701
|
Nguyen DK, Disteche CM. High expression of the mammalian X chromosome in brain. Brain Res 2006; 1126:46-9. [PMID: 16978591 DOI: 10.1016/j.brainres.2006.08.053] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 08/11/2006] [Accepted: 08/15/2006] [Indexed: 11/30/2022]
Abstract
Divergence between the sex chromosomes has led to loss and differentiation of Y-linked genes and haplo-insufficiency for X-linked genes in males. A mechanism of dosage compensation, for which we recently found evidence in mammals, evolved to restore a balanced expression of the genome by doubling the transcriptional output from the X chromosome. X inactivation would then serve to avoid hyper-transcription of X-linked genes in females by silencing one X chromosome. We also found that, compared to the rest of the genome, the X chromosome contains an excess of genes highly expressed in brain tissues. The exceptionally important role of the X chromosome in brain function, evident from the prevalence of X-linked forms of mental retardation, is discussed in view of sex chromosome regulation and evolution and sexual reproduction.
Collapse
Affiliation(s)
- Di Kim Nguyen
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
702
|
Deuve JL, Bennett NC, O'Brien PCM, Ferguson-Smith MA, Faulkes CG, Britton-Davidian J, Robinson TJ. Complex evolution of X and Y autosomal translocations in the giant mole-rat, Cryptomys mechowi (Bathyergidae). Chromosome Res 2006; 14:681-91. [PMID: 16964575 DOI: 10.1007/s10577-006-1080-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 06/25/2006] [Accepted: 06/25/2006] [Indexed: 10/24/2022]
Abstract
Cross-species chromosome painting was used to determine homologous chromosomal regions between two species of mole-rat, the naked mole-rat, Heterocephalus glaber (2n = 60), and the giant mole-rat, Cryptomys mechowi (2n = 40), using flow-sorted painting probes representative of all but two of the H. glaber chromosomal complement. In total 43 homologous regions were identified in the C. mechowi genome. Eight H. glaber chromosomes are retained in toto in C. mechowi, and 13 produce two or more signals in this species. The most striking difference in the karyotypes of the two taxa concerns their sex chromosomes. The H. glaber painting probes identified a complex series of translocations that involved the fractionation of four autosomes and the subsequent translocation of segments to the sex chromosomes and to autosomal partners in the C. mechowi genome. An intercalary heterochromatic block (IHB) was detected in sex chromosomes of C. mechowi at the boundary with the translocated autosomal segment. We discuss the likely sequence of evolutionary events that has led to the contemporary composition of the C. mechowi sex chromosomes, and consider these in the light of prevailing views on the genesis of sex chromosomes in mammals.
Collapse
Affiliation(s)
- J L Deuve
- Evolutionary Genetics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | | | | | | | | | | | | |
Collapse
|
703
|
Xu J, Disteche CM. Sex differences in brain expression of X- and Y-linked genes. Brain Res 2006; 1126:50-5. [PMID: 16962077 DOI: 10.1016/j.brainres.2006.08.049] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 08/07/2006] [Accepted: 08/14/2006] [Indexed: 10/24/2022]
Abstract
The X chromosome plays an important role in brain development and function, as evidenced by its disproportionately high content of genes whose mutations cause mental retardation. These X-linked brain genes may play a role in sexual differentiation if they are expressed at a higher level in XX females than in XY males, due to incomplete X inactivation in females. The expression of several X escapee genes is indeed higher in brain tissues from females when compared to males. In mouse, some of the sex differences are only found in adult brains but not in other tissues. Determining the brain expression pattern of these X escapee genes is important for a better understanding of their role in the neurological phenotypes of XO Turner syndrome.
Collapse
Affiliation(s)
- Jun Xu
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
704
|
Piña-Aguilar RE. The future of sperm-derived mRNAs. Fertil Steril 2006; 86:775-6; author reply 776-7. [PMID: 16952528 DOI: 10.1016/j.fertnstert.2006.07.1470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Indexed: 10/24/2022]
|
705
|
Williams NA, Close JP, Giouzeli M, Crow TJ. Accelerated evolution of Protocadherin11X/Y: a candidate gene-pair for cerebral asymmetry and language. Am J Med Genet B Neuropsychiatr Genet 2006; 141B:623-33. [PMID: 16874762 DOI: 10.1002/ajmg.b.30357] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It has been argued that cerebral asymmetry (the "torque") is the characteristic that defines the human brain and that morphological findings in psychosis are consistent with a deviation in this sex-dependent dimension of brain growth. Evidence from sex chromosome aneuploidies and an association within families between sex and handedness is consistent with the presence of a determinant of cerebral asymmetry (a possible correlate of language) on the X and the Y chromosomes. During hominid evolution a 3.5 Mb translocation occurred from the ancestral X chromosome to the Y chromosome, resulting in duplication of the Protocadherin11X gene, such that it is represented on the X and Y chromosomes in man, whereas there is a single X-linked gene in other mammals. We re-date the duplicative translocation to 6 million years ago, that is, close to the chimpanzee-hominid bifurcation. Sequence comparisons with the chimpanzee, bonobo, gorilla, and orangutan indicate that in contrast to earlier purifying selection there has been accelerated change in the Protocadherin11X ectodomain as well as the Protocadherin11Y sequence in the hominid lineage since the duplication. The evolutionary sequence of events together with the prior case for an X-Y homologous gene suggests that this gene-pair is a candidate for the evolution of hominid-specific characteristics including the sexual dimorphism of cerebral asymmetry, a putative correlate of language.
Collapse
Affiliation(s)
- Nic A Williams
- Prince of Wales International Centre for SANE Research, University of Oxford, Warneford Hospital, Oxford, United Kingdom
| | | | | | | |
Collapse
|
706
|
Abrusán G, Krambeck HJ. The distribution of L1 and Alu retroelements in relation to GC content on human sex chromosomes is consistent with the ectopic recombination model. J Mol Evol 2006; 63:484-92. [PMID: 16955238 DOI: 10.1007/s00239-005-0275-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
The distribution of Alu and L1 retroelements in the human genome changes with their age. Active retroelements target AT-rich regions, but their frequency increases in GC- and gene-rich regions of the genome with increasing age of the insertions. Currently there is no consensus on the mechanism generating this pattern. In this paper we test the hypothesis that selection against deleterious deletions caused by ectopic recombination between repeats is the main cause of the inhomogeneous distribution of L1s and Alus, by means of a detailed analysis of the GC distribution of the repeats on the sex chromosomes. We show that (1) unlike on the autosomes and X chromosome, L1s do not accumulate on the Y chromosome in GC-rich regions, whereas Alus accumulate there to a minor extent; (2) on the Y chromosome Alu and L1 densities are positively correlated, unlike the negative correlation on other chromosomes; and (3) in gene-poor regions of chromosome 4 and X, the distribution of Alus and L1s does not shift toward GC-rich regions. In addition, we show that although local GC content of long L1 insertions is lower than average, their selective loss from recombining chromosomes is not the main cause of the enrichment of ancient L1s in GC-rich regions. The results support the hypothesis that ectopic recombination causes the shift of Alu and L1 distributions toward the gene-rich regions of the genome.
Collapse
Affiliation(s)
- György Abrusán
- Max Planck Institute of Limnology, Department of Ecophysiology, August Thienemann Str. 2, 24306, Plön, Germany,
| | | |
Collapse
|
707
|
Abstract
Centromeres are the elements of chromosomes that assemble the proteinaceous kinetochore, maintain sister chromatid cohesion, regulate chromosome attachment to the spindle, and direct chromosome movement during cell division. Although the functions of centromeres and the proteins that contribute to their complex structure and function are conserved in eukaryotes, centromeric DNA diverges rapidly. Human centromeres are particularly complicated. Here, we review studies on the organization of homogeneous arrays of chromosome-specific alpha-satellite repeats and evolutionary links among eukaryotic centromeric sequences. We also discuss epigenetic mechanisms of centromere identity that confer structural and functional features of the centromere through DNA-protein interactions and post-translational modifications, producing centromere-specific chromatin signatures. The assembly and organization of human centromeres, the contributions of satellite DNA to centromere identity and diversity, and the mechanism whereby centromeres are distinguished from the rest of the genome reflect ongoing puzzles in chromosome biology.
Collapse
Affiliation(s)
- Mary G Schueler
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
708
|
Talebizadeh Z, Simon SD, Butler MG. X chromosome gene expression in human tissues: male and female comparisons. Genomics 2006; 88:675-681. [PMID: 16949791 PMCID: PMC7374763 DOI: 10.1016/j.ygeno.2006.07.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Revised: 06/27/2006] [Accepted: 07/31/2006] [Indexed: 11/26/2022]
Abstract
About 25% of X-linked genes may escape inactivation at least to some degree. However, in vitro results from somatic cell hybrids may not reflect what happens in vivo. Therefore, we analyzed the female/male (F/M) gene fold expression ratio for 299 X-linked and 7795 autosomal genes from 11 different tissues from an existing in vivo microarray database. On average 5.1 and 4.9% of genes showed higher expression in females compared with 7.4 and 7.9% in males, respectively, for X-linked and autosomal genes. A trend was found for F/M gene fold ratios greater than 1.5 for several X-linked genes indicating overexpression in females among multiple tissues. Nine X-linked genes showed overexpression in females in at least 3 of the 11 studied tissues. Of the 9 genes, 6 were located on the short arm and 3 on the long arm of the X chromosome. Six of the 9 genes have previously been reported to escape X inactivation. However, in general, no consistent pattern was seen for the expression of X-linked genes between in vitro and in vivo systems. This study indicates that factors other than the X-inactivation process may impact on the expression of X-linked genes resulting in an overall similar gender expression for both X-linked and autosomal genes.
Collapse
Affiliation(s)
- Zohreh Talebizadeh
- Section of Medical Genetics and Molecular Medicine, Children's Mercy Hospitals and Clinics, University of Missouri at Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Stephen D Simon
- Office of Medical Research, Children's Mercy Hospitals and Clinics, University of Missouri at Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Merlin G Butler
- Section of Medical Genetics and Molecular Medicine, Children's Mercy Hospitals and Clinics, University of Missouri at Kansas City School of Medicine, Kansas City, MO 64108, USA.
| |
Collapse
|
709
|
Nascimento RMP, Otto PA, de Brouwer APM, Vianna-Morgante AM. UBE2A, which encodes a ubiquitin-conjugating enzyme, is mutated in a novel X-linked mental retardation syndrome. Am J Hum Genet 2006; 79:549-55. [PMID: 16909393 PMCID: PMC1559544 DOI: 10.1086/507047] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 06/12/2006] [Indexed: 12/24/2022] Open
Abstract
We report a mutation of UBE2A/HR6A, which encodes a ubiquitin-conjugating enzyme (E2), a member of the ubiquitin proteasome pathway, as the cause of a novel X-linked mental retardation (XLMR) syndrome that affects three males in a two-generation family. A single-nucleotide substitution, c.382C-->T in UBE2A, led to a premature UAG stop codon (Q128X). As a consequence, the predicted polypeptide lacks the 25 C-terminal amino acid residues. The importance of this terminal sequence for UBE2 function is inferred by its conservation in vertebrates and in Drosophila. UBE2A mutations do not appear to significantly contribute to XLMR, since no UBE2A mutations were identified in 15 families with nonsyndromic and 4 families with syndromic idiopathic XLMR previously mapped to intervals encompassing this gene. This is the first description of a mutation in a ubiquitin-conjugating enzyme gene as the cause of a human disease.
Collapse
Affiliation(s)
- Rafaella M P Nascimento
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Caixa Postal 11461, 05422-970 São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
710
|
Heard E, Disteche CM. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev 2006; 20:1848-67. [PMID: 16847345 DOI: 10.1101/gad.1422906] [Citation(s) in RCA: 342] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mammalian females have two X chromosomes and males have only one. This has led to the evolution of special mechanisms of dosage compensation. The inactivation of one X chromosome in females equalizes gene expression between the sexes. This process of X-chromosome inactivation (XCI) is a remarkable example of long-range, monoallelic gene silencing and facultative heterochromatin formation, and the questions surrounding it have fascinated biologists for decades. How does the inactivation of more than a thousand genes on one X chromosome take place while the other X chromosome, present in the same nucleus, remains genetically active? What are the underlying mechanisms that trigger the initial differential treatment of the two X chromosomes? How is this differential treatment maintained once it has been established, and how are some genes able to escape the process? Does the mechanism of X inactivation vary between species and even between lineages? In this review, X inactivation is considered in evolutionary terms, and we discuss recent insights into the epigenetic changes and developmental timing of this process. We also review the discovery and possible implications of a second form of dosage compensation in mammals that deals with the unique, potentially haploinsufficient, status of the X chromosome with respect to autosomal gene expression.
Collapse
Affiliation(s)
- Edith Heard
- CNRS UMR218, Curie Institute, Paris, France.
| | | |
Collapse
|
711
|
Smith JJ, Voss SR. Gene order data from a model amphibian (Ambystoma): new perspectives on vertebrate genome structure and evolution. BMC Genomics 2006; 7:219. [PMID: 16939647 PMCID: PMC1560138 DOI: 10.1186/1471-2164-7-219] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Accepted: 08/29/2006] [Indexed: 11/10/2022] Open
Abstract
Background Because amphibians arise from a branch of the vertebrate evolutionary tree that is juxtaposed between fishes and amniotes, they provide important comparative perspective for reconstructing character changes that have occurred during vertebrate evolution. Here, we report the first comparative study of vertebrate genome structure that includes a representative amphibian. We used 491 transcribed sequences from a salamander (Ambystoma) genetic map and whole genome assemblies for human, mouse, rat, dog, chicken, zebrafish, and the freshwater pufferfish Tetraodon nigroviridis to compare gene orders and rearrangement rates. Results Ambystoma has experienced a rate of genome rearrangement that is substantially lower than mammalian species but similar to that of chicken and fish. Overall, we found greater conservation of genome structure between Ambystoma and tetrapod vertebrates, nevertheless, 57% of Ambystoma-fish orthologs are found in conserved syntenies of four or more genes. Comparisons between Ambystoma and amniotes reveal extensive conservation of segmental homology for 57% of the presumptive Ambystoma-amniote orthologs. Conclusion Our analyses suggest relatively constant interchromosomal rearrangement rates from the euteleost ancestor to the origin of mammals and illustrate the utility of amphibian mapping data in establishing ancestral amniote and tetrapod gene orders. Comparisons between Ambystoma and amniotes reveal some of the key events that have structured the human genome since diversification of the ancestral amniote lineage.
Collapse
Affiliation(s)
- Jeramiah J Smith
- Department of Biology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40506, USA
| | - S Randal Voss
- Department of Biology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY, 40506, USA
| |
Collapse
|
712
|
Hernández-Molina G, Svyryd Y, Sánchez-Guerrero J, Mutchinick OM. The role of the X chromosome in immunity and autoimmunity. Autoimmun Rev 2006; 6:218-22. [PMID: 17317611 DOI: 10.1016/j.autrev.2006.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Primary immunodeficiencies as well as autoimmune diseases have been associated to X chromosome abnormalities. Furthermore, the functional biology of the X chromosome is unique because genes located in this chromosome can undergo inactivation, and subsequently transcriptional silencing. Non-random X chromosome inactivation has been hypothesized to be involved in the development of autoimmunity. Recently X chromosome monosomy has also been proposed as a common etiologic mechanism for some autoimmune diseases. Herein, we review some of these findings above mentioned.
Collapse
|
713
|
Guigó R, Flicek P, Abril JF, Reymond A, Lagarde J, Denoeud F, Antonarakis S, Ashburner M, Bajic VB, Birney E, Castelo R, Eyras E, Ucla C, Gingeras TR, Harrow J, Hubbard T, Lewis SE, Reese MG. EGASP: the human ENCODE Genome Annotation Assessment Project. Genome Biol 2006; 7 Suppl 1:S2.1-31. [PMID: 16925836 PMCID: PMC1810551 DOI: 10.1186/gb-2006-7-s1-s2] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND We present the results of EGASP, a community experiment to assess the state-of-the-art in genome annotation within the ENCODE regions, which span 1% of the human genome sequence. The experiment had two major goals: the assessment of the accuracy of computational methods to predict protein coding genes; and the overall assessment of the completeness of the current human genome annotations as represented in the ENCODE regions. For the computational prediction assessment, eighteen groups contributed gene predictions. We evaluated these submissions against each other based on a 'reference set' of annotations generated as part of the GENCODE project. These annotations were not available to the prediction groups prior to the submission deadline, so that their predictions were blind and an external advisory committee could perform a fair assessment. RESULTS The best methods had at least one gene transcript correctly predicted for close to 70% of the annotated genes. Nevertheless, the multiple transcript accuracy, taking into account alternative splicing, reached only approximately 40% to 50% accuracy. At the coding nucleotide level, the best programs reached an accuracy of 90% in both sensitivity and specificity. Programs relying on mRNA and protein sequences were the most accurate in reproducing the manually curated annotations. Experimental validation shows that only a very small percentage (3.2%) of the selected 221 computationally predicted exons outside of the existing annotation could be verified. CONCLUSION This is the first such experiment in human DNA, and we have followed the standards established in a similar experiment, GASP1, in Drosophila melanogaster. We believe the results presented here contribute to the value of ongoing large-scale annotation projects and should guide further experimental methods when being scaled up to the entire human genome sequence.
Collapse
Affiliation(s)
- Roderic Guigó
- Centre de Regulació Genòmica, Institut Municipal d'Investigació Mèdica-Universitat Pompeu Fabra, E08003 Barcelona, Catalonia, Spain
- Member of the EGASP Organizing Committee
| | - Paul Flicek
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Josep F Abril
- Centre de Regulació Genòmica, Institut Municipal d'Investigació Mèdica-Universitat Pompeu Fabra, E08003 Barcelona, Catalonia, Spain
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Switzerland
| | - Julien Lagarde
- Centre de Regulació Genòmica, Institut Municipal d'Investigació Mèdica-Universitat Pompeu Fabra, E08003 Barcelona, Catalonia, Spain
| | - France Denoeud
- Centre de Regulació Genòmica, Institut Municipal d'Investigació Mèdica-Universitat Pompeu Fabra, E08003 Barcelona, Catalonia, Spain
| | - Stylianos Antonarakis
- University of Geneva Medical School and University Hospitals of Geneva, 1211 Geneva, Switzerland
| | - Michael Ashburner
- Department of Genetics, University of Cambridge, Cambridge CB3 2EH, UK
- Member of the EGASP Advisory Board
| | - Vladimir B Bajic
- South African National Bioinformatics Institute (SANBI), University of Western Cape, Bellville 7535, South Africa
- Member of the EGASP Advisory Board
| | - Ewan Birney
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- Member of the EGASP Organizing Committee
| | - Robert Castelo
- Centre de Regulació Genòmica, Institut Municipal d'Investigació Mèdica-Universitat Pompeu Fabra, E08003 Barcelona, Catalonia, Spain
| | - Eduardo Eyras
- Centre de Regulació Genòmica, Institut Municipal d'Investigació Mèdica-Universitat Pompeu Fabra, E08003 Barcelona, Catalonia, Spain
| | - Catherine Ucla
- University of Geneva Medical School and University Hospitals of Geneva, 1211 Geneva, Switzerland
| | - Thomas R Gingeras
- Affymetrix Inc., Santa Clara, California 95051, USA
- Member of the EGASP Advisory Board
| | - Jennifer Harrow
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Member of the EGASP Organizing Committee
| | - Tim Hubbard
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
- Member of the EGASP Organizing Committee
| | - Suzanna E Lewis
- Department of Molecular and Cellular Biology, University of California, Berkeley, California 94792, USA
- Member of the EGASP Advisory Board
| | - Martin G Reese
- Omicia Inc., Christie Ave., Emeryville, California 94608, USA
- Member of the EGASP Advisory Board
| |
Collapse
|
714
|
Gjerstorff MF, Johansen LE, Nielsen O, Kock K, Ditzel HJ. Restriction of GAGE protein expression to subpopulations of cancer cells is independent of genotype and may limit the use of GAGE proteins as targets for cancer immunotherapy. Br J Cancer 2006; 94:1864-73. [PMID: 16773077 PMCID: PMC2361341 DOI: 10.1038/sj.bjc.6603163] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The GAGE cancer testis antigen gene family encodes products that can be recognized by autologous T cells, and GAGE proteins have been suggested as potential targets for cancer immunotherapy. Analysis of GAGE expression in tumours has primarily been performed at the level of gene transcription, whereas little is known about GAGE expression at the protein level. To evaluate the potential of GAGE proteins as targets for cancer-specific immunotherapy, we studied the expression of these proteins in normal and malignant cells/tissues using a novel panel of monoclonal antibodies. Immunohistochemical analysis of more than 250 cancer specimens demonstrated that GAGE proteins were frequently expressed in numerous cancer types and correlated with the expression of the cancer testis antigens MAGE-A1 and NY-ESO-1. Significant intercellular and subcellular differences in GAGE protein levels were observed, and most GAGE-positive tumours also contained cancer cells lacking GAGE expression. Studies of genetically homogenous cell lines with similar intercellular heterogeneous GAGE expression showed that GAGE expression was not associated with a specific genotype, but defined a phenotypically distinct population of cells. Surprisingly, in normal tissues we found that GAGE proteins were not restricted to testis, but were also present in a subset of oocytes of resting primordial follicles and in maturing oocytes. This is the first time that a cancer testis antigen has been reported in postfoetal oocytes. The lack of GAGE expression in a subset of cancer cells within GAGE-positive tumours has decisive implications for the development of GAGE-targeted cancer therapy.
Collapse
Affiliation(s)
- M F Gjerstorff
- Medical Biotechnology Center, Institute of Medical Biology, University of Southern Denmark, Winsloewparken 25, DK-5000, Odense, Denmark
| | - L E Johansen
- Medical Biotechnology Center, Institute of Medical Biology, University of Southern Denmark, Winsloewparken 25, DK-5000, Odense, Denmark
| | - O Nielsen
- Department of Clinical Pathology, Odense University Hospital, Winsloewparken 15, DK-5000, Odense, Denmark
| | - K Kock
- Department of Clinical Pathology, Odense University Hospital, Winsloewparken 15, DK-5000, Odense, Denmark
| | - H J Ditzel
- Medical Biotechnology Center, Institute of Medical Biology, University of Southern Denmark, Winsloewparken 25, DK-5000, Odense, Denmark
- Medical Biotechnology Center, Institute of Medical Biology, University of Southern Denmark, Winsloewparken 25, 3, DK-5000 Odense C, Denmark; E-mail:
| |
Collapse
|
715
|
Carrel L, Park C, Tyekucheva S, Dunn J, Chiaromonte F, Makova KD. Genomic environment predicts expression patterns on the human inactive X chromosome. PLoS Genet 2006; 2:e151. [PMID: 17009873 PMCID: PMC1584270 DOI: 10.1371/journal.pgen.0020151] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 08/03/2006] [Indexed: 11/18/2022] Open
Abstract
What genomic landmarks render most genes silent while leaving others expressed on the inactive X chromosome in mammalian females? To date, signals determining expression status of genes on the inactive X remain enigmatic despite the availability of complete genomic sequences. Long interspersed repeats (L1s), particularly abundant on the X, are hypothesized to spread the inactivation signal and are enriched in the vicinity of inactive genes. However, both L1s and inactive genes are also more prevalent in ancient evolutionary strata. Did L1s accumulate there because of their role in inactivation or simply because they spent more time on the rarely recombining X? Here we utilize an experimentally derived inactivation profile of the entire human X chromosome to uncover sequences important for its inactivation, and to predict expression status of individual genes. Focusing on Xp22, where both inactive and active genes reside within evolutionarily young strata, we compare neighborhoods of genes with different inactivation states to identify enriched oligomers. Occurrences of such oligomers are then used as features to train a linear discriminant analysis classifier. Remarkably, expression status is correctly predicted for 84% and 91% of active and inactive genes, respectively, on the entire X, suggesting that oligomers enriched in Xp22 capture most of the genomic signal determining inactivation. To our surprise, the majority of oligomers associated with inactivated genes fall within L1 elements, even though L1 frequency in Xp22 is low. Moreover, these oligomers are enriched in parts of L1 sequences that are usually underrepresented in the genome. Thus, our results strongly support the role of L1s in X inactivation, yet indicate that a chromatin microenvironment composed of multiple genomic sequence elements determines expression status of X chromosome genes.
Collapse
Affiliation(s)
- Laura Carrel
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail: (LC); (KDM)
| | - Chungoo Park
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Svitlana Tyekucheva
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Statistics, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - John Dunn
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Francesca Chiaromonte
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Statistics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Health Evaluation Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Kateryna D Makova
- Center for Comparative Genomics and Bioinformatics, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail: (LC); (KDM)
| |
Collapse
|
716
|
Lutke Holzik MF, Hoekstra HJ, Sijmons RH, Sonneveld DJA, van der Steege G, Sleijfer DT, Nolte IM. Re-analysis of the Xq27–Xq28 region suggests a weak association of an X-linked gene with sporadic testicular germ cell tumour without cryptorchidism. Eur J Cancer 2006; 42:1869-74. [PMID: 16797968 DOI: 10.1016/j.ejca.2006.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 03/08/2006] [Accepted: 03/10/2006] [Indexed: 01/10/2023]
Abstract
BACKGROUND A testicular germ cell tumour (TGCT) predisposing gene has been mapped to the Xq27 region on the X chromosome. These linkage findings remain to be confirmed by other studies. METHODS In 276 patients and 169 unaffected first-degree male relatives, 12 microsatellite markers covering the candidate region were genotyped and used to study possible association of TGCT with Xq27. RESULTS In contrast to previously reported linkage of familial TGCT and cryptorchidism with Xq27, we observed an association between the subset of TGCT cases without a family history of TGCT or cryptorchism and marker DXS1193 (p=0.014). Carriers of minor alleles were at increased risk (odds ratio (OR) 4.7, confidence interval (CI) 1.1-19.6) CONCLUSION We found an association on Xq27 in a subset of TGCT cases, which suggests the presence of an X-linked gene that slightly or moderately increases risk to develop sporadic TGCT but not cryptorchidism.
Collapse
Affiliation(s)
- M F Lutke Holzik
- Department of Surgical Oncology, University Medical Centre Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
717
|
Nicholaou T, Ebert L, Davis ID, Robson N, Klein O, Maraskovsky E, Chen W, Cebon J. Directions in the immune targeting of cancer: lessons learned from the cancer-testis Ag NY-ESO-1. Immunol Cell Biol 2006; 84:303-17. [PMID: 16681828 DOI: 10.1111/j.1440-1711.2006.01446.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Since the early 1990s, numerous cancer Ag have been defined and for a handful of these there is now some clinical experience, which has made it possible to assess their value as targets for cancer immunotherapy. The cancer-testis Ag have been particularly attractive because their expression is limited to cancer and virtually no non-malignant cells apart from germ cells and trophoblast. Among these, NY-ESO-1 has been the focus of our attention. The exceptional immunogenicity of this Ag coupled with its widespread distribution among many cancer types make it a very good vaccine candidate, with the potential to be used in vaccines against many types of malignancies. This article reviews emerging knowledge about the biology of NY-ESO-1 and experience with the early clinical development of vaccines directed against NY-ESO-1. These early studies have yielded a wealth of information about the immunology of NY-ESO-1 and set the scene for future clinical strategies for immune targeting of cancer.
Collapse
Affiliation(s)
- Theo Nicholaou
- Ludwig Institute for Cancer Research, Cancer Vaccine Programme, Austin Hospital, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
718
|
Wang Z, Willard HF, Mukherjee S, Furey TS. Evidence of influence of genomic DNA sequence on human X chromosome inactivation. PLoS Comput Biol 2006; 2:e113. [PMID: 16948528 PMCID: PMC1557588 DOI: 10.1371/journal.pcbi.0020113] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 07/17/2006] [Indexed: 01/01/2023] Open
Abstract
A significant number of human X-linked genes escape X chromosome inactivation and are thus expressed from both the active and inactive X chromosomes. The basis for escape from inactivation and the potential role of the X chromosome primary DNA sequence in determining a gene's X inactivation status is unclear. Using a combination of the X chromosome sequence and a comprehensive X inactivation profile of more than 600 genes, two independent yet complementary approaches were used to systematically investigate the relationship between X inactivation and DNA sequence features. First, statistical analyses revealed that a number of repeat features, including long interspersed nuclear element (LINE) and mammalian-wide interspersed repeat repetitive elements, are significantly enriched in regions surrounding transcription start sites of genes that are subject to inactivation, while Alu repetitive elements and short motifs containing ACG/CGT are significantly enriched in those that escape inactivation. Second, linear support vector machine classifiers constructed using primary DNA sequence features were used to correctly predict the X inactivation status for >80% of all X-linked genes. We further identified a small set of features that are important for accurate classification, among which LINE-1 and LINE-2 content show the greatest individual discriminatory power. Finally, as few as 12 features can be used for accurate support vector machine classification. Taken together, these results suggest that features of the underlying primary DNA sequence of the human X chromosome may influence the spreading and/or maintenance of X inactivation.
Collapse
Affiliation(s)
- Zhong Wang
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - Huntington F Willard
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - Sayan Mukherjee
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
| | - Terrence S Furey
- Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
719
|
Turner DJ, Shendure J, Porreca G, Church G, Green P, Tyler-Smith C, Hurles ME. Assaying chromosomal inversions by single-molecule haplotyping. Nat Methods 2006; 3:439-45. [PMID: 16721377 PMCID: PMC2690135 DOI: 10.1038/nmeth881] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 04/14/2006] [Indexed: 12/22/2022]
Abstract
Inversions are an important form of structural variation, but they are difficult to characterize, as their breakpoints often fall within inverted repeats. We have developed a method called 'haplotype fusion' in which an inversion breakpoint is genotyped by performing fusion PCR on single molecules of human genomic DNA. Fusing single-copy sequences bracketing an inversion breakpoint generates orientation-specific PCR products, exemplified by a genotyping assay for the int22 hemophilia A inversion on Xq28. Furthermore, we demonstrated that inversion events with breakpoints embedded within long (>100 kb) inverted repeats can be genotyped by haplotype-fusion PCR followed by bead-based single-molecule haplotyping on repeat-specific markers bracketing the inversion breakpoint. We illustrate this method by genotyping a Yp paracentric inversion sponsored by >300-kb-long inverted repeats. The generality of our methods to survey for, and genotype chromosomal inversions should help our understanding of the contribution of inversions to genomic variation, inherited diseases and cancer.
Collapse
Affiliation(s)
- Daniel J Turner
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | | | | | | | | | | | | |
Collapse
|
720
|
Wilson ND, Ross LJN, Crow TJ, Volpi EV. PCDH11 is X/Y homologous in Homo sapiens but not in Gorilla gorilla and Pan troglodytes. Cytogenet Genome Res 2006; 114:137-9. [PMID: 16825765 DOI: 10.1159/000093329] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 01/09/2006] [Indexed: 11/19/2022] Open
Abstract
Protocadherin X (PCDHX) and Protocadherin Y (PCDHY) are cell-surface adhesion molecules expressed predominantly in brain. The human PCDH11X/Y gene pair is located in the non-pseudoautosomal X-Y homologous region (Xq21.3/Yp11.2). The possible existence of PCDH11 gene dosage differences between human and non-human primates is of evolutionary significance with respect to species differences and escape from X inactivation, and has been repeatedly debated. Previous investigations on the X/Y homologous status of PCDH11 and adjacent sequences in non-human primates have highlighted the complexity of the molecular pattern and evolutionary history of this genomic region. This paper provides for the first time direct evidence for the absence of the PCDH11 genefrom the Y chromosome of chimpanzee (Pan troglodytes) as well as gorilla (Gorilla gorilla). By confirmingthe suspected lack of X-Y homologous status for PCDH11 in non-human primates, our results reinforce the hypothesis of a hominid-specific role for this gene in brain development.
Collapse
Affiliation(s)
- N D Wilson
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | | | | |
Collapse
|
721
|
Duret L, Chureau C, Samain S, Weissenbach J, Avner P. The Xist RNA gene evolved in eutherians by pseudogenization of a protein-coding gene. Science 2006; 312:1653-5. [PMID: 16778056 DOI: 10.1126/science.1126316] [Citation(s) in RCA: 317] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The Xist noncoding RNA is the key initiator of the process of X chromosome inactivation in eutherian mammals, but its precise function and origin remain unknown. Although Xist is well conserved among eutherians, until now, no homolog has been identified in other mammals. We show here that Xist evolved, at least partly, from a protein-coding gene and that the loss of protein-coding function of the proto-Xist coincides with the four flanking protein genes becoming pseudogenes. This event occurred after the divergence between eutherians and marsupials, which suggests that mechanisms of dosage compensation have evolved independently in both lineages.
Collapse
Affiliation(s)
- Laurent Duret
- Laboratoire de Biométrie et Biologie Evolutive (UMR 5558), CNRS and Université Lyon 1, 16 rue Raphaël Dubois, 69622 Villeurbanne Cedex, France.
| | | | | | | | | |
Collapse
|
722
|
Valley CM, Willard HF. Genomic and epigenomic approaches to the study of X chromosome inactivation. Curr Opin Genet Dev 2006; 16:240-5. [PMID: 16647845 DOI: 10.1016/j.gde.2006.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
X chromosome inactivation represents a compelling example of chromosome-wide, long-range epigenetic gene-silencing in mammals. The cis- and trans-acting factors that establish and maintain the patterns and levels of gene expression from the active and inactive X chromosomes remain incompletely understood; however, the availability of the complete genomic sequence of the human X chromosome, together with complementary approaches that explore the computational biology, epigenetic modifications and gene expression-profiling along the chromosome, suggests that the features of the X chromosome that are responsible for its unique forms of gene regulation are increasingly amenable to experimental analysis.
Collapse
Affiliation(s)
- Cory M Valley
- Institute for Genome Sciences & Policy, Duke University, 101 Science Drive, CIEMAS 2376, Durham, NC 27708, USA
| | | |
Collapse
|
723
|
Blaschke RJ, Rappold G. The pseudoautosomal regions, SHOX and disease. Curr Opin Genet Dev 2006; 16:233-9. [PMID: 16650979 DOI: 10.1016/j.gde.2006.04.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Accepted: 04/18/2006] [Indexed: 12/12/2022]
Abstract
The pseudoautosomal regions represent blocks of sequence identity between the mammalian sex chromosomes. In humans, they reside at the ends of the X and Y chromosomes and encompass roughly 2.7 Mb (PAR1) and 0.33 Mb (PAR2). As a major asset of recently available sequence data, our view of their structural characteristics could be refined considerably. While PAR2 resembles the overall sequence composition of the X chromosome and exhibits only slightly elevated recombination rates, PAR1 is characterized by a significantly higher GC content and a completely different repeat structure. In addition, it exhibits one of the highest recombination frequencies throughout the entire human genome and, probably as a consequence of its structural features, displays a significantly faster rate of evolution. It therefore represents an exceptional model to explore the correlation between meiotic recombination and evolutionary forces such as gene mutation and conversion. At least twenty-nine genes lie within the human pseudoautosomal regions, and these genes exhibit 'autosomal' rather than sex-specific inheritance. All genes within PAR1 escape X inactivation and are therefore candidates for the etiology of haploinsufficiency disorders including Turner syndrome (45,X). However, the only known disease gene within the pseudoautosomal regions is the SHORT STATURE HOMEBOX (SHOX) gene, functional loss of which is causally related to various short stature conditions and disturbed bone development. Recent analyses have furthermore revealed that the phosphorylation-sensitive function of SHOX is directly involved in chondrocyte differentiation and maturation.
Collapse
Affiliation(s)
- Rüdiger Jörg Blaschke
- Department of Human Molecular Genetics, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | | |
Collapse
|
724
|
Popova BC, Tada T, Takagi N, Brockdorff N, Nesterova TB. Attenuated spread of X-inactivation in an X;autosome translocation. Proc Natl Acad Sci U S A 2006; 103:7706-11. [PMID: 16679409 PMCID: PMC1472509 DOI: 10.1073/pnas.0602021103] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Indexed: 12/12/2022] Open
Abstract
X inactivation in female mammals involves transcriptional silencing of an entire chromosome in response to a cis-acting noncoding RNA, the X inactive-specific transcript (Xist). Xist can also inactivate autosomal sequences, for example, in X;autosome translocations; but here, silencing appears to be relatively inefficient. This variation has been attributed to either attenuated spreading of Xist RNA at the onset of X inactivation or inefficient maintenance of autosomal silencing. Evidence to date has favored the latter. Here, we demonstrate attenuated spreading of Xist RNA at the onset of X inactivation in the T(X;4)37H X;autosome translocation. Our findings provide direct evidence that underlying chromosome/chromatin features can disrupt spreading of the primary inactivating signal.
Collapse
Affiliation(s)
- Bilyana C. Popova
- *Developmental Epigenetics, Medical Research Council Clinical Sciences Center, Imperial College Faculty of Medicine, Hammersmith Hospital, DuCane Road, London W12 ONN, United Kingdom
| | - Takashi Tada
- Stem Cell Engineering, Stem Cell Research Center, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan; and
| | - Nobuo Takagi
- Hokusei Gakuen University, Atsubetsu-ku, Sapporo 004-8631, Japan
| | - Neil Brockdorff
- *Developmental Epigenetics, Medical Research Council Clinical Sciences Center, Imperial College Faculty of Medicine, Hammersmith Hospital, DuCane Road, London W12 ONN, United Kingdom
| | - Tatyana B. Nesterova
- *Developmental Epigenetics, Medical Research Council Clinical Sciences Center, Imperial College Faculty of Medicine, Hammersmith Hospital, DuCane Road, London W12 ONN, United Kingdom
| |
Collapse
|
725
|
Piña-Aguilar RE. The future of sperm-derived mRNAs. Fertil Steril 2006; 85:e15; author reply e16. [PMID: 16677639 DOI: 10.1016/j.fertnstert.2006.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Indexed: 12/01/2022]
|
726
|
Graves JAM, Koina E, Sankovic N. How the gene content of human sex chromosomes evolved. Curr Opin Genet Dev 2006; 16:219-24. [PMID: 16650758 DOI: 10.1016/j.gde.2006.04.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Accepted: 04/18/2006] [Indexed: 11/24/2022]
Abstract
The X and Y chromosomes of humans and other mammals both have very atypical gene contents. The degenerate Y bears only a handful of genes that are specialized for male sex and reproduction. Now it seems that the X over-represents genes controlling reproductive traits and intelligence. This is hard to explain in terms of function but makes excellent sense in terms of evolution. Comparisons between the gene content of the X and Y in humans, distantly related mammals, and other vertebrates, define the evolutionary past of our sex chromosomes and suggest how special selective forces act on the X and Y.
Collapse
|
727
|
Kouprina N, Pavlicek A, Noskov VN, Solomon G, Otstot J, Isaacs W, Carpten JD, Trent JM, Schleutker J, Barrett JC, Jurka J, Larionov V. Dynamic structure of the SPANX gene cluster mapped to the prostate cancer susceptibility locus HPCX at Xq27. Genome Res 2006; 15:1477-86. [PMID: 16251457 PMCID: PMC1310635 DOI: 10.1101/gr.4212705] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Genetic linkage studies indicate that germline variations in a gene or genes on chromosome Xq27-28 are implicated in prostate carcinogenesis. The linkage peak of prostate cancer overlies a region of approximately 750 kb containing five SPANX genes (SPANX-A1, -A2, -B, -C, and -D) encoding sperm proteins associated with the nucleus; their expression was also detected in a variety of cancers. SPANX genes are >95% identical and reside within large segmental duplications (SDs) with a high level of similarity, which confounds mutational analysis of this gene family by routine PCR methods. In this work, we applied transformation-associated recombination cloning (TAR) in yeast to characterize individual SPANX genes from prostate cancer patients showing linkage to Xq27-28 and unaffected controls. Analysis of genomic TAR clones revealed a dynamic nature of the replicated region of linkage. Both frequent gene deletion/duplication and homology-based sequence transfer events were identified within the region and were presumably caused by recombinational interactions between SDs harboring the SPANX genes. These interactions contribute to diversity of the SPANX coding regions in humans. We speculate that the predisposition to prostate cancer in X-linked families is an example of a genomic disease caused by a specific architecture of the SPANX gene cluster.
Collapse
Affiliation(s)
- Natalay Kouprina
- Laboratory of Biosystems and Cancer, National Cancer Institute, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
728
|
Clerc P, Avner P. Random X-chromosome inactivation: skewing lessons for mice and men. Curr Opin Genet Dev 2006; 16:246-53. [PMID: 16647851 DOI: 10.1016/j.gde.2006.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
The mammalian X-chromosome exists in two flavors, active and inactive, in each cell of the adult female. This phenomenon originates from the process of random choice occurring early in development in a small number of progenitor cells in which the decision is made to inactivate either one or the other X chromosome on a cell-autonomous basis. Once made, this initial decision is irreversible, although exceptions exist in specific chromosomal territories and cell lineages. Recent findings implicate various factors, including non-coding RNAs and chromatin modification complexes, as effectors in the initiation and maintenance of X-chromosome inactivation. The functional redundancy of such factors almost certainly plays an important role in the stability of the inactive X. Studying skewing or bias opens an important opportunity for understanding facets of the random choice process.
Collapse
Affiliation(s)
- Philippe Clerc
- Génétique Moléculaire Murine, Institut Pasteur, 25 rue du Docteur Roux, Paris 75015, France
| | | |
Collapse
|
729
|
Ross MT, Bentley DR, Tyler-Smith C. The sequences of the human sex chromosomes. Curr Opin Genet Dev 2006; 16:213-8. [PMID: 16650760 DOI: 10.1016/j.gde.2006.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
The sequences of both of the human sex chromosomes and of a substantial part of the chimpanzee Y chromosome have now been determined, and most of the protein-coding genes have been identified. The X chromosome codes for more than 800 proteins but the Y chromosome for only approximately 60, illustrating their very different evolutionary histories since their origin from an autosomal pair approximately 300 million years ago and explaining their differential importance in disease. These sequences have provided the basis for understanding normal patterns of variation, such as the distribution of SNPs, and patterns of linkage disequilibrium. In addition, they have been useful for identifying variants associated with simple Mendelian disorders such as microphthalmia or mental retardation, and more complex disorders such as osteoporosis.
Collapse
Affiliation(s)
- Mark T Ross
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| | | | | |
Collapse
|
730
|
Walter J, Hutter B, Khare T, Paulsen M. Repetitive elements in imprinted genes. Cytogenet Genome Res 2006; 113:109-15. [PMID: 16575169 DOI: 10.1159/000090821] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Accepted: 10/19/2005] [Indexed: 11/19/2022] Open
Abstract
Genomic imprinting in mammals results in mono-allelic expression of about 80 genes depending on the parental origin of the alleles. Though the epigenetic mechanisms underlying imprinting are rather clear, little is known about the genetic basis for these epigenetic mechanisms. It is still rather enigmatic which sequence features discriminate imprinted from non-imprinted genes/regions and why and how certain sequence elements are recognized and differentially marked in the germlines. It seems likely that specific DNA elements serve as signatures that guide the necessary epigenetic modification machineries to the imprinted regions. Inter- and intraspecific comparative genomic studies suggest that the unusual occurrence and distribution of various types of repetitive elements within imprinted regions may represent such genomic imprinting signatures. In this review we summarize the various observations made and discuss them in light of experimental data.
Collapse
Affiliation(s)
- J Walter
- Genetik/Epigenetik, FR 8.3 Biowissenschaften, Universitat des Saarlandes, Saarbrucken, Germany
| | | | | | | |
Collapse
|
731
|
|
732
|
Murphy WJ, Pearks Wilkerson AJ, Raudsepp T, Agarwala R, Schäffer AA, Stanyon R, Chowdhary BP. Novel gene acquisition on carnivore Y chromosomes. PLoS Genet 2006; 2:e43. [PMID: 16596168 PMCID: PMC1420679 DOI: 10.1371/journal.pgen.0020043] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Accepted: 02/08/2006] [Indexed: 11/19/2022] Open
Abstract
Despite its importance in harboring genes critical for spermatogenesis and male-specific functions, the Y chromosome has been largely excluded as a priority in recent mammalian genome sequencing projects. Only the human and chimpanzee Y chromosomes have been well characterized at the sequence level. This is primarily due to the presumed low overall gene content and highly repetitive nature of the Y chromosome and the ensuing difficulties using a shotgun sequence approach for assembly. Here we used direct cDNA selection to isolate and evaluate the extent of novel Y chromosome gene acquisition in the genome of the domestic cat, a species from a different mammalian superorder than human, chimpanzee, and mouse (currently being sequenced). We discovered four novel Y chromosome genes that do not have functional copies in the finished human male-specific region of the Y or on other mammalian Y chromosomes explored thus far. Two genes are derived from putative autosomal progenitors, and the other two have X chromosome homologs from different evolutionary strata. All four genes were shown to be multicopy and expressed predominantly or exclusively in testes, suggesting that their duplication and specialization for testis function were selected for because they enhance spermatogenesis. Two of these genes have testis-expressed, Y-borne copies in the dog genome as well. The absence of the four newly described genes on other characterized mammalian Y chromosomes demonstrates the gene novelty on this chromosome between mammalian orders, suggesting it harbors many lineage-specific genes that may go undetected by traditional comparative genomic approaches. Specific plans to identify the male-specific genes encoded in the Y chromosome of mammals should be a priority. Y chromosomes are typically gene poor and enriched with repetitive elements, making them difficult to sequence by standard methods. Hence, the Y chromosome gene repertoire in mammalian species other than human has not been explored until very recently. Here the authors used a directed approach to isolate Y chromosome genes of the domestic cat, an evolutionary divergent species from human and mouse. They found that the feline Y chromosome harbors its own unique set of genes that are expressed specifically in the testes, presumably where they play an important role in spermatogenesis. Paralleling the discoveries seen from the full human Y chromosome sequence, the feline Y chromosome has acquired and remodeled some genes from autosomes, while other genes have a shared ancestry with the X chromosome. However, none of the four new genes are found on the Y chromosomes of human or mouse, although two are shared with the canine Y chromosome. This work highlights the Y chromosome as a source of potential gene novelty in different species and suggests that more directed efforts at characterizing this hitherto understudied chromosome will further enrich our understanding of the types of genes found there and the roles they may play in mammalian spermatogenesis.
Collapse
Affiliation(s)
- William J Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, United States of America.
| | | | | | | | | | | | | |
Collapse
|
733
|
Visscher PM, Medland SE, Ferreira MAR, Morley KI, Zhu G, Cornes BK, Montgomery GW, Martin NG. Assumption-free estimation of heritability from genome-wide identity-by-descent sharing between full siblings. PLoS Genet 2006; 2:e41. [PMID: 16565746 PMCID: PMC1413498 DOI: 10.1371/journal.pgen.0020041] [Citation(s) in RCA: 401] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2005] [Accepted: 02/06/2006] [Indexed: 11/25/2022] Open
Abstract
The study of continuously varying, quantitative traits is important in evolutionary biology, agriculture, and medicine. Variation in such traits is attributable to many, possibly interacting, genes whose expression may be sensitive to the environment, which makes their dissection into underlying causative factors difficult. An important population parameter for quantitative traits is heritability, the proportion of total variance that is due to genetic factors. Response to artificial and natural selection and the degree of resemblance between relatives are all a function of this parameter. Following the classic paper by R. A. Fisher in 1918, the estimation of additive and dominance genetic variance and heritability in populations is based upon the expected proportion of genes shared between different types of relatives, and explicit, often controversial and untestable models of genetic and non-genetic causes of family resemblance. With genome-wide coverage of genetic markers it is now possible to estimate such parameters solely within families using the actual degree of identity-by-descent sharing between relatives. Using genome scans on 4,401 quasi-independent sib pairs of which 3,375 pairs had phenotypes, we estimated the heritability of height from empirical genome-wide identity-by-descent sharing, which varied from 0.374 to 0.617 (mean 0.498, standard deviation 0.036). The variance in identity-by-descent sharing per chromosome and per genome was consistent with theory. The maximum likelihood estimate of the heritability for height was 0.80 with no evidence for non-genetic causes of sib resemblance, consistent with results from independent twin and family studies but using an entirely separate source of information. Our application shows that it is feasible to estimate genetic variance solely from within-family segregation and provides an independent validation of previously untestable assumptions. Given sufficient data, our new paradigm will allow the estimation of genetic variation for disease susceptibility and quantitative traits that is free from confounding with non-genetic factors and will allow partitioning of genetic variation into additive and non-additive components. Quantitative geneticists attempt to understand variation between individuals within a population for traits such as height in humans and the number of bristles in fruit flies. This has been traditionally done by partitioning the variation in underlying sources due to genetic and environmental factors, using the observed amount of variation between and within families. A problem with this approach is that one can never be sure that the estimates are correct, because nature and nurture can be confounded without one knowing it. The authors got around this problem by comparing the similarity between relatives as a function of the exact proportion of genes that they have in common, looking only within families. Using this approach, the authors estimated the amount of total variation for height in humans that is due to genetic factors from 3,375 sibling pairs. For each pair, the authors estimated the proportion of genes that they share from DNA markers. It was found that about 80% of the total variation can be explained by genetic factors, close to results that are obtained from classical studies. This study provides the first validation of an estimate of genetic variation by using a source of information that is free from nature–nurture assumptions.
Collapse
Affiliation(s)
- Peter M Visscher
- Genetic Epidemiology Group, Queensland Institute of Medical Research, Brisbane, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
734
|
McNeil JA, Smith KP, Hall LL, Lawrence JB. Word frequency analysis reveals enrichment of dinucleotide repeats on the human X chromosome and [GATA]n in the X escape region. Genome Res 2006; 16:477-84. [PMID: 16533911 PMCID: PMC1457025 DOI: 10.1101/gr.4627606] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Most of the human genome encodes neither protein nor known functional RNA, yet available approaches to seek meaningful information in the "noncoding" sequence are limited. The unique biology of the X chromosome, one of which is silenced in mammalian females, can yield clues into sequence motifs involved in chromosome packaging and function. Although autosomal chromatin has some capacity for inactivation, evidence indicates that sequences enriched on the X chromosome render it fully competent for silencing, except in specific regions that escape inactivation. Here we have used a linguistic approach by analyzing the frequency and distribution of nine base-pair genomic "words" throughout the human genome. Results identify previously unknown sequence differences on the human X chromosome. Notably, the dinucleotide repeats [AT]n, [AC]n, and [AG]n are significantly enriched across the X chromosome compared with autosomes. Moreover, a striking enrichment (>10-fold) of [GATA]n is revealed throughout the 10-Mb segment at Xp22 that escapes inactivation, and is confirmed by fluorescence in situ hybridization. A similar enrichment is found in other eutherian genomes. Our findings clearly demonstrate sequence differences relevant to the novel biology and evolution of the X chromosome. Furthermore, they implicate simple sequence repeats, linked to gene regulation and unusual DNA structures, in the regulation and formation of facultative heterochromatin. Results suggest a new paradigm whereby a regional escape from X inactivation is due to the presence of elements that prevent heterochromatinization, rather than the lack of other elements that promote it.
Collapse
Affiliation(s)
- John A. McNeil
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Kelly P. Smith
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Lisa L. Hall
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Jeanne B. Lawrence
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
- Corresponding author.E-mail ; fax (508) 856-5178
| |
Collapse
|
735
|
Suresh A, Shah V, Rani DS, Singh BN, Prasad GU, Subramanian S, Kumar S, Singh L. A mouse gene encoding a novel member of the WD family of proteins is highly conserved and predominantly expressed in the testis (Wdr13). Mol Reprod Dev 2006; 72:299-310. [PMID: 16094675 DOI: 10.1002/mrd.20362] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Wdr13, a novel member of the WD family of proteins and the mouse homolog of WDR13 is localized to the locus XA1.1 and is predominantly expressed in the testis. The expression begins at the early stages of gonadal development and is maintained throughout the adult life with a predominant expression in the germ cells of adult testis. RNA in situ hybridization on the testis and brain sections indicated a cytoplasmic expression of the transcript. The alternatively spliced transcripts of the gene are generated by different methods and showed a differential pattern of expression, suggesting functional diversity. The expression of the gene in the unfertilized egg and in the neural stem cells indicated the functional significance of the gene from the early stages of development. The nuclear localization of the mouse WDR13 protein suggested a regulatory function. Evolutionary analysis of the gene indicated an extensive functional conservation across diverse species. Comparison of the genomic organization of the different homologs revealed a varied organization in the invertebrate homolog and the retention of the functionally significant introns in the same.
Collapse
Affiliation(s)
- Amritha Suresh
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | | | | | | | | | | | | | | |
Collapse
|
736
|
Abstract
Sex chromosomes--particularly the human Y--have been a source of fascination for decades because of their unique transmission patterns and their peculiar cytology. The outpouring of genomic data confirms that their atypical structure and gene composition break the rules of genome organization, function, and evolution. The X has been shaped by dosage differences to have a biased gene content and to be subject to inactivation in females. The Y chromosome seems to be a product of a perverse evolutionary process that does not select the fittest Y, which may cause its degradation and ultimate extinction.
Collapse
Affiliation(s)
- Jennifer A Marshall Graves
- Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
737
|
Bagnall RD, Giannelli F, Green PM. Int22h-related inversions causing hemophilia A: a novel insight into their origin and a new more discriminant PCR test for their detection. J Thromb Haemost 2006; 4:591-8. [PMID: 16460442 DOI: 10.1111/j.1538-7836.2006.01840.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Intrachromosomal, homologous recombination of the duplicon int22h-1 with int22h-2 or int22h-3 causes inversions accounting for 45% of severe hemophilia A, hence the belief that int22h-2 and int22h-3 are in opposite orientation to int22h-1. However, inversions involving int22h-2 are five times rarer than those involving its virtually identical copy: int22h-3. Recent sequencing has indicated that int22h-2 and int22h-3 form the internal part of the arms of an imperfect palindrome so that int22h-2, in the centromeric arm, has the same orientation as int22h-1 and, upon recombination with int22h-1, should produce deletions and duplications but not inversions. AIM This work aims to provide rapid tests for all the mutations that can result from recombinations between the int22h sequences and to investigate whether int22h-2-related inversions causing hemophilia A arise in chromosomes, where the arms of the palindrome have recombined so that int22h-2 and int22h-3 swap places and orientation. PATIENTS/METHODS Twenty patients with int22h-related inversions were examined together with a control and inversion carriers using reverse transcription-polymerase chain reaction (RT-PCR), long-range PCR and sequencing. RESULTS AND CONCLUSIONS Analysis of mRNA in patients and a control provided evidence confirming the palindromic arrangement of int22h-2 and int22h-3 and the proposed inversion polymorphism that allows int22h-2 to be in the telomeric arm of the palindrome and in opposite orientation to int22h-1. New long-range PCR reactions were used to develop a single tube test that detects and discriminates inversions involving int22h-2 or int22h-3 and a two-tube test that can distinguish inversions, deletions, and duplications due to recombination between int22h sequences.
Collapse
Affiliation(s)
- R D Bagnall
- Department of Medical and Molecular Genetics, King's College School of Medicine, London, UK.
| | | | | |
Collapse
|
738
|
Scott LA, Kuroiwa A, Matsuda Y, Wichman HA. X accumulation of LINE-1 retrotransposons in Tokudaia osimensis, a spiny rat with the karyotype XO. Cytogenet Genome Res 2006; 112:261-9. [PMID: 16484782 DOI: 10.1159/000089880] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 07/25/2005] [Indexed: 01/02/2023] Open
Abstract
The observation that LINE-1 transposable elements are enriched on the X in comparison to the autosomes led to the hypothesis that LINE-1s play a role in X chromosome inactivation. If this hypothesis is correct, loss of LINE-1 activity would be expected to result in species extinction or in an alternate pathway of dosage compensation. One such alternative pathway would be to evolve a karyotype that does not require dosage compensation between the sexes. Two of the three extant species of the Ryukyu spiny rat Tokudaia have such a karyotype; both males and females are XO. We asked whether this karyotype arose due to loss of LINE-1 activity and thus the loss of a putative component in the X inactivation pathway. Although XO Tokudaia has no need for dosage compensation, LINE-1s have been recently active in Tokudaia osimensis and show higher density on the lone X than on the autosomes.
Collapse
Affiliation(s)
- L A Scott
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844-3051, USA
| | | | | | | |
Collapse
|
739
|
Richardson AL, Wang ZC, De Nicolo A, Lu X, Brown M, Miron A, Liao X, Iglehart JD, Livingston DM, Ganesan S. X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 2006; 9:121-32. [PMID: 16473279 DOI: 10.1016/j.ccr.2006.01.013] [Citation(s) in RCA: 651] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 12/10/2005] [Accepted: 01/17/2006] [Indexed: 01/09/2023]
Abstract
Sporadic basal-like cancers (BLC) are a distinct class of human breast cancers that are phenotypically similar to BRCA1-associated cancers. Like BRCA1-deficient tumors, most BLC lack markers of a normal inactive X chromosome (Xi). Duplication of the active X chromosome and loss of Xi characterized almost half of BLC cases tested. Others contained biparental but nonheterochromatinized X chromosomes or gains of X chromosomal DNA. These abnormalities did not lead to a global increase in X chromosome transcription but were associated with overexpression of a small subset of X chromosomal genes. Other, equally aneuploid, but non-BLC rarely displayed these X chromosome abnormalities. These results suggest that X chromosome abnormalities contribute to the pathogenesis of BLC, both inherited and sporadic.
Collapse
MESH Headings
- Alleles
- BRCA1 Protein/genetics
- BRCA1 Protein/metabolism
- Biological Transport
- Biomarkers
- Breast Neoplasms/genetics
- Cell Nucleus/metabolism
- Chromosome Aberrations
- Chromosomes, Human, Pair 14/genetics
- Chromosomes, Human, Pair 17/genetics
- Chromosomes, Human, X/genetics
- Cohort Studies
- CpG Islands/genetics
- DNA Methylation
- Female
- Gene Expression
- Gene Silencing
- Genes, X-Linked
- Humans
- Neoplasms, Basal Cell/genetics
- RNA, Long Noncoding
- RNA, Messenger/genetics
- RNA, Untranslated/genetics
- Uniparental Disomy
Collapse
Affiliation(s)
- Andrea L Richardson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
740
|
|
741
|
Nusbaum C, Mikkelsen TS, Zody MC, Asakawa S, Taudien S, Garber M, Kodira CD, Schueler MG, Shimizu A, Whittaker CA, Chang JL, Cuomo CA, Dewar K, FitzGerald MG, Yang X, Allen NR, Anderson S, Asakawa T, Blechschmidt K, Bloom T, Borowsky ML, Butler J, Cook A, Corum B, DeArellano K, DeCaprio D, Dooley KT, Dorris L, Engels R, Glöckner G, Hafez N, Hagopian DS, Hall JL, Ishikawa SK, Jaffe DB, Kamat A, Kudoh J, Lehmann R, Lokitsang T, Macdonald P, Major JE, Matthews CD, Mauceli E, Menzel U, Mihalev AH, Minoshima S, Murayama Y, Naylor JW, Nicol R, Nguyen C, O'Leary SB, O'Neill K, Parker SCJ, Polley A, Raymond CK, Reichwald K, Rodriguez J, Sasaki T, Schilhabel M, Siddiqui R, Smith CL, Sneddon TP, Talamas JA, Tenzin P, Topham K, Venkataraman V, Wen G, Yamazaki S, Young SK, Zeng Q, Zimmer AR, Rosenthal A, Birren BW, Platzer M, Shimizu N, Lander ES. DNA sequence and analysis of human chromosome 8. Nature 2006; 439:331-5. [PMID: 16421571 DOI: 10.1038/nature04406] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 10/06/2005] [Indexed: 11/09/2022]
Abstract
The International Human Genome Sequencing Consortium (IHGSC) recently completed a sequence of the human genome. As part of this project, we have focused on chromosome 8. Although some chromosomes exhibit extreme characteristics in terms of length, gene content, repeat content and fraction segmentally duplicated, chromosome 8 is distinctly typical in character, being very close to the genome median in each of these aspects. This work describes a finished sequence and gene catalogue for the chromosome, which represents just over 5% of the euchromatic human genome. A unique feature of the chromosome is a vast region of approximately 15 megabases on distal 8p that appears to have a strikingly high mutation rate, which has accelerated in the hominids relative to other sequenced mammals. This fast-evolving region contains a number of genes related to innate immunity and the nervous system, including loci that appear to be under positive selection--these include the major defensin (DEF) gene cluster and MCPH1, a gene that may have contributed to the evolution of expanded brain size in the great apes. The data from chromosome 8 should allow a better understanding of both normal and disease biology and genome evolution.
Collapse
Affiliation(s)
- Chad Nusbaum
- Broad Institute of MIT and Harvard, 320 Charles St, Cambridge, Massachusetts 02141, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
742
|
Boeva V, Regnier M, Papatsenko D, Makeev V. Short fuzzy tandem repeats in genomic sequences, identification, and possible role in regulation of gene expression. Bioinformatics 2006; 22:676-84. [PMID: 16403795 DOI: 10.1093/bioinformatics/btk032] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
MOTIVATION Genomic sequences are highly redundant and contain many types of repetitive DNA. Fuzzy tandem repeats (FTRs) are of particular interest. They are found in regulatory regions of eukaryotic genes and are reported to interact with transcription factors. However, accurate assessment of FTR occurrences in different genome segments requires specific algorithm for efficient FTR identification and classification. RESULTS We have obtained formulas for P-values of FTR occurrence and developed an FTR identification algorithm implemented in TandemSWAN software. Using TandemSWAN we compared the structure and the occurrence of FTRs with short period length (up to 24 bp) in coding and non-coding regions including UTRs, heterochromatic, intergenic and enhancer sequences of Drosophila melanogaster and Drosophila pseudoobscura. Tandems with period three and its multiples were found in coding segments, whereas FTRs with periods multiple of six are overrepresented in all non-coding segment. Periods equal to 5-7 and 11-14 were characteristic of the enhancer regions and other non-coding regions close to genes. AVAILABILITY TandemSWAN web page, stand-alone version and documentation can be found at http://bioinform.genetika.ru/projects/swan/www/ SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Valentina Boeva
- Department of Bioengineering and Bioinformatics, Moscow State University Moscow, Russia.
| | | | | | | |
Collapse
|
743
|
Balaresque P, Manni F, Dugoujon JM, Crousau-Roy B, Heyer E. Estimating sex-specific processes in human populations: Are XY-homologous markers an effective tool? Heredity (Edinb) 2006; 96:214-21. [PMID: 16391551 DOI: 10.1038/sj.hdy.6800779] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Homologous markers on the sex-specific regions of the X- and Y-chromosomes are differentially inherited through males and females, and have similar molecular characteristics. They may therefore be useful as a complement to the comparison of mtDNA and Y-chromosomal haplotypes for estimating sex-specific processes shaping human population structure. To test this idea, we analyzed XY-homologous microsatellite diversity in 33 human populations from Africa, Asia and Europe. Interpopulation comparisons suggest that the generally discordant pattern of genetic variation observed for X- and Y-linked markers could be an outcome of sex-specific migration processes (m(females)/m(males) approximately 3) or sex-specific demographic processes (N(females)/N(males) approximately 11) or a combination of both. However, intrapopulation diversity estimated by the X/Y ratio Watterson estimator (theta(H(Y))/theta(H(X))) suggests that the scenarios required to explain the global genetic variation of XY-homologous markers are many and complex, and that the sex-specific processes (effective population size and migration rate) shaping human population structures are likely to be specific to each population under study. XY-homologous markers provide an insight into the genuine complexity of sex-specific processes, and their further exploitation in human population studies seems worthwhile.
Collapse
Affiliation(s)
- P Balaresque
- Eco-anthropologie et Ethnobiologie, UMR5145 Department Hommes Natures Societes, MNHN, Paris, France.
| | | | | | | | | |
Collapse
|
744
|
Wang ET, Kodama G, Baldi P, Moyzis RK. Global landscape of recent inferred Darwinian selection for Homo sapiens. Proc Natl Acad Sci U S A 2006; 103:135-40. [PMID: 16371466 PMCID: PMC1317879 DOI: 10.1073/pnas.0509691102] [Citation(s) in RCA: 220] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Indexed: 12/24/2022] Open
Abstract
By using the 1.6 million single-nucleotide polymorphism (SNP) genotype data set from Perlegen Sciences [Hinds, D. A., Stuve, L. L., Nilsen, G. B., Halperin, E., Eskin, E., Ballinger, D. G., Frazer, K. A. & Cox, D. R. (2005) Science 307, 1072-1079], a probabilistic search for the landscape exhibited by positive Darwinian selection was conducted. By sorting each high-frequency allele by homozygosity, we search for the expected decay of adjacent SNP linkage disequilibrium (LD) at recently selected alleles, eliminating the need for inferring haplotype. We designate this approach the LD decay (LDD) test. By these criteria, 1.6% of Perlegen SNPs were found to exhibit the genetic architecture of selection. These results were confirmed on an independently generated data set of 1.0 million SNP genotypes (International Human Haplotype Map Phase I freeze). Simulation studies indicate that the LDD test, at the megabase scale used, effectively distinguishes selection from other causes of extensive LD, such as inversions, population bottlenecks, and admixture. The approximately 1,800 genes identified by the LDD test were clustered according to Gene Ontology (GO) categories. Based on overrepresentation analysis, several predominant biological themes are common in these selected alleles, including host-pathogen interactions, reproduction, DNA metabolism/cell cycle, protein metabolism, and neuronal function.
Collapse
Affiliation(s)
- Eric T Wang
- Department of Biological Chemistry, College of Medicine, Donald Bren School of Information and Computer Sciences, and Institute of Genomics and Bioinformatics, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
745
|
Davies W, Isles AR, Burgoyne PS, Wilkinson LS. X-linked imprinting: effects on brain and behaviour. Bioessays 2006; 28:35-44. [PMID: 16369947 DOI: 10.1002/bies.20341] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Imprinted genes are monoallelically expressed in a parent-of-origin-dependent manner and can affect brain and behavioural phenotypes. The X chromosome is enriched for genes affecting neurodevelopment and is donated asymmetrically to male and female progeny. Hence, X-linked imprinted genes could potentially influence sexually dimorphic neurobiology. Consequently, investigations into such loci may provide new insights into the biological basis of behavioural differences between the sexes and into why men and women show different vulnerabilities to certain mental disorders. In this review, we summarise recent advances in our knowledge of X-linked imprinted genes and the brain substrates that they may act upon. In addition, we suggest strategies for identifying novel X-linked imprinted genes and their downstream effects and discuss evolutionary theories regarding the origin and maintenance of X-linked imprinting.
Collapse
Affiliation(s)
- William Davies
- Laboratories of Cognitive and Behavioural Neuroscience and Developmental Genetics and Imprinting, The Babraham Institute, Cambridge, UK.
| | | | | | | |
Collapse
|
746
|
Lundquist AL, Turner CL, Ballester LY, George AL. Expression and transcriptional control of human KCNE genes. Genomics 2006; 87:119-28. [PMID: 16303284 DOI: 10.1016/j.ygeno.2005.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 09/06/2005] [Accepted: 09/07/2005] [Indexed: 11/26/2022]
Abstract
Potassium channels are essential for a variety of cellular processes ranging from membrane excitability to cellular proliferation. The KCNE genes (KCNE1-5) encode a family of single-transmembrane-domain proteins that modulate the properties of several potassium channels, suggesting a physiologic role for these accessory subunits in many human tissues. To investigate the expression and transcriptional control of KCNE genes we mapped transcription start sites, delineated 5' genomic structure, and characterized functional promoter elements for each gene. We identified alternatively spliced transcripts for both KCNE1 and KCNE3, including a cardiac-specific KCNE1 transcript. Analysis of relative expression levels of KCNE1-5 in a panel of human tissues revealed distinct, but overlapping, expression patterns. The coexpression of multiple functionally distinct KCNE genes in some tissues infers complex accessory subunit modification of potassium channels. Identification of the core promoter elements necessary for transcriptional control of the KCNE genes facilitates future work investigating factors responsible for tissue-specific expression as well as the discovery of promoter variants associated with disease.
Collapse
Affiliation(s)
- Andrew L Lundquist
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
747
|
Lyon MF. Do LINEs have a role in X-chromosome inactivation? J Biomed Biotechnol 2006; 2006:59746. [PMID: 16877818 PMCID: PMC1510946 DOI: 10.1155/jbb/2006/59746] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 11/22/2005] [Accepted: 12/04/2005] [Indexed: 11/17/2022] Open
Abstract
There is longstanding evidence that X-chromosome inactivation (XCI) travels less successfully in autosomal than in X-chromosomal chromatin. The interspersed repeat elements LINE1s (L1s) have been suggested as candidates for "boosters" which promote the spread of XCI in the X-chromosome. The present paper reviews the current evidence concerning the possible role of L1s in XCI. Recent evidence, accruing from the human genome sequencing project and other sources, confirms that mammalian X-chromosomes are indeed rich in L1s, except in regions where there are many genes escaping XCI. The density of L1s is the highest in the evolutionarily oldest regions. Recent work on X; autosome translocations in human and mouse suggested failure of stabilization of XCI in autosomal material, so that genes are reactivated, but resistance of autosomal genes to the original silencing is not excluded. The accumulation of L1s on the X-chromosome may have resulted from reduced recombination or late replication. Whether L1s are part of the mechanism of XCI or a result of it remains enigmatic.
Collapse
Affiliation(s)
- Mary F. Lyon
- Mammalian Genetics Unit, Medical Research Council (MRC), Harwell, Oxfordshire OX11 0RD, UK
| |
Collapse
|
748
|
Kuroki Y, Toyoda A, Noguchi H, Taylor TD, Itoh T, Kim DS, Kim DW, Choi SH, Kim IC, Choi HH, Kim YS, Satta Y, Saitou N, Yamada T, Morishita S, Hattori M, Sakaki Y, Park HS, Fujiyama A. Comparative analysis of chimpanzee and human Y chromosomes unveils complex evolutionary pathway. Nat Genet 2006; 38:158-67. [PMID: 16388311 DOI: 10.1038/ng1729] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 11/30/2005] [Indexed: 12/17/2022]
Abstract
The mammalian Y chromosome has unique characteristics compared with the autosomes or X chromosomes. Here we report the finished sequence of the chimpanzee Y chromosome (PTRY), including 271 kb of the Y-specific pseudoautosomal region 1 and 12.7 Mb of the male-specific region of the Y chromosome. Greater sequence divergence between the human Y chromosome (HSAY) and PTRY (1.78%) than between their respective whole genomes (1.23%) confirmed the accelerated evolutionary rate of the Y chromosome. Each of the 19 PTRY protein-coding genes analyzed had at least one nonsynonymous substitution, and 11 genes had higher nonsynonymous substitution rates than synonymous ones, suggesting relaxation of selective constraint, positive selection or both. We also identified lineage-specific changes, including deletion of a 200-kb fragment from the pericentromeric region of HSAY, expansion of young Alu families in HSAY and accumulation of young L1 elements and long terminal repeat retrotransposons in PTRY. Reconstruction of the common ancestral Y chromosome reflects the dynamic changes in our genomes in the 5-6 million years since speciation.
Collapse
Affiliation(s)
- Yoko Kuroki
- RIKEN Genomic Sciences Center, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
749
|
Srivastava J, Premi S, Pathak D, Ahsan Z, Tiwari M, Garg LC, Ali S. Transcriptional Status of Known and Novel Genes Tagged with Consensus of 33.15 Repeat Loci Employing Minisatellite-Associated Sequence Amplification (MASA) and Real-Time PCR in Water Buffalo, Bubalus bubalis. DNA Cell Biol 2006; 25:31-48. [PMID: 16405399 DOI: 10.1089/dna.2006.25.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We conducted minisatellite-associated sequence amplification (MASA) with an oligo (5' CACCTCTCCACCTGCC 3') based on consensus of 33.15 repeat loci using cDNA from the testis, ovary, spleen, kidney, heart, liver, and lung of water buffalo Bubalus bubalis and uncovered 25 amplicons of six different sizes (1,263, 846/847, 602, 576, 487, and 324 base pairs). These fragments, cloned and sequenced, were found to represent several functional, regulatory, and structural genes. Blast search of all the 25 amplicons showed homologies with 43 transcribing genes across the species. Of these, the 846/847-bp fragment, having homology with the adenylate kinase gene, showed nucleotide changes at six identical places in the ovary and testis. The 1,263; 324; and 487-bp fragments showed homology with the secreted modular calcium binding protein (SMOC-1), leucine-rich repeat neuronal 6A (LRRN6A) mRNA, and human TTTY5 mRNA, respectively. Real-time PCR showed maximum expression of AKL, LRRN6A, and T-cell receptor gamma (TCR-gamma)-like genes in the testis, SMOC-1 in the liver, and the T-cell receptor-like (TCRL) gene in the spleen compared to those used as endogenous control. We construe that these genes have evolved from a common progenitor and conformed to various biological functions during the course of evolution. MASA approach coupled with real-time PCR has potentials to uncover accurate expression of a large number of genes within and across the species circumventing the screening of cDNA library.
Collapse
Affiliation(s)
- Jyoti Srivastava
- Molecular Genetics Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
750
|
Chen YT, Iseli C, Venditti CA, Old LJ, Simpson AJG, Jongeneel CV. Identification of a new cancer/testis gene family, CT47
, among expressed multicopy genes on the human X chromosome. Genes Chromosomes Cancer 2005; 45:392-400. [PMID: 16382448 DOI: 10.1002/gcc.20298] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cancer/testis (CT) genes are normally expressed in germ cells only, yet are reactivated and expressed in some tumors. Of the approximately 40 CT genes or gene families identified to date, 20 are on the X chromosome and are present as multigene families, many with highly conserved members. This indicates that novel CT gene families may be identified by detecting duplicated expressed genes on chromosome X. By searching for transcript clusters that map to multiple locations on the chromosome, followed by in silico analysis of their gene expression profiles, we identified five novel gene families with testis-specific expression and >98% sequence identity among family members. The expression of these genes in normal tissues and various tumor cell lines and specimens was evaluated by qualitative and quantitative RT-PCR, and a novel CT gene family with at least 13 copies was identified on Xq24, designated as CT47. mRNA expression of CT47 was found mainly in the testes, with weak expression in the placenta. Brain tissue was the only positive somatic tissue tested, with an estimated CT47 transcript level 0.09% of that found in testis. Among the tumor specimens tested, CT47 expression was found in approximately 15% of lung cancer and esophageal cancer specimens, but not in colorectal cancer or breast cancer. The putative CT47 protein consists of 288 amino acid residues, with a C-terminus rich in alanine and glutamic acid. The only species other than human in which a gene homologous to CT47 has been detected is the chimpanzee, with the predicted protein showing approximately 80% identity in its carboxy terminal region.
Collapse
Affiliation(s)
- Yao-Tseng Chen
- Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | | | | | | | | | |
Collapse
|