701
|
Le Guen V, Judor JP, Boeffard F, Gauttier V, Ferry N, Soulillou JP, Brouard S, Conchon S. Alloantigen gene transfer to hepatocytes promotes tolerance to pancreatic islet graft by inducing CD8 + regulatory T cells. J Hepatol 2017; 66:765-777. [PMID: 27914923 DOI: 10.1016/j.jhep.2016.11.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 11/10/2016] [Accepted: 11/13/2016] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Induction of donor-specific immune tolerance is a good alternative to chronic life-long immunosuppression for transplant patients. Donor major histocompatibility complex (MHC) molecules represent the main targets of the allogeneic immune response of transplant recipients. Liver targeted gene transfer with viral vectors induces tolerance toward the encoded antigen. The aim of this work was to determine whether alloantigen gene transfer to hepatocytes induces tolerance and promotes graft acceptance. METHODS C57BL/6 (H-2b) mice were treated with adeno-associated viral (AAV) vector targeting the expression of the MHC class I molecule H-2Kd to hepatocytes, before transplantation with fully allogeneic pancreatic islet from BALB/c mice (H-2d). RESULTS AAV H-2Kd treated mice were tolerant to the alloantigen, as demonstrated by its long-term expression by the hepatocytes, even after a highly immunogenic challenge with an adenoviral vector. After chemical induction of diabetes, the AAV treated mice had significantly delayed rejection of fully allogeneic pancreatic islet grafts, with more than 40% of recipients tolerant (>100days). AAV-mediated expression of H-2Kd in the liver induced the local expansion of CD8+ T lymphocytes with allo-specific suppressive properties. The adoptive transfer of these liver-generated CD8+ Tregs into naive diabetic mice promoted the long-term survival of allogeneic pancreatic islet grafts. CONCLUSION AAV-mediated long-term expression of a single MHC class I molecule in the liver induces the generation of a subset of allo-specific CD8+ Treg cells, which promote tolerance toward fully allogeneic graft. Liver gene transfer represents a promising strategy for in vivo induction of donor-specific tolerance. LAY SUMMARY The liver has a special immune system, biased toward tolerance. In this study, we investigated the possibility of harnessing this property of the liver to induce tolerance to an allogeneic transplantation. We demonstrate for the first time that the in vivo gene transfer of an allogeneic antigen with an adeno-associated viral vector to mouse hepatocytes induces the expansion of a population of CD8+ regulatory T lymphocytes. These Tregs are then instrumental in preventing the rejection of allogeneic pancreatic islets transplanted in these animals. Allogeneic transplantation is the main treatment for the end-stage diseases of a number of organs. Life-long immunosuppressive treatments are still required to limit graft rejection, and these treatments exhibit serious side effects. Our present findings open a new avenue for promoting allo-specific tolerance via in vivo induction of CD8+ Treg expansion.
Collapse
Affiliation(s)
- Valentin Le Guen
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Jean-Paul Judor
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Françoise Boeffard
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Vanessa Gauttier
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Nicolas Ferry
- Département de Thérapie Cellulaire, CHU Saint Louis, Paris, France
| | - Jean-Paul Soulillou
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Sophie Conchon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France; Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.
| |
Collapse
|
702
|
Abstract
Macrophages represent a key cellular component of the liver, and are essential for maintaining tissue homeostasis and ensuring rapid responses to hepatic injury. Our understanding of liver macrophages has been revolutionized by the delineation of heterogeneous subsets of these cells. Kupffer cells are a self-sustaining, liver-resident population of macrophages and can be distinguished from the monocyte-derived macrophages that rapidly accumulate in the injured liver. Specific environmental signals further determine the polarization and function of hepatic macrophages. These cells promote the restoration of tissue integrity following liver injury or infection, but they can also contribute to the progression of liver diseases, including hepatitis, fibrosis and cancer. In this Review, we highlight novel findings regarding the origin, classification and function of hepatic macrophages, and we discuss their divergent roles in the healthy and diseased liver.
Collapse
Affiliation(s)
- Oliver Krenkel
- Department of Medicine III, University Hospital Aachen, D-52074 Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital Aachen, D-52074 Aachen, Germany
| |
Collapse
|
703
|
Zhang H, Ju B, Zhang X, Zhu Y, Nie Y, Xu Y, Lei Q. Magnolol Attenuates Concanavalin A-induced Hepatic Fibrosis, Inhibits CD4 + T Helper 17 (Th17) Cell Differentiation and Suppresses Hepatic Stellate Cell Activation: Blockade of Smad3/Smad4 Signalling. Basic Clin Pharmacol Toxicol 2017; 120:560-570. [PMID: 28032440 DOI: 10.1111/bcpt.12749] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/14/2016] [Indexed: 12/14/2022]
Abstract
Magnolol is a pharmacological biphenolic compound extracted from Chinese herb Magnolia officinalis, which displays anti-inflammatory and antioxidant effects. This study was aimed at exploring the potential effect of magnolol on immune-related liver fibrosis. Herein, BALB/c mice were injected with concanavalin A (ConA, 8 mg/kg/week) up to 6 weeks to establish hepatic fibrosis, and magnolol (10, 20, 30 mg/kg/day) was given to these mice orally throughout the whole experiment. We found that magnolol preserved liver function and attenuated liver fibrotic injury in vivo. In response to ConA stimulation, the CD4+ T cells preferred to polarizing towards CD4+ T helper 17 (Th17) cells in liver. Magnolol was observed to inhibit Th17 cell differentiation in ConA-treated liver in addition to suppressing interleukin (IL)-17A generation. Hepatic stellate cells were activated in fibrotic liver as demonstrated by increased alpha smooth muscle actin (α-SMA) and desmin. More transforming growth factor (TGF)-β1 and activin A were secreted into the serum. Magnolol suppressed this abnormal HSC activation. Furthermore, the phosphorylation of Smad3 in its linker area (Thr179, Ser 204/208/213) was inhibited by magnolol. In vitro, the recombinant IL-17A plus TGF-β1 or activin A induced activation of human LX2 HSCs and promoted their collagen production. Smad3/Smad4 signalling pathway was activated in LX2 cells exposed to the fibrotic stimuli, as illustrated by the up-regulated phospho-Smad3 and the enhanced interaction between Smad3 and Smad4. These alterations were suppressed by magnolol. Collectively, our study reveals a novel antifibrotic effect of magnolol on Th17 cell-mediated fibrosis.
Collapse
Affiliation(s)
- Hongjun Zhang
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Baoling Ju
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xiaoli Zhang
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yanfei Zhu
- Department of Academic Affairs, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Ying Nie
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yuanhong Xu
- Department of Immunology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Qiuxia Lei
- Department of Obstetrics and Gynecology, Mudanjiang First People's Hospital, Mudanjiang, Heilongjiang, China
| |
Collapse
|
704
|
Jia X, Chen J, Megger DA, Zhang X, Kozlowski M, Zhang L, Fang Z, Li J, Chu Q, Wu M, Li Y, Sitek B, Yuan Z. Label-free Proteomic Analysis of Exosomes Derived from Inducible Hepatitis B Virus-Replicating HepAD38 Cell Line. Mol Cell Proteomics 2017; 16:S144-S160. [PMID: 28242843 DOI: 10.1074/mcp.m116.063503] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 02/17/2017] [Indexed: 12/13/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a major health problem worldwide. Recent evidence suggests that some viruses can manipulate the infection process by packing specific viral and cellular components into exosomes, small nanometer-sized (30-150 nm) vesicles secreted from various cells. However, the impact of HBV replication on the content of exosomes produced by hepatocytes has not been fully delineated. In this work, an HBV-inducible cell line HepAD38 was used to directly compare changes in the protein content of exosomes secreted from HepAD38 cells with or without HBV replication. Exosomes were isolated from supernantants of HepAD38 cells cultured with or without doxycycline (dox) and their purity was confirmed by transmission electron microscopy (TEM) and Western immunoblotting assays. Ion-intensity based label-free LC-MS/MS quantitation technologies were applied to analyze protein content of exosomes from HBV replicating cells [referred as HepAD38 (dox-)-exo] and from HBV nonreplicating cells [referred as HepAD38 (dox+)-exo]. A total of 1412 exosomal protein groups were identified, among which the abundance of 35 proteins was significantly changed following HBV replication. Strikingly, 5 subunit proteins from the 26S proteasome complex, including PSMC1, PSMC2, PSMD1, PSMD7 and PSMD14 were consistently enhanced in HepAD38 (dox-)-exo. Bioinformatic analysis of differential exosomal proteins confirmed the significant enrichment of components involved in the proteasomal catabolic process. Proteasome activity assays further suggested that HepAD38 (dox-)-exo had enhanced proteolytic activity compared with HepAD38 (dox+)-exo. Furthermore, human peripheral monocytes incubated with HepAD38 (dox-)-exo induced a significantly lower level of IL-6 secretion compared with IL-6 levels from HepAD38 (dox+)-exo. Irreversible inhibition of proteasomal activity within exosomes restored higher production of IL-6 by monocytes, suggesting that transmission of proteasome subunit proteins by HepAD38 (dox-)-exo might modulate the production of pro-inflammatory molecules in the recipient monocytes. These results revealed the composition and potential function of exosomes produced during HBV replication, thus providing a new perspective on the role of exosomes in HBV-host interaction.
Collapse
Affiliation(s)
- Xiaofang Jia
- From the ‡Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, MOE/MOH, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Jieliang Chen
- From the ‡Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, MOE/MOH, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Dominik A Megger
- §Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Xiaonan Zhang
- From the ‡Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, MOE/MOH, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Maya Kozlowski
- From the ‡Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, MOE/MOH, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Lijun Zhang
- From the ‡Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, MOE/MOH, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Zhong Fang
- From the ‡Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, MOE/MOH, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Jin Li
- From the ‡Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, MOE/MOH, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Qiaofang Chu
- From the ‡Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, MOE/MOH, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Min Wu
- From the ‡Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, MOE/MOH, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Yaming Li
- From the ‡Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, MOE/MOH, Shanghai Medical College, Fudan University, Shanghai 201508, China
| | - Barbara Sitek
- §Medizinisches Proteom-Center, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Zhenghong Yuan
- From the ‡Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Key Laboratory of Medical Molecular Virology, MOE/MOH, Shanghai Medical College, Fudan University, Shanghai 201508, China;
| |
Collapse
|
705
|
Neutrophil adhesion and crawling dynamics on liver sinusoidal endothelial cells under shear flow. Exp Cell Res 2017; 351:91-99. [DOI: 10.1016/j.yexcr.2017.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/05/2017] [Accepted: 01/07/2017] [Indexed: 02/07/2023]
|
706
|
Hatting M, Tacke F. From NAFLD to HCC: Is IL-17 the crucial link? Hepatology 2017; 65:739-741. [PMID: 28012256 DOI: 10.1002/hep.28934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/05/2016] [Accepted: 10/21/2016] [Indexed: 02/01/2023]
Affiliation(s)
| | - Frank Tacke
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
707
|
Abstract
Chronic liver inflammation leads to fibrosis and cirrhosis, which is the 12th leading cause of death in the United States. Hepatocyte steatosis is a component of metabolic syndrome and insulin resistance. Hepatic steatosis may be benign or progress to hepatocyte injury and the initiation of inflammation, which activates immune cells. While Kupffer cells are the resident macrophage in the liver, inflammatory cells such as infiltrating macrophages, T lymphocytes, neutrophils, and DCs all contribute to liver inflammation. The inflammatory cells activate hepatic stellate cells, which are the major source of myofibroblasts in the liver. Here we review the initiation of inflammation in the liver, the liver inflammatory cells, and their crosstalk with myofibroblasts.
Collapse
|
708
|
Huan HB, Wen XD, Chen XJ, Wu L, Wu LL, Zhang L, Yang DP, Zhang X, Bie P, Qian C, Xia F. Sympathetic nervous system promotes hepatocarcinogenesis by modulating inflammation through activation of alpha1-adrenergic receptors of Kupffer cells. Brain Behav Immun 2017; 59:118-134. [PMID: 27585737 DOI: 10.1016/j.bbi.2016.08.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/23/2016] [Accepted: 08/27/2016] [Indexed: 02/07/2023] Open
Abstract
The sympathetic nervous system (SNS) is known to play a significant role in tumor initiation and metastasis. Hepatocellular carcinoma (HCC) frequently occurs in cirrhotic livers after chronic inflammation, and the SNS is hyperactive in advanced liver cirrhosis. However, it remains unclear whether the SNS promotes hepatocarcinogenesis by modulating chronic liver inflammation. In this study, a retrospective pathological analysis and quantification of sympathetic nerve fiber densities (tyrosine hydroxylase, TH+) in HCC patients, and diethylnitrosamine (DEN)-induced hepatocarcinogenesis in rats were performed. Our data showed that high density of sympathetic nerve fibers and α1-adrenergic receptors (ARs) of Kupffer cells (KCs) were associated with a poor prognosis of HCC. Sympathetic denervation or blocking of α1-ARs decreased DEN-induced HCC incidence and tumor development. In addition, synergistic effects of interleukin-6 (IL-6) and transforming growth factor-beta (TGF-β) in hepatocarcinogenesis were observed. The suppression of the SNS reduced IL-6 and TGF-β expression, which suppressed hepatocarcinogenesis, and KCs play a key role in this process. After the ablation of KCs, IL-6 and TGF-β expression and the development of HCC were inhibited. This study demonstrates that sympathetic innervation is crucial for hepatocarcinogenesis and that the SNS promotes hepatocarcinogenesis by activating α1-ARs of KCs to boost the activation of KCs and to maintain the inflammatory microenvironment. These results indicate that sympathetic denervation or α1-ARs blockage may represent novel treatment approaches for HCC.
Collapse
Affiliation(s)
- Hong-Bo Huan
- Institute of Hepatobiliary Surgery, Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xu-Dong Wen
- Institute of Hepatobiliary Surgery, Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xue-Jiao Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunology and Pathology of Ministry of Education China, Chongqing, China
| | - Lin Wu
- Institute of Hepatobiliary Surgery, Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Li-Li Wu
- Institute of Hepatobiliary Surgery, Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Liang Zhang
- Institute of Hepatobiliary Surgery, Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Da-Peng Yang
- Institute of Hepatobiliary Surgery, Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunology and Pathology of Ministry of Education China, Chongqing, China
| | - Ping Bie
- Institute of Hepatobiliary Surgery, Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Cheng Qian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, and Key Laboratory of Tumor Immunology and Pathology of Ministry of Education China, Chongqing, China
| | - Feng Xia
- Institute of Hepatobiliary Surgery, Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, China.
| |
Collapse
|
709
|
Abstract
Sepsis and septic shock are characterized by life-threatening organ dysfunction caused by a dysregulated host response to infection. The liver has a central role during sepsis, and is essential to the regulation of immune defence during systemic infections by mechanisms such as bacterial clearance, acute-phase protein or cytokine production and metabolic adaptation to inflammation. However, the liver is also a target for sepsis-related injury, including hypoxic hepatitis due to ischaemia and shock, cholestasis due to altered bile metabolism, hepatocellular injury due to drug toxicity or overwhelming inflammation, as well as distinct pathologies such as secondary sclerosing cholangitis in critically ill patients. Hence, hepatic dysfunction substantially impairs the prognosis of sepsis and serves as a powerful independent predictor of mortality in the intensive care unit. Sepsis is particularly problematic in patients with liver cirrhosis (who experience increased bacterial translocation from the gut and impaired microbial defence) as it can trigger acute-on-chronic liver failure - a syndrome with high short-term mortality. Here, we review the importance of the liver as a guardian, modifier and target of sepsis, the factors that contribute to sepsis in patients with liver cirrhosis and new therapeutic strategies.
Collapse
|
710
|
Interleukin-33 in the pathogenesis of liver fibrosis: alarming ILC2 and hepatic stellate cells. Cell Mol Immunol 2016; 14:143-145. [PMID: 28017959 DOI: 10.1038/cmi.2016.62] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 10/23/2016] [Indexed: 02/06/2023] Open
|
711
|
Perrin GQ, Zolotukhin I, Sherman A, Biswas M, de Jong YP, Terhorst C, Davidoff AM, Herzog RW. Dynamics of antigen presentation to transgene product-specific CD4 + T cells and of Treg induction upon hepatic AAV gene transfer. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16083. [PMID: 27933310 PMCID: PMC5142511 DOI: 10.1038/mtm.2016.83] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/26/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022]
Abstract
The tolerogenic hepatic microenvironment impedes clearance of viral infections but is an advantage in viral vector gene transfer, which often results in immune tolerance induction to transgene products. Although the underlying tolerance mechanism has been extensively studied, our understanding of antigen presentation to transgene product-specific CD4+ T cells remains limited. To address this, we administered hepatotropic adeno-associated virus (AAV8) vector expressing cytoplasmic ovalbumin (OVA) into wt mice followed by adoptive transfer of transgenic OVA-specific T cells. We find that that the liver-draining lymph nodes (celiac and portal) are the major sites of MHC II presentation of the virally encoded antigen, as judged by in vivo proliferation of DO11.10 CD4+ T cells (requiring professional antigen-presenting cells, e.g., macrophages) and CD4+CD25+FoxP3+ Treg induction. Antigen presentation in the liver itself contributes to activation of CD4+ T cells egressing from the liver. Hepatic-induced Treg rapidly disseminate through the systemic circulation. By contrast, a secreted OVA transgene product is presented in multiple organs, and OVA-specific Treg emerge in both the thymus and periphery. In summary, liver draining lymph nodes play an integral role in hepatic antigen presentation and peripheral Treg induction, which results in systemic regulation of the response to viral gene products.
Collapse
Affiliation(s)
- George Q Perrin
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Irene Zolotukhin
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Alexandra Sherman
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Moanaro Biswas
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine , New York, New York, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, Massachusetts, USA
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital , Memphis, Tennessee, USA
| | - Roland W Herzog
- Department of Pediatrics, University of Florida , Gainesville, Florida, USA
| |
Collapse
|
712
|
Affiliation(s)
- D Radika Soysa
- Department of Pathology, University of Washington, Seattle, Washington.
| | - Ian N Crispe
- Department of Pathology, University of Washington, Seattle, Washington
| |
Collapse
|
713
|
David BA, Rezende RM, Antunes MM, Santos MM, Freitas Lopes MA, Diniz AB, Sousa Pereira RV, Marchesi SC, Alvarenga DM, Nakagaki BN, Araújo AM, Dos Reis DS, Rocha RM, Marques PE, Lee WY, Deniset J, Liew PX, Rubino S, Cox L, Pinho V, Cunha TM, Fernandes GR, Oliveira AG, Teixeira MM, Kubes P, Menezes GB. Combination of Mass Cytometry and Imaging Analysis Reveals Origin, Location, and Functional Repopulation of Liver Myeloid Cells in Mice. Gastroenterology 2016; 151:1176-1191. [PMID: 27569723 DOI: 10.1053/j.gastro.2016.08.024] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/16/2016] [Accepted: 08/21/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS Resident macrophages are derived from yolk sac precursors and seed the liver during embryogenesis. Native cells may be replaced by bone marrow precursors during extensive injuries, irradiation, and infections. We investigated the liver populations of myeloid immune cells and their location, as well as the dynamics of phagocyte repopulation after full depletion. The effects on liver function due to the substitution of original phagocytes by bone marrow-derived surrogates were also examined. METHODS We collected and analyzed liver tissues from C57BL/6 (control), LysM-EGFP, B6 ACTb-EGFP, CCR2-/-, CD11c-EYFP, CD11c-EYFP-DTR, germ-free mice, CX3CR1gfp/gfp, CX3CR1gpf/wt, and CX3CR1-DTR-EYFP. Liver nonparenchymal cells were immunophenotyped using mass cytometry and gene expression analyses. Kupffer and dendritic cells were depleted from mice by administration of clodronate, and their location and phenotype were examined using intravital microscopy and time-of-flight mass cytometry. Mice were given acetaminophen gavage or intravenous injections of fluorescently labeled Escherichia coli, blood samples were collected and analyzed, and liver function was evaluated. We assessed cytokine profiles of liver tissues using a multiplexed array. RESULTS Using mass cytometry and gene expression analyses, we identified 2 populations of hepatic macrophages and 2 populations of monocytes. We also identified 4 populations of dendritic cells and 1 population of basophils. After selective depletion of liver phagocytes, intravascular myeloid precursors began to differentiate into macrophages and dendritic cells; dendritic cells migrated out of sinusoids, after a delay, via the chemokine CX3CL1. The cell distribution returned to normal in 2 weeks, but the repopulated livers were unable to fully respond to drug-induced injury or clear bacteria for at least 1 month. This defect was associated with increased levels of inflammatory cytokines, and dexamethasone accelerated the repopulation of liver phagocytes. CONCLUSIONS In studies of hepatic phagocyte depletion in mice, we found that myeloid precursors can differentiate into liver macrophages and dendritic cells, which each localize to distinct tissue compartments. During replenishment, macrophages acquire the ability to respond appropriately to hepatic injury and to remove bacteria from the blood stream.
Collapse
Affiliation(s)
- Bruna Araujo David
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafael Machado Rezende
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Maísa Mota Antunes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mônica Morais Santos
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Alice Freitas Lopes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ariane Barros Diniz
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rafaela Vaz Sousa Pereira
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sarah Cozzer Marchesi
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora Moreira Alvarenga
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Brenda Naemi Nakagaki
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Alan Moreira Araújo
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela Silva Dos Reis
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renata Monti Rocha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Elias Marques
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | - Stephen Rubino
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Laura Cox
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Vanessa Pinho
- Resolution of Inflammation Lab, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thiago Mattar Cunha
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | | | - André Gustavo Oliveira
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro Martins Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Gustavo Batista Menezes
- Center for Gastrointestinal Biology, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
714
|
The innate immune receptor Dectin-2 mediates the phagocytosis of cancer cells by Kupffer cells for the suppression of liver metastasis. Proc Natl Acad Sci U S A 2016; 113:14097-14102. [PMID: 27872290 DOI: 10.1073/pnas.1617903113] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Tumor metastasis is the cause of most cancer deaths. Although metastases can form in multiple end organs, the liver is recognized as a highly permissive organ. Nevertheless, there is evidence for immune cell-mediated mechanisms that function to suppress liver metastasis by certain tumors, although the underlying mechanisms for the suppression of metastasis remain elusive. Here, we show that Dectin-2, a C-type lectin receptor (CLR) family of innate receptors, is critical for the suppression of liver metastasis of cancer cells. We provide evidence that Dectin-2 functions in resident macrophages in the liver, known as Kupffer cells, to mediate the uptake and clearance of cancer cells. Interestingly, Kupffer cells are selectively endowed with Dectin-2-dependent phagocytotic activity, with neither bone marrow-derived macrophages nor alveolar macrophages showing this potential. Concordantly, subcutaneous primary tumor growth and lung metastasis are not affected by the absence of Dectin-2. In addition, macrophage C-type lectin, a CLR known to be complex with Dectin-2, also contributes to the suppression of liver metastasis. Collectively, these results highlight the hitherto poorly understood mechanism of Kupffer cell-mediated control of metastasis that is mediated by the CLR innate receptor family, with implications for the development of anticancer therapy targeting CLRs.
Collapse
|
715
|
Ergen C, Heymann F, Al Rawashdeh W, Gremse F, Bartneck M, Panzer U, Pola R, Pechar M, Storm G, Mohr N, Barz M, Zentel R, Kiessling F, Trautwein C, Lammers T, Tacke F. Targeting distinct myeloid cell populations in vivo using polymers, liposomes and microbubbles. Biomaterials 2016; 114:106-120. [PMID: 27855336 DOI: 10.1016/j.biomaterials.2016.11.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 10/20/2016] [Accepted: 11/07/2016] [Indexed: 01/19/2023]
Abstract
Identifying intended or accidental cellular targets for drug delivery systems is highly relevant for evaluating therapeutic and toxic effects. However, limited knowledge exists on the distribution of nano- and micrometer-sized carrier systems at the cellular level in different organs. We hypothesized that clinically relevant carrier materials, differing in composition and size, are able to target distinct myeloid cell subsets that control inflammatory processes, such as macrophages, neutrophils, monocytes and dendritic cells. Therefore, we analyzed the biodistribution and in vivo cellular uptake of intravenously injected poly(N-(2-hydroxypropyl) methacrylamide) polymers, PEGylated liposomes and poly(butyl cyanoacrylate) microbubbles in mice, using whole-body imaging (computed tomography - fluorescence-mediated tomography), intra-organ imaging (intravital multi-photon microscopy) and cellular analysis (flow cytometry of blood, liver, spleen, lung and kidney). While the three carrier materials shared accumulation in tissue macrophages in liver and spleen, they notably differed in uptake by other myeloid subsets. Kupffer cells and splenic red pulp macrophages rapidly take up microbubbles. Liposomes efficiently reach dendritic cells in liver, lung and kidney. Polymers exhibit the longest circulation half-life and target endothelial cells in the liver, neutrophils and alveolar macrophages. The identification of such previously unrecognized target cell populations might open up new avenues for more efficient drug delivery.
Collapse
Affiliation(s)
- Can Ergen
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Felix Heymann
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Wa'el Al Rawashdeh
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Felix Gremse
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Matthias Bartneck
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Ulf Panzer
- Department of Medicine III, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Pola
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Michal Pechar
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Prague, Czechia
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | - Nicole Mohr
- Institute of Organic Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Matthias Barz
- Institute of Organic Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Rudolf Zentel
- Institute of Organic Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Fabian Kiessling
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | | | - Twan Lammers
- Department of Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
| | - Frank Tacke
- Department of Medicine III, University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
716
|
Cho T, Uetrecht J. How Reactive Metabolites Induce an Immune Response That Sometimes Leads to an Idiosyncratic Drug Reaction. Chem Res Toxicol 2016; 30:295-314. [DOI: 10.1021/acs.chemrestox.6b00357] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Tiffany Cho
- Faculty
of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Jack Uetrecht
- Faculty
of Pharmacy, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| |
Collapse
|
717
|
Wu N, Song YL, Wang B, Zhang XY, Zhang XJ, Wang YL, Cheng YY, Chen DD, Xia XQ, Lu YS, Zhang YA. Fish gut-liver immunity during homeostasis or inflammation revealed by integrative transcriptome and proteome studies. Sci Rep 2016; 6:36048. [PMID: 27808112 PMCID: PMC5093735 DOI: 10.1038/srep36048] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022] Open
Abstract
The gut-associated lymphoid tissue, connected with liver via bile and blood, constructs a local immune environment of both defense and tolerance. The gut-liver immunity has been well-studied in mammals, yet in fish remains largely unknown, even though enteritis as well as liver and gallbladder syndrome emerged as a limitation in aquaculture. In this study, we performed integrative bioinformatic analysis for both transcriptomic (gut and liver) and proteomic (intestinal mucus and bile) data, in both healthy and infected tilapias. We found more categories of immune transcripts in gut than liver, as well as more adaptive immune in gut meanwhile more innate in liver. Interestingly reduced differential immune transcripts between gut and liver upon inflammation were also revealed. In addition, more immune proteins in bile than intestinal mucus were identified. And bile probably providing immune effectors to intestinal mucus upon inflammation was deduced. Specifically, many key immune transcripts in gut or liver as well as key immune proteins in mucus or bile were demonstrated. Accordingly, we proposed a hypothesized profile of fish gut-liver immunity, during either homeostasis or inflammation. Current data suggested that fish gut and liver may collaborate immunologically while keep homeostasis using own strategies, including potential unique mechanisms.
Collapse
Affiliation(s)
- Nan Wu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yu-Long Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,Demorgen Bioinformation Technology Co. Ltd, Wuhan 430072, China
| | - Bei Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiang-Yang Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Jie Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Ya-Li Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ying-Yin Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qin Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yi-Shan Lu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.,State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan 430072, China
| |
Collapse
|
718
|
Mossanen JC, Krenkel O, Ergen C, Govaere O, Liepelt A, Puengel T, Heymann F, Kalthoff S, Lefebvre E, Eulberg D, Luedde T, Marx G, Strassburg CP, Roskams T, Trautwein C, Tacke F. Chemokine (C-C motif) receptor 2-positive monocytes aggravate the early phase of acetaminophen-induced acute liver injury. Hepatology 2016; 64:1667-1682. [PMID: 27302828 DOI: 10.1002/hep.28682] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 05/09/2016] [Accepted: 05/25/2016] [Indexed: 12/12/2022]
Abstract
UNLABELLED Acetaminophen (APAP, paracetamol) poisoning is a leading cause of acute liver failure (ALF) in humans and induces hepatocyte necrosis, followed by activation of the innate immune system, further aggravating liver injury. The role of infiltrating monocytes during the early phase of ALF is still ambiguous. Upon experimental APAP overdose in mice, monocyte-derived macrophages (MoMFs) massively accumulated in injured liver within 12-24 hours, whereas the number of tissue-resident macrophages (Kupffer cells) decreased. Influx of MoMFs is dependent on the chemokine receptor, chemokine (C-C motif) receptor 2 (CCR2), given that Ccr2-/- mice display reduced infiltration of monocytes and attenuated liver injury post-APAP overdose at early time points. As evidenced by intravital multiphoton microscopy of Ccr2 reporter mice, CCR2+ monocytes infiltrate liver as early as 8-12 hours post-APAP overdose and form dense cellular clusters around necrotic areas. CCR2+ MoMFs express a distinct pattern of inflammatory, but also repair-associated, genes in injured livers. Adoptive transfer experiments revealed that MoMFs primarily exert proinflammatory functions early post-APAP, thereby aggravating liver injury. Consequently, early pharmacological inhibition of either chemokine (C-C motif) ligand (CCL2; by the inhibitor, mNOX-E36) or CCR2 (by the orally available dual CCR2/CCR5 inhibitor, cenicriviroc) reduces monocyte infiltration and APAP-induced liver injury (AILI) in mice. Importantly, neither the early nor continuous inhibition of CCR2 hinder repair processes during resolution from injury. In line with this, human livers of ALF patients requiring liver transplantation reveal increased CD68+ hepatic macrophage numbers with massive infiltrates of periportal CCR2+ macrophages that display a proinflammatory polarization. CONCLUSION Infiltrating monocyte-derived macrophages aggravate APAP hepatotoxicity, and the pharmacological inhibition of either CCL2 or CCR2 might bear therapeutic potential by reducing the inflammatory reaction during the early phase of AILI. (Hepatology 2016;64:1667-1682).
Collapse
Affiliation(s)
- Jana C Mossanen
- Department of Medicine III, University Hospital Aachen, Aachen, Germany.,Department of Intensive and Intermediate Care, University Hospital Aachen, Aachen, Germany
| | - Oliver Krenkel
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Can Ergen
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Olivier Govaere
- Department of Imaging & Pathology, University of Leuven, Leuven, Belgium
| | - Anke Liepelt
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Tobias Puengel
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Felix Heymann
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Sandra Kalthoff
- Department of Medicine I, University Hospital Bonn, Bonn, Germany
| | | | | | - Tom Luedde
- Department of Medicine III, University Hospital Aachen, Aachen, Germany
| | - Gernot Marx
- Department of Intensive and Intermediate Care, University Hospital Aachen, Aachen, Germany
| | | | - Tania Roskams
- Department of Imaging & Pathology, University of Leuven, Leuven, Belgium
| | | | - Frank Tacke
- Department of Medicine III, University Hospital Aachen, Aachen, Germany.
| |
Collapse
|
719
|
Cuff AO, Robertson FP, Stegmann KA, Pallett LJ, Maini MK, Davidson BR, Male V. Eomeshi NK Cells in Human Liver Are Long-Lived and Do Not Recirculate but Can Be Replenished from the Circulation. THE JOURNAL OF IMMUNOLOGY 2016; 197:4283-4291. [PMID: 27798170 PMCID: PMC5114885 DOI: 10.4049/jimmunol.1601424] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/24/2016] [Indexed: 01/22/2023]
Abstract
Human liver contains an Eomeshi population of NK cells that is not present in the blood. In this study, we show that these cells are characterized by a molecular signature that mediates their retention in the liver. By examining liver transplants where donors and recipients are HLA mismatched, we distinguish between donor liver–derived and recipient-derived leukocytes to show that Eomeslo NK cells circulate freely whereas Eomeshi NK cells are unable to leave the liver. Furthermore, Eomeshi NK cells are retained in the liver for up to 13 y. Therefore, Eomeshi NK cells are long-lived liver-resident cells. We go on to show that Eomeshi NK cells can be recruited from the circulation during adult life and that circulating Eomeslo NK cells are able to upregulate Eomes and molecules mediating liver retention under cytokine conditions similar to those in the liver. This suggests that circulating NK cells are a precursor of their liver-resident counterparts.
Collapse
Affiliation(s)
- Antonia O Cuff
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London NW3 2PF, United Kingdom; and
| | - Francis P Robertson
- Department of Surgery and Interventional Science, University College London, Royal Free Hospital, London NW3 2QG, United Kingdom
| | - Kerstin A Stegmann
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London NW3 2PF, United Kingdom; and
| | - Laura J Pallett
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London NW3 2PF, United Kingdom; and
| | - Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London NW3 2PF, United Kingdom; and
| | - Brian R Davidson
- Department of Surgery and Interventional Science, University College London, Royal Free Hospital, London NW3 2QG, United Kingdom
| | - Victoria Male
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London NW3 2PF, United Kingdom; and
| |
Collapse
|
720
|
Li F, Chen C, Ju T, Gao J, Yan J, Wang P, Xu Q, Hwu P, Du X, Lizée G. Rapid tumor regression in an Asian lung cancer patient following personalized neo-epitope peptide vaccination. Oncoimmunology 2016; 5:e1238539. [PMID: 28123873 PMCID: PMC5214696 DOI: 10.1080/2162402x.2016.1238539] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/11/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
Personalized immunotherapy targeting tumor-specific mutations represents a highly promising approach to cancer treatment. Here, we describe an Asian lung squamous cell carcinoma patient demonstrating frank disease progression following chemotherapy and EGFR inhibitor treatment. Based on tumor mutational profiling and HLA typing, a saline-based multi-epitope peptide vaccine was designed and administered along with topical imiquimod as an adjuvant. Weekly neo-epitope peptide vaccination was followed by a rapid and dramatic regression of multiple lung tumor nodules, while a much larger liver metastasis remained refractory to treatment. Peripheral blood immune monitoring showed that specific cytotoxic T lymphocytes (CTLs) were induced primarily against peptide targets encompassing the widely shared EGFR L858R mutation, particularly one restricted to HLA-A*3101. Immunological targeting of this driver mutation may be of particular benefit to Asian lung cancer patients due to its relatively high prevalence within this patient population.
Collapse
Affiliation(s)
- Fenge Li
- Department of Gynecology, Tianjin First Center Hospital, Tianjin, China; Tianjin HengJia Biotechnology Development Co., Ltd, Tianjin, China
| | - Caixia Chen
- Department of Oncology, Tianjin Beichen Hospital , Tianjin, China
| | - Tao Ju
- Department of Oncology, Tianjin Beichen Hospital , Tianjin, China
| | - Junqin Gao
- Pathology Department, Tianjin Beichen Hospital , Tianjin, China
| | - Jun Yan
- Pathology Department, Tianjin First Center Hospital , Tianjin, China
| | - Peng Wang
- Regenerative Medicine Center, Third Central Hospital , Tianjin, China
| | - Qiang Xu
- GenomiCare Biotechnology Co. Ltd ., Shanghai, China
| | - Patrick Hwu
- Department of Melanoma Medical Oncology, University of Texas M.D. Anderson Cancer Center , Houston, TX, USA
| | - Xueming Du
- Department of Oncology, Tianjin Beichen Hospital , Tianjin, China
| | - Gregory Lizée
- Department of Melanoma Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA; Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
721
|
Tian L, Fu Q, Huang F. Effect of adefovir dipivoxil on T cell immune function in the treatment of chronic hepatitis B and hepatocirrhosis. Exp Ther Med 2016; 12:2511-2514. [PMID: 27698751 PMCID: PMC5038382 DOI: 10.3892/etm.2016.3623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/18/2016] [Indexed: 01/29/2023] Open
Abstract
The aim of the present study was to investigate the T cell immune function in chronic hepatitis B hepatocirrhosis patients at the compensated and decompensated stage following treatment with adefovir dipivoxil. A total of 104 patients diagnosed with hepatitis B hepatocirrhosis during the period from October 2013 to October 2014 were enrolled in the study. Among the cases, there were 56 cases at compensated stage, and another 48 at decompensated stage. Adefovir dipivoxil was administered for antiviral therapy (10 mg/time, 1 time/day, for a total of 24 weeks), and we compared the virus disappearance rate, liver function improvement and T cell immune function between the two groups before and after treatment. The difference between the virus disappearance rate in the two groups was not statistically significant (P>0.05). The decreased level of ALT decrease in the compensated group was significantly higher than that in the decompensated group, while the increased level of albumin in the compensated group was significantly higher as well. The differences showed statistical significance (P<0.05). After treatment, the level of CD4+ and CD4+/CD8+ ratio were higher than before treatment, while the level of CD8+ was lower after treatment than before treatment in the two groups. The differences all showed statistical significance (P<0.05). The CD4+CXCR5+ T follicular helper (TFH) cell level in the two groups was higher after treatment, as was interleukin-2 and interferon-γ. The differences all showed statistical significance (P<0.05). As for comparison between groups, the difference had no statistical significance (P>0.05). Adefovir dipivoxil treatment can improve T cell immune function at the compensated and decompensated stages in chronic hepatitis B hepatocirrhosis patients. This may be associated with virus disappearance and liver function improvement.
Collapse
Affiliation(s)
- Liting Tian
- Department of Liver Disease, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, P.R. China
| | - Qilin Fu
- Department of Liver Disease, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, P.R. China
| | - Fu Huang
- Department of Gastroenterology, Shaanxi Provincial Hospital of Traditional Chinese Medicine, Xi'an, Shaanxi 710003, P.R. China
| |
Collapse
|
722
|
Weiskirchen R, Tacke F. Immune surveillance of liver cancer in non-alcoholic fatty liver disease: excess lipids cause CD4 T-cells loss and promote hepatocellular carcinoma development. Hepatobiliary Surg Nutr 2016; 5:433-437. [PMID: 27826559 PMCID: PMC5075830 DOI: 10.21037/hbsn.2016.09.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), University Hospital RWTH Aachen, Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
723
|
Li X, Jin Q, Yao Q, Xu B, Li Z, Tu C. Quercetin attenuates the activation of hepatic stellate cells and liver fibrosis in mice through modulation of HMGB1-TLR2/4-NF-κB signaling pathways. Toxicol Lett 2016; 261:1-12. [PMID: 27601294 DOI: 10.1016/j.toxlet.2016.09.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/08/2023]
Abstract
This study aimed to investigate the effects of quercetin on liver fibrogenesis in mice and to elucidate the underlying molecular mechanisms. Mice were administered with carbon tetrachloride (CCl4) for eight weeks to induce liver fibrosis and concomitantly orally treated with quercetin (50mgkg-1day-1). Here, we demonstrated that quercetin dramatically ameliorated liver injury, inflammation, and hepatic fibrogenesis induced by CCl4. Quercetin also inhibited the activation of hepatic stellate cells (HSC) in vivo and in vitro, as evaluated by α-smooth muscle actin (α-SMA) expression, which is a specific marker of HSC activation. Moreover, reduced fibrosis was associated with decreased high-mobility group box 1 (HMGB1), toll like receptor (TLR) 2 and TLR4 genes, and protein expression. Quercetin also inhibited the cytoplasmic translocation of HMGB1 in hepatocytes of fibrotic livers. Further investigation demonstrated that quercetin treatment significantly attenuated CCl4-induced nuclear translocation of the nuclear factor-κB (NF-κB) p65 and inhibited degradation of IκBα (an inhibitor of NF-κB) expression in the liver compared with vehicle-treated fibrotic mice. Considered together, our data indicate that quercetin has hepatoprotective and anti-fibrotic effects in animal models of liver fibrosis, the mechanism of which may be involved in modulating the HMGB1-TLR2/4-NF-κB signaling pathways.
Collapse
Affiliation(s)
- Xi Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai Institute of Liver Diseases, Shanghai, China; Department of Geriatrics, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Qianwen Jin
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai Institute of Liver Diseases, Shanghai, China.
| | - Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai Institute of Liver Diseases, Shanghai, China.
| | - Beili Xu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai Institute of Liver Diseases, Shanghai, China.
| | - Zheng Li
- Laboratory Animal Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Chuantao Tu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai Institute of Liver Diseases, Shanghai, China.
| |
Collapse
|
724
|
Medrano LM, Rallón N, Berenguer J, Jiménez-Sousa MA, Soriano V, Aldámiz-Echevarria T, Fernández-Rodríguez A, García M, Tejerina F, Martínez I, Benito JM, Resino S. Relationship of TRIM5 and TRIM22 polymorphisms with liver disease and HCV clearance after antiviral therapy in HIV/HCV coinfected patients. J Transl Med 2016; 14:257. [PMID: 27590274 PMCID: PMC5010694 DOI: 10.1186/s12967-016-1005-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/16/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND AND AIMS TRIM5 and TRIM22 are restriction factors involved in innate immune response and exhibit anti-viral activity. Single nucleotide polymorphisms (SNPs) at TRIM5 and TRIM22 genes have shown to influence several viral infections such as human immunodeficiency virus (HIV), hepatitis B, as well as measles and rubella vaccination. The aim of this study is to analyze whether TRIM5 and TRIM22 polymorphisms are associated with liver fibrosis inflammation-related biomarkers and response to pegylated-interferon-alpha plus ribavirin (pegIFNα/RBV) therapy in HIV/hepatitis C virus (HCV) coinfected patients. METHODS A retrospective study was performed in 319 patients who started pegIFNα/RBV therapy. Liver fibrosis stage was characterized in 288 patients. TRIM5 rs3824949 and TRIM22 polymorphisms (rs1063303, rs7935564, and rs7113258) were genotyped using the GoldenGate assay. The primary outcomes were: a) significant liver fibrosis (≥F2) evaluated by liver biopsy or transient elastography (liver stiffness values ≥7.1 Kpa); b) sustained virological response (SVR) defined as no detectable HCV viral load (<10 IU/mL) at week 24 after the end of the treatment. The secondary outcome variable was plasma chemokine levels. RESULTS Patients with TRIM5 rs3824949 GG genotype had higher SVR rate than patients with TRIM5 rs3824949 CC/CG genotypes (p = 0.013), and they had increased odds of achieving SVR (adjusted odds ratio (aOR = 2.58; p = 0.012). Patients with TRIM22 rs1063303 GG genotype had higher proportion of significant liver fibrosis than patients with rs1063303 CC/CG genotypes (p = 0.021), and they had increased odds of having significant hepatic fibrosis (aOR = 2.19; p = 0.034). Patients with TRIM22 rs7113258 AT/AA genotype had higher SVR rate than patients with rs7113258 TT genotypes (p = 0.013), and they had increased odds of achieving SVR (aOR = 1.88; p = 0.041). The TRIM22 haplotype conformed by rs1063303_C and rs7113258_A was more frequent in patients with SVR (p = 0.018) and was significantly associated with achieving SVR (aOR = 2.80; p = 0.013). The TRIM5 rs3824949 GG genotype was significantly associated with higher levels of GRO-α (adjusted arithmetic mean ratio ((aAMR) = 1.40; p = 0.011) and MCP-1 (aAMR = 1.61; p = 0.003). CONCLUSIONS TRIM5 and TRIM22 SNPs are associated to increased odds of significant liver fibrosis and SVR after pegIFNα/RBV therapy in HIV/HCV coinfected patients. Besides, TRIM5 SNP was associated to higher baseline levels of circulating biomarkers GRO and MCP-1.
Collapse
Affiliation(s)
- Luz M. Medrano
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda- Pozuelo, Km 2.2, 28220 Majadahonda Madrid, Spain
| | - Norma Rallón
- Instituto de Investigación Sanitaria de La Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Juan Berenguer
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario “Gregorio Marañón”, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - María A. Jiménez-Sousa
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda- Pozuelo, Km 2.2, 28220 Majadahonda Madrid, Spain
| | - Vicente Soriano
- Unidad de Enfermedades Infecciosas, Hospital Universitario La Paz, Madrid, Spain
| | - Teresa Aldámiz-Echevarria
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario “Gregorio Marañón”, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda- Pozuelo, Km 2.2, 28220 Majadahonda Madrid, Spain
| | - Marcial García
- Instituto de Investigación Sanitaria de La Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Francisco Tejerina
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario “Gregorio Marañón”, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Isidoro Martínez
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda- Pozuelo, Km 2.2, 28220 Majadahonda Madrid, Spain
| | - José M. Benito
- Instituto de Investigación Sanitaria de La Fundación Jiménez Díaz (IIS-FJD), Universidad Autónoma de Madrid, Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Salvador Resino
- Unidad de Infección Viral e Inmunidad, Centro Nacional de Microbiología, Instituto de Salud Carlos III (Campus Majadahonda), Carretera Majadahonda- Pozuelo, Km 2.2, 28220 Majadahonda Madrid, Spain
| |
Collapse
|
725
|
Sauter KA, Waddell LA, Lisowski ZM, Young R, Lefevre L, Davis GM, Clohisey SM, McCulloch M, Magowan E, Mabbott NA, Summers KM, Hume DA. Macrophage colony-stimulating factor (CSF1) controls monocyte production and maturation and the steady-state size of the liver in pigs. Am J Physiol Gastrointest Liver Physiol 2016; 311:G533-47. [PMID: 27445344 PMCID: PMC5076001 DOI: 10.1152/ajpgi.00116.2016] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/17/2016] [Indexed: 01/31/2023]
Abstract
Macrophage colony-stimulating factor (CSF1) is an essential growth and differentiation factor for cells of the macrophage lineage. To explore the role of CSF1 in steady-state control of monocyte production and differentiation and tissue repair, we previously developed a bioactive protein with a longer half-life in circulation by fusing pig CSF1 with the Fc region of pig IgG1a. CSF1-Fc administration to pigs expanded progenitor pools in the marrow and selectively increased monocyte numbers and their expression of the maturation marker CD163. There was a rapid increase in the size of the liver, and extensive proliferation of hepatocytes associated with increased macrophage infiltration. Despite the large influx of macrophages, there was no evidence of liver injury and no increase in circulating liver enzymes. Microarray expression profiling of livers identified increased expression of macrophage markers, i.e., cytokines such as TNF, IL1, and IL6 known to influence hepatocyte proliferation, alongside cell cycle genes. The analysis also revealed selective enrichment of genes associated with portal, as opposed to centrilobular regions, as seen in hepatic regeneration. Combined with earlier data from the mouse, this study supports the existence of a CSF1-dependent feedback loop, linking macrophages of the liver with bone marrow and blood monocytes, to mediate homeostatic control of the size of the liver. The results also provide evidence of safety and efficacy for possible clinical applications of CSF1-Fc.
Collapse
Affiliation(s)
- Kristin A. Sauter
- 1The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom; and
| | - Lindsey A. Waddell
- 1The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom; and
| | - Zofia M. Lisowski
- 1The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom; and
| | - Rachel Young
- 1The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom; and
| | - Lucas Lefevre
- 1The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom; and
| | - Gemma M. Davis
- 1The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom; and
| | - Sara M. Clohisey
- 1The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom; and
| | - Mary McCulloch
- 1The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom; and
| | - Elizabeth Magowan
- 2Agri-Food and Biosciences Institute, Large Park, Hillsborough, Northern Ireland, United Kingdom
| | - Neil A. Mabbott
- 1The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom; and
| | - Kim M. Summers
- 1The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom; and
| | - David A. Hume
- 1The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Scotland, United Kingdom; and
| |
Collapse
|
726
|
Fine JH, Bondy GS, Coady L, Pearce B, Ross N, Tayabali AF, Halappanavar S, Caldwell D, Curran I, Lefebvre DE. Immunomodulation by gastrointestinal carbon black nanoparticle exposure in ovalbumin T cell receptor transgenic mice. Nanotoxicology 2016; 10:1422-1430. [PMID: 27534448 DOI: 10.1080/17435390.2016.1225131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Humans could become exposed to carbon black nanoparticles (CBNPs) in consumer products or an occupational setting. In rodent models, acute respiratory, subcutaneous, and direct immune cell exposure to CBNPs has been shown to enhance allergic sensitization to co-administered ovalbumin (OVA) protein from chicken egg. However, little is known about the effects of ingested CBNPs on immunological responses and oral tolerance to food antigens. We hypothesized that ingestion of CBNPs would enhance the development of food allergy to OVA. Allergy prone DO11.10 mice were orally exposed to CBNPs every second day for 2 weeks (total dose 10.8 (LOW) or 108 μg (HI)), with and without (±) co-administered OVA. Systemic immune parameters were measured at necropsy. Exposure to OVA resulted in significant increases in serum anti-OVA IgG1, anti-OVA IgM, and anti-OVA IgA antibodies relative to vehicle control. Immunophenotyping revealed a reduction in the number of OVA-specific CD4+ T helper cells upon OVA ± CBNPHI treatment in the spleen. Yet, secretion of the allergy-associated Th2 cytokines IL-4, IL-9, and IL-13 was greater in OVA323-339 peptide-pulsed splenocytes from OVA + CBNPHI-treated mice compared with control. Transcriptome analysis at necropsy of splenocytes from OVA + CBNPHI dose mice compared with OVA mice revealed increases in the allergy associated genes Il4 and Stat6 and decreases in Csf3r and Retnlg. Although oral exposure to high-dose CBNPs did not impact OVA-specific antibody production relative to OVA, we did observe increased expression of genes and cytokines associated with allergy in peripheral splenocytes. This work suggests that CBNP gastrointestinal exposure may potentiate allergy pathways.
Collapse
Affiliation(s)
- Jason H Fine
- a Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada , Ottawa , ON , Canada and
| | - Genevieve S Bondy
- a Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada , Ottawa , ON , Canada and
| | - Laurie Coady
- a Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada , Ottawa , ON , Canada and
| | - Bevan Pearce
- a Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada , Ottawa , ON , Canada and
| | - Nikia Ross
- a Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada , Ottawa , ON , Canada and
| | - Azam F Tayabali
- b Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Health Environments and Consumer Safety Branch, Health Canada , Ottawa , ON , Canada
| | - Sabina Halappanavar
- b Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Health Environments and Consumer Safety Branch, Health Canada , Ottawa , ON , Canada
| | - Don Caldwell
- a Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada , Ottawa , ON , Canada and
| | - Ivan Curran
- a Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada , Ottawa , ON , Canada and
| | - David E Lefebvre
- a Regulatory Toxicology Research Division, Bureau of Chemical Safety, Food Directorate, Health Products and Food Branch, Health Canada , Ottawa , ON , Canada and
| |
Collapse
|
727
|
Enrichment of risk SNPs in regulatory regions implicate diverse tissues in Parkinson's disease etiology. Sci Rep 2016; 6:30509. [PMID: 27461410 PMCID: PMC4962314 DOI: 10.1038/srep30509] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/04/2016] [Indexed: 12/15/2022] Open
Abstract
Recent genome-wide association studies (GWAS) of Parkinson’s disease (PD) revealed at least 26 risk loci, with associated single nucleotide polymorphisms (SNPs) located in non-coding DNA having unknown functions in risk. In order to explore in which cell types these SNPs (and their correlated surrogates at r2 ≥ 0.8) could alter cellular function, we assessed their location overlap with histone modification regions that indicate transcription regulation in 77 diverse cell types. We found statistically significant enrichment of risk SNPs at 12 loci in active enhancers or promoters. We investigated 4 risk loci in depth that were most significantly enriched (−logeP > 14) and contained 8 putative enhancers in the different cell types. These enriched loci, along with eQTL associations, were unexpectedly present in non-neuronal cell types. These included lymphocytes, mesendoderm, liver- and fat-cells, indicating that cell types outside the brain are involved in the genetic predisposition to PD. Annotating regulatory risk regions within specific cell types may unravel new putative risk mechanisms and molecular pathways that contribute to PD development.
Collapse
|
728
|
Reid DT, Reyes JL, McDonald BA, Vo T, Reimer RA, Eksteen B. Kupffer Cells Undergo Fundamental Changes during the Development of Experimental NASH and Are Critical in Initiating Liver Damage and Inflammation. PLoS One 2016; 11:e0159524. [PMID: 27454866 PMCID: PMC4959686 DOI: 10.1371/journal.pone.0159524] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/04/2016] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease has become the leading liver disease in North America and is associated with the progressive inflammatory liver disease non-alcoholic steatohepatitis (NASH). Considerable effort has been made to understand the role of resident and recruited macrophage populations in NASH however numerous questions remain. Our goal was to characterize the dynamic changes in liver macrophages during the initiation of NASH in a murine model. Using the methionine-choline deficient diet we found that liver-resident macrophages, Kupffer cells were lost early in disease onset followed by a robust infiltration of Ly-6C+ monocyte-derived macrophages that retained a dynamic phenotype. Genetic profiling revealed distinct patterns of inflammatory gene expression between macrophage subsets. Only early depletion of liver macrophages using liposomal clodronate prevented the development of NASH in mice suggesting that Kupffer cells are critical for the orchestration of inflammation during experimental NASH. Increased understanding of these dynamics may allow us to target potentially harmful populations whilst promoting anti-inflammatory or restorative populations to ultimately guide the development of effective treatment strategies.
Collapse
Affiliation(s)
- D. T. Reid
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - J. L. Reyes
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Laboratorio de Inmunología Experimental y Regulación de la Inflamación Hepato-intestinal, UBIMED, FES Iztacala, UNAM, Mexico
| | - B. A. McDonald
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - T. Vo
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - R. A. Reimer
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - B. Eksteen
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
729
|
CXCL10-Mediates Macrophage, but not Other Innate Immune Cells-Associated Inflammation in Murine Nonalcoholic Steatohepatitis. Sci Rep 2016; 6:28786. [PMID: 27349927 PMCID: PMC4923862 DOI: 10.1038/srep28786] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/10/2016] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is an inflammatory lipotoxic disorder, but how inflammatory cells are recruited and activated within the liver is still unclear. We previously reported that lipotoxic hepatocytes release CXCL10-enriched extracellular vesicles, which are potently chemotactic for cells of the innate immune system. In the present study, we sought to determine the innate immune cell involved in the inflammatory response in murine NASH and the extent to which inhibition of the chemotactic ligand CXCL10 and its cognate receptor CXCR3 could attenuate liver inflammation, injury and fibrosis. C57BL/6J CXCL10−/−, CXCR3−/− and wild type (WT) mice were fed chow or high saturated fat, fructose, and cholesterol (FFC) diet. FFC-fed CXCL10−/− and WT mice displayed similar weight gain, metabolic profile, insulin resistance, and hepatic steatosis. In contrast, compared to the WT mice, FFC-fed CXCL10−/− mice had significantly attenuated liver inflammation, injury and fibrosis. Genetic deletion of CXCL10 reduced FFC-induced proinflammatory hepatic macrophage infiltration, while natural killer cells, natural killer T cells, neutrophils and dendritic cells hepatic infiltration were not significantly affected. Our results suggest that CXCL10−/− mice are protected against diet-induced NASH, in an obesity-independent manner. Macrophage-associated inflammation appears to be the key player in the CXCL10-mediated sterile inflammatory response in murine NASH.
Collapse
|
730
|
Kjaergaard AD, Johansen JS, Bojesen SE, Nordestgaard BG. Role of inflammatory marker YKL-40 in the diagnosis, prognosis and cause of cardiovascular and liver diseases. Crit Rev Clin Lab Sci 2016; 53:396-408. [PMID: 27187575 DOI: 10.1080/10408363.2016.1190683] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes present evidence for the role of YKL-40 in the diagnosis, prognosis and cause of cardiovascular and alcoholic liver disease. The question of whether YKL-40 is merely a marker or a causal factor in the development of cardiovascular and liver disease is addressed, with emphasis on the Mendelian randomization design. The Mendelian randomization approach uses genetic variants associated with lifelong high plasma YKL-40 levels that are largely unconfounded and not prone to reverse causation. Thus, the approach mimics a controlled double-blind randomized trial, but it uses genetic variants rather than a drug and placebo, and like a blinded trial, it allows inference about causality. Moreover, the review also covers background on the molecular biology and functions of YKL-40, YKL-40 levels in healthy individuals and reference range, and the role of YKL-40 as a biomarker of cardiovascular and alcoholic liver disease. YKL-40 is a plasma protein named after its three N-terminal amino acids, Y (tyrosine), K (lysine) and L (leucine), and its molecular weight of 40 kDa. It is produced by local inflammatory cells in inflamed tissues, such as lipid-laden macrophages inside the vessel wall and perhaps also hepatic stellate cells. Observational studies show that plasma YKL-40 levels are elevated in patients with cardiovascular and liver disease and are associated with disease severity and prognosis. Furthermore, elevated plasma YKL-40 levels in apparently healthy individuals are associated with a 2-fold increased risk of future ischemic stroke and venous thromboembolism, but not with myocardial infarction, suggesting that YKL-40 could play a role in the formation of embolisms rather than atherosclerosis per se. Further, elevated YKL-40 levels combined with excessive alcohol consumption are associated with 10-years risk of alcoholic liver cirrhosis of up to 7%, suggesting that YKL-40 can be used as a strong noninvasive marker of predicting alcoholic liver cirrhosis. Importantly, in Mendelian randomization studies, genetically elevated plasma YKL-40 levels were not associated with risk of cardiovascular and alcoholic liver disease, thus suggesting that plasma YKL-40 does not play a causal role in the development of these diseases. Despite this, plasma YKL-40 levels may play a role in disease progression after diagnosis, and inhibition of YKL-40 activity might be a novel therapy in some cardiovascular and liver diseases.
Collapse
Affiliation(s)
- A D Kjaergaard
- a Department of Clinical Biochemistry , Aarhus University Hospital , Aarhus , Denmark
| | - J S Johansen
- b Department of Medicine and Oncology , Herlev and Gentofte Hospital, Copenhagen University Hospital, University of Copenhagen , Copenhagen , Denmark .,c Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark
| | - S E Bojesen
- c Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark .,d Department of Clinical Biochemistry , Herlev and Gentofte Hospital, Copenhagen University Hospital , Herlev , Copenhagen , Denmark .,e The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, University of Copenhagen , Denmark , and.,f The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen , Denmark
| | - B G Nordestgaard
- c Faculty of Health and Medical Sciences , University of Copenhagen , Copenhagen , Denmark .,d Department of Clinical Biochemistry , Herlev and Gentofte Hospital, Copenhagen University Hospital , Herlev , Copenhagen , Denmark .,e The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, University of Copenhagen , Denmark , and.,f The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen University Hospital, University of Copenhagen, Copenhagen , Denmark
| |
Collapse
|
731
|
Quantitative proteomics analysis of the liver reveals immune regulation and lipid metabolism dysregulation in a mouse model of depression. Behav Brain Res 2016; 311:330-339. [PMID: 27247144 DOI: 10.1016/j.bbr.2016.05.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 11/20/2022]
Abstract
Major depressive disorder (MDD) is a highly prevalent and debilitating mental illness with substantial impairments in quality of life and functioning. However, the pathophysiology of major depression remains poorly understood. Combining the brain and body should provide a comprehensive understanding of the etiology of MDD. As the largest internal organ of the human body, the liver has an important function, yet no proteomic study has assessed liver protein expression in a preclinical model of depression. Using the chronic unpredictable mild stress (CUMS) mouse model of depression, differential protein expression between CUMS and control (CON) mice was examined in the liver proteome using isobaric tag for relative and absolute quantitation (iTRAQ) coupled with tandem mass spectrometry. More than 4000 proteins were identified and 66 most significantly differentiated proteins were used for further bioinformatic analysis. According to the ingenuity pathway analysis (IPA), we found that proteins related to the inflammation response, immune regulation, lipid metabolism and NFκB signaling network were altered by CUMS. Moreover, four proteins closely associated with these processes, hemopexin, haptoglobin, cytochrome P450 2A4 (CYP2A4) and bile salt sulfotransferase 1 (SULT2A1), were validated by western blotting. In conclusion, we report, for the first time, the liver protein expression profile in the CUMS mouse model of depression. Our findings provide novel insight (liver-brain axis) into the multifaceted mechanisms of major depressive disorder.
Collapse
|
732
|
Hofmann M, Thimme R. iNKT cells in chronic HBV: a balancing act. Hepatol Int 2016; 10:535-7. [DOI: 10.1007/s12072-016-9739-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/08/2016] [Indexed: 12/23/2022]
|
733
|
Schattenberg JM, Lee MS. Extracellular Vesicles as Messengers Between Hepatocytes and Macrophages in Nonalcoholic Steatohepatitis. Gastroenterology 2016; 150:815-8. [PMID: 26924096 DOI: 10.1053/j.gastro.2016.02.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
| | - Myung-Shik Lee
- Severance Biomedical Science Institute and Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|