701
|
Baserga R, Sell C, Porcu P, Rubini M. The role of the IGF-I receptor in the growth and transformation of mammalian cells. Cell Prolif 1994; 27:63-71. [PMID: 10465027 DOI: 10.1111/j.1365-2184.1994.tb01406.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent developments in the molecular biology of the insulin-like growth factor I (IGF-I) receptor have clarified its role in cellular growth and transformation. Although cells homozygous for a targeted disruption of the IGF-I receptor genes can grow in serum-supplemented medium, the IGF-I receptor is required for optimal growth, and is required equally in all phases of the cell cycle. The receptor plays an even more stringent role in cellular transformation and tumorigenicity, which seem to be dependent on its normal expression in several cell types. The expression of both the IGF-I receptor and its ligands is regulated by other growth factors (especially PDGF and EGF), by oncogenes (like SV40 T antigen and c-myb) and by tumour suppressor genes (like WT1 and RB). The picture emerging from these studies is that several transforming agents may exert their growth promoting effects through the direct or indirect activation of the IGF autocrine loop.
Collapse
Affiliation(s)
- R Baserga
- Jefferson Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
702
|
Abstract
Motility is a complex process that depends on the coordination of many cellular functions, including the conversion of information from the environment into a series of coordinated responses that culminate in directed cell movement. Major advances have been made in the understanding of many functions involved in motility, such as transmembrane signaling events, leading to alterations in the actin cytoskeleton, and interactions between adhesion receptors and components of the cytoskeleton, providing a link between the extracellular and intracellular environments. Studies using yeast (Saccharomyces cerevisiae), slime molds (Dictyostelium discoideum) and nematodes (Caenorhabditis elegans) have advanced our understanding of the molecular biology of cytoskeletal proteins and have important implications for mammalian leukocyte motility.
Collapse
Affiliation(s)
- G P Downey
- Department of Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
703
|
Serine/threonine phosphorylation of insulin receptor substrate 1 modulates insulin receptor signaling. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37568-3] [Citation(s) in RCA: 218] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
704
|
Cherniack A, Klarlund J, Czech M. Phosphorylation of the Ras nucleotide exchange factor son of sevenless by mitogen-activated protein kinase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37603-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
705
|
Ohmichi M, Sawada T, Kanda Y, Koike K, Hirota K, Miyake A, Saltiel A. Thyrotropin-releasing hormone stimulates MAP kinase activity in GH3 cells by divergent pathways. Evidence of a role for early tyrosine phosphorylation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41928-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
706
|
|
707
|
Abstract
GRB2/Sem-5 is a 25-kDa adaptor protein which contains a central Src homology type 2 (SH2) domain flanked by two Src homology type 3 (SH3) domains. GRB2/Sem-5 was first identified due to the essential role of the sem-5 gene product in the vulval induction pathway in Caenorhabditis elegans. The SH2 domain of GRB2/Sem-5 binds to a number of tyrosine phosphorylated proteins, most notably the epidermal growth factor receptor, the insulin receptor substrate IRS-1 and another putative adaptor protein, Shc. The SH3 domains bind to Sos, a guanine nucleotide exchange factor for Ras proteins. GRB2/Sem-5 brings together Sos and tyrosine phosphoproteins into a complex and thereby may regulate the nucleotide exchange rate of Ras and hence its activation state.
Collapse
Affiliation(s)
- J Downward
- Imperial Cancer Research Fund, London, UK
| |
Collapse
|
708
|
Phosphatidylinositol 3-kinase activation is mediated by high-affinity interactions between distinct domains within the p110 and p85 subunits. Mol Cell Biol 1994. [PMID: 8264609 DOI: 10.1128/mcb.14.1.42] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Domains of interaction between the p85 and p110 subunits of phosphatidylinositol 3-kinase (PI 3-kinase) were studied with the yeast two-hybrid expression system. A gene fusion between the GAL4 transactivation domain and p85 activated transcription from a GAL1-lacZ reporter gene when complemented with a gene fusion between the GAL4 DNA binding domain and p110. To define subdomains responsible for this interaction, a series of p85 deletion mutants were analyzed. A 192-amino-acid inter-SH2 (IS) fragment (residues 429 to 621) was the smallest determinant identified that specifically associated with p110. In analogous experiments, the subdomain within p110 responsible for interaction with p85 was localized to an EcoRI fragment encoding the amino-terminal 127 residues. Expression of these two subdomains [p85(IS) with p110RI] resulted in 100-fold greater reporter activity than that obtained with full-length p85 and p110. Although the p85(IS) domain conferred a strong interaction with the p110 catalytic subunit, this region was not sufficient to impart phosphotyrosine peptide stimulation of PI 3-kinase activity. In contrast, coexpression of the p110 subunit with full-length p85 or with constructs containing the IS sequences flanked by both SH2 domains of p85 [p85(n/cSH2)] or either of the individual SH2 domains [p85(nSH2+IS) or p85(IS+cSH2)] resulted in PI 3-kinase activity that was activated by a phosphotyrosine peptide. These data suggest that phosphotyrosine peptide binding to either SH2 domain generates an intramolecular signal propagated through the IS region to allosterically activate p110.
Collapse
|
709
|
An epidermal growth factor receptor/ret chimera generates mitogenic and transforming signals: evidence for a ret-specific signaling pathway. Mol Cell Biol 1994. [PMID: 8264635 DOI: 10.1128/mcb.14.1.663] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A chimeric expression vector which encoded for a molecule encompassing the extracellular domain of the epidermal growth factor (EGF) receptor (EGFR) and the intracellular domain of the ret kinase (EGFR/ret chimera) was generated. Upon ectopic expression in mammalian cells, the EGFR/ret chimera was correctly synthesized and transported to the cell surface, where it was shown capable of binding EGF and transducing an EGF-dependent signal intracellularly. Thus, the EGFR/ret chimera allows us to study the biological effects and biochemical activities of the ret kinase under controlled conditions of activation. Comparative analysis of the growth-promoting activity of the EGFR/ret chimera expressed in fibroblastic or hematopoietic cells revealed a biological phenotype clearly distinguishable from that of the EGFR, indicating that the two kinases couple with mitogenic pathways which are different to some extent. Analysis of biochemical pathways implicated in the transduction of mitogenic signals also evidenced significant differences between the ret kinase and other receptor tyrosine kinases. Thus, the sum of our results indicates the existence of a ret-specific pathway of mitogenic signaling.
Collapse
|
710
|
A new function for a phosphotyrosine phosphatase: linking GRB2-Sos to a receptor tyrosine kinase. Mol Cell Biol 1994. [PMID: 8264620 DOI: 10.1128/mcb.14.1.509] [Citation(s) in RCA: 272] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autophosphorylated growth factor receptors provide binding sites for the src homology 2 domains of intracellular signaling molecules. In response to epidermal growth factor (EGF), the activated EGF receptor binds to a complex containing the signaling protein GRB2 and the Ras guanine nucleotide-releasing factor Sos, leading to activation of the Ras signaling pathway. We have investigated whether the platelet-derived growth factor (PDGF) receptor binds GRB2-Sos. In contrast with the EGF receptor, the GRB2 does not bind to the PDGF receptor directly. Instead, PDGF stimulation induces the formation of a complex containing GRB2; 70-, 80-, and 110-kDa tyrosine-phosphorylated proteins; and the PDGF receptor. Moreover, GRB2 binds directly to the 70-kDa protein but not to the PDGF receptor. Using a panel of PDGF beta-receptor mutants with altered tyrosine phosphorylation sites, we identified Tyr-1009 in the PDGF receptor as required for GRB2 binding. Binding is inhibited by a phosphopeptide containing a YXNX motif. The protein tyrosine phosphatase Syp/PTP1D/SHPTP2/PTP2C is approximately 70 kDa, binds to the PDGF receptor via Tyr-1009, and contains several YXNX sequences. We found that the 70-kDa protein that binds to the PDGF receptor and to GRB2 comigrates with Syp and is recognized by anti-Syp antibodies. Furthermore, both GRB2 and Sos coimmunoprecipitate with Syp from lysates of PDGF-stimulated cells, and GRB2 binds directly to tyrosine-phosphorylated Syp in vitro. These results indicate that GRB2 interacts with different growth factor receptors by different mechanisms and the cytoplasmic phosphotyrosine phosphatase Syp acts as an adapter between the PDGF receptor and the GRB2-Sos complex.
Collapse
|
711
|
Efficient coupling with phosphatidylinositol 3-kinase, but not phospholipase C gamma or GTPase-activating protein, distinguishes ErbB-3 signaling from that of other ErbB/EGFR family members. Mol Cell Biol 1994. [PMID: 8264617 DOI: 10.1128/mcb.14.1.492] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recombinant expression of a chimeric EGFR/ErbB-3 receptor in NIH 3T3 fibroblasts allowed us to investigate cytoplasmic events associated with ErbB-3 signal transduction upon ligand activation. An EGFR/ErbB-3 chimera was expressed on the surface of NIH 3T3 transfectants as two classes of receptors possessing epidermal growth factor (EGF) binding affinities comparable to those of the wild-type EGF receptor (EGFR). EGF induced autophosphorylation in vivo of the chimeric receptor and DNA synthesis of EGFR/ErbB-3 transfectants with a dose response similar to that of EGFR transfectants. However, the ErbB-3 and EGFR cytoplasmic domains exhibited striking differences in their interactions with several known tyrosine kinase substrates. We demonstrated strong association of phosphatidylinositol 3-kinase activity with the chimeric receptor upon ligand activation comparable in efficiency with that of the platelet-derived growth factor receptor, while the EGFR exhibited a 10- to 20-fold-lower efficiency in phosphatidylinositol 3-kinase recruitment. By contrast, both phospholipase C gamma and GTPase-activating protein failed to associate with or be phosphorylated by the ErbB-3 cytoplasmic domain under conditions in which they coupled with the EGFR. In addition, though certain signal transmitters, including Shc and GRB2, were recruited by both kinases, EGFR and ErbB-3 elicited tyrosine phosphorylation of distinct sets of intracellular substrates. Thus, our findings show that ligand activation of the ErbB-3 kinase triggers a cytoplasmic signaling pathway that hitherto is unique within this receptor subfamily.
Collapse
|
712
|
Affiliation(s)
- M P Williamson
- Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, U.K
| |
Collapse
|
713
|
Skålhegg BS, Taskén K, Hansson V, Huitfeldt HS, Jahnsen T, Lea T. Location of cAMP-dependent protein kinase type I with the TCR-CD3 complex. Science 1994; 263:84-7. [PMID: 8272870 DOI: 10.1126/science.8272870] [Citation(s) in RCA: 151] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Selective activation of cyclic adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase type I (cAKI), but not type II, is sufficient to mediate inhibition of T cell replication induced through the antigen-specific T cell receptor-CD3 (TCR-CD3) complex. Immunocytochemistry and immunoprecipitation studies of the molecular mechanism by which cAKI inhibits TCR-CD3-dependent T cell replication demonstrated that regulatory subunit I alpha, along with its associated kinase activity, translocated to and interacted with the TCR-CD3 complex during T cell activation and capping. Regulatory subunit II alpha did not. When stimulated by cAMP, the cAKI localized to the TCR-CD3 complex may release kinase activity that, through phosphorylation, might uncouple the TCR-CD3 complex from intracellular signaling systems.
Collapse
Affiliation(s)
- B S Skålhegg
- Institute of Medical Biochemistry, University of Oslo, Blindern, Norway
| | | | | | | | | | | |
Collapse
|
714
|
Abstract
Serum stimulates cells to increase their proportion of Ras protein in the active GTP-bound state. We have recently identified four types (I to IV) of apparently full-length cDNAs from a single mammalian gene, called CDC25Mm or GRF, which is homologous to the Ras-specific exchange factor CDC25 of S. cerevisiae. The largest cDNA (type IV) is brain specific, with the other three classes, although they have distinct 5' ends, essentially representing progressive N-terminal deletions of this cDNA. When placed in a retroviral expression vector, all four types of cDNAs induced morphologic transformation of NIH 3T3 cells and an increase in the basal level of GTP.Ras. Serum stimulation of these transformants lead to a further increase in GTP.Ras only in cells expressing the type IV cDNA. Each type of GRF protein was found in cytosolic and membrane fractions, and the protein in each fraction could stimulate guanine nucleotide release from GDP.Ras in vitro. When NIH 3T3 cells and cells expressing the type IV protein were transfected with two versions of a mutant ras gene, one encoding membrane-associated Ras protein and the other encoding a cytosolic Ras protein, the basal levels of GTP bound to both forms of the mutant Ras protein were significantly higher in the cells expressing the type IV protein. However, serum increased the level of GTP bound to the membrane-associated mutant Ras protein in NIH 3T3 cells and in cells expressing the type IV protein but not in cells expressing the cytosolic version of the Ras protein. We conclude that each type of CDC25Mm induces cell transformation via the ability of its C terminus to stimulate guanine nucleotide exchange on Ras, the presence of N-terminal sequences is associated with a serum-dependent change in GTP.Ras, and the serum-dependent increase in GTP.Ras by exogenous CDC25Mm or by endogenous exchange factors probably requires membrane association of both Ras and the exchange factor.
Collapse
|
715
|
Li W, Nishimura R, Kashishian A, Batzer AG, Kim WJ, Cooper JA, Schlessinger J. A new function for a phosphotyrosine phosphatase: linking GRB2-Sos to a receptor tyrosine kinase. Mol Cell Biol 1994; 14:509-17. [PMID: 8264620 PMCID: PMC358401 DOI: 10.1128/mcb.14.1.509-517.1994] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Autophosphorylated growth factor receptors provide binding sites for the src homology 2 domains of intracellular signaling molecules. In response to epidermal growth factor (EGF), the activated EGF receptor binds to a complex containing the signaling protein GRB2 and the Ras guanine nucleotide-releasing factor Sos, leading to activation of the Ras signaling pathway. We have investigated whether the platelet-derived growth factor (PDGF) receptor binds GRB2-Sos. In contrast with the EGF receptor, the GRB2 does not bind to the PDGF receptor directly. Instead, PDGF stimulation induces the formation of a complex containing GRB2; 70-, 80-, and 110-kDa tyrosine-phosphorylated proteins; and the PDGF receptor. Moreover, GRB2 binds directly to the 70-kDa protein but not to the PDGF receptor. Using a panel of PDGF beta-receptor mutants with altered tyrosine phosphorylation sites, we identified Tyr-1009 in the PDGF receptor as required for GRB2 binding. Binding is inhibited by a phosphopeptide containing a YXNX motif. The protein tyrosine phosphatase Syp/PTP1D/SHPTP2/PTP2C is approximately 70 kDa, binds to the PDGF receptor via Tyr-1009, and contains several YXNX sequences. We found that the 70-kDa protein that binds to the PDGF receptor and to GRB2 comigrates with Syp and is recognized by anti-Syp antibodies. Furthermore, both GRB2 and Sos coimmunoprecipitate with Syp from lysates of PDGF-stimulated cells, and GRB2 binds directly to tyrosine-phosphorylated Syp in vitro. These results indicate that GRB2 interacts with different growth factor receptors by different mechanisms and the cytoplasmic phosphotyrosine phosphatase Syp acts as an adapter between the PDGF receptor and the GRB2-Sos complex.
Collapse
Affiliation(s)
- W Li
- Department of Pharmacology, New York University Medical Center, New York 10016
| | | | | | | | | | | | | |
Collapse
|
716
|
Holt KH, Olson L, Moye-Rowley WS, Pessin JE. Phosphatidylinositol 3-kinase activation is mediated by high-affinity interactions between distinct domains within the p110 and p85 subunits. Mol Cell Biol 1994; 14:42-9. [PMID: 8264609 PMCID: PMC358354 DOI: 10.1128/mcb.14.1.42-49.1994] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Domains of interaction between the p85 and p110 subunits of phosphatidylinositol 3-kinase (PI 3-kinase) were studied with the yeast two-hybrid expression system. A gene fusion between the GAL4 transactivation domain and p85 activated transcription from a GAL1-lacZ reporter gene when complemented with a gene fusion between the GAL4 DNA binding domain and p110. To define subdomains responsible for this interaction, a series of p85 deletion mutants were analyzed. A 192-amino-acid inter-SH2 (IS) fragment (residues 429 to 621) was the smallest determinant identified that specifically associated with p110. In analogous experiments, the subdomain within p110 responsible for interaction with p85 was localized to an EcoRI fragment encoding the amino-terminal 127 residues. Expression of these two subdomains [p85(IS) with p110RI] resulted in 100-fold greater reporter activity than that obtained with full-length p85 and p110. Although the p85(IS) domain conferred a strong interaction with the p110 catalytic subunit, this region was not sufficient to impart phosphotyrosine peptide stimulation of PI 3-kinase activity. In contrast, coexpression of the p110 subunit with full-length p85 or with constructs containing the IS sequences flanked by both SH2 domains of p85 [p85(n/cSH2)] or either of the individual SH2 domains [p85(nSH2+IS) or p85(IS+cSH2)] resulted in PI 3-kinase activity that was activated by a phosphotyrosine peptide. These data suggest that phosphotyrosine peptide binding to either SH2 domain generates an intramolecular signal propagated through the IS region to allosterically activate p110.
Collapse
Affiliation(s)
- K H Holt
- Department of Physiology and Biophysics, University of Iowa College of Medicine, Iowa City 52242
| | | | | | | |
Collapse
|
717
|
The adapter protein Shc interacts with the interleukin-2 (IL-2) receptor upon IL-2 stimulation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42066-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
718
|
|
719
|
Honda Z, Takano T, Gotoh Y, Nishida E, Ito K, Shimizu T. Transfected platelet-activating factor receptor activates mitogen-activated protein (MAP) kinase and MAP kinase kinase in Chinese hamster ovary cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)42169-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
720
|
Fedi P, Pierce JH, di Fiore PP, Kraus MH. Efficient coupling with phosphatidylinositol 3-kinase, but not phospholipase C gamma or GTPase-activating protein, distinguishes ErbB-3 signaling from that of other ErbB/EGFR family members. Mol Cell Biol 1994; 14:492-500. [PMID: 8264617 PMCID: PMC358399 DOI: 10.1128/mcb.14.1.492-500.1994] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Recombinant expression of a chimeric EGFR/ErbB-3 receptor in NIH 3T3 fibroblasts allowed us to investigate cytoplasmic events associated with ErbB-3 signal transduction upon ligand activation. An EGFR/ErbB-3 chimera was expressed on the surface of NIH 3T3 transfectants as two classes of receptors possessing epidermal growth factor (EGF) binding affinities comparable to those of the wild-type EGF receptor (EGFR). EGF induced autophosphorylation in vivo of the chimeric receptor and DNA synthesis of EGFR/ErbB-3 transfectants with a dose response similar to that of EGFR transfectants. However, the ErbB-3 and EGFR cytoplasmic domains exhibited striking differences in their interactions with several known tyrosine kinase substrates. We demonstrated strong association of phosphatidylinositol 3-kinase activity with the chimeric receptor upon ligand activation comparable in efficiency with that of the platelet-derived growth factor receptor, while the EGFR exhibited a 10- to 20-fold-lower efficiency in phosphatidylinositol 3-kinase recruitment. By contrast, both phospholipase C gamma and GTPase-activating protein failed to associate with or be phosphorylated by the ErbB-3 cytoplasmic domain under conditions in which they coupled with the EGFR. In addition, though certain signal transmitters, including Shc and GRB2, were recruited by both kinases, EGFR and ErbB-3 elicited tyrosine phosphorylation of distinct sets of intracellular substrates. Thus, our findings show that ligand activation of the ErbB-3 kinase triggers a cytoplasmic signaling pathway that hitherto is unique within this receptor subfamily.
Collapse
Affiliation(s)
- P Fedi
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | |
Collapse
|
721
|
Abstract
The cloning of SH2 domain proteins based on their binding to growth factor receptors is a powerful technique to elucidate new signaling pathways. In some cases the function of these proteins has been quickly ascertained while in others the answers still elude us. However the major power of the technique is its ability to identify novel signaling cascades that can emanate from tyrosine kinases. The challenge is to define the nature of these signaling cascades.
Collapse
Affiliation(s)
- B Margolis
- Department of Pharmacology, New York University Medical Center, New York 10016
| |
Collapse
|
722
|
Greenhalgh DA, Roop DR. Dissecting molecular carcinogenesis: development of transgenic mouse models by epidermal gene targeting. Adv Cancer Res 1994; 64:247-96. [PMID: 7879660 DOI: 10.1016/s0065-230x(08)60840-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- D A Greenhalgh
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030
| | | |
Collapse
|
723
|
Vaillancourt RR, Harwood AE, Winitz S. Analysis of guanine nucleotides associated with protooncogene ras. Methods Enzymol 1994; 238:255-8. [PMID: 7799791 DOI: 10.1016/0076-6879(94)38023-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- R R Vaillancourt
- Division of Basic Sciences, National Jewish Center for Immunology and Respiratory Medicine, Denver, Colorado 80206
| | | | | |
Collapse
|
724
|
Abstract
The understanding of the signal transduction cascade involving growth factors and their receptors is one major key for diagnostic and therapeutic improvements in human neoplasms. Using receptor autoradiography, an inverse relationship for the incidence of somatostatin receptors (SSR) and epidermal growth factor receptors (EGFR) was found in gliomas [1]. In the majority of low grade gliomas, SSR were present but EGFR were absent. In contrast, EGFR were present in most glioblastomas, but no SSR were detected. Recently, the amplification of the EGFR gene and its overexpression was demonstrated to be associated with the development of glioblastomas. Several independent reports revealed that 40-50% of tumors show amplified EGFR [2-4]. The frequency of EGFR amplification was directly associated with tumor malignancy. In addition, amplified EGFR levels indicate a bad prognosis and shorter overall survival [5]. Recent analysis of the EGFR gene in tumors has shown that regions of this gene frequently undergo alteration. Hence, not only amplification but also mutation may be the cause of the increased malignancy in EGFR overexpressing cells [6].
Collapse
Affiliation(s)
- U Eppenberger
- Department of Gynecology, Kantonsspital, Basel, Switzerland
| | | |
Collapse
|
725
|
Chrysogelos SA, Dickson RB. EGF receptor expression, regulation, and function in breast cancer. Breast Cancer Res Treat 1994; 29:29-40. [PMID: 8018962 DOI: 10.1007/bf00666179] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Epidermal growth factor receptor (EGFR) overexpression correlates with both loss of estrogen receptor (ER) and poor prognosis in breast cancer. Interestingly, in normal breast EGFR appears to be expressed more frequently than in malignant tissue, and there may be a different relationship between ER and EGFR. A variety of cellular regulators, such as EGF, TGF alpha, phorbol esters, and steroid hormones, are capable of altering the level of EGFR expression in breast cells. However, much work remains to be done on the mechanistic details of EGFR regulation in this disease. The significance of EGFR as an oncogene in breast cancer is compounded by its potential interactions with other oncogenes such as c-erbB-2 and c-myc. Additionally, several recent studies have placed EGFR prominently in the signal transduction pathway, demonstrating that the EGFR-ligand system may play important roles throughout the course of malignant progression in breast cancer.
Collapse
Affiliation(s)
- S A Chrysogelos
- Lombardi Cancer Research Center, Georgetown University, Washington, DC 20007
| | | |
Collapse
|
726
|
Affiliation(s)
- T Pawson
- Division of Molecular and Developmental Biology, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
727
|
Musacchio A, Wilmanns M, Saraste M. Structure and function of the SH3 domain. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1994; 61:283-97. [PMID: 8073124 DOI: 10.1016/0079-6107(94)90003-5] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- A Musacchio
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | |
Collapse
|
728
|
Santoro M, Wong WT, Aroca P, Santos E, Matoskova B, Grieco M, Fusco A, di Fiore PP. An epidermal growth factor receptor/ret chimera generates mitogenic and transforming signals: evidence for a ret-specific signaling pathway. Mol Cell Biol 1994; 14:663-75. [PMID: 8264635 PMCID: PMC358416 DOI: 10.1128/mcb.14.1.663-675.1994] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A chimeric expression vector which encoded for a molecule encompassing the extracellular domain of the epidermal growth factor (EGF) receptor (EGFR) and the intracellular domain of the ret kinase (EGFR/ret chimera) was generated. Upon ectopic expression in mammalian cells, the EGFR/ret chimera was correctly synthesized and transported to the cell surface, where it was shown capable of binding EGF and transducing an EGF-dependent signal intracellularly. Thus, the EGFR/ret chimera allows us to study the biological effects and biochemical activities of the ret kinase under controlled conditions of activation. Comparative analysis of the growth-promoting activity of the EGFR/ret chimera expressed in fibroblastic or hematopoietic cells revealed a biological phenotype clearly distinguishable from that of the EGFR, indicating that the two kinases couple with mitogenic pathways which are different to some extent. Analysis of biochemical pathways implicated in the transduction of mitogenic signals also evidenced significant differences between the ret kinase and other receptor tyrosine kinases. Thus, the sum of our results indicates the existence of a ret-specific pathway of mitogenic signaling.
Collapse
Affiliation(s)
- M Santoro
- Centro di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, Università degli Studi di Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
729
|
Bolander FF. G Proteins and Cyclic Nucleotides. Mol Endocrinol 1994. [DOI: 10.1016/b978-0-12-111231-8.50013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
730
|
Abstract
GTPases of the Ras superfamily regulate many aspects of cell growth, differentiation and action. Their functions depend on their ability to alternate between inactive and active forms, and on their cellular localization. Numerous proteins affecting the GTPase activity, nucleotide exchange rates and membrane localization of Ras superfamily members have now been identified. Many of these proteins are much larger and more complex than their targets, containing multiple domains capable of interacting with an intricate network of cellular enzymes and structures.
Collapse
Affiliation(s)
- M S Boguski
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland 20894
| | | |
Collapse
|
731
|
Lee CH, Li W, Nishimura R, Zhou M, Batzer AG, Myers MG, White MF, Schlessinger J, Skolnik EY. Nck associates with the SH2 domain-docking protein IRS-1 in insulin-stimulated cells. Proc Natl Acad Sci U S A 1993; 90:11713-7. [PMID: 8265614 PMCID: PMC48054 DOI: 10.1073/pnas.90.24.11713] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Nck, an oncogenic protein composed of one SH2 and three SH3 domains, is a common target for various cell surface receptors. Nck is thought to function as an adaptor protein to couple cell surface receptors to downstream effector molecules that regulate cellular responses induced by receptor activation. In this report, we show that Nck forms a stable complex in vivo with IRS-1 in insulin-stimulated cells. The interaction between IRS-1 and Nck is mediated by the binding of the SH2 domain of Nck to tyrosine-phosphorylated IRS-1. Although Nck associates with IRS-1, Nck phosphorylation is not affected by insulin stimulation. Furthermore, in vitro and in vivo studies show that the SH2 domains of Nck, GRB2, and p85 bind distinct phosphotyrosine residues in IRS-1. After insulin stimulation all three signaling molecules can be found complexed to a single IRS-1 molecule. These findings provide further evidence that, in response to insulin stimulation, IRS-1 acts as an SH2 docking protein that coordinates the regulation of various different signaling pathways activated by the insulin receptor.
Collapse
Affiliation(s)
- C H Lee
- New York University Medical Center, Department of Pharmacology, NY 10016
| | | | | | | | | | | | | | | | | |
Collapse
|
732
|
Herskovits JS, Shpetner HS, Burgess CC, Vallee RB. Microtubules and Src homology 3 domains stimulate the dynamin GTPase via its C-terminal domain. Proc Natl Acad Sci U S A 1993; 90:11468-72. [PMID: 7505438 PMCID: PMC48005 DOI: 10.1073/pnas.90.24.11468] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Dynamin is a 100-kDa GTPase that plays a critical role in the initial stages of endocytosis. Dynamin binds to microtubules, which potently stimulate its GTPase activity. Binding to Src homology 3 (SH3) domains of proteins involved in signal transduction has also recently been reported. In the present study, the protein was digested with a variety of proteases to define its functional domains. Limited digestion with papain split the protein into an approximately 7- to 9-kDa microtubule-binding fragment and a 90-kDa nonbinding fragment. Immunoblotting with an antibody to the C-terminal 20 amino acids of rat dynamin showed the small fragment to derive from the C-terminal end of the polypeptide. Microtubule-activated GTPase activity, but not basal GTPase activity, was abolished by papain digestion, identifying the basic, proline-rich C-terminal region of dynamin as an important regulatory site. Bacterially expressed growth factor receptor-bound protein 2 (GRB2) and the SH3 domain of c-Src were also found to stimulate GTPase activity, although to a lesser extent than microtubules. Stimulation of GTPase activity by the recombinant proteins was similarly abolished by papain digestion. These results identify the basic, proline-rich C-terminal region of dynamin as the binding site for both microtubules and SH3 domains and demonstrate an allosteric interaction between this region of the molecule and the N-terminal GTPase domain.
Collapse
Affiliation(s)
- J S Herskovits
- Worcester Foundation for Experimental Biology, Shrewsbury, MA 01545
| | | | | | | |
Collapse
|
733
|
Collins TL, Burakoff SJ. Tyrosine kinase activity of CD4-associated p56lck may not be required for CD4-dependent T-cell activation. Proc Natl Acad Sci U S A 1993; 90:11885-9. [PMID: 7505449 PMCID: PMC48089 DOI: 10.1073/pnas.90.24.11885] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The lymphoid-specific tyrosine kinase p56lck (Lck) is critical for the development and activation of T lymphocytes, and Lck kinase activity has been implicated in both T-cell antigen receptor/CD3- and CD4-mediated signaling. CD4-dependent T-cell activation has been demonstrated to be dependent upon the association of CD4 with Lck. To examine the role of the kinase activity of Lck in CD4-dependent T-cell activation, we have generated several kinase-deficient mutants of Lck. When transfected into CD4+ murine T-cell hybridoma cells, these mutants cause approximately 90% diminution in CD4-associated Lck kinase activity. Specifically, upon CD4 crosslinking there is decreased Lck autophosphorylation and decreased phosphorylation of an exogenous substrate. When CD4 is crosslinked to the T-cell antigen receptor-CD3 complex, decreased phosphorylation of associated substrates is also observed. In spite of this striking inhibition of Lck kinase function, cells expressing the kinase-deficient mutants demonstrate normal or enhanced CD4-dependent antigen responsiveness. These data demonstrate that the level of Lck kinase activity does not correlate with its CD4-associated function and suggest that the kinase activity of Lck may not be required for CD4-mediated signaling.
Collapse
Affiliation(s)
- T L Collins
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
| | | |
Collapse
|
734
|
Hack N, Sue-A-Quan A, Mills GB, Skorecki KL. Expression of human tyrosine kinase-negative epidermal growth factor receptor amplifies signaling through endogenous murine epidermal growth factor receptor. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74334-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
735
|
Orita S, Kaibuchi K, Kuroda S, Shimizu K, Nakanishi H, Takai Y. Comparison of kinetic properties between two mammalian ras p21 GDP/GTP exchange proteins, ras guanine nucleotide-releasing factor and smg GDP dissociation stimulation. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74425-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
736
|
Park S, Jove R. Tyrosine phosphorylation of Ras GTPase-activating protein stabilizes its association with p62 at membranes of v-Src transformed cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74450-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
737
|
Cen H, Papageorge AG, Vass WC, Zhang KE, Lowy DR. Regulated and constitutive activity by CDC25Mm (GRF), a Ras-specific exchange factor. Mol Cell Biol 1993; 13:7718-24. [PMID: 8246988 PMCID: PMC364843 DOI: 10.1128/mcb.13.12.7718-7724.1993] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Serum stimulates cells to increase their proportion of Ras protein in the active GTP-bound state. We have recently identified four types (I to IV) of apparently full-length cDNAs from a single mammalian gene, called CDC25Mm or GRF, which is homologous to the Ras-specific exchange factor CDC25 of S. cerevisiae. The largest cDNA (type IV) is brain specific, with the other three classes, although they have distinct 5' ends, essentially representing progressive N-terminal deletions of this cDNA. When placed in a retroviral expression vector, all four types of cDNAs induced morphologic transformation of NIH 3T3 cells and an increase in the basal level of GTP.Ras. Serum stimulation of these transformants lead to a further increase in GTP.Ras only in cells expressing the type IV cDNA. Each type of GRF protein was found in cytosolic and membrane fractions, and the protein in each fraction could stimulate guanine nucleotide release from GDP.Ras in vitro. When NIH 3T3 cells and cells expressing the type IV protein were transfected with two versions of a mutant ras gene, one encoding membrane-associated Ras protein and the other encoding a cytosolic Ras protein, the basal levels of GTP bound to both forms of the mutant Ras protein were significantly higher in the cells expressing the type IV protein. However, serum increased the level of GTP bound to the membrane-associated mutant Ras protein in NIH 3T3 cells and in cells expressing the type IV protein but not in cells expressing the cytosolic version of the Ras protein. We conclude that each type of CDC25Mm induces cell transformation via the ability of its C terminus to stimulate guanine nucleotide exchange on Ras, the presence of N-terminal sequences is associated with a serum-dependent change in GTP.Ras, and the serum-dependent increase in GTP.Ras by exogenous CDC25Mm or by endogenous exchange factors probably requires membrane association of both Ras and the exchange factor.
Collapse
Affiliation(s)
- H Cen
- Laboratory of Cellular Oncology, National Cancer Institute, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
738
|
Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor. Mol Cell Biol 1993. [PMID: 7692233 DOI: 10.1128/mcb.13.11.6889] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.
Collapse
|
739
|
Wu J, Dent P, Jelinek T, Wolfman A, Weber MJ, Sturgill TW. Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3',5'-monophosphate. Science 1993; 262:1065-9. [PMID: 7694366 DOI: 10.1126/science.7694366] [Citation(s) in RCA: 730] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mitogen-activated protein (MAP) kinases p42mapk and p44mapk are activated in cells stimulated with epidermal growth factor (EGF) and other agents. A principal pathway for MAP kinase (MAPK) activation by EGF consists of sequential activations of the guanine nucleotide exchange factor Sos, the guanosine triphosphate binding protein Ras, and the protein kinases Raf-1, MAPK kinase (MKK), and MAPK. Because adenosine 3',5'-monophosphate (cAMP) does not activate MAPK and has some opposing physiologic effects, the effect of increasing intracellular concentrations of cAMP with forskolin and 3-isobutyl-1-methylxanthine on the EGF-stimulated MAPK pathway was studied. Increased concentrations of cAMP blocked activation of Raf-1, MKK, and MAPK in Rat1hER fibroblasts, accompanied by a threefold increase in Raf-1 phosphorylation on serine 43 in the regulatory domain. Phosphorylation of Raf-1 in vitro and in vivo reduces the apparent affinity with which it binds to Ras and may contribute to the blockade by cAMP.
Collapse
Affiliation(s)
- J Wu
- Department of Internal Medicine, University of Virginia, Health Sciences Center, Charlottesville 22908
| | | | | | | | | | | |
Collapse
|
740
|
Ravichandran KS, Lee KK, Songyang Z, Cantley LC, Burn P, Burakoff SJ. Interaction of Shc with the zeta chain of the T cell receptor upon T cell activation. Science 1993; 262:902-5. [PMID: 8235613 DOI: 10.1126/science.8235613] [Citation(s) in RCA: 300] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The shc oncogene product is tyrosine-phosphorylated by Src family kinases and after its phosphorylation interacts with the adapter protein Grb2 (growth factor receptor-bound protein 2). In turn, Grb2 interacts with the guanine nucleotide exchange factor for Ras, mSOS. Because several Src family kinases participate in T cell activation and Shc functions upstream of Ras, the role of Shc in T cell signaling was examined. Shc was phosphorylated on tyrosine after activation through the T cell receptor (TCR), and subsequently interacted with Grb2 and mSOS. The Src homology region 2 (SH2) domain of Shc directly interacted with the tyrosine-phosphorylated zeta chain of the TCR. Thus, Shc may couple TCR activation to the Ras signaling pathway.
Collapse
Affiliation(s)
- K S Ravichandran
- Division of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
| | | | | | | | | | | |
Collapse
|
741
|
Nishimura R, Li W, Kashishian A, Mondino A, Zhou M, Cooper J, Schlessinger J. Two signaling molecules share a phosphotyrosine-containing binding site in the platelet-derived growth factor receptor. Mol Cell Biol 1993; 13:6889-96. [PMID: 7692233 PMCID: PMC364751 DOI: 10.1128/mcb.13.11.6889-6896.1993] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Autophosphorylation sites of growth factor receptors with tyrosine kinase activity function as specific binding sites for Src homology 2 (SH2) domains of signaling molecules. This interaction appears to be a crucial step in a mechanism by which receptor tyrosine kinases relay signals to downstream signaling pathways. Nck is a widely expressed protein consisting exclusively of SH2 and SH3 domains, the overexpression of which causes cell transformation. It has been shown that various growth factors stimulate the phosphorylation of Nck and its association with autophosphorylated growth factor receptors. A panel of platelet-derived growth factor (PDGF) receptor mutations at tyrosine residues has been used to identify the Nck binding site. Here we show that mutation at Tyr-751 of the PDGF beta-receptor eliminates Nck binding both in vitro and in living cells. Moreover, the Y751F PDGF receptor mutant failed to mediate PDGF-stimulated phosphorylation of Nck in intact cells. A phosphorylated Tyr-751 is also required for binding of phosphatidylinositol-3 kinase to the PDGF receptor. Hence, the SH2 domains of p85 and Nck share a binding site in the PDGF receptor. Competition experiments with different phosphopeptides derived from the PDGF receptor suggest that binding of Nck and p85 is influenced by different residues around Tyr-751. Thus, a single tyrosine autophosphorylation site is able to link the PDGF receptor to two distinct SH2 domain-containing signaling molecules.
Collapse
Affiliation(s)
- R Nishimura
- Department of Pharmacology, New York University Medical Center, New York 10016
| | | | | | | | | | | | | |
Collapse
|
742
|
Donnelly SF, Pocklington MJ, Pallotta D, Orr E. A proline-rich protein, verprolin, involved in cytoskeletal organization and cellular growth in the yeast Saccharomyces cerevisiae. Mol Microbiol 1993; 10:585-96. [PMID: 7968536 DOI: 10.1111/j.1365-2958.1993.tb00930.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A gene (VRP1) encoding a novel proline-rich protein (verprolin) has been isolated from the yeast Saccharomyces cerevisiae as a result of its hybridization to a chick vinculin cDNA probe. The deduced protein sequence contains 24% proline residues present as proline-rich motifs throughout the verprolin sequence. Several of these motifs resemble recently identified sequences shown to bind Src homology 3 (SH3) domains in vitro. Replacement of the wild-type VRP1 allele with a mutant allele results in strains that grow slower than wild-type strains and are temperature sensitive. The vrp1 mutants are impaired in both cell shape and size and display aberrant chitin and actin localization. We propose that verporlin is involved in the maintenance of the yeast actin cytoskeleton, through interactions with other proteins, possibly containing SH3 domains.
Collapse
Affiliation(s)
- S F Donnelly
- Department of Genetics, University of Leicester, UK
| | | | | | | |
Collapse
|
743
|
Merrall NW, Plevin R, Gould GW. Growth factors, mitogens, oncogenes and the regulation of glucose transport. Cell Signal 1993; 5:667-75. [PMID: 8130071 DOI: 10.1016/0898-6568(93)90028-k] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The erythrocyte (or HepG2/brain) type glucose transporter (GLUT 1) was the first of the family of facilitative glucose transporter proteins to be cloned [M. Mueckler et al., Science 229, 941-945, 1985]. GLUT 1 is expressed in most tissue types, all cell lines, transformed cells and tumour cells. It is thought to be responsible for "housekeeping" levels of glucose transport, i.e. the uptake of glucose required for oxidative phosphorylation. The rate of glucose transport via GLUT 1 can be regulated under conditions in which the metabolic rate must be adjusted such as cell division (mitosis and meiosis), differentiation, transformation and nutrient starvation. Here we review the recent literature on the control of glucose transport of mitogens, growth factors and oncogenes, and discuss some of the implications for the integration of cellular signalling pathways and cell growth.
Collapse
Affiliation(s)
- N W Merrall
- Department of Biochemistry, University of Glasgow, U.K
| | | | | |
Collapse
|
744
|
Stern MJ, Marengere LE, Daly RJ, Lowenstein EJ, Kokel M, Batzer A, Olivier P, Pawson T, Schlessinger J. The human GRB2 and Drosophila Drk genes can functionally replace the Caenorhabditis elegans cell signaling gene sem-5. Mol Biol Cell 1993; 4:1175-88. [PMID: 8305738 PMCID: PMC275752 DOI: 10.1091/mbc.4.11.1175] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mutations in the Caenorhabditis elegans gene sem-5 affect cell signaling processes involved in guiding a class of cell migrations and inducing vulval cell fates. The sem-5 sequence encodes a protein comprised almost exclusively of SH2 and SH3 domains (SH, src homology region) that are found together in many signaling proteins and nonreceptor tyrosine kinases. A human protein, GRB2, was identified by its ability to associate with the activated human epidermal growth factor receptor (hEGFR). The GRB2 and Sem-5 proteins share an identical architecture of their SH2 and SH3 domains and 58% amino acid sequence identity. Here we demonstrate that GRB2 and a Drosophila sem-5-like gene Drk can specifically rescue sem-5 mutants. We also show that Sem-5, like GRB2, can bind to the activated hEGFR in vitro. We further correlate the abilities of several mutant variants of GRB2 and Sem-5 to bind to the hEGFR in vitro with their abilities to functionally replace sem-5 in vivo. These data indicate that GRB2 and Drk are functional homologues of Sem-5 and demonstrate the high degree of conservation of both structure and function between signaling systems throughout evolution.
Collapse
Affiliation(s)
- M J Stern
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06520-8005
| | | | | | | | | | | | | | | | | |
Collapse
|
745
|
Bennett PA, Dixon RJ, Kellie S. The phosphotyrosine phosphatase inhibitor vanadyl hydroperoxide induces morphological alterations, cytoskeletal rearrangements and increased adhesiveness in rat neutrophil leucocytes. J Cell Sci 1993; 106 ( Pt 3):891-901. [PMID: 8308071 DOI: 10.1242/jcs.106.3.891] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The functional consequences of treating rat neutrophils with the potent tyrosine phosphatase inhibitor vanadyl hydroperoxide (pervanadate) has been investigated. Pervanadate induced rapid increases in cellular protein phosphotyrosine content in a dose-dependent manner. This treatment also resulted in a change in morphology of the cells from a rounded to a polarised morphology, with many cells exhibiting uropods, pseudopodia and increased membrane activity. Pervanadate induced a transient actin polymerisation and reorganisation similar to that in agonist-stimulated cells. The pervanadate-induced increases in tyrosine phosphorylation, shape change and actin polymerisation were inhibited by the tyrosine kinase inhibitors tyrphostin and erbstatin, indicating that these phenomena were mediated by the constitutive activity of cellular tyrosine kinases. Double fluorescence experiments demonstrated that there was a co-localisation of tyrosine phosphorylated proteins with F-actin in both pervanadate- and agonist-stimulated neutrophils. Pervanadate also induced spreading of neutrophils on tissue culture substrata with concurrent changes in F-actin localisation including unusual F-actin-containing structures. These results demonstrate that morphological changes and cytoskeletal reorganisation in neutrophils are regulated by tyrosine phosphorylation, and that inhibition of tyrosine phosphatase activity in neutrophils is sufficient to activate motile machinery of these cells. These results suggest that an alternative pathway involved in neutrophil stimulation might be via inhibition of endogenous tyrosine phosphatases rather than activation of tyrosine kinases.
Collapse
Affiliation(s)
- P A Bennett
- Yamanouchi Research Institute, Littlemore Hospital, Oxford, UK
| | | | | |
Collapse
|
746
|
Fry MJ, Panayotou G, Booker GW, Waterfield MD. New insights into protein-tyrosine kinase receptor signaling complexes. Protein Sci 1993; 2:1785-97. [PMID: 8268793 PMCID: PMC2142288 DOI: 10.1002/pro.5560021102] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- M J Fry
- Ludwig Institute for Cancer Research, University College, Middlesex Hospital Branch, London, United Kingdom
| | | | | | | |
Collapse
|
747
|
Burgering BM, Pronk GJ, van Weeren PC, Chardin P, Bos JL. cAMP antagonizes p21ras-directed activation of extracellular signal-regulated kinase 2 and phosphorylation of mSos nucleotide exchange factor. EMBO J 1993; 12:4211-20. [PMID: 8223435 PMCID: PMC413715 DOI: 10.1002/j.1460-2075.1993.tb06105.x] [Citation(s) in RCA: 243] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In fibroblasts, stimulation of receptor tyrosine kinases results in the activation of the extracellular signal-regulated kinase 2 (ERK2). The major signalling pathway employed by these receptors involves the activation of p21ras and raf-1 kinase. Here we show that in NIH3T3 and rat-1 fibroblasts, elevation of the intracellular cAMP level results in the inhibition of ERK2 activation induced by PDGF, EGF and insulin treatment. Analysis of various signalling intermediates shows that cAMP interferes at a site downstream of p21ras, but upstream of raf-1 kinase. Inhibition by cAMP depends on both the cAMP concentration and the absolute amount of p21ras molecules bound to GTP, suggesting a mechanism of competitive inhibition. Also TPA-induced, p21ras-independent, activation of raf-1 kinase and ERK2 is inhibited by cAMP. We have used the inhibitory effect of cAMP to investigate whether phosphorylation of mSos, a p21ras nucleotide exchange factor, is dependent on the activity of the raf-1 kinase/ERK2 pathway. We found that phosphorylation of mSos, as monitored by a mobility shift, is delayed with respect to p21ras and ERK2 activation and is inhibited by cAMP in a similar cell type- and concentration-dependent manner as the inactivation of ERK2. These results provide evidence for a model of p21ras-directed signalling towards ERK2 that feeds back on mSos by regulating its phosphorylation status and that can be negatively modulated by protein kinase A and positively modulated by protein kinase C action.
Collapse
Affiliation(s)
- B M Burgering
- Laboratory for Physiological Chemistry, Utrecht University, The Netherlands
| | | | | | | | | |
Collapse
|
748
|
Multiple cytokines induce the tyrosine phosphorylation of Shc and its association with Grb2 in hemopoietic cells. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(20)80558-4] [Citation(s) in RCA: 167] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
749
|
Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N, Batzer A, Rabun KM, Der CJ, Schlessinger J, Gishizky ML. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 1993. [DOI: 10.1016/s0092-8674(05)80094-7] [Citation(s) in RCA: 431] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
750
|
Waters S, Yamauchi K, Pessin J. Functional expression of insulin receptor substrate-1 is required for insulin-stimulated mitogenic signaling. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)41513-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|