701
|
Affiliation(s)
- Rajen Kundu
- CSIR - Central Mechanical Engineering Research Institute CoEFM Ludhiana 141006 India
- Academy of Scientific & Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Priyanka Payal
- CSIR - Central Mechanical Engineering Research Institute CoEFM Ludhiana 141006 India
| |
Collapse
|
702
|
The antibacterial structure-activity relationship for common chitosan derivatives. Int J Biol Macromol 2020; 165:1686-1693. [DOI: 10.1016/j.ijbiomac.2020.09.200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022]
|
703
|
Li H, Wang K, Chen G, Sun L, Yang J. Internal stress analysis of epoxy adhesively‐boned joints based on their thermomechanical properties at cryogenic temperature. J Appl Polym Sci 2020. [DOI: 10.1002/app.49311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hong Li
- Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and EngineeringBeihang University Beijing China
| | - Kun Wang
- State Key Laboratory of Advanced Power Transmission TechnologyState Grid Global Energy Interconnection Research Institute Beijing China
| | - Gong Chen
- Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and EngineeringBeihang University Beijing China
| | - Lingyu Sun
- School of Transportation Science and EngineeringBeihang University Beijing China
| | - Jiping Yang
- Key Laboratory of Aerospace Advanced Materials and Performance, Ministry of Education, School of Materials Science and EngineeringBeihang University Beijing China
| |
Collapse
|
704
|
Shrestha B, Stojkova K, Yi R, Anastasio MA, Ye JY, Brey EM. Gold nanorods enable noninvasive longitudinal monitoring of hydrogels in vivo with photoacoustic tomography. Acta Biomater 2020; 117:374-383. [PMID: 33010515 DOI: 10.1016/j.actbio.2020.09.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 01/15/2023]
Abstract
Longitudinal in vivo monitoring is essential for the design and evaluation of biomaterials. An ideal method would provide three-dimensional quantitative information, high spatial resolution, deep tissue penetration, and contrast between tissue and material structures. Photoacoustic (PA) or optoacoustic imaging is a hybrid technique that allows three-dimensional imaging with high spatial resolution. In addition, photoacoustic imaging allows for imaging of vascularization based on the intrinsic contrast of hemoglobin. In this study, we investigated photoacoustic computed tomography (PACT) as a tool for longitudinal monitoring of an implanted hydrogel in a small animal model. Hydrogels were loaded with gold nanorods to enhance contrast and imaged weekly for 8 weeks. PACT allowed non-invasive three-dimensional, quantitative imaging of the hydrogels over the entire 8 weeks. Quantitative volume analysis was used to evaluate the in vivo degradation kinetics of the implants which deviated slightly from in vitro predictions. Multispectral imaging allowed for the simultaneous analysis of hydrogel degradation and local vascularization. These results provide support for the substantial potential of PACT as a tool for insight into biomaterial performance in vivo.
Collapse
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, Texas, USA
| | - Katerina Stojkova
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, Texas, USA
| | - Rich Yi
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, Texas, USA
| | - Mark A Anastasio
- Department of Bioengineering, The University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Jing Yong Ye
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, Texas, USA
| | - Eric M Brey
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, Texas, USA
| |
Collapse
|
705
|
|
706
|
Moradian E, Rabiee SM, Haghighipour N, Salimi-Kenari H. Fabrication and physicochemical characterization of a novel magnetic nanocomposite scaffold: Electromagnetic field effect on biological properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111222. [PMID: 32806234 DOI: 10.1016/j.msec.2020.111222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022]
Abstract
In the current research, a novel poly(ε-caprolactone) nanofibrous composite scaffold including CZF-NPs1 (cobalt‑zinc ferrite nanoparticles) was investigated to study the physical, mechanical and biological properties of new magnetic nanofibrous materials and then to evaluate the effect of applied electromagnetic field on biological properties of these scaffolds. It was observed that the incorporation of CZF-NPs up to 3 wt.% leads to decrease in nanofibers' diameter to 466 nm. By raising the content of CZF-NPs, hydrophilicity and biodegradation of magnetic nanofibrous scaffolds improved significantly. In addition, the mechanical properties of nanofibers such as stress at break point was interestingly increased in the sample with 3 wt.% of CZF-NPs. The results of biocompatibility, cell adhesion and cell staining assays with L929 cells are much more improved in nanofibers embedded with CZF-NPs in the presence of external electromagnetic field (EMF). According to this study, magnetic nanofibrous scaffolds composed of PCL/CZF-NPs could be considered as a promising candidate to regenerate damaged tissues.
Collapse
Affiliation(s)
- Elmira Moradian
- Department of Engineering, Maziar University of Royan, Mazandaran, Iran
| | - Sayed Mahmood Rabiee
- Department of Materials Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | | | - Hamed Salimi-Kenari
- Faculty of Engineering & Technology, University of Mazandaran, Babolsar, Iran.
| |
Collapse
|
707
|
Zheng Z, Yu C, Wei H. Injectable Hydrogels as Three-Dimensional Network Reservoirs for Osteoporosis Treatment. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:430-454. [PMID: 33086984 DOI: 10.1089/ten.teb.2020.0168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Despite tremendous progresses made in the field of tissue engineering over the past several decades, it remains a significant challenge for the treatment of osteoporosis (OP) due to the lack of appropriate carriers to improve the bioavailability of therapeutic agents and the unavailability of artificial bone matrix with desired properties for the replacement of damaged bone regions. Encouragingly, the development of injectable hydrogels for the treatment of OP has attracted increasing attention in recent years because they can serve either as a reservoir for various therapeutic species or as a perfect filler for bone injuries with irregular shapes. However, the relationship between the complicated pathological mechanism of OP and the properties of diverse polymeric materials lacks elucidation, which clearly hampers the clinical application of injectable hydrogels for the efficient treatment of OP. To clarify this relationship, this article summarized both localized and systematic treatment of OP using an injectable hydrogel-based strategy. Specifically, the pathogenesis of OP and the limitations of current treatment approaches were first analyzed. We further focused on the use of hydrogels loaded with various therapeutic substances following a classification standard of the encapsulated cargoes for OP treatment with an emphasis on the application and precautions of each category. A concluding remark on existing challenges and future directions of this rapidly developing research area was finally made. Impact statement Effective osteoporosis (OP) treatment remains a significant challenge due substantially to the unavailability of appropriate drug carriers and artificial matrices with desired properties to promote bone repair and replace damaged regions. For this purpose, this review focused on the development of diverse injectable hydrogel systems for the delivery of various therapeutic agents, including drugs, stem cells, and nucleic acids, for effective increase in bone mass and favorable osteogenesis. The summarized important guidelines are believed to promote clinical development and translation of hydrogels for the efficient treatment of OP and OP-related bone damages toward improved life quality of millions of patients.
Collapse
Affiliation(s)
- Zhi Zheng
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study and School of Pharmaceutical Science, University of South China, Hengyang, China
| | - Cuiyun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study and School of Pharmaceutical Science, University of South China, Hengyang, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study and School of Pharmaceutical Science, University of South China, Hengyang, China
| |
Collapse
|
708
|
Bai R, Peng L, Sun Q, Zhang Y, Zhang L, Wei Y, Han B. Metallic Antibacterial Surface Treatments of Dental and Orthopedic Materials. MATERIALS (BASEL, SWITZERLAND) 2020; 13:4594. [PMID: 33076495 PMCID: PMC7658793 DOI: 10.3390/ma13204594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/05/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
The oral cavity harbors complex microbial communities, which leads to biomaterial-associated infections (BAI) during dental and orthopedic treatments. Conventional antibiotic treatments have met great challenges recently due to the increasing emergency of drug-resistant bacteria. To tackle this clinical issue, antibacterial surface treatments, containing surface modification and coatings, of dental and orthopedic materials have become an area of intensive interest now. Among various antibacterial agents used in surface treatments, metallic agents possess unique properties, mainly including broad-spectrum antibacterial properties, low potential to develop bacterial resistance, relative biocompatibility, and chemical stability. Therefore, this review mainly focuses on underlying antibacterial applications and the mechanisms of metallic agents in dentistry and orthopedics. An overview of the present review indicates that much work remains to be done to deepen the understanding of antibacterial mechanisms and potential side-effects of metallic agents.
Collapse
Affiliation(s)
- Rushui Bai
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Liying Peng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Qiannan Sun
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Lingyun Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, China; (R.B.); (L.P.); (Q.S.); (Y.Z.); (L.Z.)
| |
Collapse
|
709
|
Swar S, Máková V, Stibor I. The Covalent Tethering of Poly(ethylene glycol) to Nylon 6 Surface via N, N'-Disuccinimidyl Carbonate Conjugation: A New Approach in the Fight against Pathogenic Bacteria. Polymers (Basel) 2020; 12:E2181. [PMID: 32987744 PMCID: PMC7598665 DOI: 10.3390/polym12102181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
Different forms of unmodified and modified Poly(ethylene glycols) (PEGs) are widely used as antifouling and antibacterial agents for biomedical industries and Nylon 6 is one of the polymers used for biomedical textiles. Our recent study focused on an efficient approach to PEG immobilization on a reduced Nylon 6 surface via N,N'-disuccinimidyl carbonate (DSC) conjugation. The conversion of amide functional groups to secondary amines on the Nylon 6 polymer surface was achieved by the reducing agent borane-tetrahydrofuran (BH3-THF) complex, before binding the PEG. Various techniques, including water contact angle and free surface energy measurements, atomic force microscopy, scanning electron microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy, were used to confirm the desired surface immobilization. Our findings indicated that PEG may be efficiently tethered to the Nylon 6 surface via DSC, having an enormous future potential for antifouling biomedical materials. The bacterial adhesion performances against S. aureus and P. aeruginosa were examined. In vitro cytocompatibility was successfully tested on pure, reduced, and PEG immobilized samples.
Collapse
Affiliation(s)
| | - Veronika Máková
- Department of Nanochemistry, Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 46117 Liberec 1, Czech Republic; (S.S.); (I.S.)
| | | |
Collapse
|
710
|
Tang G, Tan Z, Zeng W, Wang X, Shi C, Liu Y, He H, Chen R, Ye X. Recent Advances of Chitosan-Based Injectable Hydrogels for Bone and Dental Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:587658. [PMID: 33042982 PMCID: PMC7527831 DOI: 10.3389/fbioe.2020.587658] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/24/2020] [Indexed: 01/05/2023] Open
Abstract
Traditional strategies of bone repair include autografts, allografts and surgical reconstructions, but they may bring about potential hazard of donor site morbidity, rejection, risk of disease transmission and repetitive surgery. Bone tissue engineering (BTE) is a multidisciplinary field that offers promising substitutes in biopharmaceutical applications, and chitosan (CS)-based bone reconstructions can be a potential candidate in regenerative tissue fields owing to its low immunogenicity, biodegradability, bioresorbable features, low-cost and economic nature. Formulations of CS-based injectable hydrogels with thermo/pH-response are advantageous in terms of their high-water imbibing capability, minimal invasiveness, porous networks, and ability to mold perfectly into an irregular defect. Additionally, CS combined with other naturally-derived or synthetic polymers and bioactive agents has proven to be an effective alternative to autologous bone and dental grafts. In this review, we will highlight the current progress in the development of preparation methods, physicochemical properties and applications of CS-based injectable hydrogels and their perspectives in bone and dental regeneration. We believe this review is intended as starting point and inspiration for future research effort to develop the next generation of tissue-engineering scaffold materials.
Collapse
Affiliation(s)
- Guoke Tang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine, Central South University (CSU), Hunan, China
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihong Tan
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine, Central South University (CSU), Hunan, China
| | - Wusi Zeng
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medicine, Central South University (CSU), Hunan, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changgui Shi
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yi Liu
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hailong He
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Rui Chen
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xiaojian Ye
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
711
|
Micro Magnetic Field Produced by Fe 3O 4 Nanoparticles in Bone Scaffold for Enhancing Cellular Activity. Polymers (Basel) 2020; 12:polym12092045. [PMID: 32911730 PMCID: PMC7570298 DOI: 10.3390/polym12092045] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 12/23/2022] Open
Abstract
The low cellular activity of poly-l-lactic acid (PLLA) limits its application in bone scaffold, although PLLA has advantages in terms of good biocompatibility and easy processing. In this study, superparamagnetic Fe3O4 nanoparticles were incorporated into the PLLA bone scaffold prepared by selective laser sintering (SLS) for continuously and steadily enhancing cellular activity. In the scaffold, each Fe3O4 nanoparticle was a single magnetic domain without a domain wall, providing a micro-magnetic source to generate a tiny magnetic field, thereby continuously and steadily generating magnetic stimulation to cells. The results showed that the magnetic scaffold exhibited superparamagnetism and its saturation magnetization reached a maximum value of 6.1 emu/g. It promoted the attachment, diffusion, and interaction of MG63 cells, and increased the activity of alkaline phosphatase, thus promoting the cell proliferation and differentiation. Meanwhile, the scaffold with 7% Fe3O4 presented increased compressive strength, modulus, and Vickers hardness by 63.4%, 78.9%, and 19.1% compared with the PLLA scaffold, respectively, due to the addition of Fe3O4 nanoparticles, which act as a nanoscale reinforcement in the polymer matrix. All these positive results suggested that the PLLA/Fe3O4 scaffold with good magnetic properties is of great potential for bone tissue engineering applications.
Collapse
|
712
|
Teeth angulations after class II treatment with the Jones Jig followed by fixed appliances: A retrospective panoramic analysis. Int Orthod 2020; 18:436-442. [DOI: 10.1016/j.ortho.2020.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 11/22/2022]
|
713
|
Choy S, Moon H, Park Y, Jung YM, Koo JM, Oh DX, Hwang DS. Mechanical properties and thermal stability of intermolecular-fitted poly(vinyl alcohol)/α-chitin nanofibrous mat. Carbohydr Polym 2020; 244:116476. [DOI: 10.1016/j.carbpol.2020.116476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/13/2020] [Accepted: 05/17/2020] [Indexed: 10/24/2022]
|
714
|
Chang Y, Wu J, Liu Z, Sun E, Liu L, Kou Q, Li F, Yang B, Cao W. Grain-Oriented Ferroelectric Ceramics with Single-Crystal-like Piezoelectric Properties and Low Texture Temperature. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38415-38424. [PMID: 32846483 DOI: 10.1021/acsami.0c11680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-performance piezoelectrics are pivotal to various electronic applications including multilayer actuators, sensors, and energy harvesters. Despite the presence of high Lotgering factor F001, two key limitations to today's relaxor-PbTiO3 textured ceramics are low piezoelectric properties relative to single crystals and high texture temperature. In this work, Pb(Yb1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PYN-PMN-PT) textured ceramics with F001 ∼ 99% were synthesized at only 975 °C through liquid-phase-assisted templated grain growth, where of particular significance is that single-crystal properties, i.e., very large electrostrain Smax/Emax ∼ 1830 pm V-1, giant piezoelectric figure of merit d33 × g33 ∼ 61.3 × 10-12 m2 N-1, high electromechanical coupling k33 ∼ 0.90, and Curie temperature Tc ∼ 205 °C, were simultaneously achieved. Especially, the Smax/Emax and d33 × g33 values correspond to ∼180% enhancement as compared to the regularly 1200 °C-textured ceramics with F001 ∼ 96%, representing the highest values ever reported on piezoceramics. Phase-field simulation revealed that grain misorientation has a stronger influence on piezoelectricity than texture fraction. The ultrahigh piezoelectric response achieved here is mainly attributed to effective control of grain orientation features and domain miniaturization. This work provides important guidelines for developing novel ceramics with significantly enhanced functional properties and low synthesis temperature in the future and can also greatly expand application fields of piezoceramics to high-performance, miniaturized electronic devices with multilayer structures.
Collapse
Affiliation(s)
- Yunfei Chang
- Condensed Matter Science and Technology Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Jie Wu
- Condensed Matter Science and Technology Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Zhen Liu
- Mechanics of Functional Materials Division, Department of Materials Science, TU Darmstadt, Darmstadt 64287, Germany
| | - Enwei Sun
- Condensed Matter Science and Technology Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Linjing Liu
- Condensed Matter Science and Technology Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Qiangwei Kou
- Condensed Matter Science and Technology Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Fei Li
- Electronic Materials Research Laboratory (Key Lab of Education Ministry), State Key Laboratory for Mechanical Behavior of Materials and School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Bin Yang
- Condensed Matter Science and Technology Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
| | - Wenwu Cao
- Condensed Matter Science and Technology Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
- Materials Research Institute and Department of Mathematics, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| |
Collapse
|
715
|
Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured Biomaterials for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:922. [PMID: 32974298 PMCID: PMC7471872 DOI: 10.3389/fbioe.2020.00922] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
This review article addresses the various aspects of nano-biomaterials used in or being pursued for the purpose of promoting bone regeneration. In the last decade, significant growth in the fields of polymer sciences, nanotechnology, and biotechnology has resulted in the development of new nano-biomaterials. These are extensively explored as drug delivery carriers and as implantable devices. At the interface of nanomaterials and biological systems, the organic and synthetic worlds have merged over the past two decades, forming a new scientific field incorporating nano-material design for biological applications. For this field to evolve, there is a need to understand the dynamic forces and molecular components that shape these interactions and influence function, while also considering safety. While there is still much to learn about the bio-physicochemical interactions at the interface, we are at a point where pockets of accumulated knowledge can provide a conceptual framework to guide further exploration and inform future product development. This review is intended as a resource for academics, scientists, and physicians working in the field of orthopedics and bone repair.
Collapse
Affiliation(s)
- Joseph G. Lyons
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Mark A. Plantz
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Wellington K. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Erin L. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Silvia Minardi
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| |
Collapse
|
716
|
Li D, Chen J, Wang X, Zhang M, Li C, Zhou J. Recent Advances on Synthetic and Polysaccharide Adhesives for Biological Hemostatic Applications. Front Bioeng Biotechnol 2020; 8:926. [PMID: 32923431 PMCID: PMC7456874 DOI: 10.3389/fbioe.2020.00926] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
Rapid hemostasis and formation of stable blood clots are very important to prevent massive blood loss from the excessive bleeding for living body, but their own clotting process cannot be completed in time for effective hemostasis without the help of hemostatic materials. In general, traditionally suturing and stapling techniques for wound closure are prone to cause the additional damages to the tissues, activated inflammatory responses, short usage periods and inevitable second operations in clinical applications. Especially for the large wounds that require the urgent closure of fluids or gases, these conventional closure methods are far from enough. To address these problems, various tissue adhesives, sealants and hemostatic materials are placed great expectation. In this review, we focused on the development of two main categories of tissue adhesive materials: synthetic polymeric adhesives and naturally derived polysaccharide adhesives. Research of the high performance of hemostatic adhesives with strong adhesion, better biocompatibility, easy usability and cheap price is highly demanded for both scientists and clinicians, and this review is also intended to provide a comprehensive summarization and inspiration for pursuit of more advanced hemostatic adhesives for biological fields.
Collapse
Affiliation(s)
- Dawei Li
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Jing Chen
- Department of Orthopedics, Aerospace Center Hospital, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingming Zhang
- The People’s Liberation Army Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Chunlin Li
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Jin Zhou
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
717
|
Reyes LQ, Zhang J, Dao B, Nguyen DL, Varley RJ. Subtle variations in the structure of crosslinked epoxy networks and the impact upon mechanical and thermal properties. J Appl Polym Sci 2020. [DOI: 10.1002/app.48874] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Larry Q. Reyes
- Carbon Nexus at the Institute for Frontier Materials, Deakin University Waurn Ponds Victoria 3216 Australia
| | - Jane Zhang
- Carbon Nexus at the Institute for Frontier Materials, Deakin University Waurn Ponds Victoria 3216 Australia
| | - Buu Dao
- CSIRO Manufacturing, Bag 10, Clayton MDC Victoria 3169 Australia
| | - Duc L. Nguyen
- Carbon Nexus at the Institute for Frontier Materials, Deakin University Waurn Ponds Victoria 3216 Australia
| | - Russell J. Varley
- Carbon Nexus at the Institute for Frontier Materials, Deakin University Waurn Ponds Victoria 3216 Australia
| |
Collapse
|
718
|
Long L, Wu C, Hu X, Wang Y. Biodegradable synthetic polymeric composite scaffold‐based tissue engineered heart valve with minimally invasive transcatheter implantation. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Lin‐yu Long
- National Engineering Research Center for Biomaterials Sichuan University Chengdu China
| | - Can Wu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu China
| | - Xue‐feng Hu
- National Engineering Research Center for Biomaterials Sichuan University Chengdu China
| | - Yun‐bing Wang
- National Engineering Research Center for Biomaterials Sichuan University Chengdu China
| |
Collapse
|
719
|
Functional Coatings for Orthodontic Archwires-A Review. MATERIALS 2020; 13:ma13153257. [PMID: 32707959 PMCID: PMC7435379 DOI: 10.3390/ma13153257] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/07/2020] [Accepted: 07/17/2020] [Indexed: 01/06/2023]
Abstract
In this literature review, the current state-of-art of coatings for orthodontic archwires’ increasing antimicrobial and relevant mechanical properties, such as surface topography, friction or corrosion resistance, has been presented. There is a growing request for orthodontic appliances, therefore, most researchers focus on innovative functional coatings to cover orthodontic archwires and brackets. Orthodontic appliances are exposed to the unfavorable oral cavity environment, consisting of saliva flow, food, temperature and appliance force. As a consequence, friction or biocorrosion processes may occur. This can affect the functionality of the orthodontic elements, causing changes in their microstructure, surface topography and mechanical properties. Furthermore, the material which the orthodontic archwire is made from is of particular importance in terms of the possible corrosion resistance. This is especially important for patients who are hypersensitive to metals, for example, nickel, which causes allergic reactions. In the literature, there are some studies, carried out in vitro and in vivo, mostly examining the antibacterial, antiadherent, mechanical and roughness properties of functional coatings. They are clinically acceptable but still some properties have to be studied and be developed for better results. In this paper the influence of additives such as nanoparticles of silver and nitrogen-doped TiO2 applied on orthodontic brackets by different methods on the antimicrobial properties was analyzed. Future improvement of coating techniques as well as modification of the archwire composition can reduce the release of nickel ions and eliminate friction and bacterial adhesion problems, thus accelerating treatment time.
Collapse
|
720
|
Cheng CH, Chen GF, Lin JC. Studies of zwitterionic sulfobetaine functionalized polypropylene surface with or without polyethylene glycol spacer: surface characterization, antibacterial adhesion, and platelet compatibility evaluation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:2060-2077. [PMID: 32643548 DOI: 10.1080/09205063.2020.1793707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Microbial adhesion reduction as well as platelet compatibility improvement have been suggested as the key requirements for developing blood-contacting synthetic biomaterials. Surface grafting of hydrophilic polyethylene glycol chains or alkyl chains with zwitterionic terminal ends has been proposed for reducing microbial or platelet adhesion. Nonetheless, none has been reported to incorporate both polyethylene glycol and zwitterionic terminal functionality on the same surface-grafted alkyl chain. In this investigation, a novel surface modification scheme was reported for grafting zwitterionic alkyl chains with or without polyethylene glycol as the spacer. It was noted the bacterial adhesion reduction capability on the zwitterionic modified surface was dependent upon the use of polyethylene glycol spacer or not and the strain of microbe tested. Besides, the zwitterionic modified ones all showed greater antimicrobial adhesion capability than the surface modified with polyethylene glycol alone. On the other hand, significantly reduced platelet adhesion and activation were found, but with no statistical differences noted among the polyethylene glycol-modified surface and zwitterionic ones, with or without polyethylene glycol spacer. These suggested that the use of polyethylene glycol spacer on the zwitterionic terminated surface could further enhance the antimicrobial adhesion against gram-negative bacterial while still keeping its platelet compatibility.
Collapse
Affiliation(s)
- Chi-Hui Cheng
- Department of Pediatrics, Chang Gung University, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Guan-Fu Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jui-Che Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
721
|
Three-Dimensional Measurement of Maxillary Involvement in Hemifacial Microsomia in Children. J Craniofac Surg 2020; 31:444-447. [PMID: 31977703 DOI: 10.1097/scs.0000000000006200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In hemifacial microsomia (HFM), the aberrant mandible structure has always been the focus of attention. How the maxillary development being affected is not clear. The authors sought to comprehensively evaluate the hemifacial maxillary deficiency and to assess for Pruzansky-Kaban score correlation.This is a retrospective research of children with HFM. Demographic information were recorded, and computed tomographic scan were reconstructed and analyzed by segmentation, volumetric and cephalometric measurements. Analyses involved paired t-test, independent sample t-test and one-way analyses of variance.Demographic information revealed 67 patients diagnosed with HFM were included: 10.4 percent type I, 38.8 percent IIa, 28.4 percent type IIb, 22.4 percent type III. The maxillary total volume was found to be significantly decreased on the affected side in patients with type IIa (P = 0.0426) and IIb (P = 0.0004). No notable differences in maxillary sinus volume were found. No significant differences in maxillary width measurements were found between groups type I and III. A descending trend in maxillary bone volume ratio, an increasing trend in maxillary posterior width ratio and a decreasing trend in maxillary middle height ratio was observed from group I to IIb (pmbv* = 0.020; pmpw* = 0.002; pmmh* = 0.004).This study comprehensively characterized the hemifacial microsomia maxillary deficiency. For maxillary total volume and transverse development, the type III group presented characteristics similar to the type I group. We concluded that the severity of maxillary deficiency is not completely consistent with the mandibular deformity classification.
Collapse
|
722
|
Guaresti O, Maiz–Fernández S, Palomares T, Alonso–Varona A, Eceiza A, Pérez–Álvarez L, Gabilondo N. Dual charged folate labelled chitosan nanogels with enhanced mucoadhesion capacity for targeted drug delivery. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
723
|
Tang G, Zhou B, Li F, Wang W, Liu Y, Wang X, Liu C, Ye X. Advances of Naturally Derived and Synthetic Hydrogels for Intervertebral Disk Regeneration. Front Bioeng Biotechnol 2020; 8:745. [PMID: 32714917 PMCID: PMC7344321 DOI: 10.3389/fbioe.2020.00745] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
Intervertebral disk (IVD) degeneration is associated with most cases of cervical and lumbar spine pathologies, amongst which chronic low back pain has become the primary cause for loss of quality-adjusted life years. Biomaterials science and tissue engineering have made significant progress in the replacement, repair and regeneration of IVD tissue, wherein hydrogel has been recognized as an ideal biomaterial to promote IVD regeneration in recent years. Aspects such as ease of use, mechanical properties, regenerative capacity, and their applicability as carriers for regenerative and anti-degenerative factors determine their suitability for IVD regeneration. This current review provides an overview of naturally derived and synthetic hydrogels that are related to their clinical applications for IVD regeneration. Although each type has its own unique advantages, it rarely becomes a standard product in truly clinical practice, and a more rational design is proposed for future use of biomaterials for IVD regeneration. This review aims to provide a starting point and inspiration for future research work on development of novel biomaterials and biotechnology.
Collapse
Affiliation(s)
- Guoke Tang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Bingyan Zhou
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Feng Li
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Weiheng Wang
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yi Liu
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chao Liu
- Department of Spine Surgery, The Affiliated Zhuzhou Hospital of Xiangya School of Medical CSU, Zhuzhou, China
| | - Xiaojian Ye
- Department of Orthopedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
724
|
Khalil HH, Khattab SN, Toughan MM, El‐Saghier AMM, El‐Wakil MH. Identification of a Novel DNA Gyrase Inhibitor via Design and Synthesis of New Antibacterial Pyrido[1′,2′:1,2]pyrimido[4,5‐
e
][1,3,4]thiadiazin‐5‐ol Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202000886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hosam H. Khalil
- Department of ChemistryFaculty of ScienceAlexandria University Alexandria 21321 Egypt
| | - Sherine N. Khattab
- Department of ChemistryFaculty of ScienceAlexandria University Alexandria 21321 Egypt
- Cancer Nanotechnology Research Laboratory (CNRL)Faculty of PharmacyAlexandria University Alexandria 21521 Egypt
| | - Mayada M. Toughan
- Department of ChemistryFaculty of ScienceAlexandria University Alexandria 21321 Egypt
| | | | - Marwa H. El‐Wakil
- Department of Pharmaceutical ChemistryFaculty of PharmacyAlexandria University Alexandria 21521 Egypt
| |
Collapse
|
725
|
Sembronio S, Tel A, Perrotti G, Robiony M. One-Stage Computer-Guided Customized Management of Skeletal Asymmetry by Concomitant Proportional Condylectomy and Orthognathic Surgery in Patients With Unilateral Condylar Hyperplasia. J Oral Maxillofac Surg 2020; 78:2072.e1-2072.e12. [PMID: 32621806 DOI: 10.1016/j.joms.2020.05.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Facial asymmetry associated with unilateral condylar hyperplasia can benefit from condylectomy, which aims to arrest the pathologic condylar growth and restore an appropriate posterior height. However, there are several cases in which condylar hyperplasia is combined with various dentofacial deformities, for which joint surgery has to be accompanied by concomitant orthognathic surgery. The literature is relatively poor of examples in which virtual planning for orthognathic surgery includes the evaluation of condylectomy, which is often manually performed. The aim of this study was to present and discuss a workflow for 1-stage computer-guided customized management of skeletal asymmetry by simultaneous condylectomy and orthognathic surgery. MATERIALS AND METHODS Five patients were enrolled in this study from 2018 to 2019. All patients underwent combined virtual planning of orthognathic surgery and condylectomy. Virtual surgery was translated into real surgical coordinates using patient-specific surgical guides and custom-designed osteosynthesis plates. RESULTS All surgical procedures were uneventful, and in all patients, virtual planning was successfully brought into the operating room with high accuracy, as confirmed by superimposition analyses. Symmetrization of the face and achievement of correct occlusion were observed in all cases. CONCLUSIONS The presented protocol is a reliable solution for the combined planning of orthognathic surgery and condylectomy. Virtual planning, surgical guides, and custom-designed plates allow computerized simulations to be replicated in the real patient.
Collapse
Affiliation(s)
- Salvatore Sembronio
- Assistant Professor, Maxillofacial Surgery Department, Academic Hospital of Udine, and Department of Medicine, University of Udine, Udine, Italy
| | - Alessandro Tel
- Resident, Maxillofacial Surgery Department, Academic Hospital of Udine, and Department of Medicine, University of Udine, Udine, Italy
| | - Giovanna Perrotti
- Private Practitioner in Orthodontics, Lake Como Institute, Como, Italy
| | - Massimo Robiony
- Full Professor, Department Head, Maxillofacial Surgery Department, Academic Hospital of Udine, and Department of Medicine, University of Udine, Udine, Italy.
| |
Collapse
|
726
|
Possible Physical Basis of Mirror Symmetry Effect in Racemic Mixtures of Enantiomers: From Wallach’s Rule, Nonlinear Effects, B–Z DNA Transition, and Similar Phenomena to Mirror Symmetry Effects of Chiral Objects. Symmetry (Basel) 2020. [DOI: 10.3390/sym12060889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Effects associated with mirror symmetry may be underlying for a number of phenomena in chemistry and physics. Increase in the density and melting point of the 50%L/50%D collection of enantiomers of a different sign (Wallach’s rule) is probably based on a physical effect of the mirror image. The catalytic activity of metal complexes with racemic ligands differs from the corresponding complexes with enantiomers as well (nonlinear effect). A similar difference in the physical properties of enantiomers and racemate underlies L/D inversion points of linear helical macromolecules, helical nanocrystals of magnetite and boron nitride etc., B–Z DNA transition and phenomenon of mirror neurons may have a similar nature. Here we propose an explanation of the Wallach effect along with some similar chemical, physical, and biological phenomena related to mirror image.
Collapse
|
727
|
Yu T, Wang H, Zhang Y, Wang X, Han B. The Delivery of RNA-Interference Therapies Based on Engineered Hydrogels for Bone Tissue Regeneration. Front Bioeng Biotechnol 2020; 8:445. [PMID: 32478058 PMCID: PMC7235334 DOI: 10.3389/fbioe.2020.00445] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/17/2020] [Indexed: 12/19/2022] Open
Abstract
RNA interference (RNAi) is an efficient post-transcriptional gene modulation strategy mediated by small interfering RNAs (siRNAs) and microRNAs (miRNAs). Since its discovery, RNAi has been utilized extensively to diagnose and treat diseases at both the cellular and molecular levels. However, the application of RNAi therapies in bone regeneration has not progressed to clinical trials. One of the major challenges for RNAi therapies is the lack of efficient and safe delivery vehicles that can actualize sustained release of RNA molecules at the target bone defect site and in surrounding cells. One promising approach to achieve these requirements is encapsulating RNAi molecules into hydrogels for delivery, which enables the nucleic acids to be delivered as RNA conjugates or within nanoparticles. Herein, we reviewed recent investigations into RNAi therapies for bone regeneration where RNA delivery was performed by hydrogels.
Collapse
Affiliation(s)
- Tingting Yu
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hufei Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunfan Zhang
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bing Han
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
728
|
Synthesis, Characterization, and In Vitro and In Vivo Evaluations of Cellulose Hydrogels Enriched with Larrea tridentata for Regenerative Applications. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1425402. [PMID: 32382527 PMCID: PMC7193276 DOI: 10.1155/2020/1425402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/17/2020] [Accepted: 04/10/2020] [Indexed: 11/17/2022]
Abstract
Introduction Tissue engineering is an elementary necessity for several applications in the biomedical field through the use of several biopolymers derived from plants. Larrea tridentata (LT) is a very used plant for various medicinal applications with interesting properties; however, its use into cellulose hydrogels for possible regenerative therapeutics is still limited. Cellulose films could be applied in medical field as wound healing, scaffold for connective tissue for periodontal applications, and so on. The aim of this study was to evaluate the mechanical properties and in vivo and in vitro biocompatibility of cellulose hydrogels that have been enriched with LT in a rat model. Methods By in vivo and in vitro assays, the concentration of LT was varied from 1 to 5 wt%, respectively. Hydrogel films were implanted intramuscularly into female Wistar rats, 250 g in weight and aged 2 months, to analyze their cytocompatibility and biocompatibility. Results No case showed any evidence of inflammation or toxicity. Regarding cell morphology and adhesion, the prepared LT cellulose films had better cytocompatibility values than when polystyrene (PS) dishes were used as the control. In all cases, the results suggest that the addition of LT to the hydrogel films did not affect their cytocompatibility or biocompatibility properties and increases their clinical application due to the reported uses of LT. Conclusions Cellulose hydrogel films enriched with LT have the potential to be used in the biomedical field acting as regenerative scaffolds.
Collapse
|
729
|
Zhang Y, Yu T, Peng L, Sun Q, Wei Y, Han B. Advancements in Hydrogel-Based Drug Sustained Release Systems for Bone Tissue Engineering. Front Pharmacol 2020; 11:622. [PMID: 32435200 PMCID: PMC7218105 DOI: 10.3389/fphar.2020.00622] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022] Open
Abstract
Bone defects caused by injury, disease, or congenital deformity remain a major health concern, and efficiently regenerating bone is a prominent clinical demand worldwide. However, bone regeneration is an intricate process that requires concerted participation of both cells and bioactive factors. Mimicking physiological bone healing procedures, the sustained release of bioactive molecules plays a vital role in creating an optimal osteogenic microenvironment and achieving promising bone repair outcomes. The utilization of biomaterial scaffolds can positively affect the osteogenesis process by integrating cells with bioactive factors in a proper way. A high water content, tunable physio-mechanical properties, and diverse synthetic strategies make hydrogels ideal cell carriers and controlled drug release reservoirs. Herein, we reviewed the current advancements in hydrogel-based drug sustained release systems that have delivered osteogenesis-inducing peptides, nucleic acids, and other bioactive molecules in bone tissue engineering (BTE).
Collapse
Affiliation(s)
- Yunfan Zhang
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Liying Peng
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Qiannan Sun
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Bing Han
- Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing, China
| |
Collapse
|
730
|
Li D, Zhou J, Zhang M, Ma Y, Yang Y, Han X, Wang X. Long-term delivery of alendronate through an injectable tetra-PEG hydrogel to promote osteoporosis therapy. Biomater Sci 2020; 8:3138-3146. [PMID: 32352105 DOI: 10.1039/d0bm00376j] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pharmacotherapy for hypercalcemia, which is mainly caused by osteoporosis, is an effective method to regulate the in vivo calcium equilibrium. From this perspective, the development of a minimally invasive gelling system for the prolonged local delivery of bisphosphonates has practical significance in the clinical therapy of bone osteoporosis. Here, a biocompatible and injectable hydrogel based on a uniform tetra-PEG network carrying a PEG-modified alendronate (ALN) prodrug for the localized elution and long-term sustained release of anti-osteoporotic small molecule drugs is reported. The obtained ALN-based tetra-PEG hydrogels exhibit rapid gel formation and excellent injectability, thereby allowing for the easy injection and consequent adaptation of hydrogels into the bone defects with irregular shapes, which promotes the ALN-based tetra-PEG hydrogels with depot formulation capacity for governing the on-demand release of ALN drugs and local reinforcement of bone osteoporosis at the implantation sites of animals. The findings imply that these injectable hydrogels mediate the optimized release of therapeutic cargoes and effectively promote in situ bone regeneration via minimally invasive procedures, which is effective for clinical osteoporosis therapy.
Collapse
Affiliation(s)
- Dawei Li
- The 8th Medical Center of Chinese PLA General Hospital, Beijing, China.
| | | | | | | | | | | | | |
Collapse
|
731
|
Merhebi S, Mayyas M, Abbasi R, Christoe MJ, Han J, Tang J, Rahim MA, Yang J, Tan TT, Chu D, Zhang J, Li S, Wang CH, Kalantar-Zadeh K, Allioux FM. Magnetic and Conductive Liquid Metal Gels. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20119-20128. [PMID: 32264673 DOI: 10.1021/acsami.0c03166] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Liquid metals are fast becoming a new class of universal and frictionless additives for the development of multifunctional soft and flexible materials. Herein, nanodroplets of eutectic gallium-indium alloy, which is liquid at room temperature, were used as a platform for the formulation of electrically conductive and magnetically responsive gels with the incorporation of Fe3O4 nanoparticles. The nanoadditives were prepared in situ within a water-based solution of polyvinyl alcohol. A borax cross-linking reaction was then performed to yield multifunctional flexible and self-healing gels. The physicochemical properties and changes in the nanoadditives at each step of the gel preparation method were characterized. Oxidation and complexation reactions between the liquid metal and iron oxide nanoadditives were observed. A mixture of nanosized functional magnetic Fe3O4/Fe2O3 and In-Fe oxide complexes was found to enable the magnetic susceptibility of the gels. The mechanical and self-healing properties of the gels were assessed, and finally, this flexible and multifunctional material was used as an electronic switch via remote magnetic actuation. The developed conductive and magnetic gels demonstrate great potential for the design of soft electronic systems.
Collapse
Affiliation(s)
- Salma Merhebi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Mohannad Mayyas
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Roozbeh Abbasi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Michael J Christoe
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Jialuo Han
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Md Arifur Rahim
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Jiong Yang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Thiam Teck Tan
- School of Materials Science and Engineering, UNSW, Sydney, New South Wales 2052, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, UNSW, Sydney, New South Wales 2052, Australia
| | - Jin Zhang
- School of Mechanical and Manufacturing Engineering, UNSW, Sydney, New South Wales 2052, Australia
| | - Sean Li
- School of Materials Science and Engineering, UNSW, Sydney, New South Wales 2052, Australia
| | - Chun H Wang
- School of Mechanical and Manufacturing Engineering, UNSW, Sydney, New South Wales 2052, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| |
Collapse
|
732
|
Cai J, Ai C, Chen J, Chen S. Biomineralizaion of hydroxyapatite on polyethylene terephthalate artificial ligaments promotes graft-bone healing after anterior cruciate ligament reconstruction: An in vitro and in vivo study. J Biomater Appl 2020; 35:193-204. [PMID: 32338167 DOI: 10.1177/0885328220921530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The purpose of the present study is to modify the polyethylene terephthalate ligament with hydroxyapatite via biomineralization and to investigate its effect on graft-bone healing. After biomineralization of hydroxyapatite, the surface characterization of polyethylene terephthalate ligament was examined by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and water contact angle measurements. The compatibility and osteoinduction, along with the underlying signaling pathway involved of hydroxyapatite-polyethylene terephthalate ligament, were evaluated in vitro. Moreover, a rabbit anterior cruciate ligament reconstruction model was established, and the polyethylene terephthalate or hydroxyapatite-polyethylene terephthalate artificial ligament was implanted into the knee. The micro-computed tomography analysis, histological, and immunohistochemical examination as well as biomechanical test were performed to investigate the effect of hydroxyapatite coating in vivo. The results of scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction showed that the hydroxyapatite was successfully deposited on the polyethylene terephthalate ligament. Water contact angle of the hydroxyapatite-polyethylene terephthalate group was significantly smaller than that of the polyethylene terephthalate group. The in vitro study showed that hydroxyapatite coating significantly improved adhesion and proliferation of MC3T3-E1 cells. The osteogenic differentiation of cells was also enhanced through the activation of ERK1/2 pathway. The micro-computed tomography, histological, and immunohistochemical results showed that biomineralization of hydroxyapatite significantly promoted new bone and fibrocartilage tissue formation at 12 weeks postoperatively. Moreover, the failure load and stiffness in the hydroxyapatite-polyethylene terephthalate group were higher than that in the polyethylene terephthalate group. Therefore, biomineralizaion of hydroxyapatite enhances the biocompatibility and osseointegration of the polyethylene terephthalate artificial ligament, thus promoting graft-bone healing for anterior cruciate ligament reconstruction through the activation of ERK1/2 pathway.
Collapse
Affiliation(s)
- Jiangyu Cai
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Chengchong Ai
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Jun Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, P. R. China
| |
Collapse
|
733
|
Ma Y, Jiang L, Hu J, Liu H, Wang S, Zuo P, Ji P, Qu L, Cui T. Multifunctional 3D Micro-Nanostructures Fabricated through Temporally Shaped Femtosecond Laser Processing for Preventing Thrombosis and Bacterial Infection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17155-17166. [PMID: 31990516 DOI: 10.1021/acsami.9b20766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Blood-contacting medical devices that directly inhibit thrombosis and bacterial infection without using dangerous anticoagulant and antibacterial drugs can save countless lives but have proved extremely challenging. Here, a useful methodology is proposed that employs temporally shaped femtosecond laser ablation combined with fluorination to fabricate multifunctional three-dimensional (3D) micro-nanostructures with excellent hemocompatibility, zero cytotoxicity, outstanding biocompatibility, bacterial infection prevention, and long-term effectiveness on NiTi alloys. These multifunctional 3D micro-nanostructures present 0.1% hemolysis ratio and almost no platelet adhesion and activation, repel blood to inhibit blood coagulation in vitro, maintain 100% cell viability, and have exceptional stability over 6 months. Moreover, the multifunctional 3D micro-nanostructures simultaneously suppress bacterial colonization to form biofilm and kill 100% colonized Pseudomonas aeruginosa (P. aeruginosa) and 95.6% colonized Staphylococcus aureus (S. aureus) after 24 h of incubation, and bacterial residues can be easily removed. The fabrication method in this work has the advantages of simple processing, high efficiency, high quality, and high repeatability, and the new multifunctional 3D micro-nanostructures can effectively prevent thrombosis and bacterial infection, which can be widely applied to various clinical needs such as biomedical devices and implants.
Collapse
Affiliation(s)
- Yunlong Ma
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Lan Jiang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Jie Hu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Hailin Liu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Suocheng Wang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Pei Zuo
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Pengfei Ji
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Liangti Qu
- Key Laboratory of Cluster Science, Ministry of Education of China, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Tianhong Cui
- Department of Mechanical Engineering, University of Minnesota, 111 Church Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
734
|
Varlamov VP, Il'ina AV, Shagdarova BT, Lunkov AP, Mysyakina IS. Chitin/Chitosan and Its Derivatives: Fundamental Problems and Practical Approaches. BIOCHEMISTRY (MOSCOW) 2020; 85:S154-S176. [PMID: 32087058 DOI: 10.1134/s0006297920140084] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review, we present the data on the natural occurrence of chitin and its partially or fully deacetylated derivative chitosan, as well as their properties, methods of modification, and potential applications of derivatives with bactericidal, fungicidal, and antioxidant activities. The structure and physicochemical characteristics of the polymers, their functions, and features of chitin microbial synthesis and degradation, including the processes occurring in nature, are described. New data on the hydrolytic microorganisms capable of chitin degradation under extreme conditions are presented. Special attention is focused on the effect of physicochemical characteristics of chitosan, including molecular weight, degree of deacetylation, polydispersity index, and number of amino group derivatives (quaternized, succinyl, etc.) on the antimicrobial and antioxidant properties of modified polymers that can be of particular interest for biotechnology, medicine, and agriculture. Analysis of the available literature data confirms the importance of fundamental research to broaden our knowledge on the occurrence of chitin and chitosan in nature, their role in global biosphere cycles, and prospects of applied research aimed at using chitin, chitosan, and their derivatives in various aspects of human activity.
Collapse
Affiliation(s)
- V P Varlamov
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia.
| | - A V Il'ina
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| | - B Ts Shagdarova
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| | - A P Lunkov
- Laboratory of Biopolymer Engineering, Institute of Bioengineering, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| | - I S Mysyakina
- Winogradsky Institute of Microbiology, Federal Research Center "Fundamentals of Biotechnology", Russian Academy of Sciences, Moscow, 117312, Russia
| |
Collapse
|
735
|
Liu T, Zhao B, Zhang J. Recent development of repairable, malleable and recyclable thermosetting polymers through dynamic transesterification. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122392] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
736
|
Nadimetla DN, Al Kobaisi M, Bugde ST, Bhosale SV. Tuning Achiral to Chiral Supramolecular Helical Superstructures. CHEM REC 2020; 20:793-819. [PMID: 32181970 DOI: 10.1002/tcr.202000004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022]
Abstract
The design and synthesis of achiral organic functional molecules which can assemble into a chiral with selective handedness in the absence of chiral substances is an important in understanding the role chirality plays within these systems. In this review, we described general approaches towards supramolecular chiral molecules the synthesis and self-assembly of achiral molecule to active chiral molecules to investigate controlled supramolecular chiral nanostructures with their photoluminescent properties for rapid, sensitive and selective detection of analytes of choice. Various small molecules have been discussed for achiral to chiral along with induction of chirality and controlled chiral helical structures in detail. We discussed few examples where stimuli used to control the chirality such as temperature, pH etc. Finally, we will also explore on the photo responsive helicity properties of the aggregation induced emission active molecule such as tetraphenylethene conjugates.
Collapse
Affiliation(s)
| | - Mohammad Al Kobaisi
- School of Science, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, 3122, Victoria, Australia
| | - Sandesh T Bugde
- School of Chemical Sciences, Goa University, Goa, 403206, India
| | | |
Collapse
|
737
|
Parrish E, Rose KA, Cargnello M, Murray CB, Lee D, Composto RJ. Nanoparticle diffusion during gelation of tetra poly(ethylene glycol) provides insight into nanoscale structural evolution. SOFT MATTER 2020; 16:2256-2265. [PMID: 32031561 DOI: 10.1039/c9sm02192b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single particle tracking (SPT) of PEG grafted nanoparticles (NPs) was used to examine the gelation of tetra poly(ethylene glycol) (TPEG) succinimidyl glutarate (TPEG-SG) and amine (TPEG-A) terminated 4-armed stars. As concentration was decreased from 40 to 20 mg mL-1, the onset of network formation, tgel, determined from rheometry increased from less than 2 to 44 minutes. NP mobility increased as polymer concentration decreased in the sol state, but remained diffusive at times past the tgel determined from rheometry. Once in the gel state, NP mobility decreased, became sub-diffusive, and eventually localized in all concentrations. The NP displacement distributions were investigated to gain insight into the nanoscale environment. In these relatively homogeneous gels, the onset of sub-diffusivity was marked by a rapid increase in dynamic heterogeneity followed by a decrease consistent with a homogeneous network. We propose a gelation mechanism in which clusters initially form a heterogeneous structure which fills in to form a fully gelled relatively homogenous network. This work aims to examine the kinetics of TPEG gelation and the homogeneity of these novel gels on the nanometer scale, which will aid in the implementation of these gels in biomedical or filtration applications.
Collapse
Affiliation(s)
- Emmabeth Parrish
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA.
| | - Katie A Rose
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Matteo Cargnello
- Department of Chemical Engineering and SUNCAT Center for Interface Science and Catalysis, Stanford University, Stanford, CA, USA
| | - Christopher B Murray
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA. and Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell J Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA. and Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA and Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
738
|
Peng L, Chang L, Si M, Lin J, Wei Y, Wang S, Liu H, Han B, Jiang L. Hydrogel-Coated Dental Device with Adhesion-Inhibiting and Colony-Suppressing Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9718-9725. [PMID: 32027112 DOI: 10.1021/acsami.9b19873] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial infection is the main cause of implantation failure worldwide, and the importance of antibiotics on medical devices has been undermined because of antibiotic resistance. Antimicrobial hydrogels have emerged as a promising approach to combat infections associated with medical devices and wound healing. However, hydrogel coatings that simultaneously possess both antifouling and antimicrobial attributes are scarce. Herein, we report an antimicrobial hydrogel that incorporates adhesion-inhibiting polyethylene glycol (PEG) and colony-suppressing chitosan (CS) as a dressing to combat bacterial infections. These two polymers have important environmentally benign characteristics including low toxicity, low volatility, and biocompatibility. Although hydrogels containing PEG and CS have been reported for applications in the fields of wound dressing, tissue repair, water purification, drug delivery, and scaffolds for bone regeneration, there still has been no report on the application of CS/PEG hydrogel coatings in dental applications. Herein, this biointerface shows superior activity in early-stage adhesion inhibition (98.8%, 5 h) and displays remarkably long-lasting colony-suppression activity (93.3%, 7 d). Thus, this novel nanomaterial, which has potential as a dual-functional platform with integrated antifouling and antimicrobial functions with excellent biocompatibility, might be used as a safe and effective antimicrobial coating in biomedical device applications.
Collapse
Affiliation(s)
- Liying Peng
- Department of Orthodontics , Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology , 22 Zhongguancun South Avenue , Haidian District, Beijing 100081 , P. R. China
| | - Li Chang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Mengting Si
- Department of Geriatric Dentistry , Peking University School and Hospital of Stomatology, Beijing Laboratory of Biomedical Materials , 22 Zhongguancun South Avenue , Haidian District, Beijing 100081 , P. R. China
| | - Jiuxiang Lin
- Department of Orthodontics , Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology , 22 Zhongguancun South Avenue , Haidian District, Beijing 100081 , P. R. China
| | - Yan Wei
- Department of Geriatric Dentistry , Peking University School and Hospital of Stomatology, Beijing Laboratory of Biomedical Materials , 22 Zhongguancun South Avenue , Haidian District, Beijing 100081 , P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Hongliang Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Bing Han
- Department of Orthodontics , Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology , 22 Zhongguancun South Avenue , Haidian District, Beijing 100081 , P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
739
|
CBCT Analysis of Changes in Dental Occlusion and Temporomandibular Joints before and after MEAW Orthotherapy in Patients with Nonlow Angle of Skeletal Class III. BIOMED RESEARCH INTERNATIONAL 2020; 2020:7238263. [PMID: 32149128 PMCID: PMC7053462 DOI: 10.1155/2020/7238263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/02/2020] [Indexed: 11/29/2022]
Abstract
This study focus on the changes of the position and morphology of jaw and condyle after MEAW (the multiloop edgewise arch wire) treatment in adults with a nonlow angle (mean angle or high angle SN − MP > 27°) of skeletal class III (mild to moderate skeletal classs III means −5° < ANB < 0°) malocclusions measured by CBCT (cone beam computed tomography). Twenty adult patients (aged 17-26) with a nonlow angle of skeletal class III malocclusions were selected in this study taken orthodontic treatment by MEAW. CBCT was taken before and after the treatment to analyze the changes of the jaw and condyle. After treatment, the angle of L7-MP decreased 12.2°, L6-MP decreased 10.5°, L1-MP decreased 8.8° (P < 0.001 for each) and U1-SN increased (P < 0.05). There was no significant changes between anterior and posterior APDI index and between anterior and posterior spaces of the TMJ (temporomandibular joint) (P > 0.05). The linear ratio of the TMJ was the LR > 12 before treatment, while it was −12 < LR < 12 after treatment; however, there was no statistically significant difference between them (P > 0.05). There was also no significant change in anterior and posterior position and morphology of the condyle within the joint fossa after the treatment by MEAW in this study. MEAW technology in correcting the class III with nonlow angle patients mainly relies on the compensation of distally and posterior mandibular teeth, rather than the mandible and condyle moving backward to establish a neutral occlusal. This study was approved by the institutional ethics committee of the Second Hospital of Tianjin Medical University (No. KYJJ2013002).
Collapse
|
740
|
Abstract
Biomedical devices have become essential in the health care. Every day, an enormous number of these devices are used or implanted in humans. In this context, the bacterial contamination that could be developed in implanted devices is critical since it is estimated that infections kill more people than other medical causes. Commonly, these infections are treated with antibiotics, but the biofilm formation on implant surfaces could significantly reduce the effectiveness of these antibiotics since bacteria inside the biofilm is protected from the drug. In some cases, a complete removal of the implant is necessary in order to overcome the infection. In this context, antibacterial coatings are considered an excellent strategy to avoid biofilm formation and, therefore, mitigate the derived complications. In this review, the main biomaterials used in biomedical devices, the mechanism of biofilm formation, and the main strategies for the development of antibacterial coatings, are reviewed. Finally, the main polymer-based strategies to develop antibacterial coatings are summarized, with the aim of these coatings being to avoid the bacteria proliferation by controlling the antibacterial mechanisms involved and enhancing long-term stability.
Collapse
|
741
|
Shimizu T, Ding W, Kameta N. Soft-Matter Nanotubes: A Platform for Diverse Functions and Applications. Chem Rev 2020; 120:2347-2407. [PMID: 32013405 DOI: 10.1021/acs.chemrev.9b00509] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Self-assembled organic nanotubes made of single or multiple molecular components can be classified into soft-matter nanotubes (SMNTs) by contrast with hard-matter nanotubes, such as carbon and other inorganic nanotubes. To date, diverse self-assembly processes and elaborate template procedures using rationally designed organic molecules have produced suitable tubular architectures with definite dimensions, structural complexity, and hierarchy for expected functions and applications. Herein, we comprehensively discuss every functions and possible applications of a wide range of SMNTs as bulk materials or single components. This Review highlights valuable contributions mainly in the past decade. Fifteen different families of SMNTs are discussed from the viewpoints of chemical, physical, biological, and medical applications, as well as action fields (e.g., interior, wall, exterior, whole structure, and ensemble of nanotubes). Chemical applications of the SMNTs are associated with encapsulating materials and sensors. SMNTs also behave, while sometimes undergoing morphological transformation, as a catalyst, template, liquid crystal, hydro-/organogel, superhydrophobic surface, and micron size engine. Physical functions pertain to ferro-/piezoelectricity and energy migration/storage, leading to the applications to electrodes or supercapacitors, and mechanical reinforcement. Biological functions involve artificial chaperone, transmembrane transport, nanochannels, and channel reactors. Finally, medical functions range over drug delivery, nonviral gene transfer vector, and virus trap.
Collapse
Affiliation(s)
- Toshimi Shimizu
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Wuxiao Ding
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| | - Naohiro Kameta
- Nanomaterials Research Institute, Department of Materials and Chemistry , National Institute of Advanced Industrial Science and Technology , Tsukuba Central 5, 1-1-1 Higashi , Tsukuba , Ibaraki 305-8565 , Japan
| |
Collapse
|
742
|
Zhao L, Duan G, Zhang G, Yang H, He S, Jiang S. Electrospun Functional Materials toward Food Packaging Applications: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E150. [PMID: 31952146 PMCID: PMC7022779 DOI: 10.3390/nano10010150] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/29/2019] [Accepted: 01/10/2020] [Indexed: 12/27/2022]
Abstract
Electrospinning is an effective and versatile method to prepare continuous polymer nanofibers and nonwovens that exhibit excellent properties such as high molecular orientation, high porosity and large specific surface area. Benefitting from these outstanding and intriguing features, electrospun nanofibers have been employed as a promising candidate for the fabrication of food packaging materials. Actually, the electrospun nanofibers used in food packaging must possess biocompatibility and low toxicity. In addition, in order to maintain the quality of food and extend its shelf life, food packaging materials also need to have certain functionality. Herein, in this timely review, functional materials produced from electrospinning toward food packaging are highlighted. At first, various strategies for the preparation of polymer electrospun fiber are introduced, then the characteristics of different packaging films and their successful applications in food packaging are summarized, including degradable materials, superhydrophobic materials, edible materials, antibacterial materials and high barrier materials. Finally, the future perspective and key challenges of polymer electrospun nanofibers for food packaging are also discussed. Hopefully, this review would provide a fundamental insight into the development of electrospun functional materials with high performance for food packaging.
Collapse
Affiliation(s)
- Luying Zhao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (L.Z.); (S.H.)
| | - Gaigai Duan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (L.Z.); (S.H.)
| | - Guoying Zhang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266000, China;
| | - Haoqi Yang
- College of Material Science and Engineering, Jilin University, Changchun 130022, China
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (L.Z.); (S.H.)
| | - Shaohua Jiang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; (L.Z.); (S.H.)
| |
Collapse
|
743
|
Aldebs AI, Zohora FT, Nosoudi N, Singh SP, Ramirez‐Vick JE. Effect of Pulsed Electromagnetic Fields on Human Mesenchymal Stem Cells Using 3D Magnetic Scaffolds. Bioelectromagnetics 2020; 41:175-187. [PMID: 31944364 PMCID: PMC9290550 DOI: 10.1002/bem.22248] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/01/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Alyaa I. Aldebs
- Department of Biomedical, Industrial & Human Factors EngineeringWright State UniversityDayton Ohio
| | - Fatema T. Zohora
- Department of Biomedical, Industrial & Human Factors EngineeringWright State UniversityDayton Ohio
| | - Nasim Nosoudi
- Biomedical Engineering ProgramMarshall UniversityHuntington West Virginia
| | | | - Jaime E. Ramirez‐Vick
- Department of Biomedical, Industrial & Human Factors EngineeringWright State UniversityDayton Ohio
| |
Collapse
|
744
|
Yu X, He J, Li S, Liu F, Yang J, Deng F. Preparation of experimental resin composites with an anti-adhesion effect against S. mutans using branched silicone methacrylate. J Mech Behav Biomed Mater 2020; 101:103414. [DOI: 10.1016/j.jmbbm.2019.103414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/31/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
|
745
|
Li Z, Guo Z. Bioinspired surfaces with wettability for antifouling application. NANOSCALE 2019; 11:22636-22663. [PMID: 31755511 DOI: 10.1039/c9nr05870b] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Wettability is a special character found in nature, including the superhydrophobicity of lotus leaves, the underwater superoleophobicity of fish scales and the slipperiness of pitcher plants. These surfaces exhibit unique properties such as resistance to icing, corrosion, and the like. The antifouling properties of the material surface have important applications in a variety of areas, such as in hulls, in medical equipment, in water pipes and underwater equipment. However, the traditional anti-fouling surface is usually combined with toxic substances or its manufacturing process is complicated and expensive, which cannot meet the current antifouling demand. These wettable surfaces have always exhibited good anti-biofouling and self-cleaning properties, and their use as antifouling surfaces can well solve the problems of the above-mentioned traditional antifouling surfaces. Here, we divided the wettable surfaces into superhydrophobic surfaces, underwater superoleophobic surfaces and slippery surfaces, respectively, summarizing their development in the field of antifouling. Their research progress in antibacterial, antibiotic flocculation and antiplatelet adhesion is highlighted. Furthermore, we provide our own insights into the shortcomings and development prospects of wettable surface applications in the field of antifouling.
Collapse
Affiliation(s)
- Zhihao Li
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
746
|
Synthesis of tri‐aryl ketone amine isomers and their cure with epoxy resins. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
747
|
Anatomical and Clinical Implications in Neocondyle Stability After a Condylectomy. J Craniofac Surg 2019; 31:241-250. [PMID: 31794450 DOI: 10.1097/scs.0000000000006045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
: A condylectomy of the mandibular condyle is considered to be the treatment of choice in most cases of condylar head hyperactivity. The aim of the procedure is to remove the growth center of the mandible which is responsible for the mandibular enlargement and asymmetry. This surgical procedure has an impact on the condyle shape and position, but the restoration of mandibular movement and a stable joint position (namely, the proper alignment of the newly shaped condylar head within the condyle fossa) should also be considered important surgical outcomes. In this article, the authors present their own experience in performing condylectomies with an arthroplasty procedure and a special forced suturing technique (FST) in terms of achieving early, accurate mandibular movement and maintaining a stable condyle position in early and late outcomes. MATERIALS AND METHODS A modified high condylectomy with arthroplasty and FST results had been studied in anatomical, radiological, and clinical model. RESULTS Early findings after FST are promising. A slight improvement in lateral jaw movement was noted after condylectomy with arthroplasty (P < 0.05) both in early and late follow-up. Incisal opening, mandibular protrusion, and lateral movement were sustained. A stable condyle position within the fossa was achieved in each case of condylectomy with arthroplasty (P < 0.05). CONCLUSIONS The FST condylectomy and reattachment of the lateral pterygoid muscle in a new, wider position provided an improvement in lateral jaw movement as well as in incisal opening and mandibular protrusion in early follow-up examination compared to the presurgical values. It seems that the FST enabled a better new condylar head position in the glenoid fossa and improved early functional mandibular movement.
Collapse
|
748
|
Kim JY, Ha TW, Park J, Jung HD, Jung YS. Condylectomy as the treatment for active unilateral condylar hyperplasia of the mandible and severe facial asymmetry: retrospective review over 18 years. Int J Oral Maxillofac Surg 2019; 48:1542-1551. [DOI: 10.1016/j.ijom.2019.06.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 04/15/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
|
749
|
Tao F, Cheng Y, Shi X, Zheng H, Du Y, Xiang W, Deng H. Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohydr Polym 2019; 230:115658. [PMID: 31887899 DOI: 10.1016/j.carbpol.2019.115658] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/30/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
Promoting bone regeneration and repairing defects are urgent and critical challenges in orthopedic clinical practice. Research on bone substitute biomaterials is essential for improving the treatment strategies for bone regeneration. Chitin and its derivative, chitosan, are among the most abundant natural biomaterials and widely found in the shells of crustaceans. Chitin and chitosan are non-toxic, antibacterial, biocompatible, degradable, and have attracted significant attention in bone substitute biomaterials. Chitin/chitosan nanofibers and nanostructured scaffolds have large surface area to volume ratios and high porosities. These scaffolds can be fabricated by electrospinning, thermally induced phase separation and self-assembly, and are widely used in biomedical applications such as biological scaffolds, drug delivery, bacterial inhibition, and wound dressing. Recently, some chitin/chitosan-based nanofibrous scaffolds have been found structurally similar to bone's extracellular matrix and can assist in bone regeneration. This review outlines the biomedical applications and biological properties of chitin/chitosan-based nanofibrous scaffolds in bone tissue engineering.
Collapse
Affiliation(s)
- Fenghua Tao
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China; Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
| | - Xiaowen Shi
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China.
| | - Huifeng Zheng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China.
| | - Yumin Du
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China.
| | - Wei Xiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430060, China; Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China.
| | - Hongbing Deng
- Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass Resource Chemistry and Environmental Biotechnology, School of Resource and Environmental Science, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
750
|
Benson HAE, Grice JE, Mohammed Y, Namjoshi S, Roberts MS. Topical and Transdermal Drug Delivery: From Simple Potions to Smart Technologies. Curr Drug Deliv 2019; 16:444-460. [PMID: 30714524 PMCID: PMC6637104 DOI: 10.2174/1567201816666190201143457] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/16/2019] [Accepted: 01/25/2019] [Indexed: 01/02/2023]
Abstract
This overview on skin delivery considers the evolution of the principles of percutaneous ab-sorption and skin products from ancient times to today. Over the ages, it has been recognised that products may be applied to the skin for either local or systemic effects. As our understanding of the anatomy and physiology of the skin has improved, this has facilitated the development of technologies to effectively and quantitatively deliver solutes across this barrier to specific target sites in the skin and beyond. We focus on these technologies and their role in skin delivery today and in the future.
Collapse
Affiliation(s)
- Heather A E Benson
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University of Technology, Perth, Australia
| | - Jeffrey E Grice
- Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, 4102, Australia
| | - Yousuf Mohammed
- Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, 4102, Australia
| | - Sarika Namjoshi
- Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, 4102, Australia
| | - Michael S Roberts
- Diamantina Institute, The University of Queensland, Translational Research Institute, QLD, 4102, Australia.,School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|