701
|
Mazeron R, Gouy S, Escande A, Dumas I, Rivin del Campo E, Bentivegna E, Bacorro W, Lefkopoulos D, Deutsch E, Morice P, Haie-Meder C, Chargari C. Locally advanced cervical cancer: Is it relevant to report image-guided adaptive brachytherapy using point A dose? Brachytherapy 2017; 16:862-869. [DOI: 10.1016/j.brachy.2017.04.244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/23/2017] [Accepted: 04/26/2017] [Indexed: 01/05/2023]
|
702
|
Omata M, Cheng AL, Kokudo N, Kudo M, Lee JM, Jia J, Tateishi R, Han KH, Chawla YK, Shiina S, Jafri W, Payawal DA, Ohki T, Ogasawara S, Chen PJ, Lesmana CRA, Lesmana LA, Gani RA, Obi S, Dokmeci AK, Sarin SK. Asia-Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update. Hepatol Int 2017; 11:317-370. [PMID: 28620797 PMCID: PMC5491694 DOI: 10.1007/s12072-017-9799-9] [Citation(s) in RCA: 1612] [Impact Index Per Article: 201.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 05/02/2017] [Indexed: 02/06/2023]
Abstract
There is great geographical variation in the distribution of hepatocellular carcinoma (HCC), with the majority of all cases worldwide found in the Asia-Pacific region, where HCC is one of the leading public health problems. Since the "Toward Revision of the Asian Pacific Association for the Study of the Liver (APASL) HCC Guidelines" meeting held at the 25th annual conference of the APASL in Tokyo, the newest guidelines for the treatment of HCC published by the APASL has been discussed. This latest guidelines recommend evidence-based management of HCC and are considered suitable for universal use in the Asia-Pacific region, which has a diversity of medical environments.
Collapse
Affiliation(s)
- Masao Omata
- Department of Gastroenterology, Yamanashi Prefectural Central Hospital, Kofu-city, Yamanashi, Japan.
- The University of Tokyo, Tokyo, Japan.
| | - Ann-Lii Cheng
- Department of Oncology and Internal Medicine, National Taiwan University Hospital, National Taiwan University Cancer Center and Graduate Institute of Oncology, National Taiwan University, Taipei, Taiwan
| | - Norihiro Kokudo
- Hepato-Biliary-Pancreatic Surgery Division and Artificial Organ and Transplantation Division, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University School of Medicine, Osaka-Sayama, Osaka, Japan
| | - Jeong Min Lee
- Department of Radiology and Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jidong Jia
- Beijing Key Laboratory of Translational Medicine on Cirrhosis, National Clinical Research Center for Digestive Diseases, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ryosuke Tateishi
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kwang-Hyub Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoghesh K Chawla
- Department of Hepatology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Shuichiro Shiina
- Department of Gastroenterology, Juntendo University, Tokyo, Japan
| | - Wasim Jafri
- Department of Medicine, Aga Khan University and Hospital, Karachi, Pakistan
| | | | - Takamasa Ohki
- Department of Gastroenterology, Mitsui Memorial Hospital, Tokyo, Japan
| | - Sadahisa Ogasawara
- Department of Gastroenterology and Nephrology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Pei-Jer Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Cosmas Rinaldi A Lesmana
- Digestive Disease and GI Oncology Center, Medistra Hospital, University of Indonesia, Jakarta, Indonesia
- Department of Internal Medicine, Cipto Mangunkusumo Hospital, University of Indonesia, Jakarta, Indonesia
| | - Laurentius A Lesmana
- Digestive Disease and GI Oncology Center, Medistra Hospital, University of Indonesia, Jakarta, Indonesia
| | - Rino A Gani
- Department of Internal Medicine, Cipto Mangunkusumo Hospital, University of Indonesia, Jakarta, Indonesia
| | - Shuntaro Obi
- Third Department of Internal Medicine, Teikyo University School of Medicine, Chiba, Japan
| | - A Kadir Dokmeci
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
703
|
Chen JY, Lin CH, Chen BC. Hypoxia-induced ADAM 17 expression is mediated by RSK1-dependent C/EBPβ activation in human lung fibroblasts. Mol Immunol 2017. [PMID: 28646679 DOI: 10.1016/j.molimm.2017.06.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Hypoxia was identified as a mediator of lung fibrosis in patients with chronic obstructive asthma (COA). Overexpression of a disintegrin and metalloproteinase 17 (ADAM 17) and connective tissue growth factor (CTGF) leads to development of tissue fibrosis. However, the signaling pathway in hypoxia-induced ADAM 17 expression remains poorly defined. In this study, we investigated the roles that ribosomal S-6 kinase 1 (RSK1)/CCAAT/enhancer-binding protein β (C/EBPβ)-dependent ADAM 17 expression plays in hypoxia-induced CTGF expression in human lung fibroblasts. We observed that hypoxia caused increases in ADAM 17 expression and ADAM 17-luciferase activity in WI-38 cells. Hypoxia-induced CTGF-luciferase activity and CTGF expression were reduced in cells transfected with small interfering (si)RNA of ADAM 17 in WI-38 cells. Moreover, hypoxia-induced ADAM 17 expression was reduced by RSK1 siRNA and C/EBPβ siRNA. Hypoxia caused time-dependent increases in RSK1 phosphorylation at Thr359/Ser363. Exposure of cells to hypoxia resulted in increased C/EBPβ phosphorylation at Thr266 and C/EBPβ-luciferase activity in time-dependent manners, and these effects were suppressed by RSK1 siRNA. Hypoxia induced recruitment of C/EBPβ to the ADAM 17 promoter. Furthermore, CTGF-luciferase activity induced by hypoxia was attenuated by RSK1 siRNA and C/EBPβ siRNA. These results suggest that hypoxia instigates the RSK1-dependent C/EBPβ signaling pathway, which in turn initiates binding of C/EBPβ to the ADAM 17 promoter and ultimately induces ADAM 17 expression in human lung fibroblasts. Moreover, RSK1/C/EBPβ-dependent ADAM 17 expression is involved in hypoxia-induced CTGF expression. Our results suggest possible therapeutic approaches for treating hypoxia-mediated lung fibrosis in COA.
Collapse
Affiliation(s)
- Jing-Yun Chen
- Gradual Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Huang Lin
- Gradual Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
704
|
Pirzada MT, Ahmed MJ, Muzzafar A, Nasir IUI, Shah MF, Khattak S, Syed AA. Rectal Carcinoma: Demographics and Clinicopathological Features from Pakistani Population Perspective. Cureus 2017; 9:e1375. [PMID: 28744422 PMCID: PMC5519317 DOI: 10.7759/cureus.1375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Colorectal carcinoma is ranked as the second most common cancer diagnosis in females and third in males. It is the third leading cause of cancer-related deaths worldwide. Disease burden has been attributed to a myriad of factors comprising genetic, environmental, and dietary factors. Rectal cancer has been shown to demonstrate variance according to the geographical location. Methods A retrospective review of 477 rectal cancer patients treated at Shaukat Khanum Memorial Cancer Hospital & Research Centre from 2006 to 2014 was performed. Demographic and clinicopathological features were compared between the two age groups (≤40 or >40 years). These included sex, ethnicity, family history of cancer, the location of tumor, clinical staging, histopathological type, and response to chemoradiation. Chi-square was used to compare the frequencies between the two age groups. p-value < 0.05 was taken as significant. Results Mean age of the study group was 44.62 ± 16.11 years. 43.8% were ≤40 years of age, and 70.2% were male. 50.3% patients belong to Punjab province, 287 (60.2%) had lower rectal cancer, family history of cancer was present in 82 (17.2%) patients. 432 (90.5%) patients had T1/T2 disease and 296 (62.1%) had N2 disease. Metastatic disease at presentation was observed in 37 (7.8%). Progressive disease was found in 90 (18%) patients. Conclusion High frequency of young onset rectal cancers and the lack of family history emphasize the need of indigenous strategies and national awareness of this disease for an early identification of these patients.
Collapse
Affiliation(s)
- Muhammad T Pirzada
- Department of Surgical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Center, Lahore, Pakistan
| | - Monis J Ahmed
- Department of Surgery, Mediclinic City Hospital, Dubai, UAE
| | | | - Irfan Ul Islam Nasir
- Department of Surgical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Center, Lahore, Pakistan
| | - Muhammad F Shah
- Department of Surgical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Center, Lahore, Pakistan
| | - Shahid Khattak
- Department of Surgical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Center, Lahore, Pakistan
| | - Aamir A Syed
- Department of Surgical Oncology, Shaukat Khanum Memorial Cancer Hospital and Research Center, Lahore, Pakistan
| |
Collapse
|
705
|
Annual hazard rate of relapse of stage II and III colorectal cancer after primary therapy. Clin Transl Oncol 2017; 19:1524-1530. [DOI: 10.1007/s12094-017-1696-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/29/2017] [Indexed: 01/04/2023]
|
706
|
Royston KJ, Udayakumar N, Lewis K, Tollefsbol TO. A Novel Combination of Withaferin A and Sulforaphane Inhibits Epigenetic Machinery, Cellular Viability and Induces Apoptosis of Breast Cancer Cells. Int J Mol Sci 2017; 18:ijms18051092. [PMID: 28534825 PMCID: PMC5455001 DOI: 10.3390/ijms18051092] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022] Open
Abstract
With cancer often classified as a disease that has an important epigenetic component, natural compounds that have the ability to regulate the epigenome become ideal candidates for study. Humans have a complex diet, which illustrates the need to elucidate the mechanisms of interaction between these bioactive compounds in combination. The natural compounds withaferin A (WA), from the Indian winter cherry, and sulforaphane (SFN), from cruciferous vegetables, have numerous anti-cancer effects and some report their ability to regulate epigenetic processes. Our study is the first to investigate the combinatorial effects of low physiologically achievable concentrations of WA and SFN on breast cancer cell proliferation, histone deacetylase1 (HDAC1) and DNA methyltransferases (DNMTs). No adverse effects were observed on control cells at optimal concentrations. There was synergistic inhibition of cellular viability in MCF-7 cells and a greater induction of apoptosis with the combinatorial approach than with either compound administered alone in both MDA-MB-231 and MCF-7 cells. HDAC expression was down-regulated at multiple levels. Lastly, we determined the combined effects of these bioactive compounds on the pro-apoptotic BAX and anti-apoptotic BCL-2 and found decreases in BCL-2 and increases in BAX. Taken together, our findings demonstrate the ability of low concentrations of combinatorial WA and SFN to promote cancer cell death and regulate key epigenetic modifiers in human breast cancer cells.
Collapse
Affiliation(s)
- Kendra J Royston
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA.
| | - Neha Udayakumar
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Kayla Lewis
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA.
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA.
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|
707
|
Bartosch C, Lopes JM, Jerónimo C. Epigenetics in endometrial carcinogenesis - part 2: histone modifications, chromatin remodeling and noncoding RNAs. Epigenomics 2017; 9:873-892. [PMID: 28523964 DOI: 10.2217/epi-2016-0167] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Carcinogenesis is a multistep multifactorial process that involves the accumulation of genetic and epigenetic alterations. In the past two decades, there has been an exponential growth of knowledge establishing the importance of epigenetic changes in cancer. Our work focused on reviewing the main role of epigenetics in the pathogenesis of endometrial carcinoma, highlighting the reported results concerning each epigenetic mechanistic layer. In a previous review, we assessed DNA methylation alterations. The present review examines the contribution of histone modifications, chromatin remodeling and noncoding RNA alterations for endometrial carcinogenesis.
Collapse
Affiliation(s)
- Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology & Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal
| | - José Manuel Lopes
- Department of Pathology & Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Department of Pathology, Centro Hospitalar São João (CHSJ), Porto, Portugal.,IPATIMUP (Institute of Molecular Pathology & Immunology, University of Porto); I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal.,Department of Pathology & Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
708
|
Bartosch C, Lopes JM, Jerónimo C. Epigenetics in endometrial carcinogenesis - part 1: DNA methylation. Epigenomics 2017; 9:737-755. [PMID: 28470096 DOI: 10.2217/epi-2016-0166] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Carcinogenesis is a multistep multifactorial process that involves the accumulation of genetic and epigenetic alterations. In the past two decades, there has been an exponential growth of knowledge establishing the importance of epigenetic changes in cancer. Our work focused on reviewing the main role of epigenetics in the pathogenesis of endometrial carcinoma, highlighting the reported results concerning each epigenetic mechanistic layer. The present review is the first part of this work, in which we examined the contribution of DNA methylation alterations for endometrial carcinogenesis.
Collapse
Affiliation(s)
- Carla Bartosch
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology & Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal
| | - José Manuel Lopes
- Department of Pathology & Oncology, Medical Faculty, University of Porto, Porto, Portugal.,Department of Pathology, Centro Hospitalar São João (CHSJ), Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology & Immunology, University of Porto, Porto, Portugal.,I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group, Research Center (CI-IPOP), Portuguese Oncology Institute of Porto, Porto, Portugal.,Porto Comprehensive Cancer Center (P.ccc), Porto, Portugal.,Department of Pathology & Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
709
|
Deng L, Wang QP, Yan R, Yu N, Bai L, Duan XY, Guo YM. Combined subjective and quantitative analysis of magnetic resonance images could improve the diagnostic performance of deep myometrial invasion in endometrial cancer. Clin Imaging 2017; 43:69-73. [DOI: 10.1016/j.clinimag.2017.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/26/2016] [Accepted: 01/20/2017] [Indexed: 11/28/2022]
|
710
|
Sufaru IG, Beikircher G, Weinhaeusel A, Gruber R. Inhibitors of DNA methylation support TGF-β1-induced IL11 expression in gingival fibroblasts. J Periodontal Implant Sci 2017; 47:66-76. [PMID: 28462005 PMCID: PMC5410554 DOI: 10.5051/jpis.2017.47.2.66] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 02/07/2017] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Oral wound healing requires gingival fibroblasts to respond to local growth factors. Epigenetic silencing through DNA methylation can potentially decrease the responsiveness of gingival fibroblasts to local growth factors. In this study, our aim was to determine whether the inhibition of DNA methylation sensitized gingival fibroblasts to transforming growth factor-β1 (TGF-β1). METHODS Gingival fibroblasts were exposed to 5-aza-2'-deoxycytidine (5-aza), a clinically approved demethylating agent, before stimulation with TGF-β1. Gene expression changes were evaluated using quantitative polymerase chain reaction (PCR) analysis. DNA methylation was detected by methylation-sensitive restriction enzymes and PCR amplification. RESULTS We found that 5-aza enhanced TGF-β1-induced interleukin-11 (IL11) expression in gingival fibroblasts 2.37-fold (P=0.008). 5-aza had no significant effects on the expression of proteoglycan 4 (PRG4) and NADPH oxidase 4 (NOX4). Consistent with this, 5-aza caused demethylation of the IL11 gene commonly next to a guanosine (CpG) island in gingival fibroblasts. The TGF-β type I receptor kinase inhibitor SB431542 impeded the changes in IL11 expression, indicating that the effects of 5-aza require TGF-β signaling. 5-aza moderately increased the expression of TGF-β type II receptor (1.40-fold; P=0.009), possibly enhancing the responsiveness of fibroblasts to TGF-β1. As part of the feedback response, 5-aza increased the expression of the DNA methyltransferases 1 (DNMT1) (P=0.005) and DNMT3B (P=0.002), which are enzymes responsible for gene methylation. CONCLUSIONS These in vitro data suggest that the inhibition of DNA methylation by 5-aza supports TGF-β-induced IL11 expression in gingival fibroblasts.
Collapse
Affiliation(s)
- Irina-Georgeta Sufaru
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria.,Department of Periodontology, Faculty of Dental Medicine, University of Medicine and Pharmacy "Grigore T. Popa" Iasi, Romania
| | - Gabriel Beikircher
- AIT-Molecular Diagnostics, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Andreas Weinhaeusel
- AIT-Molecular Diagnostics, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Vienna, Austria.,Department of Periodontology, University of Bern, Bern, Switzerland.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
711
|
Velcicky J, Miltz W, Oberhauser B, Orain D, Vaupel A, Weigand K, Dawson King J, Littlewood-Evans A, Nash M, Feifel R, Loetscher P. Development of Selective, Orally Active GPR4 Antagonists with Modulatory Effects on Nociception, Inflammation, and Angiogenesis. J Med Chem 2017; 60:3672-3683. [PMID: 28445047 DOI: 10.1021/acs.jmedchem.6b01703] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A novel, selective, and efficacious GPR4 antagonist 13 was developed starting from lead compound 1a. While compound 1a showed promising efficacy in several disease models, its binding to a H3 receptor as well as a hERG channel prevented it from further development. Therefore, a new round of optimization addressing the key liabilities was performed and led to discovery of compound 13 with an improved profile. Compound 13 showed significant efficacy in the rat antigen induced arthritis as well as in the hyperalgesia and angiogenesis model at a well-tolerated dose of 30 mg/kg.
Collapse
Affiliation(s)
- Juraj Velcicky
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Wolfgang Miltz
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Berndt Oberhauser
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - David Orain
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Andrea Vaupel
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Klaus Weigand
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Janet Dawson King
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Amanda Littlewood-Evans
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Mark Nash
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Roland Feifel
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| | - Pius Loetscher
- Global Discovery Chemistry, ‡Autoimmunity Transplantation Inflammation, §Musculoskeletal, ∥Metabolism and Pharmacokinetics, Novartis Institutes for BioMedical Research , CH-4002 Basel, Switzerland
| |
Collapse
|
712
|
Naz A, Cui Y, Collins CJ, Thompson DH, Irudayaraj J. PLGA-PEG nano-delivery system for epigenetic therapy. Biomed Pharmacother 2017; 90:586-597. [PMID: 28407579 DOI: 10.1016/j.biopha.2017.03.093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 12/31/2022] Open
Abstract
Efficient delivery of cytidine analogues such as Azacitidine (AZA) into solid tumors constitutes a primary challenge in epigenetic therapies. We developed a di-block nano-vector based on poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) for stabilization of the conjugated AZA under physiological conditions. With equimolar drug content, our nano-conjugate could elicit a better anti-proliferative effect over free drug in breast cancer both in vitro and in vivo, through reactivation of p21 and BRCA1 to restrict cell proliferation. In addition, we applied single-molecule fluorescence tools to characterize the intracellular behavior of the AZA-PLGE-PEG nano-micelles at a finer spatiotemporal resolution. Our results suggest that the nano-micelles could effectively enrich in cancer cells and may not be limited by nucleoside transporters. Afterwards, the internalized nano-micelles exhibit pH-dependent release and resistance to active efflux. Altogether, our work describes a delivery strategy for DNA demethylating agents with nanoscale tunability, providing a cost-effective option for pharmaceutics.
Collapse
Affiliation(s)
- Asia Naz
- Bindley Bioscience Center and Purdue Center for Cancer Research, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Department of Pharmaceutical Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Yi Cui
- Bindley Bioscience Center and Purdue Center for Cancer Research, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | | | - David H Thompson
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Joseph Irudayaraj
- Bindley Bioscience Center and Purdue Center for Cancer Research, Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
713
|
Quan M, Cui JJ, Feng X, Huang Q. The critical role and potential target of the autotaxin/lysophosphatidate axis in pancreatic cancer. Tumour Biol 2017; 39:1010428317694544. [PMID: 28347252 DOI: 10.1177/1010428317694544] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Autotaxin, an ecto-lysophospholipase D encoded by the human ENNP2 gene, is expressed in multiple tissues, and participates in numerous critical physiologic and pathologic processes including inflammation, pain, obesity, embryo development, and cancer via the generation of the bioactive lipid lysophosphatidate. Overwhelming evidences indicate that the autotaxin/lysophosphatidate signaling axis serves key roles in the numerous processes central to tumorigenesis and progression, including proliferation, survival, migration, invasion, metastasis, cancer stem cell, tumor microenvironment, and treatment resistance by interacting with a series of at least six G-protein-coupled receptors (LPAR1-6). This review provides an overview of the autotaxin/lysophosphatidate axis and collates current knowledge regarding its specific role in pancreatic cancer. With a deeper understanding of the critical role of the autotaxin/lysophosphatidate axis in pancreatic cancer, targeting autotaxin or lysophosphatidate receptor may be a potential and promising strategy for cancer therapy.
Collapse
Affiliation(s)
- Ming Quan
- Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Jiu-Jie Cui
- Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Xiao Feng
- Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Qian Huang
- Cancer Center, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
714
|
Cha DI, Jang KM, Kim SH, Kang TW, Song KD. Liver Imaging Reporting and Data System on CT and gadoxetic acid-enhanced MRI with diffusion-weighted imaging. Eur Radiol 2017; 27:4394-4405. [DOI: 10.1007/s00330-017-4804-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 01/17/2017] [Accepted: 03/13/2017] [Indexed: 10/19/2022]
|
715
|
Ling CR, Wang R, Wang MJ, Ping J, Zhuang W. Prognosis and value of preoperative radiotherapy in locally advanced rectal signet-ring cell carcinoma. Sci Rep 2017; 7:45334. [PMID: 28345614 PMCID: PMC5366911 DOI: 10.1038/srep45334] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/21/2017] [Indexed: 02/06/2023] Open
Abstract
As well known, signet-ring cell carcinoma (SRCC) is a rare histological subtype of colorectal adenocarcinoma, which has been associated with poor prognosis and resistant to non-surgery therapy compared with common adenocarcinoma. In this study, we assessed the effect of preoperative radiotherapy (PRT) for locally advanced rectal SRCC in a large patient group from the Surveillance, Epidemiology, and End Results program (SEER, 1988–2011) database. SRCC was found in 0.9% (n = 622) rectal cancer (RC) patients in our study. In the PRT setting, SRCC had significantly worse cancer-specific survival than mucinous adenocarcinoma and nonmucinous adenocarcinoma patients (log-rank, P < 0.001). In terms of SRCC, stage III RC patients benefited from PRT (log-rank, P < 0.001) while stage II did not (P = 0.095). The multivariate Cox proportional hazard model showed that PRT was an independent benefit factor in stage III rectal SRCC patients (HR, 0.611; 95% CI, 0.407–0.919; P = 0.018). In conclusion, SRCC was an independent predictor of poor prognosis in stage III RC patients, but not in stage II. In the PRT setting of locally advanced RC, SRCC patients had significantly worse prognosis. PRT was an independent prognostic factor associated with improved survival in stage III rectal SRCC.
Collapse
Affiliation(s)
- Chun-Run Ling
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Wang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mo-Jin Wang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Ping
- Center for Quantitative Sciences, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Wen Zhuang
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
716
|
Chen H, Liu S, Liu X, Yang J, Wang F, Cong X, Chen X. Lysophosphatidic Acid Pretreatment Attenuates Myocardial Ischemia/Reperfusion Injury in the Immature Hearts of Rats. Front Physiol 2017; 8:153. [PMID: 28377726 PMCID: PMC5359218 DOI: 10.3389/fphys.2017.00153] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/27/2017] [Indexed: 02/01/2023] Open
Abstract
The cardioprotection of the immature heart during cardiac surgery remains controversial due to the differences between the adult heart and the newborn heart. Lysophosphatidic acid (LPA) is a small bioactive molecule with diverse functions including cell proliferation and survival via its receptor: LPA1–LPA6. We previously reported that the expressions of LPA1 and LPA3 in rat hearts were much higher in immature hearts and then declined rapidly with age. In this study, we aimed to investigate whether LPA signaling plays a potential protective role in immature hearts which had experienced ischemia/reperfusion (I/R) injury. The results showed that in Langendorff-perfused immature rat hearts (2 weeks), compared to I/R group, LPA pretreatment significantly enhanced the cardiac function, attenuated myocardial infarct size and CK-MB release, decreased myocardial apoptosis and increased the expression of pro-survival signaling molecules. All these effects could be abolished by Ki16425, an antagonist to LPA1 and LPA3. Similarly, LPA pretreatment protected H9C2 from hypoxia-reoxygenation (H/R) induced apoptosis and necrosis in vitro. The mechanisms underlying the anti-apoptosis effects were related to activation of the phosphatidylinositol 3-kinase (PI3K)/protein kinas B (AKT) signaling pathways as well as phosphorylation of the downstream effector of AKT, glycogen synthase kinase 3 beta (GSK3β), through LPA1 and/or LPA3. What's more, we found that LPA preconditioning increased glucose uptake of H9C2 subjected to H/R by the activation of AMP-Activated Protein Kinase (AMPK) but not the translocation of GLUT4. In conclusion, our study indicates that LPA is a potent survival factor for immature hearts against I/R injuries and has the potential therapeutic function as a cardioplegia additive for infantile cardiac surgery.
Collapse
Affiliation(s)
- Haibo Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Si Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Xuewen Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Jinjing Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Fang Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Xiangfeng Cong
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| | - Xi Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences - Peking Union Medical College Beijing, China
| |
Collapse
|
717
|
So B, Marcu L, Olver I, Gowda R, Bezak E. Oesophageal cancer: Which treatment is the easiest to swallow? A review of combined modality treatments for resectable carcinomas. Crit Rev Oncol Hematol 2017; 113:135-150. [PMID: 28427503 DOI: 10.1016/j.critrevonc.2017.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 12/17/2016] [Accepted: 03/08/2017] [Indexed: 01/31/2023] Open
Abstract
Oesophageal cancer is a relatively uncommon malignancy, but with poor prognosis. Despite several treatment options that are available, the 5-year survival rates rarely exceed 40%. This review discusses the main challenges of oesophageal cancer, the available treatment options, and the most effective treatment in terms of overall survival. The outcomes of clinical trials show that neo-adjuvant chemo-radiotherapy using cisplatin and 5-fluorouracil followed by oesophagectomy results in the greatest survival. However, the optimal chemotherapy and radiotherapy schedule remains unclear. There is no satisfactory treatment to date, particularly for patients with co-morbidities or advanced tumours.
Collapse
Affiliation(s)
- Bianca So
- Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia; School of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Loredana Marcu
- Faculty of Science, University of Oradea, Oradea 410087, Romania; School of Physical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Ian Olver
- Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Raghu Gowda
- Department of Radiation Oncology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Eva Bezak
- School of Health Sciences, University of South Australia, Adelaide, SA, Australia; School of Physical Sciences, University of Adelaide, Adelaide, SA, Australia; Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia.
| |
Collapse
|
718
|
Ayers D, Vandesompele J. Influence of microRNAs and Long Non-Coding RNAs in Cancer Chemoresistance. Genes (Basel) 2017; 8:genes8030095. [PMID: 28273813 PMCID: PMC5368699 DOI: 10.3390/genes8030095] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/15/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022] Open
Abstract
Innate and acquired chemoresistance exhibited by most tumours exposed to conventional chemotherapeutic agents account for the majority of relapse cases in cancer patients. Such chemoresistance phenotypes are of a multi-factorial nature from multiple key molecular players. The discovery of the RNA interference pathway in 1998 and the widespread gene regulatory influences exerted by microRNAs (miRNAs) and other non-coding RNAs have certainly expanded the level of intricacy present for the development of any single physiological phenotype, including cancer chemoresistance. This review article focuses on the latest research efforts in identifying and validating specific key molecular players from the two main families of non-coding RNAs, namely miRNAs and long non-coding RNAs (lncRNAs), having direct or indirect influences in the development of cancer drug resistance properties and how such knowledge can be utilised for novel theranostics in oncology.
Collapse
Affiliation(s)
- Duncan Ayers
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida MSD2080, Malta.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M1 7DN, UK.
| | - Jo Vandesompele
- Center for Medical Genetics Ghent, Ghent University, Ghent 9000, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
719
|
Panelli Santos KCP, Matsuzaki H, Unetsubo T, Tsuyoshi S, Nagatsuka H, Asaumi JI. De novo myoepithelial carcinoma with multiple metastases arising from a submandibular salivary gland: A case report. Oncol Lett 2017; 13:2679-2683. [PMID: 28454450 PMCID: PMC5403181 DOI: 10.3892/ol.2017.5783] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 12/18/2016] [Indexed: 11/05/2022] Open
Abstract
Salivary gland carcinomas are rare tumors, representing ~0.5% of all malignancies. Myoepithelioma is also uncommon, representing ~1% of all salivary gland tumors. Myoepithelial carcinoma (MC) is even rarer, representing 0.2 to 0.6% of all salivary gland tumors. We herein report a case of MC with multiple metastases arising from a submandibular gland in a 71-year-old male patient and present the associated imaging findings. The patient was considered to have a de novo type of myoepithelial carcinoma, which is reportedly associated with higher malignancy than the transformation type of the disease (i.e., a malignant change from pleomorphic adenoma or myoepithelioma). This was reflected in the multiple lung and bone metastases sites and strong positivity for p53 and Ki-67.
Collapse
Affiliation(s)
- Karina Cecília Panelli Panelli Santos
- Department of Oral and Maxillofacial Radiology, Field of Tumor Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama 700-8558, Japan
| | - Hidenobu Matsuzaki
- Department of Oral Diagnosis and Dentomaxillofacial Radiology, Okayama University Hospital, Kita-ku, Okayama 700-8558, Japan
| | - Teruhisa Unetsubo
- Department of Oral and Maxillofacial Radiology, Field of Tumor Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama 700-8558, Japan
| | - Shimo Tsuyoshi
- Department of Oral and Maxillofacial Surgery and Biopathology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama 700-8558, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama 700-8558, Japan
| | - Jun-Ichi Asaumi
- Department of Oral and Maxillofacial Radiology, Field of Tumor Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
720
|
Wu Z, Li L, Xie F, Du J, Zuo Y, Frost JA, Carlton SM, Walters ET, Yang Q. Activation of KCNQ Channels Suppresses Spontaneous Activity in Dorsal Root Ganglion Neurons and Reduces Chronic Pain after Spinal Cord Injury. J Neurotrauma 2017; 34:1260-1270. [PMID: 28073317 DOI: 10.1089/neu.2016.4789] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A majority of people who have sustained spinal cord injury (SCI) experience chronic pain after injury, and this pain is highly resistant to available treatments. Contusive SCI in rats at T10 results in hyperexcitability of primary sensory neurons, which contributes to chronic pain. KCNQ channels are widely expressed in nociceptive dorsal root ganglion (DRG) neurons, are important for controlling their excitability, and their activation has proven effective in reducing pain in peripheral nerve injury and inflammation models. The possibility that activators of KCNQ channels could be useful for treating SCI-induced chronic pain is strongly supported by the following findings. First, SCI, unlike peripheral nerve injury, failed to decrease the functional or biochemical expression of KCNQ channels in DRG as revealed by electrophysiology, real-time quantitative polymerase chain reaction, and Western blot; therefore, these channels remain available for pharmacological targeting of SCI pain. Second, treatment with retigabine, a specific KCNQ channel opener, profoundly decreased spontaneous activity in primary sensory neurons of SCI animals both in vitro and in vivo without changing the peripheral mechanical threshold. Third, retigabine reversed SCI-induced reflex hypersensitivity, adding to our previous demonstration that retigabine supports the conditioning of place preference after SCI (an operant measure of spontaneous pain). In contrast to SCI animals, naïve animals showed no effects of retigabine on reflex sensitivity or conditioned place preference by pairing with retigabine, indicating that a dose that blocks chronic pain-related behavior has no effect on normal pain sensitivity or motivational state. These results encourage the further exploration of U.S. Food and Drug Administration-approved KCNQ activators for treating SCI pain, as well as efforts to develop a new generation of KCNQ activators that lack central side effects.
Collapse
Affiliation(s)
- Zizhen Wu
- 1 Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health , Houston, Texas
| | - Lin Li
- 1 Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health , Houston, Texas
| | - Fuhua Xie
- 1 Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health , Houston, Texas.,3 Department of Critical Medicine, the Second Affiliated Hospital of Guangzhou Medical University , Guangzhou, Guangdong, China
| | - Junhui Du
- 2 Department of Neuroscience and Cell Biology, University of Texas Medical Branch , Galveston, Texas
| | - Yan Zuo
- 1 Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health , Houston, Texas
| | - Jeffrey A Frost
- 1 Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health , Houston, Texas
| | - Susan M Carlton
- 2 Department of Neuroscience and Cell Biology, University of Texas Medical Branch , Galveston, Texas
| | - Edgar T Walters
- 1 Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health , Houston, Texas
| | - Qing Yang
- 1 Department of Integrative Biology and Pharmacology, McGovern Medical School at UT Health , Houston, Texas
| |
Collapse
|
721
|
Abstract
Activation of oncogenes or the deactivation of tumor suppressor genes has long been established as the fundamental mechanism leading towards carcinogenesis. Although this age old axiom is vastly accurate, thorough study over the last 15years has given us unprecedented information on the involvement of epigenetic in cancer. Various biochemical pathways that are essential towards tumorigenesis are regulated by the epigenetic phenomenons like remodeling of nucleosome by histone modifications, DNA methylation and miRNA mediated targeting of various genes. Moreover the presence of mutations in the genes controlling the epigenetic players has further strengthened the association of epigenetics in cancer. This merger has opened up newer avenues for targeted anti-cancer drug therapy with numerous pharmaceutical industries focusing on expanding their research and development pipeline with epigenetic drugs. The information provided here elaborates the elementary phenomena of the various epigenetic regulators and discusses their alteration associated with the development of cancer. We also highlight the recent developments in epigenetic drugs combining preclinical and clinical data to signify this evolving field in cancer research.
Collapse
Affiliation(s)
- Subhankar Biswas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal University, Manipal 576104, Karnataka, India.
| |
Collapse
|
722
|
Liu H, Wu J, Liu XC, Wei N, Liu KL, Ma YH, Chang H, Zhou Q. Correlation between microvascular characteristics and the expression of MVD, IGF-1 and STAT3 in the development of colonic polyps carcinogenesis. Exp Ther Med 2017; 13:49-54. [PMID: 28123467 PMCID: PMC5245069 DOI: 10.3892/etm.2016.3927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 09/06/2016] [Indexed: 12/17/2022] Open
Abstract
The aim of the present study was to investigate the correlation between vascular characteristics under narrow band imaging (NBI) and the expression of angiogenic factors of colorectal carcinoma and adenoma, and to evaluate the feasibility of NBI in vivo visualizing angiogenesis. Patients with colorectal polyps, which were pathologically confirmed as early carcinoma and adenoma, were recruited and examined by NBI. The vascular pattern was classified into type I (invisible or faintly visible vasculature), type II (clearly visible microvasculature that is regularly arranged in a round, oval honeycomb-like pattern) and type III (clearly visible microvasculature that is irregularly arranged in size and caliber or has irregular winding). Immunohistochemical staining was performed by cluster of differentiation (CD)34, insulin-like growth factor (IGF)-1 and signal transducer and activator of transcription 3 (STAT3). The histological results were compared with the vascular pattern under NBI. Overall, 64 sites (15 adenocarcinomas, 29 adenomas and 20 normal) from 58 patients were recruited in the study and examined by NBI. A higher proportion of adenomas (82.1%, 23/28) and adenocarcinomas (66.7%, 10/15) had vascular patterns II and III, respectively. The expression of microvessel density (MVD)-CD34 and IGF-1 in normal mucosa compared with adenomas and adenocarcinomas was significantly different (P<0.0001 and P=0.0062, respectively). MVD-CD34, IGF-1 and STAT3 expression in the sites displayed with vascular patterns I, II, and III was different significantly (P<0.0001, P=0.0010 and P=0.0055, respectively). The spearman correlation coefficient between NBI vascular pattern and MVD-CD34, IGF-1 and STAT3 expression was 0.67, 0.41 and 0.40, respectively. In conclusion, vascular-pattern analysis and the use of an NBI system may be a promising tool for evaluating angiogenesis of colorectal lesions in real-time endoscopy.
Collapse
Affiliation(s)
- Hong Liu
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Jing Wu
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Xiang-Chun Liu
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Nan Wei
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Kui-Liang Liu
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Yan-Hui Ma
- Department of Gastroenterology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Hong Chang
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Quan Zhou
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
723
|
娄 诚, Gong F, 杜 智. Progress in research of tumor epigenetic therapy. Shijie Huaren Xiaohua Zazhi 2017; 25:1071. [DOI: 10.11569/wcjd.v25.i12.1071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
724
|
Cox SJ, O'Cathail SM, Coles B, Crosby T, Mukherjee S. Update on Neoadjuvant Regimens for Patients with Operable Oesophageal/Gastrooesophageal Junction Adenocarcinomas and Squamous Cell Carcinomas. Curr Oncol Rep 2017; 19:7. [PMID: 28213876 PMCID: PMC5315732 DOI: 10.1007/s11912-017-0559-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Survival outcomes following multimodal treatment of operable oesophageal and gastrooesophageal cancer remain disappointingly poor. Although an appreciation of the impact of both tumour location and histological subtype is now shaping the design of clinical trials, there has been a lack of consensus of the optimal neoadjuvant treatment strategy. This update article will review recent advances in the use of both neoadjuvant chemotherapy and chemoradiotherapy. The emerging role of PET imaging to direct appropriate neoadjuvant treatment regimens and the additive benefit of biological agents are also discussed.
Collapse
Affiliation(s)
- Samantha J Cox
- Cardiff University, Cardiff, CF10 3XQ, UK.
- Department of Clinical Oncology, Velindre Cancer Centre, Cardiff, UK.
| | - Sean M O'Cathail
- Department of Clinical Oncology, Oxford University NHS Trust, Oxford, UK
| | | | - Tom Crosby
- Department of Clinical Oncology, Velindre Cancer Centre, Cardiff, UK
| | - Somnath Mukherjee
- MRC/CRUK Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| |
Collapse
|
725
|
He M, Zhou W, Li C, Guo M. MicroRNAs, DNA Damage Response, and Cancer Treatment. Int J Mol Sci 2016; 17:ijms17122087. [PMID: 27973455 PMCID: PMC5187887 DOI: 10.3390/ijms17122087] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/23/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
As a result of various stresses, lesions caused by DNA-damaging agents occur constantly in each cell of the human body. Generally, DNA damage is recognized and repaired by the DNA damage response (DDR) machinery, and the cells survive. When repair fails, the genomic integrity of the cell is disrupted—a hallmark of cancer. In addition, the DDR plays a dual role in cancer development and therapy. Cancer radiotherapy and chemotherapy are designed to eliminate cancer cells by inducing DNA damage, which in turn can promote tumorigenesis. Over the past two decades, an increasing number of microRNAs (miRNAs), small noncoding RNAs, have been identified as participating in the processes regulating tumorigenesis and responses to cancer treatment with radiation therapy or genotoxic chemotherapies, by modulating the DDR. The purpose of this review is to summarize the recent findings on how miRNAs regulate the DDR and discuss the therapeutic functions of miRNAs in cancer in the context of DDR regulation.
Collapse
Affiliation(s)
- Mingyang He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Weiwei Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Chuang Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
726
|
Pechalrieu D, Etievant C, Arimondo PB. DNA methyltransferase inhibitors in cancer: From pharmacology to translational studies. Biochem Pharmacol 2016; 129:1-13. [PMID: 27956110 DOI: 10.1016/j.bcp.2016.12.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/07/2016] [Indexed: 12/31/2022]
Abstract
DNA methylation is a mammalian epigenetic mark that participates to define where and when genes are expressed, both in normal cells and in the context of diseases. Like other epigenetic marks, it is reversible and can be modulated by chemical agents. Because it plays an important role in cancer by silencing certain genes, such as tumour suppressor genes, it is a promising therapeutic target. Two compounds are already approved to treat haematological cancers, and many efforts have been carried out to discover new molecules that inhibit DNA methyltransferases, the enzymes responsible for DNA methylation. Here, we analyse the molecular mechanisms and cellular pharmacology of these inhibitors, pointing out the necessity for new pharmacological models and paradigms. The parameters of pharmacological responses need to be redefined: the aim is cellular reprogramming rather than general cytotoxicity. Thus, "epigenetic" rather than cytotoxic dosages are defined. Another issue is the delay of the response: cellular reprogramming can take several generations to produce observable phenotypes. Is this compatible with laboratory scale experiments? Finally, it is important to consider the specificity for cancer cells compared to normal cells and the appearance of resistance. We also discuss different techniques that are used and the selection of pharmacological models.
Collapse
Affiliation(s)
- Dany Pechalrieu
- Unité de Service et de Recherche CNRS-Pierre Fabre USR3388, CNRS FRE3600, ETaC, Epigenetic Targeting of Cancer, Toulouse, France
| | - Chantal Etievant
- Unité de Service et de Recherche CNRS-Pierre Fabre USR3388, CNRS FRE3600, ETaC, Epigenetic Targeting of Cancer, Toulouse, France
| | - Paola B Arimondo
- Unité de Service et de Recherche CNRS-Pierre Fabre USR3388, CNRS FRE3600, ETaC, Epigenetic Targeting of Cancer, Toulouse, France.
| |
Collapse
|
727
|
Zhang L, Xiong W, Li N, Liu H, He H, Du Y, Zhang Z, Liu Y. Estrogen stabilizes hypoxia-inducible factor 1α through G protein-coupled estrogen receptor 1 in eutopic endometrium of endometriosis. Fertil Steril 2016; 107:439-447. [PMID: 27939762 DOI: 10.1016/j.fertnstert.2016.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate whether G protein-coupled estrogen receptor (GPER, also known as GPR30 and GPER1) stabilizes hypoxia-inducible factor 1α (HIF-1α) in eutopic endometrium (EuEM) of endometriosis. DESIGN Immunohistochemical analysis and experimental in vitro study. SETTING University hospital. PATIENT(S) Patients with or without endometriosis. INTERVENTION(S) The EuEM and normal control endometrium (CoEM) were obtained by curettage. Primary cultured endometrial stromal cells (ESCs) were treated with 17β-E2, G1, or G15. MAIN OUTCOME MEASURE(S) The EuEM and CoEM were collected for immunohistochemistry. Western blot, polymerase chain reaction, ELISA, and dual luciferase experiments were used to detect expression of GPER, HIF-1α, vascular endothelial growth factor (VEGF), and matrix metalloproteinase 9 (MMP9) in ESCs. Estradiol and G1 were used as agonists of GPER, G15 as an antagonist. Migration of ESCs and endothelial tube formation of human umbilical vein endothelial cells cultured in medium collected from ESCs were measured. RESULT(S) Protein levels of GPER and HIF-1α were higher in EuEM than in CoEM. Protein levels of HIF-1α but not HIF-1α mRNA levels increased concurrently with GPER after E2 and G1 treatment. Furthermore, expression and activity of VEGF and MMP9 increased under E2 and G1 stimulation. However, these effects disappeared when GPER was blocked. CONCLUSION(S) G protein-coupled estrogen receptor stabilizes HIF-1α and thus promotes HIF-1α-induced VEGF and MMP9 in ESCs, which play critical roles in endometriosis.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
| | - Wenqian Xiong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
| | - Na Li
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
| | - Hengwei Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
| | - Haitang He
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
| | - Yu Du
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China
| | - Zhibing Zhang
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, Virginia
| | - Yi Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, People's Republic of China.
| |
Collapse
|
728
|
Myoepithelial carcinoma of the salivary gland: pathologic and CT imaging characteristics (report of 10 cases and literature review). Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 123:e182-e187. [PMID: 28153562 DOI: 10.1016/j.oooo.2016.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/17/2016] [Accepted: 11/29/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To summarize the pathologic and computed tomography (CT) imaging characteristics of myoepithelial carcinoma in the salivary gland. STUDY DESIGN Ten patients with myoepithelial carcinoma of the salivary gland underwent enhanced CT scanning, and the pathologic and CT imaging features were evaluated, including the pathologic type, size, margin morphology, and enhancement pattern of the lesions. RESULTS Myoepithelial carcinoma had a multinodular or lobulated outline. The cut surfaces were gray-brown with no or incomplete capsules, and visible bleeding was observed in some cases. The pathologic cell type of the tumor was spindle-shaped, clear, plasmacytoid, or epithelioid cells or a mixture of cell types. Nonenhanced CT imaging showed an irregular lobulated or multinodular lesion with ill-defined margins and inhomogeneous attenuation and punctate calcification in a minority of the lesions. The enhanced CT imaging results revealed moderate and intense inhomogeneous enhancement, including cystic and slit-like regions with no enhancement, intense nodular enhancement, and small tortuous vessels in the arterial phase. CONCLUSION The pathologic features and CT imaging findings of myoepithelial carcinoma were characteristic, and familiarity with these imaging findings might aid in the diagnosis of this entity.
Collapse
|
729
|
Kurdi LAF, Aljeddani FA. Reduction of Dacarbazine cytogenetic effects on somatic cells in male mice using bee glue (Propolis) to manifest the scientific miracles in the Quran. Electron Physician 2016; 8:3015-3023. [PMID: 27790359 PMCID: PMC5074765 DOI: 10.19082/3015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/28/2016] [Indexed: 11/20/2022] Open
Abstract
Objective This study was carried out to investigate the ability of Propolis to ameliorate the adverse cytogenetic effects of Dacarbazine on bone marrow cells Methods In this experimental in vivo study, 18 mice were used, divided into four groups: control group; Propolis-treated group (treated with 50mg/kg Propolis); and Dacarbazine-treated group (treated with 3.5mg/kg Dacarbazine). The fourth, fifth, and sixth were treated with Dacarbazine and Propolis as pre 2h, post 2h, and concomitant treatment. After five days, the Bone Marrow (BM) samples were obtained for cytogenetic investigation. Results The in vivo studies revealed that Dacarbazine induced an abnormalities in polychromatic erythrocytes cells (PECs) as increase of cell with micronuclei, while the dual treatment accompanied with improvement of this abnormalities. Conclusions It could be concluded that there are protective effects of Propolis against the adverse effects of Dacarbazine. It could be recommended to use Propolis as an adjuvant with chemotherapeutic agents.
Collapse
Affiliation(s)
- Lina Abdul-Fattah Kurdi
- Faculty of Sciences, Department of Biology "Zoology", Al Faisaliah Campus, King Abdul Aziz University, Kingdom of Saudi Arabia
| | - Fatimah Aliyan Aljeddani
- Faculty of Sciences, Department of Biology "Zoology", Al Faisaliah Campus, King Abdul Aziz University, Kingdom of Saudi Arabia
| |
Collapse
|
730
|
Procaine Induces Epigenetic Changes in HCT116 Colon Cancer Cells. GENETICS RESEARCH INTERNATIONAL 2016; 2016:8348450. [PMID: 27843649 PMCID: PMC5098101 DOI: 10.1155/2016/8348450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/25/2016] [Accepted: 09/29/2016] [Indexed: 12/17/2022]
Abstract
Colon cancer is the third most commonly diagnosed cancer in the world, and it is the major cause of morbidity and mortality throughout the world. The present study aimed at treating colon cancer cell line (HCT116) with different chemotherapeutic drug/drug combinations (procaine, vorinostat “SAHA,” sodium phenylbutyrate, erlotinib, and carboplatin). Two different final concentrations were applied: 3 μM and 5 μM. Trypan blue test was performed to assess the viability of the cell before and after being treated with the drugs. The data obtained showed that there was a significant decrease in the viability of cells after applying the chemotherapeutic drugs/drug combinations. Also, DNA fragmentation assay was carried out to study the effect of these drugs on the activation of apoptosis-mediated DNA degradation process. The results indicated that all the drugs/drug combinations had a severe effect on inducing DNA fragmentation. Global DNA methylation quantification was performed to identify the role of these drugs individually or in combination in hypo- or hypermethylating the CpG dinucleotide all over the genome of the HCT116 colon cancer cell line. Data obtained indicated that different combinations had different effects in reducing or increasing the level of methylation, which might indicate the effectiveness of combining drugs in treating colon cancer cells.
Collapse
|
731
|
Zhang H, Gan Q, Wu Y, Liu R, Liu X, Huang Z, Yuan F, Kuang M, Song B. Diagnostic performance of diffusion-weighted magnetic resonance imaging in differentiating human renal lesions (benignity or malignancy): a meta-analysis. Abdom Radiol (NY) 2016; 41:1997-2010. [PMID: 27271218 DOI: 10.1007/s00261-016-0790-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PURPOSE This study aims to quantitatively evaluate the potential of diffusion-weighted magnetic resonance imaging (DW-MRI) for differentiating malignant and benign human renal lesions. MATERIALS AND METHODS A systematic literature was performed to identify previous research related to the diagnostic performance of DW-MRI for determining whether human renal lesions were benign or malignant. ADC values were extracted from normal renal tissue and different lesion types. Data were extracted to assess the diagnostic performance of DW-MRI for differentiating malignant and benign human renal lesions, as well as running threshold effect and heterogeneity. RESULTS Nine publications with 11 subsets were eligible for data extraction and diagnostic performance calculation. A total of 988 apparent diffusion coefficient (ADC) measurements were included. The differences in ADC values between benign lesions (2.47 ± 0.81 × 10(-3) mm(2)/s) and malignant lesions (1.81 ± 0.41 × 10(-3) mm(2)/s) were statistically significant (P < 0.001). The diagnostic odds ratio, the overall positive, negative likelihood ratios, pooled weighted sensitivity and specificity with 95% CI were 20.05 (95% CI 12.56-32.02), 3.32 (95% CI 2.13-5.18), 0.20 (95% CI 0.15-0.27), 88% (95% CI 0.84-0.91) and 72% (95% CI 0.67-0.76), respectively. The area under the curve of the summary receiver operating characteristic was 0.90. CONCLUSIONS This meta-analysis indicated that DW-MRI had a relatively good diagnostic accuracy in differentiating malignant and benign human renal lesions. We preliminarily recommend that DW-MRI is performed with a maximum b value ranging from 800 to 1000 s/mm(2) at 3.0 T for imaging protocol, and that DW-MRI should be used with caution when the study population includes children.
Collapse
Affiliation(s)
- Hanmei Zhang
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Qi Gan
- Department of Neurosurgery, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Yinghua Wu
- Department of Radiology, The Second Clinical Medicine School, Chengdu University of Traditional Chinese Medicine, No. 15, Section 4 Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Rongbo Liu
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Xijiao Liu
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Zixing Huang
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Fang Yuan
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Min Kuang
- Department of Radiology, The Second Clinical Medicine School, Chengdu University of Traditional Chinese Medicine, No. 15, Section 4 Renmin South Road, Chengdu, 610041, Sichuan, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
732
|
Myoepithelial carcinoma of the posterior mediastinum: An uncommon site for a rare tumor. HUMAN PATHOLOGY: CASE REPORTS 2016. [DOI: 10.1016/j.ehpc.2015.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
733
|
Fang X, Poulsen RR, Wang-Hu J, Shi O, Calvo NS, Simmons CS, Rivkees SA, Wendler CC. Knockdown of DNA methyltransferase 3a alters gene expression and inhibits function of embryonic cardiomyocytes. FASEB J 2016; 30:3238-55. [PMID: 27306334 PMCID: PMC5001511 DOI: 10.1096/fj.201600346r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/31/2016] [Indexed: 12/28/2022]
Abstract
We previously found that in utero caffeine exposure causes down-regulation of DNA methyltransferases (DNMTs) in embryonic heart and results in impaired cardiac function in adulthood. To assess the role of DNMTs in these events, we investigated the effects of reduced DNMT expression on embryonic cardiomyocytes. siRNAs were used to knock down individual DNMT expression in primary cultures of mouse embryonic cardiomyocytes. Immunofluorescence staining was conducted to evaluate cell morphology. A video-based imaging assay and multielectrode array were used to assess cardiomyocyte contractility and electrophysiology, respectively. RNA-Seq and multiplex bisulfite sequencing were performed to examine gene expression and promoter methylation, respectively. At 72 h after transfection, reduced DNMT3a expression, but not DNMT1 or -3b, disrupted sarcomere assembly and decreased beating frequency, contractile movement, amplitude of field action potential, and cytosolic calcium signaling of cardiomyocytes. RNA-Seq analysis revealed that the DNMT3a-deficient cells had deactivated gene networks involved in calcium, endothelin-1, renin-angiotensin, and cardiac β-adrenergic receptor signaling, which were not inhibited by DNMT3b siRNA. Moreover, decreased methylation levels were found in the promoters of Myh7, Myh7b, Tnni3, and Tnnt2, consistent with the up-regulation of these genes by DNMT3a siRNA. These data show that DNMT3a plays an important role in regulating embryonic cardiomyocyte gene expression, morphology and function.-Fang, X., Poulsen, R. R., Wang-Hu, J., Shi, O., Calvo, N. S., Simmons, C. S., Rivkees, S. A., Wendler, C. C. Knockdown of DNA methyltransferase 3a alters gene expression and inhibits function of embryonic cardiomyocytes.
Collapse
Affiliation(s)
- Xiefan Fang
- Child Health Research Institute, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA; and
| | - Ryan R Poulsen
- Child Health Research Institute, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA; and
| | - John Wang-Hu
- Child Health Research Institute, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA; and
| | - Olivia Shi
- Child Health Research Institute, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA; and
| | - Nicholas S Calvo
- Department of Mechanical and Aerospace Engineering, College of Engineering, University of Florida, Gainesville, Florida, USA
| | - Chelsey S Simmons
- Department of Mechanical and Aerospace Engineering, College of Engineering, University of Florida, Gainesville, Florida, USA
| | - Scott A Rivkees
- Child Health Research Institute, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA; and
| | - Christopher C Wendler
- Child Health Research Institute, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, USA; and
| |
Collapse
|
734
|
Li HK, Matsumoto Y, Furusawa Y, Kamada T. PU-H71, a novel Hsp90 inhibitor, as a potential cancer-specific sensitizer to carbon-ion beam therapy. JOURNAL OF RADIATION RESEARCH 2016; 57:572-575. [PMID: 27242340 PMCID: PMC5045081 DOI: 10.1093/jrr/rrw054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/16/2016] [Accepted: 04/03/2016] [Indexed: 06/05/2023]
Abstract
PU-H71, a heat shock protein 90 (Hsp90) inhibitor, has yielded therapeutic efficacy in many preclinical models and is currently in clinical trials. Carbon-ion radiotherapy (CIRT) has provided successful tumor control; however, there is still room for improvement, particularly in terms of tumor-specific radiosensitization. The Hsp90 inhibitor PU-H71 has been shown to sensitize tumor cells to X-ray radiation. A murine osteosarcoma cell line (LM8) and a normal human fibroblast cell line (AG01522) were treated with PU-H71 before X-ray, 14- or 50-keV/µm carbon-ion beam (C-ion) irradiation. Cell survival and protein expression were evaluated with colony formation and western blot, respectively. Treatment with PU-H71 alone was shown to be non-toxic to both cell lines; however, PU-H71 was shown to significantly sensitize LM8 cells to not only X-ray, but also to C-ion irradiation, while only a minimal sensitizing effect was observed in AG01522 cells. PU-H71 treatment was found to suppress the protein expression levels of Rad51 and Ku70, which are associated with the homologous recombination pathway and the non-homologous end-joining pathway of double-strand break repair. The findings reported here suggest that PU-H71 could be a promising radiosensitizer for CIRT.
Collapse
Affiliation(s)
- Huizi Keiko Li
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan Graduate School of Medical and Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo, Chiba 263-8522, Japan
| | - Yoshitaka Matsumoto
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan Proton Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8576, Japan
| | - Yoshiya Furusawa
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan
| | - Tadashi Kamada
- Research Center for Charged Particle Therapy, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage, Chiba 263-8555, Japan Graduate School of Medical and Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo, Chiba 263-8522, Japan
| |
Collapse
|
735
|
Shan Y, Gao J, Zeng MS, Lin J, Xu PJ. Gadoxetic acid-enhanced magnetic resonance imaging for the detection of small hepatocellular carcinoma (≤ 2.0 cm) in patients with chronic liver disease: A meta-analysis. World J Meta-Anal 2016; 4:95-104. [DOI: 10.13105/wjma.v4.i4.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/05/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023] Open
Abstract
AIM To perform a meta-analysis assessing the value of gadoxetic acid-enhanced magnetic resonance imaging (Gd-EOB-MRI) in detecting small hepatocellular carcinoma (HCC) (≤ 2.0 cm) in patients with chronic liver disease.
METHODS Databases, including MEDLINE and EMBASE, were searched for relevant original articles published from January 2008 to February 2015. Data were extracted, and summary estimates of diagnostic accuracy indexes such as sensitivity, specificity, diagnostic odds ratio, predictive value, and areas under summary receiver operating characteristic curve were obtained using a random-effects model, with further exploration employing meta-regression and subgroup analyses.
RESULTS In 10 studies evaluating 768 patients, pooled per-lesion sensitivity of Gd-EOB-DTPA was 91% (95%CI: 83%-95%), with a specificity of 95% (95%CI: 87%-98%). Overall positive likelihood ratio was 18.1 (95%CI: 6.6-49.4), for negative likelihood ratio (NLR) of 0.10 (95%CI: 0.05-0.19) and diagnostic odds ratio of 182 (95%CI: 57-581). Subgroup analysis suggested that diagnostic performance of Gd-EOB-MRI for sub-centimeter HCC (≤ 1.0 cm) detection was low, with a sensitivity of 69% (95%CI: 59%-78%). In studies with both Gd-EOB-MRI and diffusion-weighted imaging (DWI) performed, Gd-EOB-MRI/DWI combination was more sensitive than Gd-EOB-DTPA alone, whether for small lesions (86% vs 77%) or sub-centimeter ones (80% vs 56%).
CONCLUSION A limited number of small studies suggested that Gd-EOB-MRI has good diagnostic performance in the detection of small HCC (≤ 2.0 cm) among patients with chronic liver disease, but relatively lower performance for detection of sub-centimeter HCC (≤ 1.0 cm). Combination of Gd-EOB-MRI and DWI can improve the diagnostic sensitivity of MRI.
Collapse
|
736
|
Sidhu HS, Sadhotra A. Current Status of the New Antiepileptic Drugs in Chronic Pain. Front Pharmacol 2016; 7:276. [PMID: 27610084 PMCID: PMC4996999 DOI: 10.3389/fphar.2016.00276] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/12/2016] [Indexed: 12/17/2022] Open
Abstract
Antiepileptic drugs (AEDs) are extensively used worldwide to treat a wide range of disorders other than epilepsy, such as neuropathic pain, migraine, and bipolar disorder. Due to this situation more than 20 new third-generation AEDs have been introduced in the market recently. The future design of new AEDs must also have potential to help in the non-epileptic disorders. The wide acceptance of second generation AEDs for the management of various non-epileptic disorders has caused the emergence of generics in the market. The wide use of approved AEDs outside epilepsy is based on both economic and scientific reasons. Bipolar disorders, migraine prophylaxis, fibromyalgia, and neuropathic pain represent the most attractive indication expansion opportunities for anticonvulsant developers, providing blockbuster revenues. Strong growth in non-epilepsy conditions will see Pfizer's Lyrica become the market leading brand by 2018. In this review, we mainly focus on the current status of new AEDs in the treatment of chronic pain and migraine prophylaxis. AEDs have a strong analgesic potential and this is demonstrated by the wide use of carbamazepine in trigeminal neuralgia and sodium valproate in migraine prophylaxis. At present, data on the new AEDs for non-epileptic conditions are inconclusive. Not all AEDs are effective in the management of neuropathic pain and migraine. Only those AEDs whose mechanisms of action are match with pathophysiology of the disease, have potential to show efficacy in non-epileptic disorder. For this better understanding of the pathophysiology of the disease and mechanisms of action of new AEDs are essential requirement before initiating pre-clinical and clinical trials. Many new AEDs show good results in the animal model and open-label studies but fail to provide strong evidence at randomized, placebo-controlled trials. The final decision regarding the clinical efficacy of the particular AEDs in a specific non-epileptic disorder should be withdrawal from randomized placebo trials rather than open-label studies; otherwise this may lead to off-label uses of drug. The purpose of the present review is to relate the various mechanisms of action of new AEDs to pathophysiological mechanisms and clinical efficacy in neuropathic pain and migraine.
Collapse
|
737
|
Moulin L, Cenizo V, Antu AN, André V, Pain S, Sommer P, Debret R. Methylation of LOXL1 Promoter by DNMT3A in Aged Human Skin Fibroblasts. Rejuvenation Res 2016; 20:103-110. [PMID: 27396912 DOI: 10.1089/rej.2016.1832] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Lysyl oxidase-like 1 (LOXL1) is an amino-oxidase involved in maturation of elastic fibers. Its downregulation has been associated with elastic fibers repair loss in aging aorta, lung, ligament, and skin. Several evidences of LOXL1 epigenetic silencing by promoter methylation were reported in cancer and cutis laxa syndrome. We hypothesized that this mechanism could be implicated in skin aging process, as far as elastic fibers are also concerned. Anti-DNMT3A chromatin immunoprecipitation was conducted with nuclear extracts from skin fibroblasts isolated from young and elderly individuals, and showed a higher level of DNMT3A protein binding to the LOXL1 promoter in older cells concomitantly to the decrease of LOXL1 mRNA expression and the increase of LOXL1 promoter methylation. Using luciferase reporter assay driven by LOXL1 promoter in HEK293 cells, we demonstrated that LOXL1 transcriptional activity was dramatically reduced when a recombinant DNMT3A was concomitantly overexpressed. LOXL1 promoter transcriptional activity was restored in the presence of a broad-spectrum inhibitor of DNMT activity, 5-aza-2'-deoxycytidine. Finally, to assess whether the interplay between DNMT3A and LOXL1 promoter could be targeted to increase LOXL1 mRNA expression level, an Origanum majorana extract was selected among 43 plant extracts as a new inhibitor of human DNMT3A activity to restore LOXL1 secretion without cytotoxicity in aged skin fibroblasts.
Collapse
Affiliation(s)
- Léa Moulin
- 1 Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305, CNRS, University Claude Bernard , Lyon, France
| | | | - Alengo Nyamay Antu
- 1 Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305, CNRS, University Claude Bernard , Lyon, France
| | - Valérie André
- 2 BASF-Beauty Care Solutions France SAS , Lyon, France
| | - Sabine Pain
- 2 BASF-Beauty Care Solutions France SAS , Lyon, France
| | - Pascal Sommer
- 1 Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305, CNRS, University Claude Bernard , Lyon, France
| | - Romain Debret
- 1 Laboratory of Tissue Biology and Therapeutic Engineering, UMR5305, CNRS, University Claude Bernard , Lyon, France
| |
Collapse
|
738
|
Cheng Y, Lin CH, Chen JY, Li CH, Liu YT, Chen BC. Induction of Connective Tissue Growth Factor Expression by Hypoxia in Human Lung Fibroblasts via the MEKK1/MEK1/ERK1/GLI-1/GLI-2 and AP-1 Pathways. PLoS One 2016; 11:e0160593. [PMID: 27486656 PMCID: PMC4972311 DOI: 10.1371/journal.pone.0160593] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 07/21/2016] [Indexed: 01/25/2023] Open
Abstract
Several reports have indicated that hypoxia, GLI, and connective tissue growth factor (CTGF) contribute to pulmonary fibrosis in idiopathic pulmonary fibrosis. We investigated the participation of mitogen-activated protein kinase kinase (MEK) kinase 1 (MEKK1)/MEK1/ERK1/GLI-1/2 and activator protein-1 (AP-1) signaling in hypoxia-induced CTGF expression in human lung fibroblasts. Hypoxia time-dependently increased CTGF expression, which was attenuated by the small interfering RNA (siRNA) of GLI-1 (GLI-1 siRNA) and GLI-2 (GLI-2 siRNA) in both human lung fibroblast cell line (WI-38) and primary human lung fibroblasts (NHLFs). Moreover, GLI-1 siRNA and GLI-2 siRNA attenuated hypoxia-induced CTGF-luciferase activity, and the treatment of cells with hypoxia induced GLI-1 and GLI-2 translocation. Furthermore, hypoxia-induced CTGF expression was reduced by an MEK inhibitor (PD98059), MEK1 siRNA, ERK inhibitor (U0126), ERK1 siRNA, and MEKK1 siRNA. Both PD98059 and U0126 significantly attenuated hypoxia-induced CTGF-luciferase activity. Hypoxia time-dependently increased MEKK1, ERK, and p38 MAPK phosphorylation. Moreover, SB203580 (a p38 MAPK inhibitor) also apparently inhibited hypoxia-induced CTGF expression. The treatment of cells with hypoxia induced ERK, GLI-1, or GLI-2 complex formation. Hypoxia-induced GLI-1 and GLI-2 translocation into the nucleus was significantly attenuated by U0126. In addition, hypoxia-induced ERK Tyr204 phosphorylation was impeded by MEKK1 siRNA. Moreover, hypoxia-induced CTGF-luciferase activity was attenuated by cells transfected with AP-1 site mutation in a CTGF construct. Exposure to hypoxia caused a time-dependent phosphorylation of c-Jun, but not of c-Fos. Chromatin immunoprecipitation (ChIP) revealed that hypoxia induced the recruitment of c-Jun, GLI-1, and GLI-2 to the AP-1 promoter region of CTGF. Hypoxia-treated cells exhibited an increase in α-smooth muscle actin (α-SMA) and collagen production, which was blocked by GLI-1 siRNA and GLI-2 siRNA. Overall, these data implied that the MEKK1/MEK1/ERK1/GLI-1/GLI-2, and AP-1 pathways mediated hypoxia-induced CTGF expression in human lung fibroblasts. Furthermore, GLI-1 and GLI-2 found to be involved in hypoxia-induced α-SMA and collagen expression.
Collapse
Affiliation(s)
- Yi Cheng
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-huang Lin
- Gradual Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jing-Yun Chen
- Gradual Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chien-Hua Li
- Gradual Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Tin Liu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Bing-Chang Chen
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
739
|
Phase II study of neoadjuvant therapy with nab-paclitaxel and cisplatin followed by surgery in patients with locally advanced esophageal squamous cell carcinoma. Oncotarget 2016; 7:50624-50634. [PMID: 27244882 PMCID: PMC5226608 DOI: 10.18632/oncotarget.9562] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 04/26/2016] [Indexed: 02/07/2023] Open
Abstract
Background We carried out a phase II study to evaluate the efficiency and safety of the combination of nanoparticle albumin bound-paclitaxel (nab-paclitaxel) and cisplatin as preoperative chemotherapy for locally advanced esophageal squamous cell carcinoma (ESCC) Results From Oct 2011 to Dec 2012, 35 patients were enrolled and received neoadjuvant chemotherapy. Thirty patients underwent surgery and achieved a 100% R0 resection. Pathological complete response (pCR) rate was 13.3% and near pCR rate was 6.7%. Down-staging was achieved in 19 patients. With median follow-up of 37.8 months, 16 patients were still alive. One-, 2- and 3- year overall survival (OS) rate was 90.0%, 70.0% and 43.3%, respectively. This treatment resulted in a median disease-free survival (DFS) of 34.7 months and a median OS of 37.8 months. Median DFS and OS of down-staged patients were significantly longer than those of non-downstaged patients. The grade 4 toxicities during neoadjuvant chemotherapy were limited to neutropenia (2.9%) and vomiting (2.9%). Methods Patients with locally advanced ESCC (stage IIA to IIIC) and performance status 0-1 were enrolled and received two cycles of nab-paclitaxel (100 mg/m2) on day 1, 8, 22 and 29, and cisplatin (75 mg/m2) on day 1 and 22, followed by resection. Two cycles of adjuvant chemotherapy with the same regimen were given. Postoperative radiotherapy was permitted and decided by radiation therapist. Conclusion Weekly nab-paclitaxel with three-weekly cisplatin seems effective and safe as a neoadjuvant chemotherapy strategy for locally advanced ESCC. Down-staged patients have favorable outcome. ClinicalTrials.gov Identifier NCT01258192
Collapse
|
740
|
Ponhold L, Javor D, Heinz-Peer G, Sevcenco S, Hofstetter M, Baltzer PA. Inter-observer variation and diagnostic efficacy of apparent diffusion coefficient (ADC) measurements obtained by diffusion-weighted imaging (DWI) in small renal masses. Acta Radiol 2016; 57:1014-20. [PMID: 26486599 DOI: 10.1177/0284185115610934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/18/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Diffusion-weighted imaging (DWI) is increasingly used to diagnose renal lesion subtypes. Especially in small renal masses, identification of less aggressive tumor types is of clinical interest, as active surveillance strategies can be applied. PURPOSE To evaluate the inter-observer variation and diagnostic efficacy of apparent diffusion coefficient (ADC) measurements obtained by DWI in small renal masses ≤4 cm (SRM). MATERIAL AND METHODS This retrospective IRB-approved study included 39 patients (46 SRM: 12 benign, 34 malignant). All underwent a 3 T DWI of SRM prior to surgery. Two radiologists independently analyzed all imaging data by three measurements. Limits of agreement, intraclass correlation coefficients (ICC), group comparisons by t-tests, and ROC analysis were performed. RESULTS Reliability of ADC measurements was very high with an ICC of >0.9 for both observers. Inter-rater reliability was high with an ICC of 0.82. Limits of agreement for average ADC values between both observers were -23.5% to 38.3% with a mean difference of 7.5% between both observers. No significant differences were found between benign and malignant lesions (P value Observer 1: 0.362, Observer 2: 0.622). Papillary carcinoma showed lower ADC values compared to non-papillary carcinoma (P value Observer 1: 0.008, Observer 2: 0.012). Consequently, ROC analysis revealed a significant (P < 0.001, respectively) area under the ROC curve of 0.853 (Observer 1) and 0.837 (Observer 2) without significant differences between both readers (P = 0.772). CONCLUSION ADC measurements of SRM at 3 T show a high reproducibility and differentiate papillary from non-papillary carcinoma subtypes. However, measurement variability may limit the application of fixed ADC thresholds for lesion diagnosis.
Collapse
Affiliation(s)
- Lothar Ponhold
- Department of Radiology, University Hospital of Sankt-Pölten, St. Pölten, Austria
| | - Domagoj Javor
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gertraud Heinz-Peer
- Department of Radiology, University Hospital of Sankt-Pölten, St. Pölten, Austria
| | - Sabina Sevcenco
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Martin Hofstetter
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Pascal Andreas Baltzer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
741
|
Ren J, Zhang Y, Cai H, Ma H, Zhao D, Zhang X, Li Z, Wang S, Wang J, Liu R, Li Y, Qian J, Wei H, Niu L, Liu Y, Xiao L, Ding M, Jiang S. Human GPR4 and the Notch signaling pathway in endothelial cell tube formation. Mol Med Rep 2016; 14:1235-40. [PMID: 27279286 DOI: 10.3892/mmr.2016.5380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 02/29/2016] [Indexed: 11/06/2022] Open
Abstract
G protein-coupled receptor 4 (GPR4) is hypothesized to function as a pH sensor and is important in the regulation of proliferation, migration and angiogenesis of vascular endothelial cells (ECs). Furthermore, the Notch signaling pathway is significant in the regulation of the angiogenic behavior of ECs. However, whether GPR4 regulates angiogenesis via the Notch signaling pathway remains unclear. The present study evaluated the effect of Notch signaling in human GPR4‑induced angiogenesis in HMEC‑1 cells. The results revealed that GPR4 increased Notch1 expression in a time‑dependent manner. In addition, the inhibition of Notch1 expression using small interfering RNA or the Notch receptor inhibitor, γ-secretase inhibitor I, significantly blocked GPR4‑induced HMEC‑1 tube formation and lymphocyte transendothelial migration. Furthermore, the inhibition of Notch1 blocked GPR4‑induced vascular endothelial growth factor and hypoxia-inducible factor 1α expression. Thus, it was demonstrated that GPR4 affects ECs by regulating Notch1, a function that may be important for physiological and pathological angiogenesis.
Collapse
Affiliation(s)
- Juan Ren
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yuelang Zhang
- Imaging Department, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hui Cai
- Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hongbing Ma
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Dongli Zhao
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xiaozhi Zhang
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Zongfang Li
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Shufeng Wang
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jiangsheng Wang
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Rui Liu
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yi Li
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Jiansheng Qian
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hongxia Wei
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Liying Niu
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yan Liu
- Department of Radiotherapy, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Lisha Xiao
- Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Muyang Ding
- Medical School, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Shiwen Jiang
- Department of Biomedical Science, Mercer University School of Medicine, Macon, GA 31207, USA
| |
Collapse
|
742
|
Morera L, Lübbert M, Jung M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin Epigenetics 2016; 8:57. [PMID: 27222667 PMCID: PMC4877953 DOI: 10.1186/s13148-016-0223-4] [Citation(s) in RCA: 305] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022] Open
Abstract
The term epigenetics is defined as heritable changes in gene expression that are not due to alterations of the DNA sequence. In the last years, it has become more and more evident that dysregulated epigenetic regulatory processes have a central role in cancer onset and progression. In contrast to DNA mutations, epigenetic modifications are reversible and, hence, suitable for pharmacological interventions. Reversible histone methylation is an important process within epigenetic regulation, and the investigation of its role in cancer has led to the identification of lysine methyltransferases and demethylases as promising targets for new anticancer drugs. In this review, we describe those enzymes and their inhibitors that have already reached the first stages of clinical trials in cancer therapy, namely the histone methyltransferases DOT1L and EZH2 as well as the demethylase LSD1.
Collapse
Affiliation(s)
- Ludovica Morera
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, Albertstraße 25, 79104 Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology and Oncology, University of Freiburg Medical Center, Hugstetter Straße 55, 79106 Freiburg, Germany ; German Cancer Consortium (DKTK), Freiburg, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-University Freiburg, Albertstraße 25, 79104 Freiburg, Germany ; German Cancer Consortium (DKTK), Freiburg, Germany
| |
Collapse
|
743
|
Abstract
OBJECTIVE The purpose of this study was to differentiate clear cell renal cell carcinoma (RCC) from other common renal cortical tumors by use of DWI. MATERIALS AND METHODS The study included 117 patients (mean age, 60 years) with 122 histopathologically confirmed renal cortical tumors who underwent 1.5-T MRI that included DWI before they underwent nephrectomy between 2006 and 2013. For each tumor, two radiologists independently evaluated apparent diffusion coefficient (ADC) values on the basis of a single ROI in a nonnecrotic area of the tumor and also by assessment of the whole tumor. The concordance correlation coefficient (CCC) was calculated to assess interreader agreement. The mean ADC values of clear cell RCC and every other tumor subtype were compared using an exact Wilcoxon rank sum test. RESULTS Interreader agreement was excellent and higher in whole-tumor assessment (CCC, 0.982) than in single-ROI analysis (CCC, 0.756). For both readers, ADC values for clear cell RCC found on single-ROI assessment (2.19 and 2.08 × 10(-3) mm(2)/s) and whole-tumor assessment (2.30 and 2.32 × 10(-3) mm(2)/s) were statistically significantly higher than those for chromophobe, papillary, or unclassified RCC (p < 0.05) but were similar to those for oncocytoma found on single-ROI assessment (2.14 and 2.32 × 10(-3) mm(2)/s) and whole-tumor assessment (2.38 and 2.24 × 10(-3) mm(2)/s). ADC values were also higher for clear cell RCC than for angiomyolipoma, but the difference was statistically significant only in whole-tumor assessment (p < 0.03). CONCLUSION ADC values were statistically significantly higher for clear cell RCC than for chromophobe, papillary, or unclassified RCC subtypes; however, differentiating clear cell RCC from oncocytoma by use of DWI remains especially challenging, because similar ADC values have been shown for these two tumor types.
Collapse
|
744
|
Ma J, Zhao Z, Wu K, Xu Z, Liu K. MCL-1 is the key target of adjuvant chemotherapy to reverse the cisplatin-resistance in NSCLC. Gene 2016; 587:147-54. [PMID: 27138804 DOI: 10.1016/j.gene.2016.04.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/27/2016] [Accepted: 04/27/2016] [Indexed: 10/21/2022]
Abstract
Cisplatin is one of the most effective chemotherapeutic agents for the treatment of lung cancer. However, the acquired resistance occurred in cancer cells limits the clinical application of cisplatin. MCL-1, which is an important member in the pro-survival Bcl-2 family, plays a critical role in multidrug resistance (MDR). The aim of the present study is to investigate the value of Pan-Bcl-2 inhibitor as sensitizer for the chemotherapy of cisplatin-resistant non-small cell lung cancer (NSCLC) cells. We found the obatoclax but not the ABT-737 significantly decreased the IC50 (half maximal inhibitory concentration) of cisplatin in cisplatin-resistant NSCLC cells. Furthermore, we demonstrated that the mechanism of obatoclax-promoted cell death induced by cisplatin was dependent on the inhibition of MCL-1, which couldn't be inhibited by ABT-737 but is the target of obatoclax. Moreover, inhibition of MCL-1 recovered the function of NOXA and BAK in cisplatin-resistant NSCLC cells, leading to the promotion of mitochondrial apoptosis induced by cisplatin. Interestingly, our date indicated the obatoclax also reversed the cross-resistance in cisplatin-resistant NSCLC cells. Therefore, we demonstrated that the targeted therapy with MCL-1 inhibitors, such as obatoclax, may represent a novel strategy for cancer therapy.
Collapse
Affiliation(s)
- Jun Ma
- Thoracic Surgery Department, 1st Affiliated Hospital of Sun Yat-Sen Univesity, Guangzhou 510080, China
| | - Zhenxian Zhao
- Pancreato-Biliary Surgery Department, 1st Affiliated Hospital of Sun Yat-Sen Univesity, Guangzhou 510080, China
| | - Kaiming Wu
- Colorectal Surgery Department, 1st Affiliated Hospital of Sun Yat-Sen Univesity, Guangzhou 510080, China
| | - Zhe Xu
- Division of Cardiac Surgery, 1st Affiliated Hospital of Sun Yat-Sen Univesity, Guangzhou 510080, China
| | - Kuanzhi Liu
- Department of Anaesthesiology, 1st Affiliated Hospital of Sun Yat-Sen Univesity, Guangzhou 510080, China.
| |
Collapse
|
745
|
Pasanen I, Lehtonen S, Sormunen R, Skarp S, Lehtilahti E, Pietilä M, Sequeiros RB, Lehenkari P, Kuvaja P. Breast cancer carcinoma-associated fibroblasts differ from breast fibroblasts in immunological and extracellular matrix regulating pathways. Exp Cell Res 2016; 344:53-66. [PMID: 27112989 DOI: 10.1016/j.yexcr.2016.04.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 11/17/2022]
Abstract
Tumor stroma has been recently shown to play a crucial role in the development of breast cancer. Since the origin of the stromal cells in the tumor is unknown, we have examined differences and similarities between three stromal cell types of mesenchymal origin, namely carcinoma associated fibroblasts from breast tumor (CAFs), fibroblasts from normal breast area (NFs) and bone marrow derived mesenchymal stromal cells (MSCs). In a microarray analysis, immunological, developmental and extracellular matrix -related pathways were over-represented in CAFs when compared to NFs (p<0.001). Under hypoxic conditions, the expression levels of pyruvate dehydrogenase kinase-1 (PDK1) and pyruvate dehydrogenase kinase-4 (PDK4) were lower in CAFs when compared to NFs (fold changes 0.6 and 0.4, respectively). In normoxia, when compared to NFs, CAFs displayed increased expression of glucose transporter 1 (GLUT-1) and PDK1 (fold changes 1.5 and 1.3, respectively). With respect to the assessed surface markers, only CD105 was expressed differently in MSCs when compared to fibroblasts, being more often expressed on MSCs. Cells with myofibroblast features were present in both NF and CAF samples. We conclude, that CAFs differ distinctly from NFs at the gene expression level, this hypothesis was also tested in silico for other available gene expression data.
Collapse
Affiliation(s)
- I Pasanen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu (MRC Oulu), University of Oulu and Oulu University Hospital, P.O. BOX 5000, Oulu FIN-90014, Finland; Department of Anatomy and Cell Biology, Oulu University Hospital, Finland.
| | - S Lehtonen
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu (MRC Oulu), University of Oulu and Oulu University Hospital, P.O. BOX 5000, Oulu FIN-90014, Finland; Department of Anatomy and Cell Biology, Oulu University Hospital, Finland; Department of Internal Medicine, Oulu University Hospital, Finland
| | - R Sormunen
- Biocenter Oulu and Departments of Pathology, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - S Skarp
- Biocenter Oulu, University of Oulu, Finland; Center for Life Course Epidemiology and Systems Medicine, Faculty of Medicine, University of Oulu, Finland; Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland; Oulu Center for Cell - Matrix Research, University of Oulu, Finland
| | - E Lehtilahti
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu (MRC Oulu), University of Oulu and Oulu University Hospital, P.O. BOX 5000, Oulu FIN-90014, Finland
| | - M Pietilä
- Turku Centre for Biotechnology, University of Turku, Turku FIN-20520, Finland
| | | | - P Lehenkari
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu (MRC Oulu), University of Oulu and Oulu University Hospital, P.O. BOX 5000, Oulu FIN-90014, Finland; Department of Anatomy and Cell Biology, Oulu University Hospital, Finland; Department of Surgery, Oulu University Hospital, Finland
| | - P Kuvaja
- Cancer and Translational Medicine Research Unit, Medical Research Center Oulu (MRC Oulu), University of Oulu and Oulu University Hospital, P.O. BOX 5000, Oulu FIN-90014, Finland; Department of Pathology, Oulu University Hospital, Finland
| |
Collapse
|
746
|
Jing Z, Xu H, Chen X, Zhong Q, Huang J, Zhang Y, Guo W, Yang Z, Ding S, Chen P, Huang Z. The Proton-Sensing G-Protein Coupled Receptor GPR4 Promotes Angiogenesis in Head and Neck Cancer. PLoS One 2016; 11:e0152789. [PMID: 27078157 PMCID: PMC4831743 DOI: 10.1371/journal.pone.0152789] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 03/18/2016] [Indexed: 11/18/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (SCCHN) is an aggressive disease with poor survival and is the sixth most common cancer worldwide. Gastroesophageal reflux is a common event in SCCHN patients. GPR4 is a proton-sensing G-protein coupled receptor, which can be activated by acidosis. The objective of this study was to explore the role of GPR4 in acid exposure and tumor angiogenesis in SCCHN. In this study, we confirmed that overexpressing GPR4 in SCCHN cells could increase the expression and secretion of IL6, IL8 and VEGFA at pH 5.9. This effect could be inhibited by SB203580 (a p38 inhibitor). Western blot analysis indicated that phosphorylation of p38 increased in GPR4 infected cells at pH 5.9, which could be inhibited by SB203580. In tube formation assay, HMEC-1 cells were incubated with conditioned medium (CM, pH 5.9, 6.5, 7.4) derived from control and GPR4 infected SCCHN cells. Tube length was significantly increased in HMEC-1 cells incubated with CM from GPR4 infected cells compared with control cells at pH5.9, which indicated the pro-angiogenic effect of GPR4 in acidic pH. The neutralizing antibodies of IL6, IL8 and VEGFA could inhibit tube formation of HMEC-1 cells. In vivo, the effect of GPR4 on angiogenesis was investigated with the chick chorioallantoic membrane (CAM) model. Control and GPR4 infected SCCHN cells were seeded onto the upper CAM surface (n = 5 in each group) and 5 μL DMEM/F12 (pH 5.9, 6.5, 7.4) was added to the surface of the cell every 24 h. Four days later, the upper CAM were harvested and the ratio of the vascular area to the CAM area was quantified using Image-Pro Plus 6.0 software. GPR4 infected cells could recruit more vascular than control cells at pH5.9. In conclusion, we suggested that GPR4 induces angiogenesis via GPR4-induced p38-mediated IL6, IL8 and VEGFA secretion at acidic extracellular pH in SCCHN.
Collapse
Affiliation(s)
- Zhibin Jing
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hongbo Xu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Xiaohong Chen
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qi Zhong
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Junwei Huang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yang Zhang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Wei Guo
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zheng Yang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Shuo Ding
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ping Chen
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhigang Huang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- * E-mail:
| |
Collapse
|
747
|
Xiao FH, Kong QP, Perry B, He YH. Progress on the role of DNA methylation in aging and longevity. Brief Funct Genomics 2016; 15:454-459. [PMID: 27032421 DOI: 10.1093/bfgp/elw009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Aging is a major risk factor for individuals' health problems. Moreover, environmental signals have a widespread influence on the aging process. Epigenetic modification, e.g. DNA methylation, represents a link between genetic and environmental signals via the regulation of gene transcription. An abundance of literature indicates that aberrant epigenetic change occurs throughout the aging process at both the cellular and the organismal level. In particular, DNA methylation presents globally decreasing and site-specific increasing in aging. In this review, we focus on the crucial roles of DNA methylation in aging and age-related disease and highlight the great potential of DNA methylation as a therapeutic target in preventing age-related diseases and promoting healthy longevity.
Collapse
|
748
|
Smith RA, Andrews K, Brooks D, DeSantis CE, Fedewa SA, Lortet-Tieulent J, Manassaram-Baptiste D, Brawley OW, Wender RC. Cancer screening in the United States, 2016: A review of current American Cancer Society guidelines and current issues in cancer screening. CA Cancer J Clin 2016; 66:96-114. [PMID: 26797525 DOI: 10.3322/caac.21336] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 12/11/2022] Open
Abstract
Each year the American Cancer Society (ACS) publishes a summary of its guidelines for early cancer detection, data and trends in cancer screening rates, and select issues related to cancer screening. In this issue of the journal, we summarize current ACS cancer screening guidelines, including the update of the breast cancer screening guideline, discuss quality issues in colorectal cancer screening and new developments in lung cancer screening, and provide the latest data on utilization of cancer screening from the National Health Interview Survey.
Collapse
Affiliation(s)
- Robert A Smith
- Vice President, Cancer Screening, Cancer Control Department, American Cancer Society Atlanta, GA
| | - Kimberly Andrews
- Director, Cancer Control Department, American Cancer Society, Atlanta, GA
| | - Durado Brooks
- Managing Director, Cancer Control Intervention, Cancer Control Department, American Cancer Society, Atlanta, GA
| | - Carol E DeSantis
- Senior Epidemiologist, Surveillance and Health Services Research, American Cancer Society, Atlanta, GA
| | - Stacey A Fedewa
- Director for Risk Factor Screening and Surveillance, Department of Epidemiology and Research Surveillance, American Cancer Society, Atlanta, GA
| | - Joannie Lortet-Tieulent
- Senior Epidemiologist, Surveillance and Health Services Research, American Cancer Society, Atlanta, GA
| | | | - Otis W Brawley
- Chief Medical Officer, American Cancer Society, Atlanta, GA
| | - Richard C Wender
- Chief Cancer Control Officer, American Cancer Society, Atlanta, GA
| |
Collapse
|
749
|
G-Protein-Coupled Lysophosphatidic Acid Receptors and Their Regulation of AKT Signaling. Int J Mol Sci 2016; 17:215. [PMID: 26861299 PMCID: PMC4783947 DOI: 10.3390/ijms17020215] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/13/2022] Open
Abstract
A hallmark of G-protein-coupled receptors (GPCRs) is their ability to recognize and respond to chemically diverse ligands. Lysophospholipids constitute a relatively recent addition to these ligands and carry out their biological functions by activating G-proteins coupled to a large family of cell-surface receptors. This review aims to highlight salient features of cell signaling by one class of these receptors, known as lysophosphatidic acid (LPA) receptors, in the context of phosphatidylinositol 3-kinase (PI3K)-AKT pathway activation. LPA moieties efficiently activate AKT phosphorylation and activation in a multitude of cell types. The interplay between LPA, its receptors, the associated Gαi/o subunits, PI3K and AKT contributes to the regulation of cell survival, migration, proliferation and confers chemotherapy-resistance in certain cancers. However, detailed information on the regulation of PI3K-AKT signals induced by LPA receptors is missing from the literature. Here, some urgent issues for investigation are highlighted.
Collapse
|
750
|
Abstract
PURPOSE OF REVIEW Poor management of chronic pain remains a significant cause of misery with huge socioeconomic costs. Accumulating research in potassium (K+) channel physiology has uncovered several promising leads for the development of novel analgesics. RECENT FINDINGS We now recognize that certain K+ channel subunits are directly gated to pain-relevant stimuli (Kv1.1, K2P) whereas others are specifically modulated by inflammatory processes (Kv7, BKCA, K2P). Genetic analyses illustrate that K+ channel gene variation can predict pain sensitivity (KCNS1, GIRKs), risk for persistent pain (KCNS1, GIRKs, TRESK) and analgesic effectiveness (GIRK2). Importantly, preclinical studies confirm that K+ channel dysfunction can be a pain trigger in traumatic neuropathies (Kv9.1/Kv2.1, Kv7, Kv1.2) and migraine (TRESK). Finally, emerging data suggest that even pain in diabetes, bone cancer and autoimmune neuropathies may have K+ channel dysfunction constituents. SUMMARY There is a long-sought need for superior pharmacotherapy of pain syndromes. Although universal enhancement of K+ channel function in the periphery can decrease nociceptive excitability irrespective of the underlying cause, a more refined targeting of subunits with dominant nociceptive roles could yield highly efficacious treatments with fewer side-effects. The ongoing characterization of molecular interactions linking K+ channel dysfunction to pain is instrumental for identifying candidates with the most therapeutic potential.
Collapse
|