI: 10.1039/c2mt20198d] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7378
|
Ren H, Panchatcharam M, Mueller P, Escalante-Alcalde D, Morris AJ, Smyth SS. Lipid phosphate phosphatase (LPP3) and vascular development. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1831:126-32. [PMID: 22835522 PMCID: PMC3683602 DOI: 10.1016/j.bbalip.2012.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/15/2012] [Accepted: 07/16/2012] [Indexed: 01/12/2023]
Abstract
Lipid phosphate phosphatases (LPP) are integral membrane proteins with broad substrate specificity that dephosphorylate lipid substrates including phosphatidic acid, lysophosphatidic acid, ceramide 1-phosphate, sphingosine 1-phosphate, and diacylglycerol pyrophosphate. Although the three mammalian enzymes (LPP1-3) demonstrate overlapping catalytic activities and substrate preferences in vitro, the phenotypes of mice with targeted inactivation of the Ppap2 genes encoding the LPP enzymes reveal nonredundant functions. A specific role for LPP3 in vascular development has emerged from studies of mice lacking Ppap2b. A meta-analysis of multiple, large genome-wide association studies identified a single nucleotide polymorphism in PPAP2B as a novel predictor of coronary artery disease. In this review, we will discuss the evidence that links LPP3 to vascular development and disease and evaluate potential molecular mechanisms. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- H Ren
- The Gill Heart Institute, Division of Cardiovascular Medicine, Lexington, KY 40536-0200, USA
| | | | | | | | | | | |
Collapse
|
7379
|
|
7380
|
|
7381
|
Abstract
Myocardial infarction is one of the major causes of left ventricular dilatation, frequently leading to heart failure. In the last decade, the wound healing process that takes place in the infarct area after infarction has been recognized as a novel therapeutic target to attenuate left ventricular dilatation and preserve an adequate cardiac function. In this chapter, we discuss the role of Wnt signaling in the wound healing process after infarction, with a specific focus on its modulating effect on myofibroblast characteristics.
Collapse
|
7382
|
Delgado A, Fabriàs G, Casas J, Abad JL. Natural products as platforms for the design of sphingolipid-related anticancer agents. Adv Cancer Res 2013; 117:237-81. [PMID: 23290782 DOI: 10.1016/b978-0-12-394274-6.00008-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Modulation of sphingolipid metabolism is a promising strategy for cancer therapy that has already opened innovative approaches for the development of pharmacological tools and rationally designed new drugs. On the other hand, natural products represent a classical and well-established source of chemical diversity that has guided medicinal chemists on the development of new chemical entities with potential therapeutic use. Based on these premises, the aim of this chapter is to provide the reader with a general overview of some of the most representative families of sphingolipid-related natural products that have been described in the recent literature as lead compounds for the design of new modulators of sphingolipid metabolism. Special emphasis is placed on the structural aspects of natural sphingoids and synthetic analogs that have found application as anticancer agents. In addition, their cellular targets and/or their mode of action are also considered.
Collapse
Affiliation(s)
- Antonio Delgado
- Spanish National Research Council, Consejo Superior de Investigaciones Científicas, Research Unit on Bioactive Molecules, Jordi Girona 18-26, Barcelona, Spain.
| | | | | | | |
Collapse
|
7383
|
Abstract
Dysfunctional intracellular signaling involving deregulated activation of the Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) and "cross-talk" between JAK/STAT and the stress-activated protein kinase/mitogen-activated protein kinase (SAPK/MAPK) and Phosphatidylinositide-3-Kinase/AKT/mammalian Target of Rapamycin (PI-3K/AKT/mTOR) pathways play a critical role in rheumatoid arthritis. This is exemplified by immune-mediated chronic inflammation, up-regulated matrix metalloproteinase gene expression, induction of articular chondrocyte apoptosis and "apoptosis-resistance" in rheumatoid synovial tissue. An important consideration in the development of novel therapeutics for rheumatoid arthritis will be the extent to which inhibiting these signal transduction pathways will sufficiently suppress immune cell-mediated inflammation to produce a lasting clinical remission and halt the progression of rheumatoid arthritis pathology. In that regard, the majority of the evidence accumulated over the past decade indicated that merely suppressing pro-inflammatory cytokine-mediated JAK/ STAT, SAPK/MAPK or PI-3K/AKT/mTOR activation in RA patients may be necessary but not sufficient to result in clinical improvement. Thus, targeting aberrant enzyme activities of spleen tyrosine kinase, sphingosine kinases-1, -2, transforming growth factor β-activated kinase-1, bone marrow kinase, and nuclear factor-κB-inducing kinase for intervention may also have to be considered.
Collapse
Affiliation(s)
- Charles J Malemud
- Arthritis Research Laboratory, Department of Medicine, Division of Rheumatic Diseases, Case Western Reserve University, School of Medicine and University Hospitals Case Medical Center, Cleveland, Ohio 44106, USA
| |
Collapse
|
7384
|
Kapinas K, Grandy R, Ghule P, Medina R, Becker K, Pardee A, Zaidi SK, Lian J, Stein J, van Wijnen A, Stein G. The abbreviated pluripotent cell cycle. J Cell Physiol 2013; 228:9-20. [PMID: 22552993 PMCID: PMC3667593 DOI: 10.1002/jcp.24104] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Human embryonic stem cells (hESCs) and induced pluripotent stem cells proliferate rapidly and divide symmetrically producing equivalent progeny cells. In contrast, lineage committed cells acquire an extended symmetrical cell cycle. Self-renewal of tissue-specific stem cells is sustained by asymmetric cell division where one progeny cell remains a progenitor while the partner progeny cell exits the cell cycle and differentiates. There are three principal contexts for considering the operation and regulation of the pluripotent cell cycle: temporal, regulatory, and structural. The primary temporal context that the pluripotent self-renewal cell cycle of hESCs is a short G1 period without reducing periods of time allocated to S phase, G2, and mitosis. The rules that govern proliferation in hESCs remain to be comprehensively established. However, several lines of evidence suggest a key role for the naïve transcriptome of hESCs, which is competent to stringently regulate the embryonic stem cell (ESC) cell cycle. This supports the requirements of pluripotent cells to self-propagate while suppressing expression of genes that confer lineage commitment and/or tissue specificity. However, for the first time, we consider unique dimensions to the architectural organization and assembly of regulatory machinery for gene expression in nuclear microenviornments that define parameters of pluripotency. From both fundamental biological and clinical perspectives, understanding control of the abbreviated ESC cycle can provide options to coordinate control of proliferation versus differentiation. Wound healing, tissue engineering, and cell-based therapy to mitigate developmental aberrations illustrate applications that benefit from knowledge of the biology of the pluripotent cell cycle.
Collapse
Affiliation(s)
- Kristina Kapinas
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Rodrigo Grandy
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Prachi Ghule
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Ricardo Medina
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Klaus Becker
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Arthur Pardee
- Department of Biological Chemistry and Molecular Pharmacology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - Sayyed K. Zaidi
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Jane Lian
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Janet Stein
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Andre van Wijnen
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Gary Stein
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
7385
|
Genetic targets in pediatric acute lymphoblastic leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 779:327-40. [PMID: 23288647 DOI: 10.1007/978-1-4614-6176-0_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acute leukemia represents 31% of all cancers diagnosed in children and 80% of it is of Lymphoblastic type. Multiple genetic lesions in the hematopoietic progenitor cells prior to or during differentiation to B and T cell lead to development of leukemia. There are several subtypes of Acute Leukemia based on chromosome number changes, the presence of certain translocations and gene mutations, each of which has different clinical, biological and prognostic features. High throughput genomic technologies like array-based comparative genomic hybridization (array-CGH) and single nucleotide polymorphism microarrays (SNP arrays), have given us insight through a very detailed look at the genetic changes of leukemia, specifically, ALL. Here, we discuss various genetic mutations identified in Acute Lymphoblastic Leukemia. We also explore various genetic targets and currently available as well as upcoming targeted therapies for ALL.
Collapse
|
7386
|
Barallobre-Barreiro J, Didangelos A, Yin X, Doménech N, Mayr M. A sequential extraction methodology for cardiac extracellular matrix prior to proteomics analysis. Methods Mol Biol 2013; 1005:215-223. [PMID: 23606260 DOI: 10.1007/978-1-62703-386-2_17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Cardiac fibrosis is characterized by excessive deposition of extracellular matrix (ECM) and is a common complication of various cardiovascular diseases. However, little is known about proteins in the cardiac extracellular space. Proteomics analysis of cardiac ECM can be challenging due to the presence of more abundant intracellular proteins, the low degree of solubility of integral ECM proteins, and the presence of abundant posttranslational modifications. Here we describe an extraction methodology based on tissue decellularization, which allows the biochemical subfractionation of extracellular proteins in cardiac tissue. These relatively low-complexity protein fractions are suitable for analysis by gel-LC-MS/MS and other proteomics techniques.
Collapse
|
7387
|
Takuwa N, Okamoto Y, Yoshioka K, Takuwa Y. Sphingosine-1-phosphate signaling and cardiac fibrosis. Inflamm Regen 2013. [DOI: 10.2492/inflammregen.33.096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
7388
|
DI FAZIO PIETRO, MONTALBANO ROBERTA, QUINT KARL, ALINGER BEATE, KEMMERLING RALF, KIESSLICH TOBIAS, OCKER MATTHIAS, NEUREITER DANIEL. The pan-deacetylase inhibitor panobinostat modulates the expression of epithelial-mesenchymal transition markers in hepatocellular carcinoma models. Oncol Lett 2013; 5:127-134. [PMID: 23255907 PMCID: PMC3525501 DOI: 10.3892/ol.2012.951] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 09/10/2012] [Indexed: 02/07/2023] Open
Abstract
Deacetylase inhibitors (DACis) represent a novel therapeutic option for human cancers by classically affecting proliferation or apoptosis. Since transdifferentiation and dedifferentiation play a key role in carcinogenesis, we investigated the epigenetic influence on the molecular differentiation status in human hepatocellular carcinoma (HCC) models. Markers of differentiation, including cytokeratin (Ck) 7, Ck8, Ck18, Ck19, Ck20, vimentin, sonic hedgehog homolog (SHH), smoothened (Smo), patched (Ptc), glioma-associated oncogene homolog 1 (Gli1), CD133, octamer-binding transcription factor 4 (Oct4) and β-catenin, were examined in the human HCC cell lines HepG2 and Hep3B in vitro and in vivo (xenograft model) using quantitative real-time PCR and immunohistochemistry following treatment with the pan-DACi panobinostat (LBH589). Compared to untreated controls, treated HepG2 xenografts, and to a lesser extent cell lines, demonstrated a significant increase of differentiation markers Ck7 and Ck19 (classical cholangiocellular type) and Ck8 and Ck18 (classical HCC type), and a decreased level of dedifferentiation markers vimentin (mesenchymal) and SHH/Ptc (embryonic), paralleled with a more membranous expression of β-catenin. These findings were dose-dependently correlated with tumor size, necrosis rate, microvessel density and mitosis/Ki-67-associated proliferation rate. Our results demonstrate that the differentiation status of human HCC cells is influenced by the pan-DACi panobinostat, indicating that this treatment may influence the epithelial-mesenchymal transition (EMT) status related to metastasis and aggressiveness.
Collapse
Affiliation(s)
- PIETRO DI FAZIO
- Institute for Surgical Research, Philipps-University Marburg, Baldingerstrasse, Marburg 35043,
Germany
| | - ROBERTA MONTALBANO
- Institute for Surgical Research, Philipps-University Marburg, Baldingerstrasse, Marburg 35043,
Germany
| | - KARL QUINT
- Institute for Surgical Research, Philipps-University Marburg, Baldingerstrasse, Marburg 35043,
Germany
| | - BEATE ALINGER
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg 5020,
Austria
| | - RALF KEMMERLING
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg 5020,
Austria
| | - TOBIAS KIESSLICH
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg 5020,
Austria
| | - MATTHIAS OCKER
- Institute for Surgical Research, Philipps-University Marburg, Baldingerstrasse, Marburg 35043,
Germany
| | - DANIEL NEUREITER
- Institute of Pathology, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg 5020,
Austria
| |
Collapse
|
7389
|
Fransen M, Nordgren M, Wang B, Apanasets O, Van Veldhoven PP. Aging, age-related diseases and peroxisomes. Subcell Biochem 2013; 69:45-65. [PMID: 23821142 DOI: 10.1007/978-94-007-6889-5_3] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Human aging is considered as one of the biggest risk factors for the development of multiple diseases such as cancer, type-2 diabetes, and neurodegeneration. In addition, it is widely accepted that these age-related diseases result from a combination of various genetic, lifestyle, and environmental factors. As biological aging is a complex and multifactorial phenomenon, the molecular mechanisms underlying disease initiation and progression are not yet fully understood. However, a significant amount of evidence supports the theory that oxidative stress may act as a primary etiologic factor. Indeed, many signaling components like kinases, phosphatases, and transcription factors are exquisitely sensitive to the cellular redox status, and a chronic or severe disturbance in redox homeostasis can promote cell proliferation or trigger cell death. Now, almost 50 years after their discovery, there is a wealth of evidence that peroxisomes can function as a subcellular source, sink, or target of reactive oxygen and nitrogen molecules. Yet, the possibility that these organelles may act as a signaling platform for a variety of age-related processes has so far been underestimated and largely neglected. In this review, we will critically discuss the possible role of peroxisomes in the human aging process in light of the available data.
Collapse
Affiliation(s)
- Marc Fransen
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 601, B-3000, Leuven, Belgium,
| | | | | | | | | |
Collapse
|
7390
|
Sorci-Thomas MG, Thomas MJ. High density lipoprotein biogenesis, cholesterol efflux, and immune cell function. Arterioscler Thromb Vasc Biol 2012; 32:2561-5. [PMID: 23077142 DOI: 10.1161/atvbaha.112.300135] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review provides a summary of recent research on the role of high-density lipoprotein (HDL)/apolipoprotein A-I cholesterol efflux and immune cell function. Plasma concentrations of HDL have been known to inversely correlate with risk for coronary vascular disease. Bulk transport of HDL cholesterol from the peripheral tissues to the liver is a major pathway, termed reverse cholesterol transport, responsible for maintaining whole body cholesterol homeostasis. In addition to participating in this pathway, HDL and apolipoprotein A-I exert anti-inflammatory effects through different pathways. One pathway that seems to be important in atherosclerosis and autoimmunity is its role in modulation of T cell activation. HDL/apolipoprotein A-I helps regulate cell signaling by accepting membrane cholesterol from ATP binding cassette transporter A1 on immune cells and, thereby, fine tuning the amount of cholesterol present in plasma membrane lipid rafts.
Collapse
Affiliation(s)
- Mary G Sorci-Thomas
- Section on Lipid Sciences, Department of Pathology, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157-1016, USA.
| | | |
Collapse
|
7391
|
Ivashkevich A, Redon CE, Nakamura AJ, Martin RF, Martin OA. Use of the γ-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Lett 2012; 327:123-33. [PMID: 22198208 PMCID: PMC3329565 DOI: 10.1016/j.canlet.2011.12.025] [Citation(s) in RCA: 367] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/11/2011] [Accepted: 12/14/2011] [Indexed: 12/30/2022]
Abstract
Formation of γ-H2AX in response to DNA double stranded breaks (DSBs) provides the basis for a sensitive assay of DNA damage in human biopsies. The review focuses on the application of γ-H2AX-based methods to translational studies to monitor the clinical response to DNA targeted therapies such as some forms of chemotherapy, external beam radiotherapy, radionuclide therapy or combinations thereof. The escalating attention on radiation biodosimetry has also highlighted the potential of the assay including renewed efforts to assess the radiosensitivity of prospective radiotherapy patients. Finally the γ-H2AX response has been suggested as a basis for an in vivo imaging modality.
Collapse
Affiliation(s)
- Alesia Ivashkevich
- Laboratory of Molecular Radiation Biology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Christophe E. Redon
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Asako J. Nakamura
- Department of Anatomy and Cell Biology, Osaka Medical College, Osaka, Japan
| | - Roger F. Martin
- Laboratory of Molecular Radiation Biology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Olga A. Martin
- Laboratory of Molecular Radiation Biology, Peter MacCallum Cancer Centre, Melbourne, Australia
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
7392
|
Itamochi H, Kato M, Nishimura M, Oishi T, Shimada M, Sato S, Naniwa J, Sato S, Nonaka M, Kudoh A, Terakawa N, Kigawa J, Harada T. Establishment and characterization of a novel ovarian serous adenocarcinoma cell line, TU-OS-4, that overexpresses EGFR and HER2. Hum Cell 2012; 25:111-5. [DOI: 10.1007/s13577-012-0048-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
|
7393
|
Christian P, Sacco J, Adeli K. Autophagy: Emerging roles in lipid homeostasis and metabolic control. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:819-24. [PMID: 23274236 DOI: 10.1016/j.bbalip.2012.12.009] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/13/2012] [Accepted: 12/18/2012] [Indexed: 02/06/2023]
Abstract
Current evidence implicates autophagy in the regulation of lipid stores within the two main organs involved in maintaining lipid homeostasis, the liver and adipose tissue. Critical to this role in hepatocytes is the breakdown of cytoplasmic lipid droplets, a process referred to as lipophagy. Conversely, autophagy is required for adipocyte differentiation and the concurrent accumulation of lipid droplets. Autophagy also affects lipid metabolism through contributions to lipoprotein assembly. A number of reports have now implicated autophagy in the degradation of apolipoprotein B, the main structural protein of very-low-density-lipoprotein. Aberrant autophagy may also be involved in conditions of deregulated lipid homeostasis in metabolic disorders such as the metabolic syndrome. First, insulin signalling and autophagy activity appear to diverge in a mechanism of reciprocal regulation, suggesting a role for autophagy in insulin resistance. Secondly, upregulation of autophagy may lead to conversion of white adipose tissue into brown adipose tissue, thus regulating energy expenditure and obesity. Thirdly, upregulation of autophagy in hepatocytes could increase breakdown of lipid stores controlling triglyceride homeostasis and fatty liver. Taken together, autophagy appears to play a very complex role in lipid homeostasis, affecting lipid stores differently depending on the tissue, as well as contributing to pathways of lipoprotein metabolism.
Collapse
Affiliation(s)
- Patricia Christian
- Molecular Structure and Function, Research Institute, The Hospital for Sick Children, University of Toronto, 555 University Avenue, Toronto, Ontario, Canada M5G 1X8
| | | | | |
Collapse
|
7394
|
Conformation-dependent high-affinity potent ricin-neutralizing monoclonal antibodies. BIOMED RESEARCH INTERNATIONAL 2012; 2013:471346. [PMID: 23484120 PMCID: PMC3591125 DOI: 10.1155/2013/471346] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/26/2012] [Accepted: 11/10/2012] [Indexed: 12/23/2022]
Abstract
Ricin is a potential biothreat agent with no approved antidote available for ricin poisoning. The aim of this study was to develop potent antibody-based antiricin antidotes. Four strong ricin resistant hybridoma clones secreting antiricin monoclonal antibodies (mAbs) were developed. All four mAbs are bound to conformational epitopes of ricin toxin B (RTB) with high affinity (KD values from 2.55 to 36.27 nM). RTB not only triggers cellular uptake of ricin, but also facilitates transport of the ricin toxin A (RTA) from the endoplasmic reticulum to the cytosol, where RTA exerts its toxic activity. The four mAbs were found to have potent ricin-neutralizing capacities and synergistic effects among them as determined by an in vitro neutralization assay. In vivo protection assay demonstrated that all four mAbs had strong efficacy against ricin challenges. D9 was found to be exceptionally effective. Intraperitoneal (i.p.) administration of D9, at a dose of 5 μ g, 6 weeks before or 6 hours after an i.p. challenge with 5 × LD50 of ricin was able to protect or rescue 100% of the mice, indicating that mAb D9 is an excellent candidate to be developed as a potent antidote against ricin poisoning for both prophylactic and therapeutic purposes.
Collapse
|
7395
|
Sampey GC, Van Duyne R, Currer R, Das R, Narayanan A, Kashanchi F. Complex role of microRNAs in HTLV-1 infections. Front Genet 2012; 3:295. [PMID: 23251140 PMCID: PMC3523292 DOI: 10.3389/fgene.2012.00295] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 11/29/2012] [Indexed: 12/15/2022] Open
Abstract
Human T-lymphotropic virus 1 (HTLV-1) was the first human retrovirus to be discovered and is the causative agent of adult T-cell leukemia/lymphoma (ATL) and the neurodegenerative disease HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The importance of microRNA (miRNA) in the replicative cycle of several other viruses, as well as in the progression of associated pathologies, has been well established in the past decade. Moreover, involvement of miRNA alteration in the HTLV-1 life cycle, and in the progression of its related oncogenic and neurodegenerative diseases, has recently come to light. Several HTLV-1 derived proteins alter transcription factor functionalities, interact with chromatin remodelers, or manipulate components of the RNA interference (RNAi) machinery, thereby establishing various routes by which miRNA expression can be up- or down-regulated in the host cell. Furthermore, the mechanism of action through which dysregulation of host miRNAs affects HTLV-1 infected cells can vary substantially and include mRNA silencing via the RNA-induced silencing complex (RISC), transcriptional gene silencing, inhibition of RNAi components, and chromatin remodeling. These miRNA-induced changes can lead to increased cell survival, invasiveness, proliferation, and differentiation, as well as allow for viral latency. While many recent studies have successfully implicated miRNAs in the life cycle and pathogenesis of HTLV-1 infections, there are still significant outstanding questions to be addressed. Here we will review recent discoveries elucidating HTLV-1 mediated manipulation of host cell miRNA profiles and examine the impact on pathogenesis, as well as explore future lines of inquiry that could increase understanding in this field of study.
Collapse
Affiliation(s)
- Gavin C Sampey
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University Manassas, VA, USA
| | | | | | | | | | | |
Collapse
|
7396
|
Qin T, Tsoi LC, Sims KJ, Lu X, Zheng WJ. Signaling network prediction by the Ontology Fingerprint enhanced Bayesian network. BMC SYSTEMS BIOLOGY 2012; 6 Suppl 3:S3. [PMID: 23282239 PMCID: PMC3524013 DOI: 10.1186/1752-0509-6-s3-s3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Despite large amounts of available genomic and proteomic data, predicting the structure and response of signaling networks is still a significant challenge. While statistical method such as Bayesian network has been explored to meet this challenge, employing existing biological knowledge for network prediction is difficult. The objective of this study is to develop a novel approach that integrates prior biological knowledge in the form of the Ontology Fingerprint to infer cell-type-specific signaling networks via data-driven Bayesian network learning; and to further use the trained model to predict cellular responses. RESULTS We applied our novel approach to address the Predictive Signaling Network Modeling challenge of the fourth (2009) Dialog for Reverse Engineering Assessment's and Methods (DREAM4) competition. The challenge results showed that our method accurately captured signal transduction of a network of protein kinases and phosphoproteins in that the predicted protein phosphorylation levels under all experimental conditions were highly correlated (R2 = 0.93) with the observed results. Based on the evaluation of the DREAM4 organizer, our team was ranked as one of the top five best performers in predicting network structure and protein phosphorylation activity under test conditions. CONCLUSIONS Bayesian network can be used to simulate the propagation of signals in cellular systems. Incorporating the Ontology Fingerprint as prior biological knowledge allows us to efficiently infer concise signaling network structure and to accurately predict cellular responses.
Collapse
Affiliation(s)
- Tingting Qin
- Bioinformatics Graduate Program, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Lam C Tsoi
- Bioinformatics Graduate Program, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kellie J Sims
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Xinghua Lu
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15232, USA
| | - W Jim Zheng
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
7397
|
Fraczek J, Bolleyn J, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures for pharmaco-toxicological studies: at the busy crossroad of various anti-dedifferentiation strategies. Arch Toxicol 2012; 87:577-610. [PMID: 23242478 DOI: 10.1007/s00204-012-0983-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/19/2012] [Indexed: 01/24/2023]
Abstract
Continuously increasing understanding of the molecular triggers responsible for the onset of diseases, paralleled by an equally dynamic evolution of chemical synthesis and screening methods, offers an abundance of pharmacological agents with a potential to become new successful drugs. However, before patients can benefit of newly developed pharmaceuticals, stringent safety filters need to be applied to weed out unfavourable drug candidates. Cost effectiveness and the need to identify compound liabilities, without exposing humans to unnecessary risks, has stimulated the shift of the safety studies to the earliest stages of drug discovery and development. In this regard, in vivo relevant organotypic in vitro models have high potential to revolutionize the preclinical safety testing. They can enable automation of the process, to match the requirements of high-throughput screening approaches, while satisfying ethical considerations. Cultures of primary hepatocytes became already an inherent part of the preclinical pharmaco-toxicological testing battery, yet their routine use, particularly for long-term assays, is limited by the progressive deterioration of liver-specific features. The availability of suitable hepatic and other organ-specific in vitro models is, however, of paramount importance in the light of changing European legal regulations in the field of chemical compounds of different origin, which gradually restrict the use of animal studies for safety assessment, as currently witnessed in cosmetic industry. Fortunately, research groups worldwide spare no effort to establish hepatic in vitro systems. In the present review, both classical and innovative methodologies to stabilize the in vivo-like hepatocyte phenotype in culture of primary hepatocytes are presented and discussed.
Collapse
Affiliation(s)
- J Fraczek
- Department of Toxicology, Faculty of Medicine and Pharmacy, Centre for Pharmaceutical Research, Vrije Universiteit Brussel, Belgium.
| | | | | | | | | |
Collapse
|
7398
|
Sphingolipid content in the human uterus and pair-matched uterine leiomyomas remains constant. Lipids 2012; 48:245-50. [PMID: 23239114 DOI: 10.1007/s11745-012-3746-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/06/2012] [Indexed: 12/17/2022]
Abstract
In the present work we sought to investigate the content of sphingolipids (sphingosine, sphinganine, sphingosine-1-phosphate and ceramide) in human fibroids and pair-matched healthy uterus tissue. We demonstrated that, in uterine leiomyomas, the contents of sphingosine, sphinganine, sphingosine-1-phosphate and ceramide remains quite constant. However, a trend towards elevation of ceramide and simultaneous reduction of sphingosine-1 phosphate levels was also noticed. Additionally, in uterine leiomyomas we found relevant activation of both PTEN and MAPK(ERK1/2) signaling pathways with only a minor change in AKT activity and relatively absent HIF-1α/AMPK activation. In conclusion, rather modest changes in sphingolipids are correlated with the activation of PTEN and MAPK(ERK1/2) signaling proteins in human uterine leiomyomas.
Collapse
|
7399
|
Shanmugan S, Epperson CN. Estrogen and the prefrontal cortex: towards a new understanding of estrogen's effects on executive functions in the menopause transition. Hum Brain Mapp 2012; 35:847-65. [PMID: 23238908 DOI: 10.1002/hbm.22218] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/25/2012] [Accepted: 10/03/2012] [Indexed: 01/03/2023] Open
Abstract
Midlife decline in cognition, specifically in areas of executive functioning, is a frequent concern for which menopausal women seek clinical intervention. The dependence of executive processes on prefrontal cortex function suggests estrogen effects on this brain region may be key in identifying the sources of this decline. Recent evidence from rodent, nonhuman primate, and human subject studies indicates the importance of considering interactions of estrogen with neurotransmitter systems, stress, genotype, and individual life events when determining the cognitive effects of menopause and estrogen therapy.
Collapse
Affiliation(s)
- Sheila Shanmugan
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Penn Center for Women's Behavioral Wellness, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
7400
|
Srivastava DP, Woolfrey KM, Evans PD. Mechanisms underlying the interactions between rapid estrogenic and BDNF control of synaptic connectivity. Neuroscience 2012; 239:17-33. [PMID: 23246844 DOI: 10.1016/j.neuroscience.2012.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 12/14/2022]
Abstract
The effects of the steroid hormone 17β-estradiol and the neurotrophin brain-derived neurotrophic factor (BDNF) on neuronal physiology have been well investigated. Numerous studies have demonstrated that each signal can exert powerful influences on the structure and function of synapses, and specifically on dendritic spines, both within short and long time frames. Moreover, it has been suggested that BDNF is required for the long-term, or genomic, actions of 17β-estradiol on dendritic spines, via its ability to regulate the expression of neurotrophins. Here we focus on the acute, or rapid effects, of 17β-estradiol and BDNF, and their ability to activate specific signalling cascades, resulting in alterations in dendritic spine morphology. We first review recent literature describing the mechanisms by which 17β-estradiol activates these pathways, and the resulting alterations in dendritic spine number. We then describe the molecular mechanisms underlying acute modulation of dendritic spine morphology by BDNF. Finally, we consider how this new evidence may suggest that the temporal interactions of 17β-estradiol and BDNF can occur more rapidly than previously reported. Building on these new data, we propose a novel model for the interactions of this steroid and neurotrophin, whereby rapid, non-genomic 17β-estradiol and acute BDNF signal in a co-operative manner, resulting in dendritic spine formation and subsequent stabilization in support of synapse and circuit plasticity. This extended hypothesis suggests an additional mechanism by which these two signals may modulate dendritic spines in a time-specific manner.
Collapse
Affiliation(s)
- D P Srivastava
- Department of Neuroscience & Centre for the Cellular Basis of Behaviour, The James Black Centre, Institute of Psychiatry, King's College London, London SE5 9NU, UK.
| | | | | |
Collapse
|