701
|
You JS, Jones PA. Cancer genetics and epigenetics: two sides of the same coin? Cancer Cell 2012; 22:9-20. [PMID: 22789535 PMCID: PMC3396881 DOI: 10.1016/j.ccr.2012.06.008] [Citation(s) in RCA: 796] [Impact Index Per Article: 61.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 05/31/2012] [Accepted: 06/18/2012] [Indexed: 12/13/2022]
Abstract
Epigenetic and genetic alterations have long been thought of as two separate mechanisms participating in carcinogenesis. A recent outcome of whole exome sequencing of thousands of human cancers has been the unexpected discovery of many inactivating mutations in genes that control the epigenome. These mutations have the potential to disrupt DNA methylation patterns, histone modifications, and nucleosome positioning and hence, gene expression. Genetic alteration of the epigenome therefore contributes to cancer just as epigenetic process can cause point mutations and disable DNA repair functions. This crosstalk between the genome and the epigenome offers new possibilities for therapy.
Collapse
Affiliation(s)
- Jueng Soo You
- Department of Urology, USC Norris Comprehensive Cancer Center Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | | |
Collapse
|
702
|
|
703
|
Abstract
The proto-oncogene EVI1 (ecotropic viral integration site-1), located on chromosome band 3q26, is aberrantly expressed in human acute myeloid leukemia (AML) with 3q26 rearrangements. In the current study, we showed, in a large AML cohort carrying 11q23 translocations, that ∼ 43% of all mixed lineage leukemia (MLL)-rearranged leukemias are EVI1(pos). High EVI1 expression occurs in AMLs expressing the MLL-AF6, -AF9, -AF10, -ENL, or -ELL fusion genes. In addition, we present evidence that EVI1(pos) MLL-rearranged AMLs differ molecularly, morphologically, and immunophenotypically from EVI1(neg) MLL-rearranged leukemias. In mouse bone marrow cells transduced with MLL-AF9, we show that MLL-AF9 fusion protein maintains Evi1 expression on transformation of Evi1(pos) HSCs. MLL-AF9 does not activate Evi1 expression in MLL-AF9-transformed granulocyte macrophage progenitors (GMPs) that were initially Evi1(neg). Moreover, shRNA-mediated knockdown of Evi1 in an Evi1(pos) MLL-AF9 mouse model inhibits leukemia growth both in vitro and in vivo, suggesting that Evi1 provides a growth-promoting signal. Using the Evi1(pos) MLL-AF9 mouse leukemia model, we demonstrate increased sensitivity to chemotherapeutic agents on reduction of Evi1 expression. We conclude that EVI1 is a critical player in tumor growth in a subset of MLL-rearranged AMLs.
Collapse
|
704
|
Popovic R, Licht JD. Emerging epigenetic targets and therapies in cancer medicine. Cancer Discov 2012; 2:405-13. [PMID: 22588878 DOI: 10.1158/2159-8290.cd-12-0076] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
UNLABELLED Abnormalities in the epigenetic regulation of chromatin structure and function can lead to aberrant gene expression and cancer development. Consequently, epigenetic therapies aim to restore normal chromatin modification patterns through the inhibition of various components of the epigenetic machinery. Histone deacetylase and DNA methyltransferase inhibitors represent the first putative epigenetic therapies; however, these agents have pleiotropic effects and it remains unclear how they lead to therapeutic responses. More recently, drugs that inhibit histone methyltransferases were developed, perhaps representing more specific agents. We review emerging epigenetic targets in cancer and present recent models of promising epigenetic therapies. SIGNIFICANCE The use of DNA methyltransferase and histone deacetylase inhibitors in patients has validated the use of drugs targeted to epigenetic enzymes and strengthened the need for development of additional therapies. In this review, we summarize recently discovered epigenetic abnormalities, their implications for cancer, and the approaches taken for discovering small-molecule inhibitors targeting various properties of the epigenetic machinery.
Collapse
Affiliation(s)
- Relja Popovic
- Division of Hematology/Oncology, Robert. H. Lurie Comprehensive Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | |
Collapse
|
705
|
|
706
|
Harris WJ, Huang X, Lynch JT, Spencer GJ, Hitchin JR, Li Y, Ciceri F, Blaser JG, Greystoke BF, Jordan AM, Miller CJ, Ogilvie DJ, Somervaille TCP. The histone demethylase KDM1A sustains the oncogenic potential of MLL-AF9 leukemia stem cells. Cancer Cell 2012; 21:473-87. [PMID: 22464800 DOI: 10.1016/j.ccr.2012.03.014] [Citation(s) in RCA: 462] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/30/2012] [Accepted: 03/08/2012] [Indexed: 12/14/2022]
Abstract
Using a mouse model of human MLL-AF9 leukemia, we identified the lysine-specific demethylase KDM1A (LSD1 or AOF2) as an essential regulator of leukemia stem cell (LSC) potential. KDM1A acts at genomic loci bound by MLL-AF9 to sustain expression of the associated oncogenic program, thus preventing differentiation and apoptosis. In vitro and in vivo pharmacologic targeting of KDM1A using tranylcypromine analogs active in the nanomolar range phenocopied Kdm1a knockdown in both murine and primary human AML cells exhibiting MLL translocations. By contrast, the clonogenic and repopulating potential of normal hematopoietic stem and progenitor cells was spared. Our data establish KDM1A as a key effector of the differentiation block in MLL leukemia, which may be selectively targeted to therapeutic effect.
Collapse
Affiliation(s)
- William J Harris
- Cancer Research UK Leukaemia Biology Laboratory, Paterson Institute for Cancer Research, University of Manchester, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
707
|
Grønbæk K, Müller-Tidow C, Perini G, Lehmann S, Bach Treppendahl M, Mills K, Plass C, Schlegelberger B. A critical appraisal of tools available for monitoring epigenetic changes in clinical samples from patients with myeloid malignancies. Haematologica 2012; 97:1380-8. [PMID: 22491733 DOI: 10.3324/haematol.2011.058305] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Research over the past decade has confirmed that epigenetic alterations act in concert with genetic lesions to deregulate gene expression in acute myeloid leukemia and myelodysplastic syndromes. Epigenetic alterations may serve as markers of disease, and may potentially be used for classification, prognostication and to monitor minimal residual disease. In addition, we now have the capability to pharmaceutically target epigenetic modifications, and there is an urgent need for early validation of the efficacy of the drugs. Also, an improved understanding of the functionality of epigenetic modifications may further pave the road towards individualized therapy. The recent advances in biotechnology and bioinformatics provide a plethora of novel tools for characterizing the epigenome in clinical samples, but at this point the practical, clinical utility of these methodologies needs further exploration. Here, we provide the pros and cons of the currently most feasible methods used for characterizing the methylome in clinical samples, and give a brief introduction to novel approaches to sequencing that may revolutionize our abilities to characterize the genomes and epigenomes in acute myeloid leukemia and myelodysplastic syndrome patients.
Collapse
Affiliation(s)
- Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
708
|
Trowbridge JJ, Sinha AU, Zhu N, Li M, Armstrong SA, Orkin SH. Haploinsufficiency of Dnmt1 impairs leukemia stem cell function through derepression of bivalent chromatin domains. Genes Dev 2012; 26:344-9. [PMID: 22345515 DOI: 10.1101/gad.184341.111] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Epigenetic mechanisms regulating leukemia stem cells (LSCs) are an attractive target for therapy of blood cancers. Here, we report that conditional knockout of the DNA methyltransferase Dnmt1 blocked development of leukemia, and haploinsufficiency of Dnmt1 was sufficient to delay progression of leukemogenesis and impair LSC self-renewal without altering normal hematopoiesis. Haploinsufficiency of Dnmt1 resulted in tumor suppressor gene derepression associated with reduced DNA methylation and bivalent chromatin marks. These results suggest that LSCs depend on not only active expression of leukemogenic programs, but also DNA methylation-mediated silencing of bivalent domains to enforce transcriptional repression.
Collapse
Affiliation(s)
- Jennifer J Trowbridge
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Division of Hematology/Oncology, Children's Hospital Boston, Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
709
|
Abstract
A growing body of data suggests the importance of epigenetic mechanisms in cancer. Polycomb repressive complex 2 (PRC2) has been implicated in self-renewal and cancer progression, and its components are overexpressed in many cancers. However, its role in cancer development and progression remains unclear. We used conditional alleles for the PRC2 components enhancer of zeste 2 (Ezh2) and embryonic ectoderm development (Eed) to characterize the role of PRC2 function in leukemia development and progression. Compared with wild-type leukemia, Ezh2-null MLL-AF9-mediated acute myeloid leukemia (AML) failed to accelerate upon secondary transplantation. However, Ezh2-null leukemias maintained self-renewal up to the third round of transplantation, indicating that Ezh2 is not strictly required for MLL-AF9 AML, but plays a role in leukemia progression. Genome-wide analyses of PRC2-mediated trimethylation of histone 3 demonstrated locus-specific persistence of H3K27me3 despite inactivation of Ezh2, suggesting partial compensation by Ezh1. In contrast, inactivation of the essential PRC2 gene, Eed, led to complete ablation of PRC2 function, which was incompatible with leukemia growth. Gene expression array analyses indicated more profound gene expression changes in Eed-null compared with Ezh2-null leukemic cells, including down-regulation of Myc target genes and up-regulation of PRC2 targets. Manipulating PRC2 function may be of therapeutic benefit in AML.
Collapse
|
710
|
Onder TT, Kara N, Cherry A, Sinha AU, Zhu N, Bernt KM, Cahan P, Marcarci BO, Unternaehrer J, Gupta PB, Lander ES, Armstrong SA, Daley GQ. Chromatin-modifying enzymes as modulators of reprogramming. Nature 2012; 483:598-602. [PMID: 22388813 PMCID: PMC3501145 DOI: 10.1038/nature10953] [Citation(s) in RCA: 500] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 02/16/2012] [Indexed: 12/11/2022]
Abstract
Generation of induced pluripotent stem cells (iPSCs) by somatic cell reprogramming involves global epigenetic remodeling1. While several proteins are known to regulate chromatin marks associated with the distinct epigenetic states of cells before and after reprogramming2,3, the role of specific chromatin modifying enzymes in reprogramming remains to be determined. To address how chromatin-modifying proteins influence reprogramming, we used shRNAs to target genes in DNA and histone methylation pathways, and have identified positive and negative modulators of iPSC generation. While inhibition of the core components of the polycomb repressive complex 1 and 2, including the histone 3 lysine 27 methyltransferase Ezh2, reduced reprogramming efficiency, suppression of SUV39H1, YY1, and Dot1L enhanced reprogramming. Specifically, inhibition of the H3K79 histone methyltransferase Dot1L by shRNA or a small molecule accelerated reprogramming, significantly increased the yield of iPSC colonies, and substituted for Klf4 and c-Myc. Inhibition of Dot1L early in the reprogramming process is associated with a marked increase in two alternative factors, Nanog and Lin28, which play essential functional roles in the enhancement of reprogramming. Genome-wide analysis of H3K79me2 distribution revealed that fibroblast-specific genes associated with the epithelial to mesenchymal transition lose H3K79me2 in the initial phases of reprogramming. Dot1L inhibition facilitates the loss of this mark from genes that are fated to be repressed in the pluripotent state. These findings implicate specific chromatin-modifying enzymes as barriers to or facilitators of reprogramming, and demonstrate how modulation of chromatin-modifying enzymes can be exploited to more efficiently generate iPSCs with fewer exogenous transcription factors.
Collapse
Affiliation(s)
- Tamer T Onder
- Stem Cell Transplantation Program, Division of Pediatric Hematology and Oncology, Manton Center for Orphan Disease Research, Children's Hospital Boston and Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
711
|
Sinha AU, Armstrong SA. iCanPlot: visual exploration of high-throughput omics data using interactive Canvas plotting. PLoS One 2012; 7:e31690. [PMID: 22393367 PMCID: PMC3290527 DOI: 10.1371/journal.pone.0031690] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 01/11/2012] [Indexed: 11/18/2022] Open
Abstract
Increasing use of high throughput genomic scale assays requires effective visualization and analysis techniques to facilitate data interpretation. Moreover, existing tools often require programming skills, which discourages bench scientists from examining their own data. We have created iCanPlot, a compelling platform for visual data exploration based on the latest technologies. Using the recently adopted HTML5 Canvas element, we have developed a highly interactive tool to visualize tabular data and identify interesting patterns in an intuitive fashion without the need of any specialized computing skills. A module for geneset overlap analysis has been implemented on the Google App Engine platform: when the user selects a region of interest in the plot, the genes in the region are analyzed on the fly. The visualization and analysis are amalgamated for a seamless experience. Further, users can easily upload their data for analysis—which also makes it simple to share the analysis with collaborators. We illustrate the power of iCanPlot by showing an example of how it can be used to interpret histone modifications in the context of gene expression.
Collapse
Affiliation(s)
- Amit U. Sinha
- Division of Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (AUS); (SAA)
| | - Scott A. Armstrong
- Division of Hematology/Oncology, Department of Pediatric Oncology, Dana-Farber Cancer Institute, Children's Hospital Boston and Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Boston, Massachusetts, United States of America
- * E-mail: (AUS); (SAA)
| |
Collapse
|
712
|
Saunthararajah Y, Triozzi P, Rini B, Singh A, Radivoyevitch T, Sekeres M, Advani A, Tiu R, Reu F, Kalaycio M, Copelan E, Hsi E, Lichtin A, Bolwell B. p53-Independent, normal stem cell sparing epigenetic differentiation therapy for myeloid and other malignancies. Semin Oncol 2012; 39:97-108. [PMID: 22289496 PMCID: PMC3655437 DOI: 10.1053/j.seminoncol.2011.11.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cytotoxic chemotherapy for acute myeloid leukemia (AML) usually produces only temporary remissions, at the cost of significant toxicity and risk for death. One fundamental reason for treatment failure is that it is designed to activate apoptosis genes (eg, TP53) that may be unavailable because of mutation or deletion. Unlike deletion of apoptosis genes, genes that mediate cell cycle exit by differentiation are present in myelodysplastic syndrome (MDS) and AML cells but are epigenetically repressed: MDS/AML cells express high levels of key lineage-specifying transcription factors. Mutations in these transcription factors (eg, CEBPA) or their cofactors (eg., RUNX1) affect transactivation function and produce epigenetic repression of late-differentiation genes that antagonize MYC. Importantly, this aberrant epigenetic repression can be redressed clinically by depleting DNA methyltransferase 1 (DNMT1, a central component of the epigenetic network that mediates transcription repression) using the deoxycytidine analogue decitabine at non-cytotoxic concentrations. The DNMT1 depletion is sufficient to trigger upregulation of late-differentiation genes and irreversible cell cycle exit by p53-independent differentiation mechanisms. Fortuitously, the same treatment maintains or increases self-renewal of normal hematopoietic stem cells, which do not express high levels of lineage-specifying transcription factors. The biological rationale for this approach to therapy appears to apply to cancers other than MDS/AML also. Decitabine or 5-azacytidine dose and schedule can be rationalized to emphasize this mechanism of action, as an alternative or complement to conventional apoptosis-based oncotherapy.
Collapse
Affiliation(s)
- Yogen Saunthararajah
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
713
|
Abstract
Posttranslational modifications (PTMs) of histone proteins, such as acetylation, methylation, phosphorylation, and ubiquitylation, play essential roles in regulating chromatin dynamics. Combinations of different modifications on the histone proteins, termed 'histone code' in many cases, extend the information potential of the genetic code by regulating DNA at the epigenetic level. Many PTMs occur on non-histone proteins as well as histones, regulating protein-protein interactions, stability, localization, and/or enzymatic activities of proteins involved in diverse cellular processes. Although protein phosphorylation, ubiquitylation, and acetylation have been extensively studied, only a few proteins other than histones have been reported that can be modified by lysine methylation. This review summarizes the current progress on lysine methylation of non-histone proteins, and we propose that lysine methylation, like phosphorylation and acetylation, is a common PTM that regulates proteins in diverse cellular processes.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | | | | |
Collapse
|
714
|
Abstract
The fundamental role of altered epigenetic modification patterns in tumorigenesis establishes epigenetic regulatory enzymes as important targets for cancer therapy. Over the past few years, several drugs with an epigenetic activity have received approval for the treatment of cancer patients, which has led to a detailed characterization of their modes of action. The results showed that both established drug classes, the histone deacetylase (HDAC) inhibitors and the DNA methyltransferase inhibitors, show substantial limitations in their epigenetic specificity. HDAC inhibitors are highly specific drugs, but the enzymes have a broad substrate specificity and deacetylate numerous proteins that are not associated with epigenetic regulation. Similarly, the induction of global DNA demethylation by non-specific inhibition of DNA methyltransferases shows pleiotropic effects on epigenetic regulation with no apparent tumor-specificity. Second-generation azanucleoside drugs have integrated the knowledge about the cellular uptake and metabolization pathways, but do not show any increased specificity for cancer epigenotypes. As such, the traditional rationale of epigenetic cancer therapy appears to be in need of refinement, as we move from the global inhibition of epigenetic modifications toward the identification and targeting of tumor-specific epigenetic programs. Recent studies have identified epigenetic mechanisms that promote self-renewal and developmental plasticity in cancer cells. Druggable somatic mutations in the corresponding epigenetic regulators are beginning to be identified and should facilitate the development of epigenetic therapy approaches with improved tumor specificity.
Collapse
|
715
|
Abstract
Cancer genome analyses have revealed that the enzymes involved in epigenetic gene regulation are frequently deregulated in cancer. Here we describe the enzymes that control the epigenetic state of the cell, how they are affected in cancer and how this knowledge can be exploited to treat cancer with a new arsenal of selective therapies.
Collapse
Affiliation(s)
- E-J Geutjes
- Division of Molecular Carcinogenesis, Centre for Biomedical Genetics and Cancer Genomics Centre, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | |
Collapse
|
716
|
Steensma DP. Oddballs: Acute Leukemias of Mixed Phenotype and Ambiguous Origin. Hematol Oncol Clin North Am 2011; 25:1235-53. [DOI: 10.1016/j.hoc.2011.09.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
717
|
Clinical implications of novel mutations in epigenetic modifiers in AML. Hematol Oncol Clin North Am 2011; 25:1119-33. [PMID: 22093580 DOI: 10.1016/j.hoc.2011.09.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The studies highlighted in this article suggest that mutations in TET2 mutations may impart adverse outcome in patients with CN-AML, whereas mutations in DNMT3a may have adverse implications in a broader set of patients with AML. The data with IDH enzyme mutations are less clear, in that individual IDH1 and IDH2 mutations may have different clinical effects and the data so far have not suggested a uniform effect on outcome. Despite the exciting data indicating that mutational testing for these alterations may be clinically useful, several challenges to understanding their clinical relevance remain. First, patients may simultaneously have mutations in multiple genes described in this article (FLT3, NPM1, CEBPa, DNMT3a, IDH1/2, or TET2), and in additional genes not mentioned earlier (Ras,47 PTEN,48 PHF6,49 ASXL1,15 and RUNX145). Furthermore, comprehensive sequencing studies of well-annotated, homogeneously treated patient cohorts are needed to understand the clinical implications of integrated mutational profiling in AML. An additional challenge to using mutational analysis for TET2 and DNMT3a in clinical use is identifying a means for rapid molecular testing of these mutations. This challenge may be met by the use of non–polymerase chain reaction–based methods of target enrichment, such as hybrid capture, followed by next-generation sequencing technologies. Moreover, clinical studies evaluating the biochemical consequences of mutations in some of these genes (eg, production of 2-HG in bodily fluids from patients with IDH-mutant AML or increased hydroxymethylcytosine levels in pretreatment blast DNA in patients with TET2/IDH mutant AML) may also prove to be useful in identifying biomarkers. Alternatively, protein-based technologies such as immunohistochemistry or mass spectrometry may be used in the clinical setting to detect the mutant proteins or loss of expression of specific proteins in patients with mutations. An additional area of importance highlighted by these discoveries is the increasing realization that several of these genes encode enzymes or result in alterations in enzymatic activities, which may represent novel, tractable therapeutic targets for patients with AML. This finding may hopefully lead to the development of novel targeted therapeutics for patients with specific genetic alterations in AML. This development may be occurring now with the advent of DOT1L-targeted therapy for leukemic cells with translocations involving MLL1.50,51 Studies to identify whether the neomorphic enzymatic activity of IDH1/2 mutations may be targetable or if the downstream effects of TET2 mutations can be targeted are ongoing and may lead to the development of rational epigenetic therapies that improve outcomes for patients with AML.
Collapse
|
718
|
Green EM, Gozani O. Everybody's welcome: The big tent approach to epigenetic drug discovery. ACTA ACUST UNITED AC 2011; 9:e75-e81. [PMID: 23505394 DOI: 10.1016/j.ddstr.2011.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The rapid expansion of epigenetics research is fueled by the increasing understanding that epigenetic processes are critical to regulating cellular development and dysfunction of epigenetic programs is responsible for a diverse set of human pathologies, including cancer, autoimmune and neurodegenerative diseases. The expansive set of components contributing to epigenetic disease mechanisms and the often reversible nature of epigenetic lesions provide prime opportunities for the development of novel therapeutic strategies. Here, we provide an overview of epigenetics and its relationship to disease, discuss current epigenetics-based therapies and suggest new avenues for the identification of therapies targeting deregulated epigenetic programs in disease.
Collapse
Affiliation(s)
- Erin M Green
- Department of Biology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
719
|
|
720
|
Daigle SR, Olhava EJ, Therkelsen CA, Majer CR, Sneeringer CJ, Song J, Johnston LD, Scott MP, Smith JJ, Xiao Y, Jin L, Kuntz KW, Chesworth R, Moyer MP, Bernt KM, Tseng JC, Kung AL, Armstrong SA, Copeland RA, Richon VM, Pollock RM. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 2011; 20:53-65. [PMID: 21741596 PMCID: PMC4046888 DOI: 10.1016/j.ccr.2011.06.009] [Citation(s) in RCA: 726] [Impact Index Per Article: 51.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 05/09/2011] [Accepted: 06/16/2011] [Indexed: 01/27/2023]
Abstract
Mislocated enzymatic activity of DOT1L has been proposed as a driver of leukemogenesis in mixed lineage leukemia (MLL). The characterization of EPZ004777, a potent, selective inhibitor of DOT1L is reported. Treatment of MLL cells with the compound selectively inhibits H3K79 methylation and blocks expression of leukemogenic genes. Exposure of leukemic cells to EPZ004777 results in selective killing of those cells bearing the MLL gene translocation, with little effect on non-MLL-translocated cells. Finally, in vivo administration of EPZ004777 leads to extension of survival in a mouse MLL xenograft model. These results provide compelling support for DOT1L inhibition as a basis for targeted therapeutics against MLL.
Collapse
Affiliation(s)
| | | | | | | | | | - Jeffrey Song
- Epizyme, Inc., 325 Vassar Street, Cambridge, MA 02139 USA
| | | | | | - Jesse J. Smith
- Epizyme, Inc., 325 Vassar Street, Cambridge, MA 02139 USA
| | - Yonghong Xiao
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Lei Jin
- Epizyme, Inc., 325 Vassar Street, Cambridge, MA 02139 USA
| | - Kevin W. Kuntz
- Epizyme, Inc., 325 Vassar Street, Cambridge, MA 02139 USA
| | | | - Mikel P. Moyer
- Epizyme, Inc., 325 Vassar Street, Cambridge, MA 02139 USA
| | - Kathrin M. Bernt
- Division of Hematology/Oncology, Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
| | - Jen-Chieh Tseng
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Andrew L. Kung
- Division of Hematology/Oncology, Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Scott A. Armstrong
- Division of Hematology/Oncology, Children’s Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Boston, MA 02138, USA
| | | | | | - Roy M. Pollock
- Epizyme, Inc., 325 Vassar Street, Cambridge, MA 02139 USA
- Correspondence:
| |
Collapse
|
721
|
Bernt KM, Armstrong SA. Targeting epigenetic programs in MLL-rearranged leukemias. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2011; 2011:354-360. [PMID: 22160057 DOI: 10.1182/asheducation-2011.1.354] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Rearrangements of the Mixed-Lineage Leukemia (MLL) gene are found in > 70% of infant leukemia, ~ 10% of adult acute myelogenous leukemia (AML), and many cases of secondary acute leukemias. The presence of an MLL rearrangement generally confers a poor prognosis. There are more than 60 known fusion partners of MLL having some correlation with disease phenotype and prognosis. The most common fusion proteins induce the inappropriate expression of homeotic (Hox) genes, which, during normal hematopoiesis, are maintained by wild-type MLL. MLL-rearranged leukemias display remarkable genomic stability, with very few gains or losses of chromosomal regions. This may be explained by recent studies suggesting that MLL-rearranged leukemias are largely driven by epigenetic dysregulation. Several epigenetic regulators that modify DNA or histones have been implicated in MLL-fusion driven leukemogenesis, including DNA methylation, histone acetylation, and histone methylation. The histone methyltransferase DOT1L has emerged as an important mediator of MLL-fusion-mediated leukemic transformation. The clinical development of targeted inhibitors of these epigenetic regulators may therefore hold promise for the treatment of MLL-rearranged leukemia.
Collapse
Affiliation(s)
- Kathrin M Bernt
- Division of Hematology/Oncology, Children's Hospital, Boston, MA 02215, USA.
| | | |
Collapse
|