701
|
Mitochondrial DNA disturbances and deregulated expression of oxidative phosphorylation and mitochondrial fusion proteins in sporadic inclusion body myositis. Clin Sci (Lond) 2016; 130:1741-51. [PMID: 27413019 DOI: 10.1042/cs20160080] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/13/2016] [Indexed: 12/11/2022]
Abstract
Sporadic inclusion body myositis (sIBM) is one of the most common myopathies in elderly people. Mitochondrial abnormalities at the histological level are present in these patients. We hypothesize that mitochondrial dysfunction may play a role in disease aetiology. We took the following measurements of muscle and peripheral blood mononuclear cells (PBMCs) from 30 sIBM patients and 38 age- and gender-paired controls: mitochondrial DNA (mtDNA) deletions, amount of mtDNA and mtRNA, mitochondrial protein synthesis, mitochondrial respiratory chain (MRC) complex I and IV enzymatic activity, mitochondrial mass, oxidative stress and mitochondrial dynamics (mitofusin 2 and optic atrophy 1 levels). Depletion of mtDNA was present in muscle from sIBM patients and PBMCs showed deregulated expression of mitochondrial proteins in oxidative phosphorylation. MRC complex IV/citrate synthase activity was significantly decreased in both tissues and mitochondrial dynamics were affected in muscle. Depletion of mtDNA was significantly more severe in patients with mtDNA deletions, which also presented deregulation of mitochondrial fusion proteins. Imbalance in mitochondrial dynamics in muscle was associated with increased mitochondrial genetic disturbances (both depletion and deletions), demonstrating that proper mitochondrial turnover is essential for mitochondrial homoeostasis and muscle function in these patients.
Collapse
|
702
|
Zheng L, Xu Y, Lu J, Liu M, Bin Dai, Miao J, Yin Y. Variant innate immune responses of mammary epithelial cells to challenge by Staphylococcus aureus, Escherichia coli and the regulating effect of taurine on these bioprocesses. Free Radic Biol Med 2016; 96:166-80. [PMID: 27107770 DOI: 10.1016/j.freeradbiomed.2016.04.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 03/30/2016] [Accepted: 04/17/2016] [Indexed: 12/31/2022]
Abstract
Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) are important pathogens causing subclinical and clinical bovine mastitis, respectively. Taurine, an organic acid found in animal tissues, has been used for the treatment of various superficial infections and chronic inflammations. We challenged a bovine mammary epithelial cell (MEC) line (MAC-T) or a mouse mammary epithelial cell line (EpH4-Ev) with either E. coli or S. aureus and compared the responses of MECs to these 2 pathogens. We also examined the regulatory effects of taurine on these responses. Receptor analyses showed that both TLR2 and TLR4 are upregulated upon exposure to either E. coli or S. aureus. Taurine pre-treatment dampened upregulation to some extent. E. coli and S. aureus stimulated comparable levels of ROS, which could be inhibited by taurine pre-treatment. E. coli infection elicited a dramatic change in iNOS expression. Taurine significantly decreased iNOS expression in the S. aureus challenged group. Protein microarray demonstrated that 32/40 and 8/40 inflammatory molecules/mediators were increased after E. coli or S. aureus challenge, respectively. The fold changes of most molecules were higher in the E. coli infection group than that in the S. aureus infection group. Taurine negatively regulated the inflammatory profile in both bacterial infections. Pro-inflammatory cytokines (such as TNF-α) connected with TLR activation were down-regulated by taurine pre-treatment. The influence of TAK-242 and OxPAPC on cytokine/molecule expression profiles to E. coli challenge are different than to S. aureus. Some important factors (MyD88, TNF-α, IL-1β, iNOS and IL-6) mediated by TLR activation were suppressed either in protein microarray or special assay (PCR/kits) or both. TAK-242 restrained ROS production and NAGase activity similar to the effect of taurine in E. coli challenge groups. The detection of 3 indices (T-AOC, SOD and MDA) reflecting oxidative stress in vivo, showed that taurine improved the antioxidant ability of cells. We conclude that taurine can regulate the inflammatory response during infection with E. coli and prevent cell damage by affecting the signaling pathways mediated by TLRs and by improving the antioxidant ability of cells. In S. aureus infections, taurine's antioxidant ability may be the primary means of resistance to inflammation. This study provides a better understanding of the inflammatory mechanisms of E. coli and S. aureus mastitis, and it provides a putative strategy for the prevention of this disease.
Collapse
Affiliation(s)
- Liuhai Zheng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinye Lu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Ming Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Dai
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinfeng Miao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yulong Yin
- Chinese Academy of Science, Institute of Subtropical Agriculture, Research Center for Healthy Breeding Livestock & Poultry, Hunan Engineering & Research Center for Animal & Poultry Science, Key Laboratory of Agroecology in Subtropical Region, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central China, Ministry of Agriculture, Changsha 410125, China
| |
Collapse
|
703
|
Zhong J, Xu C, Gabbay-Benziv R, Lin X, Yang P. Superoxide dismutase 2 overexpression alleviates maternal diabetes-induced neural tube defects, restores mitochondrial function and suppresses cellular stress in diabetic embryopathy. Free Radic Biol Med 2016; 96:234-44. [PMID: 27130031 PMCID: PMC4912469 DOI: 10.1016/j.freeradbiomed.2016.04.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/21/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
Abstract
Pregestational diabetes disrupts neurulation leading to neural tube defects (NTDs). Oxidative stress resulting from reactive oxygen species (ROS) plays a central role in the induction of NTD formation in diabetic pregnancies. We aimed to determine whether mitochondrial dysfunction increases ROS production leading to oxidative stress and diabetic embryopathy. Overexpression of the mitochondrion-specific antioxidant enzyme superoxide dismutase 2 (SOD2) in a transgenic (Tg) mouse model significantly reduced maternal diabetes-induced NTDs. SOD2 overexpression abrogated maternal diabetes-induced mitochondrial dysfunction by inhibiting mitochondrial translocation of the pro-apoptotic Bcl-2 family members, reducing the number of defective mitochondria in neuroepithelial cells, and decreasing mitochondrial membrane potential. Furthermore, SOD2 overexpression blocked maternal diabetes-increased ROS production by diminishing dihydroethidium staining signals in the developing neuroepithelium, and reducing the levels of nitrotyrosine-modified proteins and lipid hydroperoxide level in neurulation stage embryos. SOD2 overexpression also abolished maternal diabetes-induced endoplasmic reticulum stress. Finally, caspase-dependent neuroepithelial cell apoptosis enhanced by oxidative stress was significantly reduced by SOD2 overexpression. Thus, our findings support the hypothesis that mitochondrial dysfunction in the developing neuroepithelium enhances ROS production, which leads to oxidative stress and endoplasmic reticulum (ER) stress. SOD2 overexpression blocks maternal diabetes-induced oxidative stress and ER stress, and reduces the incidence of NTDs in embryos exposed to maternal diabetes.
Collapse
Affiliation(s)
- Jianxiang Zhong
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Cheng Xu
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Rinat Gabbay-Benziv
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Xue Lin
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, United States; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, United States.
| |
Collapse
|
704
|
Khan M, Syed GH, Kim SJ, Siddiqui A. Hepatitis B Virus-Induced Parkin-Dependent Recruitment of Linear Ubiquitin Assembly Complex (LUBAC) to Mitochondria and Attenuation of Innate Immunity. PLoS Pathog 2016; 12:e1005693. [PMID: 27348524 PMCID: PMC4922663 DOI: 10.1371/journal.ppat.1005693] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/19/2016] [Indexed: 12/18/2022] Open
Abstract
Hepatitis B virus (HBV) suppresses innate immune signaling to establish persistent infection. Although HBV is a DNA virus, its pre-genomic RNA (pgRNA) can be sensed by RIG-I and activates MAVS to mediate interferon (IFN) λ synthesis. Despite of the activation of RIG-I-MAVS axis by pgRNA, the underlying mechanism explaining how HBV infection fails to induce interferon-αβ (IFN) synthesis remained uncharacterized. We demonstrate that HBV induced parkin is able to recruit the linear ubiquitin assembly complex (LUBAC) to mitochondria and abrogates IFN β synthesis. Parkin interacts with MAVS, accumulates unanchored linear polyubiquitin chains on MAVS via LUBAC, to disrupt MAVS signalosome and attenuate IRF3 activation. This study highlights the novel role of parkin in antiviral signaling which involves LUBAC being recruited to the mitochondria. These results provide avenues of investigations on the role of mitochondrial dynamics in innate immunity. Hepatitis B virus (HBV) chronic infection is one of the major causes of hepatocellular carcinoma. HBV infection is associated with mitochondrial dysfunction. We previously showed that persistent infection of HBV requires rapid clearance of impaired mitochondria by mitophagy, a cellular quality control process that insures survival of HBV infected cells. During the process, Parkin, an RBR E3 ligase, is recruited to mitochondria to induce mitophagy. In this study, we show that the Parkin, plays a critical role in the modulation of innate immune signaling. Using HBV expressing cells, we show that the Parkin recruits linear ubiquitin assembly complex (LUBAC) to the mitochondria and subsequently inhibits downstream signaling of mitochondrial antiviral signaling protein (MAVS). Mitochondrial LUBAC then catalyzes linear ubiquitin chains on MAVS, which abrogates its downstream events such as MAVS-TRAFs interaction and abolishes IRF3 phosphorylation. The results of this study highlight the molecular details explaining how HBV can suppress interferon synthesis implicating a mitophagy-independent role of Parkin. HBV-induced mitochondrial damage serves as the platform for recruitment of Parkin and LUBAC, which together modify MAVS by ubiquitination and cripples its downstream signaling.
Collapse
Affiliation(s)
- Mohsin Khan
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Gulam Hussain Syed
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Seong-Jun Kim
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Aleem Siddiqui
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
705
|
Mitochondrial respiratory-chain adaptations in macrophages contribute to antibacterial host defense. Nat Immunol 2016; 17:1037-1045. [PMID: 27348412 DOI: 10.1038/ni.3509] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/03/2016] [Indexed: 12/15/2022]
Abstract
Macrophages tightly scale their core metabolism after being activated, but the precise regulation of the mitochondrial electron-transport chain (ETC) and its functional implications are currently unknown. Here we found that recognition of live bacteria by macrophages transiently decreased assembly of the ETC complex I (CI) and CI-containing super-complexes and switched the relative contributions of CI and CII to mitochondrial respiration. This was mediated by phagosomal NADPH oxidase and the reactive oxygen species (ROS)-dependent tyrosine kinase Fgr. It required Toll-like receptor signaling and the NLRP3 inflammasome, which were both connected to bacterial viability-specific immune responses. Inhibition of CII during infection with Escherichia coli normalized serum concentrations of interleukin 1β (IL-1β) and IL-10 to those in mice treated with dead bacteria and impaired control of bacteria. We have thus identified ETC adaptations as an early immunological-metabolic checkpoint that adjusts innate immune responses to bacterial infection.
Collapse
|
706
|
Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Nsp4 Cleaves VISA to Impair Antiviral Responses Mediated by RIG-I-like Receptors. Sci Rep 2016; 6:28497. [PMID: 27329948 PMCID: PMC4916416 DOI: 10.1038/srep28497] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/02/2016] [Indexed: 11/08/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most significant etiological agents in the swine industry worldwide. It has been reported that PRRSV infection can modulate host immune responses, and innate immune evasion is thought to play a vital role in PRRSV pathogenesis. In this study, we demonstrated that highly pathogenic PRRSV (HP-PRRSV) infection specifically down-regulated virus-induced signaling adaptor (VISA), a unique adaptor molecule that is essential for retinoic acid induced gene-I (RIG-I) and melanoma differentiation associated gene 5 (MDA5) signal transduction. Moreover, we verified that nsp4 inhibited IRF3 activation induced by signaling molecules, including RIG-I, MDA5, VISA, and TBK1, but not IRF3. Subsequently, we demonstrated that HP-PRRSV nsp4 down-regulated VISA and suppressed type I IFN induction. Importantly, VISA was cleaved by nsp4 and released from mitochondrial membrane, which interrupted the downstream signaling of VISA. However, catalytically inactive mutant of nsp4 abolished its ability to cleave VISA. Interestingly, nsp4 of typical PRRSV strain CH-1a had no effect on VISA. Taken together, these findings reveal a strategy evolved by HP-PRRSV to counteract anti-viral innate immune signaling, which complements the known PRRSV-mediated immune-evasion mechanisms.
Collapse
|
707
|
Napoli E, Song G, Schneider A, Hagerman R, Eldeeb MAAA, Azarang A, Tassone F, Giulivi C. Warburg effect linked to cognitive-executive deficits in FMR1 premutation. FASEB J 2016; 30:3334-3351. [PMID: 27335370 DOI: 10.1096/fj.201600315r] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/14/2016] [Indexed: 11/11/2022]
Abstract
A 55-200 CGG repeat expansion in the 5'-UTR of the fragile X mental retardation 1 (FMR1) gene is known as a premutation. Some carriers are affected by the neurodegenerative disorder fragile X-associated tremor/ataxia syndrome (FXTAS), primary ovarian insufficiency, and neurobehavioral impairments. Based on the mitochondrial dysfunction observed in fibroblasts and brain samples from carriers, as well as in neurons and brains from a mouse model of the premutation, we evaluated the presence of the Warburg effect in peripheral blood mononuclear cells (PBMCs) from 30 premutation carriers with either a rebalance of the metabolism [increasing glycolysis while decreasing oxidative phosphorylation (oxphos)] or a metabolic amplification (increasing glycolysis while maintaining/increasing oxphos). Deficits in oxphos-more pronounced in FXTAS-affected subjects-were accompanied by a shift toward glycolysis, suggesting increased glycolysis despite aerobic conditions. Differential proteomics extended these findings, unveiling a decreased antioxidant response, translation, and disrupted extracellular matrix and cytoskeleton organization with activation of prosenescence pathways. Lower bioenergetics segregated with increased incidence of low executive function, tremors, below-average IQ, and FXTAS. The combination of functional and proteomic data unveiled new mechanisms related to energy production in the premutation, showing the potential of being applicable to other psychiatric disorders to identify endophenotype-specific responses relevant to neurobiology.-Napoli, E., Song, G., Schneider, A., Hagerman, R., Eldeeb, M. A. A. A., Azarang, A., Tassone, F., Giulivi, C. Warburg effect linked to cognitive-executive deficits in FMR1 premutation.
Collapse
Affiliation(s)
- Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Gyu Song
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Andrea Schneider
- Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Davis, California, USA; Department of Pediatrics, University of California Davis Medical Center, Sacramento California, USA; and
| | - Randi Hagerman
- Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Davis, California, USA; Department of Pediatrics, University of California Davis Medical Center, Sacramento California, USA; and
| | - Marwa Abd Al Azaim Eldeeb
- Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Davis, California, USA
| | - Atoosa Azarang
- Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Davis, California, USA
| | - Flora Tassone
- Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, Davis, California, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, Davis, California, USA
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA; Department of Pediatrics, University of California Davis Medical Center, Sacramento California, USA; and
| |
Collapse
|
708
|
Yang Y, Karakhanova S, Hartwig W, D'Haese JG, Philippov PP, Werner J, Bazhin AV. Mitochondria and Mitochondrial ROS in Cancer: Novel Targets for Anticancer Therapy. J Cell Physiol 2016; 231:2570-81. [PMID: 26895995 DOI: 10.1002/jcp.25349] [Citation(s) in RCA: 394] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 02/16/2016] [Indexed: 12/11/2022]
Abstract
Mitochondria are indispensable for energy metabolism, apoptosis regulation, and cell signaling. Mitochondria in malignant cells differ structurally and functionally from those in normal cells and participate actively in metabolic reprogramming. Mitochondria in cancer cells are characterized by reactive oxygen species (ROS) overproduction, which promotes cancer development by inducing genomic instability, modifying gene expression, and participating in signaling pathways. Mitochondrial and nuclear DNA mutations caused by oxidative damage that impair the oxidative phosphorylation process will result in further mitochondrial ROS production, completing the "vicious cycle" between mitochondria, ROS, genomic instability, and cancer development. The multiple essential roles of mitochondria have been utilized for designing novel mitochondria-targeted anticancer agents. Selective drug delivery to mitochondria helps to increase specificity and reduce toxicity of these agents. In order to reduce mitochondrial ROS production, mitochondria-targeted antioxidants can specifically accumulate in mitochondria by affiliating to a lipophilic penetrating cation and prevent mitochondria from oxidative damage. In consistence with the oncogenic role of ROS, mitochondria-targeted antioxidants are found to be effective in cancer prevention and anticancer therapy. A better understanding of the role played by mitochondria in cancer development will help to reveal more therapeutic targets, and will help to increase the activity and selectivity of mitochondria-targeted anticancer drugs. In this review we summarized the impact of mitochondria on cancer and gave summary about the possibilities to target mitochondria for anticancer therapies. J. Cell. Physiol. 231: 2570-2581, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuhui Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of General Surgery, University of Heidelberg, Heidelberg, Germany
| | | | - Werner Hartwig
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Jan G D'Haese
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Pavel P Philippov
- Department of Cell Signalling, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| | - Jens Werner
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| | - Alexandr V Bazhin
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
709
|
Cardoso TC, Rosa ACG, Ferreira HL, Okamura LH, Oliveira BRSM, Vieira FV, Silva-Frade C, Gameiro R, Flores EF. Bovine herpesviruses induce different cell death forms in neuronal and glial-derived tumor cell cultures. J Neurovirol 2016; 22:725-735. [PMID: 27311457 DOI: 10.1007/s13365-016-0444-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 03/29/2016] [Accepted: 04/04/2016] [Indexed: 12/14/2022]
Abstract
Oncolytic viruses have the ability to infect tumor cells and leave healthy cells intact. In this study, bovine herpesvirus 1 (BHV1; Los Angeles, Cooper, and SV56/90 strains) and bovine herpesvirus 5 (BHV5; SV507/99 and GU9457818 strains) were used to infect two neuronal tumor cell lineages: neuro2a (mouse neuroblastoma cells) and C6 (rat glial cells). BHV1 and BHV5 strains infected both cell lines and positively correlated with viral antigen detection (p < 0.005). When neuro2a cells were infected by Los Angeles, SV507/99, and GU9457818 strains, 40 % of infected cells were under early apoptosis and necroptosis pathways. Infected C6 cells were >40 % in necroptosis phase when infected by BHV5 (GU9457818 strain). Blocking caspase activation did not interfere with cell death. However, when necroptosis was blocked, 60-80 % of both infected cells with either virus switched to early apoptosis pathway with no interference with virus replication. Moreover, reactive oxygen species production and mitochondrial membrane dysfunction were detected at high levels in both infected cell lines. In spite of apoptosis and necroptosis blockage, tumor necrosis factor alpha (TNFA) and virus transcription were positively correlated for all viral strains studied. Thus, these results contribute to the characterization of BHV1 and BHV5 as potential oncolytic viruses for non-human cells. Nonetheless, the mechanisms underlying their oncolytic activity in human cells are still to be determined.
Collapse
Affiliation(s)
- Tereza C Cardoso
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil.
| | - Ana Carolina G Rosa
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil
| | - Helena L Ferreira
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil
- FZEA-USP, Departamento de Medicina Veterinária, Av. Duque de Caxias Norte, 225, Pirassununga, SP, CEP 13635-900, Brazil
| | - Lucas H Okamura
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil
| | - Bruna R S M Oliveira
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil
| | - Flavia V Vieira
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil
| | - Camila Silva-Frade
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil
| | - Roberto Gameiro
- DAPSA Department, Laboratory of Animal Virology and Cell Culture, College of Veterinary Medicine, Universidade Estadual Paulista, Araçatuba, São Paulo, 16050-680, Brazil
| | - Eduardo F Flores
- Virology Section, Federal University of Santa Maria, Santa Maria, 97115-900, RS, Brazil
| |
Collapse
|
710
|
Ertl NG, O’Connor WA, Papanicolaou A, Wiegand AN, Elizur A. Transcriptome Analysis of the Sydney Rock Oyster, Saccostrea glomerata: Insights into Molluscan Immunity. PLoS One 2016; 11:e0156649. [PMID: 27258386 PMCID: PMC4892480 DOI: 10.1371/journal.pone.0156649] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Oysters have important ecological functions in their natural environment, acting as global carbon sinks and improving water quality by removing excess nutrients from the water column. During their life-time oysters are exposed to a variety of pathogens that can cause severe mortality in a range of oyster species. Environmental stressors encountered in their habitat can increase the susceptibility of oysters to these pathogens and in general have been shown to impact on oyster immunity, making immune parameters expressed in these marine animals an important research topic. RESULTS Paired-end Illumina high throughput sequencing of six S. glomerata tissues exposed to different environmental stressors resulted in a total of 484,121,702 paired-end reads. When reads and assembled transcripts were compared to the C. gigas genome, an overall low level of similarity at the nucleotide level, but a relatively high similarity at the protein level was observed. Examination of the tissue expression pattern showed that some transcripts coding for cathepsins, heat shock proteins and antioxidant proteins were exclusively expressed in the haemolymph of S. glomerata, suggesting a role in innate immunity. Furthermore, analysis of the S. glomerata ORFs showed a wide range of genes potentially involved in innate immunity, from pattern recognition receptors, components of the Toll-like signalling and apoptosis pathways to a complex antioxidant defence mechanism. CONCLUSIONS This is the first large scale RNA-Seq study carried out in S. glomerata, showing the complex network of innate immune components that exist in this species. The results confirmed that many of the innate immune system components observed in mammals are also conserved in oysters; however, some, such as the TLR adaptors MAL, TRIF and TRAM are either missing or have been modified significantly. The components identified in this study could help explain the oysters' natural resilience against pathogenic microorganisms encountered in their natural environment.
Collapse
Affiliation(s)
- Nicole G. Ertl
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Australian Seafood Cooperative Research Centre, Bedford Park, South Australia, Australia
| | - Wayne A. O’Connor
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Primary Industries, Taylors Beach, New South Wales, Australia
| | - Alexie Papanicolaou
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Ecosystem Sciences, Black Mountain Laboratories, Canberra, Australian Capital Territory, Australia
| | - Aaron N. Wiegand
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Abigail Elizur
- University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- * E-mail:
| |
Collapse
|
711
|
Wen R, Umeano AC, Francis L, Sharma N, Tundup S, Dhar S. Mitochondrion: A Promising Target for Nanoparticle-Based Vaccine Delivery Systems. Vaccines (Basel) 2016; 4:E18. [PMID: 27258316 PMCID: PMC4931635 DOI: 10.3390/vaccines4020018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/31/2016] [Accepted: 04/08/2016] [Indexed: 02/07/2023] Open
Abstract
Vaccination is one of the most popular technologies in disease prevention and eradication. It is promising to improve immunization efficiency by using vectors and/or adjuvant delivery systems. Nanoparticle (NP)-based delivery systems have attracted increasing interest due to enhancement of antigen uptake via prevention of vaccine degradation in the biological environment and the intrinsic immune-stimulatory properties of the materials. Mitochondria play paramount roles in cell life and death and are promising targets for vaccine delivery systems to effectively induce immune responses. In this review, we focus on NPs-based delivery systems with surfaces that can be manipulated by using mitochondria targeting moieties for intervention in health and disease.
Collapse
Affiliation(s)
- Ru Wen
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Afoma C Umeano
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Lily Francis
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Nivita Sharma
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| | - Smanla Tundup
- School of Medicine, Department of Pulmonary and Critical Care, University of Virginia, Charlottesville, WV 22908, USA.
| | - Shanta Dhar
- NanoTherapeutics Research Laboratory, Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
712
|
Ren X, Simpkins JW. Deciphering the Blood-Brain Barrier Damage in Stroke: Mitochondrial Mechanism. JOURNAL OF NEUROINFECTIOUS DISEASES 2016; 6. [PMID: 27213159 PMCID: PMC4873162 DOI: 10.4172/2314-7326.s2-e002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Xuefang Ren
- Department of Physiology and Pharmacology, Experimental Stroke Core, Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, West Virginia, USA
| | - James W Simpkins
- Department of Physiology and Pharmacology, Experimental Stroke Core, Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
713
|
Abstract
Mitochondria are unique dynamic organelles that evolved from free-living bacteria into endosymbionts of mammalian hosts (Sagan 1967; Hatefi 1985). They have a distinct ~16.6 kb closed circular DNA genome coding for 13 polypeptides (Taanman 1999). In addition, a majority of the ~1500 mitochondrial proteins are encoded in the nucleus and transported to the mitochondria (Bonawitz et al. 2006). Mitochondria have two membranes: an outer smooth membrane and a highly folded inner membrane called cristae, which encompasses the matrix that houses the enzymes of the tricarboxylic acid (TCA) cycle and lipid metabolism. The inner mitochondrial membrane houses the protein complexes comprising the electron transport chain (ETC) (Hatefi 1985).
Collapse
Affiliation(s)
- David M. Hockenbery
- Clinical Research Divison, Fred Hutchinson Cancer Research Center, Seattle, Washington USA
| |
Collapse
|
714
|
Luciano JA, Kautza B, Darwiche S, Martinez S, Stratimirovic S, Waltz P, Sperry J, Rosengart M, Shiva S, Zuckerbraun BS. Sirtuin 1 Agonist Minimizes Injury and Improves the Immune Response Following Traumatic Shock. Shock 2016; 44 Suppl 1:149-55. [PMID: 26009827 DOI: 10.1097/shk.0000000000000412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Survival from traumatic injury requires a coordinated and controlled inflammatory and immune response. Mitochondrial and metabolic responses to stress have been shown to play a role in these inflammatory and immune responses. We hypothesized that increases in mitochondrial biogenesis via a sirtuin 1 agonist would decrease tissue injury and partially ameliorate the immunosuppression seen following trauma. C57Bl/6 mice were subjected to a multiple trauma model. Mice were pretreated with either 100 mg/kg per day of the sirtuin 1 agonist, Srt1720, via oral gavage for 2 days prior to trauma and extended until the day the animals were killed, or they were pretreated with peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) siRNA via hydrodynamic tail vein injection 48 h prior to trauma. Markers for mitochondrial function and biogenesis were measured in addition to splenocyte proliferative capacity and bacterial clearance. Srt1720 was noted to improve mitochondrial biogenesis, mitochondrial function, and complex IV activity following traumatic injury (P < 0.05), whereas knockdown of PGC1α resulted in exacerbation of mitochondrial dysfunction (P < 0.05). These changes in mitochondrial function were associated with altered severity of hepatic injury with significant reductions in serum alanine aminotransferase levels seen in mice treated with srt1720. Splenocyte proliferative capacity and intraperitoneal bacterial clearance were evaluated as markers for overall immune function following trauma-hemorrhage. Treatment with Srt1720 minimized the trauma-induced decreases in splenocyte proliferation (P < 0.05), whereas treatment with PGC1α siRNA led to diminished bacterial clearance. The PGC1α signaling pathway is an important regulator of mitochondrial function and biogenesis, which can potentially be harnessed to protect against hepatic injury and minimize the immunosuppression that is seen following trauma-hemorrhage.
Collapse
Affiliation(s)
- Jason A Luciano
- *Department of Surgery, University of Pittsburgh; †VA Pittsburgh Healthcare System; Departments of ‡Critical Care Medicine and §Pharmacology & Chemical Biology, ∥Vascular Medicine Institute, and ¶The Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | | | | | | | | | | | | | | | |
Collapse
|
715
|
|
716
|
Shi L, Eugenin EA, Subbian S. Immunometabolism in Tuberculosis. Front Immunol 2016; 7:150. [PMID: 27148269 PMCID: PMC4838633 DOI: 10.3389/fimmu.2016.00150] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/05/2016] [Indexed: 01/11/2023] Open
Abstract
Immunometabolism, the study of the relationship between bioenergetic pathways and specific functions of immune cells, has recently gained increasing appreciation. In response to infection, activation of the host innate and adaptive immune cells is accompanied by a switch in the bioenergetic pathway from oxidative phosphorylation to glycolysis, a metabolic remodeling known as the Warburg effect, which is required for the production of antimicrobial and pro-inflammatory effector molecules. In this review, we summarize the current understanding of the Warburg effect and discuss its association with the expression of host immune responses in tuberculosis (TB), an infectious disease caused by Mycobacterium tuberculosis (Mtb). We also discuss potential mechanisms underlying the Warburg effect with a focus on the expression and regulation of hypoxia-inducible factor 1 alpha (HIF-1α), the regulatory subunit of HIF-1, a major transcription regulator involved in cellular stress adaptation processes, including energy metabolism and antimicrobial responses. We also propose a novel hypothesis that Mtb perturbs the Warburg effect of immune cells to facilitate its survival and persistence in the host. A better understanding of the dynamics of metabolic states of immune cells and their specific functions during TB pathogenesis can lead to the development of immunotherapies capable of promoting Mtb clearance and reducing Mtb persistence and the emergence of drug resistant strains.
Collapse
Affiliation(s)
- Lanbo Shi
- Public Health Research Institute, New Jersey Medical School, Biomedical and Health Sciences, Rutgers - The State University of New Jersey , Newark, NJ , USA
| | - Eliseo A Eugenin
- Public Health Research Institute, New Jersey Medical School, Biomedical and Health Sciences, Rutgers - The State University of New Jersey , Newark, NJ , USA
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Biomedical and Health Sciences, Rutgers - The State University of New Jersey , Newark, NJ , USA
| |
Collapse
|
717
|
Lewis AJ, Billiar TR, Rosengart MR. Biology and Metabolism of Sepsis: Innate Immunity, Bioenergetics, and Autophagy. Surg Infect (Larchmt) 2016; 17:286-93. [PMID: 27093228 DOI: 10.1089/sur.2015.262] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Sepsis is a complex, heterogeneous physiologic condition that represents a significant public health concern. While many insights into the pathophysiology of sepsis have been elucidated over the past decades of research, important questions remain. This article serves as a review of several important areas in sepsis research. Understanding the innate immune response has been at the forefront as of late, especially in the context of cytokine-directed therapeutic trials. Cellular bioenergetic changes provide insight into the development of organ dysfunction in sepsis. Autophagy and mitophagy perform crucial cell housekeeping and stress response functions. Finally, age-related changes and their potential impact on the septic response are reviewed.
Collapse
Affiliation(s)
- Anthony J Lewis
- Department of Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | | |
Collapse
|
718
|
Bagalkot V, Deiuliis JA, Rajagopalan S, Maiseyeu A. "Eat me" imaging and therapy. Adv Drug Deliv Rev 2016; 99:2-11. [PMID: 26826436 PMCID: PMC4865253 DOI: 10.1016/j.addr.2016.01.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 01/07/2016] [Accepted: 01/18/2016] [Indexed: 12/17/2022]
Abstract
Clearance of apoptotic debris is a vital role of the innate immune system. Drawing upon principles of apoptotic clearance, convenient delivery vehicles including intrinsic anti-inflammatory characteristics and specificity to immune cells can be engineered to aid in drug delivery. In this article, we examine the use of phosphatidylserine (PtdSer), the well-known "eat-me" signal, in nanoparticle-based therapeutics making them highly desirable "meals" for phagocytic immune cells. Use of PtdSer facilitates engulfment of nanoparticles allowing for imaging and therapy in various pathologies and may result in immunomodulation. Furthermore, we discuss the targeting of the macrophages and other cells at sites of inflammation in disease. A thorough understanding of the immunobiology of "eat-me" signals is requisite for the successful application of "eat-me"-bearing materials in biomedical applications.
Collapse
Affiliation(s)
- Vaishali Bagalkot
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Jeffrey A Deiuliis
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Sanjay Rajagopalan
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, MD, 21201, United States
| | - Andrei Maiseyeu
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, MD, 21201, United States.
| |
Collapse
|
719
|
Wong S, Napoli E, Krakowiak P, Tassone F, Hertz-Picciotto I, Giulivi C. Role of p53, Mitochondrial DNA Deletions, and Paternal Age in Autism: A Case-Control Study. Pediatrics 2016; 137:peds.2015-1888. [PMID: 27033107 PMCID: PMC4811307 DOI: 10.1542/peds.2015-1888] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND The tumor suppressor p53 responds to a variety of environmental stressors by regulating cell cycle arrest, apoptosis, senescence, DNA repair, bioenergetics and mitochondrial DNA (mtDNA) copy number maintenance. Developmental abnormalities have been reported in p53-deficient mice, and altered p53 and p53-associated pathways in autism (AU). Furthermore, via the Pten-p53 crosstalk, Pten haploinsufficient-mice have autisticlike behavior accompanied by brain mitochondrial dysfunction with accumulation of mtDNA deletions. METHODS mtDNA copy number and deletions, and p53 gene copy ratios were evaluated in peripheral blood monocytic cells from children aged 2-5 years with AU (n = 66), race-, gender-, and age-matched typically neurodeveloping children (n = 46), and both parents from each diagnostic group, recruited by the Childhood Autism Risk from Genes and Environment study at the University of California, Davis. RESULTS mtDNA deletions and higher p53 gene copy ratios were more common in children with AU and their fathers. The incidence of mtDNA deletions in fathers of children with AU was increased 1.9-fold over fathers of typically neurodeveloping children, suggesting a role for deficient DNA repair capacity not driven by paternal age. Deletions in mtDNA and altered p53 gene copy ratios seem to result from genetics (children with severity scores ≥8) and/or act in concert with environmental factors (children with 6-7 severity scores). CONCLUSIONS Given pro- and antioxidant activities of p53, and associations of genomic instability with disorders other than AU, our study suggests a link between DNA repair capacity, genomic instability in the 17p13.1 region influenced by environmental triggers, and AU diagnosis.
Collapse
Affiliation(s)
- Sarah Wong
- Department of Molecular Biosciences, School of Veterinary Medicine
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine
| | | | - Flora Tassone
- Biochemistry and Molecular Medicine, School of Medicine, and,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Davis, California
| | - Irva Hertz-Picciotto
- Departments of Public Health Sciences and,Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Davis, California
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, University of California Davis, Davis, California
| |
Collapse
|
720
|
Karniely S, Weekes MP, Antrobus R, Rorbach J, van Haute L, Umrania Y, Smith DL, Stanton RJ, Minczuk M, Lehner PJ, Sinclair JH. Human Cytomegalovirus Infection Upregulates the Mitochondrial Transcription and Translation Machineries. mBio 2016; 7:e00029. [PMID: 27025248 PMCID: PMC4807356 DOI: 10.1128/mbio.00029-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 02/25/2016] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Infection with human cytomegalovirus (HCMV) profoundly affects cellular metabolism. Like in tumor cells, HCMV infection increases glycolysis, and glucose carbon is shifted from the mitochondrial tricarboxylic acid cycle to the biosynthesis of fatty acids. However, unlike in many tumor cells, where aerobic glycolysis is accompanied by suppression of mitochondrial oxidative phosphorylation, HCMV induces mitochondrial biogenesis and respiration. Here, we affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We found that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth under bioenergetically restricting conditions. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication. IMPORTANCE Human cytomegalovirus (HCMV), a betaherpesvirus, is a leading cause of morbidity and mortality during congenital infection and among immunosuppressed individuals. HCMV infection significantly changes cellular metabolism. Akin to tumor cells, in HCMV-infected cells, glycolysis is increased and glucose carbon is shifted from the tricarboxylic acid cycle to fatty acid biosynthesis. However, unlike in tumor cells, HCMV induces mitochondrial biogenesis even under aerobic glycolysis. Here, we have affinity purified mitochondria and used quantitative mass spectrometry to determine how the mitochondrial proteome changes upon HCMV infection. We find that the mitochondrial transcription and translation systems are induced early during the viral replication cycle. Specifically, proteins involved in biogenesis of the mitochondrial ribosome were highly upregulated by HCMV infection. Inhibition of mitochondrial translation with chloramphenicol or knockdown of HCMV-induced ribosome biogenesis factor MRM3 abolished the HCMV-mediated increase in mitochondrially encoded proteins and significantly impaired viral growth. Our findings demonstrate how HCMV manipulates mitochondrial biogenesis to support its replication.
Collapse
Affiliation(s)
- S Karniely
- Department of Medicine, University of Cambridge Clinical School, Addenbrookes Hospital, Cambridge, United Kingdom
| | - M P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - R Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - J Rorbach
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - L van Haute
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - Y Umrania
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - D L Smith
- Paterson Institute for Cancer Research, University of Manchester, Withington, Manchester, United Kingdom
| | - R J Stanton
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - M Minczuk
- MRC, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - P J Lehner
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - J H Sinclair
- Department of Medicine, University of Cambridge Clinical School, Addenbrookes Hospital, Cambridge, United Kingdom
| |
Collapse
|
721
|
Sádaba MC, Martín-Estal I, Puche JE, Castilla-Cortázar I. Insulin-like growth factor 1 (IGF-1) therapy: Mitochondrial dysfunction and diseases. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1267-78. [PMID: 27020404 DOI: 10.1016/j.bbadis.2016.03.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/18/2016] [Accepted: 03/21/2016] [Indexed: 12/19/2022]
Abstract
This review resumes the association between mitochondrial function and diseases, especially neurodegenerative diseases. Additionally, it summarizes the major role of IGF-1 as a mitochondrial protector, as studied in several experimental models (cirrhosis, aging …). The contribution of mitochondrial dysfunction to impairments in insulin metabolic signaling is also suggested by gene array analysis showing that reductions in gene expression, that regulates mitochondrial ATP production, are associated with insulin resistance and type 2 diabetes mellitus. Moreover, reductions in oxidative capacity of mitochondrial electron transport chain are manifested in obese, insulin-resistant and diabetic patients. Genetic and environmental factors, oxidative stress, and alterations in mitochondrial biogenesis can adversely affect mitochondrial function, leading to insulin resistance and several pathological conditions, such as type 2 diabetes. Finally, it remains essential to know the exact mechanisms involved in mitochondrial generation and metabolism, mitophagy, apoptosis, and oxidative stress to establish new targets in order to develop potentially effective therapies. One of the newest targets to recover mitochondrial dysfunction could be the administration of IGF-1 at low doses. In the last years, it has been observed that IGF-1 therapy has several beneficial effects: restores physiological IGF-1 levels; improves insulin resistance and lipid metabolism; exerts mitochondrial protection; and has hepatoprotective, neuroprotective, antioxidant and antifibrogenic effects. In consequence, treatment of mitochondrial dysfunctions with low doses of IGF-1 could be a powerful and useful effective therapy to restore normal mitochondrial functions.
Collapse
Affiliation(s)
- M C Sádaba
- University CEU-San Pablo, School of Medicine, Department of Physiology, Institute of Applied Molecular Medicine (IMMA), Madrid, Spain
| | - I Martín-Estal
- School of Medicine, Tecnologico de Monterrey, Monterrey, Mexico
| | - J E Puche
- University CEU-San Pablo, School of Medicine, Department of Physiology, Institute of Applied Molecular Medicine (IMMA), Madrid, Spain
| | - I Castilla-Cortázar
- School of Medicine, Tecnologico de Monterrey, Monterrey, Mexico; Fundación de Investigación HM Hospitales, Madrid, Spain.
| |
Collapse
|
722
|
Liu S, Feng M, Guan W. Mitochondrial DNA sensing by STING signaling participates in inflammation, cancer and beyond. Int J Cancer 2016; 139:736-41. [PMID: 26939583 DOI: 10.1002/ijc.30074] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/25/2016] [Indexed: 12/28/2022]
Abstract
Recent studies have revealed the diverse pathophysiological functions of mitochondria beyond traditional energetic metabolism in cells. Mitochondria-released damage-associated molecular patterns, particularly mitochondrial deoxyribonucleic acid (mtDNA), play a central role in host immune defenses against foreign pathogens. Newly discovered cGAS-STING signaling is responsible for microbial DNA recognition, and potentially participates in mitochondrial DNA sensing. Inappropriate inflammatory signaling mediated by mtDNA is implicated in various human diseases, especially infectious/inflammatory disease and cancer. In addition, mtDNA horizontal transfer between tumor cells and surrounding somatic cells has been recently observed and been associated with tumorigenesis and cancer progression. In this review, we will summarize the molecular signaling of mtDNA recognition (especially STING signaling), and discuss the underlying mechanism by which mtDNA transfer triggers cancer progression in human. Besides, we will highlight the central role of mtDNA in host immunity, with particular emphasis on mtDNA-induced NETs (neutrophil extracellular traps) formation, apoptosis and autophagy.
Collapse
Affiliation(s)
- Song Liu
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Min Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
723
|
Mitochondrial Redox Signaling and Tumor Progression. Cancers (Basel) 2016; 8:cancers8040040. [PMID: 27023612 PMCID: PMC4846849 DOI: 10.3390/cancers8040040] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 02/21/2016] [Accepted: 03/07/2016] [Indexed: 01/10/2023] Open
Abstract
Cancer cell can reprogram their energy production by switching mitochondrial oxidative phosphorylation to glycolysis. However, mitochondria play multiple roles in cancer cells, including redox regulation, reactive oxygen species (ROS) generation, and apoptotic signaling. Moreover, these mitochondrial roles are integrated via multiple interconnected metabolic and redox sensitive pathways. Interestingly, mitochondrial redox proteins biphasically regulate tumor progression depending on cellular ROS levels. Low level of ROS functions as signaling messengers promoting cancer cell proliferation and cancer invasion. However, anti-cancer drug-initiated stress signaling could induce excessive ROS, which is detrimental to cancer cells. Mitochondrial redox proteins could scavenger basal ROS and function as “tumor suppressors” or prevent excessive ROS to act as “tumor promoter”. Paradoxically, excessive ROS often also induce DNA mutations and/or promotes tumor metastasis at various stages of cancer progression. Targeting redox-sensitive pathways and transcriptional factors in the appropriate context offers great promise for cancer prevention and therapy. However, the therapeutics should be cancer-type and stage-dependent.
Collapse
|
724
|
Nguyen NT, Now H, Kim WJ, Kim N, Yoo JY. Ubiquitin-like modifier FAT10 attenuates RIG-I mediated antiviral signaling by segregating activated RIG-I from its signaling platform. Sci Rep 2016; 6:23377. [PMID: 26996158 PMCID: PMC4800306 DOI: 10.1038/srep23377] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/04/2016] [Indexed: 12/30/2022] Open
Abstract
RIG-I is a key cytosolic RNA sensor that mediates innate immune defense against RNA virus. Aberrant RIG-I activity leads to severe pathological states such as autosomal dominant multi-system disorder, inflammatory myophathies and dermatomyositis. Therefore, identification of regulators that ensure efficient defense without harmful immune-pathology is particularly critical to deal with RIG-I-associated diseases. Here, we presented the inflammatory inducible FAT10 as a novel negative regulator of RIG-I-mediated inflammatory response. In various cell lines, FAT10 protein is undetectable unless it is induced by pro-inflammatory cytokines. FAT10 non-covalently associated with the 2CARD domain of RIG-I, and inhibited viral RNA-induced IRF3 and NF-kB activation through modulating the RIG-I protein solubility. We further demonstrated that FAT10 was recruited to RIG-I-TRIM25 to form an inhibitory complex where FAT10 was stabilized by E3 ligase TRIM25. As the result, FAT10 inhibited the antiviral stress granules formation contains RIG-I and sequestered the active RIG-I away from the mitochondria. Our study presented a novel mechanism to dampen RIG-I activity. Highly accumulated FAT10 is observed in various cancers with pro-inflammatory environment, therefore, our finding which uncovered the suppressive effect of the accumulated FAT10 during virus-mediated inflammatory response may also provide molecular clue to understand the carcinogenesis related with infection and inflammation.
Collapse
Affiliation(s)
- Nhung T.H. Nguyen
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea Hyoja-dong 31, Pohang, 790-784, Republic of Korea
| | - Hesung Now
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea Hyoja-dong 31, Pohang, 790-784, Republic of Korea
| | - Woo-Jong Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea Hyoja-dong 31, Pohang, 790-784, Republic of Korea
| | - Nari Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea Hyoja-dong 31, Pohang, 790-784, Republic of Korea
| | - Joo-Yeon Yoo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea Hyoja-dong 31, Pohang, 790-784, Republic of Korea
| |
Collapse
|
725
|
Wang Y, Gao D, Chu B, Gao C, Cao D, Liu H, Jiang Y. Exposure of CCRF-CEM cells to acridone derivative 8a triggers tumor death via multiple mechanisms. Proteomics 2016; 16:1177-90. [DOI: 10.1002/pmic.201500317] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 02/02/2016] [Accepted: 02/08/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Yini Wang
- Department of Chemistry; Tsinghua University; Beijing P. R. China
- The Key Laboratory of Tumor Metabolomics at Shenzhen; Shenzhen P. R. China
| | - Dan Gao
- The Key Laboratory of Tumor Metabolomics at Shenzhen; Shenzhen P. R. China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology; Graduate School at Shenzhen; Tsinghua University; Shenzhen P. R. China
| | - Bizhu Chu
- The Key Laboratory of Tumor Metabolomics at Shenzhen; Shenzhen P. R. China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology; Graduate School at Shenzhen; Tsinghua University; Shenzhen P. R. China
| | - Chunmei Gao
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology; Graduate School at Shenzhen; Tsinghua University; Shenzhen P. R. China
| | - Deliang Cao
- Department of Medical Microbiology; Immunology and Cell Biology; Simmons Cancer Institute; Southern Illinois University School of Medicine, Springfield; IL USA
| | - Hongxia Liu
- The Key Laboratory of Tumor Metabolomics at Shenzhen; Shenzhen P. R. China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology; Graduate School at Shenzhen; Tsinghua University; Shenzhen P. R. China
| | - Yuyang Jiang
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology; Graduate School at Shenzhen; Tsinghua University; Shenzhen P. R. China
- School of Medicine; Tsinghua University; Beijing P. R. China
| |
Collapse
|
726
|
Williams J, Holmes RP, Assimos DG, Mitchell T. Monocyte Mitochondrial Function in Calcium Oxalate Stone Formers. Urology 2016; 93:224.e1-6. [PMID: 26972146 DOI: 10.1016/j.urology.2016.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/29/2016] [Accepted: 03/03/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To investigate whether mitochondrial function is altered in circulating immune cells from calcium oxalate (CaOx) stone formers compared to healthy subjects. MATERIALS AND METHODS Adult healthy subjects (n = 18) and CaOx stone formers (n = 12) were included in a pilot study. Data collection included demographic and clinical values from electronic medical records. Bioenergetic function was assessed in monocytes, lymphocytes, and platelets isolated from blood samples using the Seahorse XF96 Analyzer. Plasma interleukin-6 (IL-6) was measured using enzyme-linked immunosorbent assay. RESULTS All participants were age matched (44.5 ± 3.0 years for healthy subjects vs 42.3 ± 4.8 years for CaOx stone formers, P = .6905). CaOx stone formers did not have urinary tract infection, ureteral stones, or obstructing renal stones. Monocyte mitochondrial function was decreased in CaOx stone formers compared to healthy subjects. Specifically, mitochondrial maximal respiration (P = .0011) and reserve capacity (P < .0001) were significantly lower. In contrast, lymphocyte and platelet mitochondrial function was similar between the 2 groups. The bioenergetic health index, an integrated value of mitochondrial function, was significantly lower in monocytes from CaOx stone formers compared to healthy subjects (P = .0041). Lastly, plasma IL-6 levels were significantly increased (P = .0324). CONCLUSION The present pilot study shows that CaOx stone formers have decreased monocyte mitochondrial function. Plasma IL-6 was also increased in this cohort. These data suggest that impaired monocyte mitochondrial function and inflammation may be linked to CaOx kidney stone formation. Further studies are needed to confirm these findings in a larger cohort of patients.
Collapse
Affiliation(s)
- Jennifer Williams
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL
| | - Ross P Holmes
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL
| | - Dean G Assimos
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL
| | - Tanecia Mitchell
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
727
|
Romaschenko VP, Zinovkin RA, Galkin II, Zakharova VV, Panteleeva AA, Tokarchuk AV, Lyamzaev KG, Pletjushkina OY, Chernyak BV, Popova EN. Low Concentrations of Uncouplers of Oxidative Phosphorylation Prevent Inflammatory Activation of Endothelial Cells by Tumor Necrosis Factor. BIOCHEMISTRY (MOSCOW) 2016; 80:610-9. [PMID: 26071781 DOI: 10.1134/s0006297915050144] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In endothelial cells, mitochondria play an important regulatory role in physiology as well as in pathophysiology related to excessive inflammation. We have studied the effect of low doses of mitochondrial uncouplers on inflammatory activation of endothelial cells using the classic uncouplers 2,4-dinitrophenol and 4,5,6,7-tetrachloro-2-trifluoromethylbenzimidazole, as well as the mitochondria-targeted cationic uncoupler dodecyltriphenylphosphonium (C12TPP). All of these uncouplers suppressed the expression of E-selectin, adhesion molecules ICAM1 and VCAM1, as well as the adhesion of neutrophils to endothelium induced by tumor necrosis factor (TNF). The antiinflammatory action of the uncouplers was at least partially mediated by the inhibition of NFκB activation due to a decrease in phosphorylation of the inhibitory subunit IκBα. The dynamic concentration range for the inhibition of ICAM1 expression by C12TPP was three orders of magnitude higher compared to the classic uncouplers. Probably, the decrease in membrane potential inhibited the accumulation of penetrating cations into mitochondria, thus lowering the uncoupling activity and preventing further loss of mitochondrial potential. Membrane potential recovery after the removal of the uncouplers did not abolish its antiinflammatory action. Thus, mild uncoupling could induce TNF resistance in endothelial cells. We found no significant stimulation of mitochondrial biogenesis or autophagy by the uncouplers. However, we observed a decrease in the relative amount of fragmented mitochondria. The latter may significantly change the signaling properties of mitochondria. Earlier we showed that both classic and mitochondria-targeted antioxidants inhibited the TNF-induced NFκB-dependent activation of endothelium. The present data suggest that the antiinflammatory effect of mild uncoupling is related to its antioxidant action.
Collapse
Affiliation(s)
- V P Romaschenko
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
728
|
TLR Stimulation Dynamically Regulates Heme and Iron Export Gene Expression in Macrophages. J Immunol Res 2016; 2016:4039038. [PMID: 27006955 PMCID: PMC4783552 DOI: 10.1155/2016/4039038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 01/22/2016] [Accepted: 01/31/2016] [Indexed: 01/01/2023] Open
Abstract
Pathogenic bacteria have evolved multiple mechanisms to capture iron or iron-containing heme from host tissues or blood. In response, organisms have developed defense mechanisms to keep iron from pathogens. Very little of the body's iron store is available as free heme; rather nearly all body iron is complexed with heme or other proteins. The feline leukemia virus, subgroup C (FeLV-C) receptor, FLVCR, exports heme from cells. It was unknown whether FLVCR regulates heme-iron availability after infection, but given that other heme regulatory proteins are upregulated in macrophages in response to bacterial infection, we hypothesized that macrophages dynamically regulate FLVCR. We stimulated murine primary macrophages or macrophage cell lines with LPS and found that Flvcr is rapidly downregulated in a TLR4/MD2-dependent manner; TLR1/2 and TLR3 stimulation also decreased Flvcr expression. We identified several candidate TLR-activated transcription factors that can bind to the Flvcr promoter. Macrophages must balance the need to sequester iron from systemic circulating or intracellular pathogens with the macrophage requirement for heme and iron to produce reactive oxygen species. Our findings underscore the complexity of this regulation and point to a new role for FLVCR and heme export in macrophages responses to infection and inflammation.
Collapse
|
729
|
Ichikawa K, Ohshima D, Sagara H. Regulation of signal transduction by spatial parameters: a case in NF-κB oscillation. IET Syst Biol 2016; 9:41-51. [PMID: 26672147 DOI: 10.1049/iet-syb.2013.0020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
NF-κB is a transcription factor regulating expression of more than 500 genes, and its dysfunction leads to the autoimmune and inflammatory diseases. In malignant cancer cells, NF-κB is constitutively activated. Thus the elucidation of mechanisms for NF-κB regulation is important for the establishment of therapeutic treatment caused by incorrect NF-κB responses. Cytoplasmic NF-κB translocates to the nucleus by the application of extracellular stimuli such as cytokines. Nuclear NF-κB is known to oscillate with the cycle of 1.5-4.5 h, and it is thought that the oscillation pattern regulates the expression profiles of genes. In this review, first we briefly describe regulation mechanisms of NF-κB. Next, published computational simulations on the oscillation of NF-κB are summarised. There are at least 60 reports on the computational simulation and analysis of NF-κB oscillation. Third, the importance of a 'space' for the regulation of oscillation pattern of NF-κB is discussed, showing altered oscillation pattern by the change in spatial parameters such as diffusion coefficient, nuclear to cytoplasmic volume ratio (N/C ratio), and transport through nuclear membrane. Finally, simulations in a true intracellular space (TiCS), which is an intracellular 3D space reconstructed in a computer with organelles such as nucleus and mitochondria are discussed.
Collapse
|
730
|
Reznik E, Miller ML, Şenbabaoğlu Y, Riaz N, Sarungbam J, Tickoo SK, Al-Ahmadie HA, Lee W, Seshan VE, Hakimi AA, Sander C. Mitochondrial DNA copy number variation across human cancers. eLife 2016; 5:e10769. [PMID: 26901439 PMCID: PMC4775221 DOI: 10.7554/elife.10769] [Citation(s) in RCA: 345] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/08/2016] [Indexed: 12/18/2022] Open
Abstract
Mutations, deletions, and changes in copy number of mitochondrial DNA (mtDNA), are observed throughout cancers. Here, we survey mtDNA copy number variation across 22 tumor types profiled by The Cancer Genome Atlas project. We observe a tendency for some cancers, especially of the bladder, breast, and kidney, to be depleted of mtDNA, relative to matched normal tissue. Analysis of genetic context reveals an association between incidence of several somatic alterations, including IDH1 mutations in gliomas, and mtDNA content. In some but not all cancer types, mtDNA content is correlated with the expression of respiratory genes, and anti-correlated to the expression of immune response and cell-cycle genes. In tandem with immunohistochemical evidence, we find that some tumors may compensate for mtDNA depletion to sustain levels of respiratory proteins. Our results highlight the extent of mtDNA copy number variation in tumors and point to related therapeutic opportunities.
Collapse
Affiliation(s)
- Ed Reznik
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Martin L Miller
- Cancer Research UK, Cambridge Institute, Cambridge, United Kingdom
| | - Yasin Şenbabaoğlu
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Judy Sarungbam
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Satish K Tickoo
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Hikmat A Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - William Lee
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Venkatraman E Seshan
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, United States
| | - A Ari Hakimi
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Chris Sander
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
731
|
Golinelli-Cohen MP, Lescop E, Mons C, Gonçalves S, Clémancey M, Santolini J, Guittet E, Blondin G, Latour JM, Bouton C. Redox Control of the Human Iron-Sulfur Repair Protein MitoNEET Activity via Its Iron-Sulfur Cluster. J Biol Chem 2016; 291:7583-93. [PMID: 26887944 DOI: 10.1074/jbc.m115.711218] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Indexed: 11/06/2022] Open
Abstract
Human mitoNEET (mNT) is the first identified Fe-S protein of the mammalian outer mitochondrial membrane. Recently, mNT has been implicated in cytosolic Fe-S repair of a key regulator of cellular iron homeostasis. Here, we aimed to decipher the mechanism by which mNT triggers its Fe-S repair capacity. By using tightly controlled reactions combined with complementary spectroscopic approaches, we have determined the differential roles played by both the redox state of the mNT cluster and dioxygen in cluster transfer and protein stability. We unambiguously demonstrated that only the oxidized state of the mNT cluster triggers cluster transfer to a generic acceptor protein and that dioxygen is neither required for the cluster transfer reaction nor does it affect the transfer rate. In the absence of apo-acceptors, a large fraction of the oxidized holo-mNT form is converted back to reduced holo-mNT under low oxygen tension. Reduced holo-mNT, which holds a [2Fe-2S](+)with a global protein fold similar to that of the oxidized form is, by contrast, resistant in losing its cluster or in transferring it. Our findings thus demonstrate that mNT uses an iron-based redox switch mechanism to regulate the transfer of its cluster. The oxidized state is the "active state," which reacts promptly to initiate Fe-S transfer independently of dioxygen, whereas the reduced state is a "dormant form." Finally, we propose that the redox-sensing function of mNT is a key component of the cellular adaptive response to help stress-sensitive Fe-S proteins recover from oxidative injury.
Collapse
Affiliation(s)
- Marie-Pierre Golinelli-Cohen
- From the Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 91190 Gif-sur-Yvette, France,
| | - Ewen Lescop
- From the Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Cécile Mons
- From the Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Sergio Gonçalves
- From the Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Martin Clémancey
- Université Grenoble Alpes, Laboratoire Chimie et Biologie des Métaux (LCBM), and Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant (DSV), Institut de Recherche en Technologies et Sciences pour le Vivant (iRTSV), LCBM, Equipe Physicochimie des Métaux en Biologie (PMB), and CNRS UMR 5249, LCBM, 38054 Grenoble, France, and
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Eric Guittet
- From the Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Geneviève Blondin
- Université Grenoble Alpes, Laboratoire Chimie et Biologie des Métaux (LCBM), and Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant (DSV), Institut de Recherche en Technologies et Sciences pour le Vivant (iRTSV), LCBM, Equipe Physicochimie des Métaux en Biologie (PMB), and CNRS UMR 5249, LCBM, 38054 Grenoble, France, and
| | - Jean-Marc Latour
- Université Grenoble Alpes, Laboratoire Chimie et Biologie des Métaux (LCBM), and Commissariat à l'Energie Atomique (CEA), Direction des Sciences du Vivant (DSV), Institut de Recherche en Technologies et Sciences pour le Vivant (iRTSV), LCBM, Equipe Physicochimie des Métaux en Biologie (PMB), and CNRS UMR 5249, LCBM, 38054 Grenoble, France, and
| | - Cécile Bouton
- From the Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, 91190 Gif-sur-Yvette, France,
| |
Collapse
|
732
|
Oishi Y, Manabe I. Integrated regulation of the cellular metabolism and function of immune cells in adipose tissue. Clin Exp Pharmacol Physiol 2016; 43:294-303. [DOI: 10.1111/1440-1681.12539] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Yumiko Oishi
- Department of Cellular and Molecular Medicine; Medical Research Institute; Tokyo Medical and Dental University; Tokyo Japan
| | - Ichiro Manabe
- Department of Aging Research; Graduate School of Medicine; Chiba University; Chiba Japan
| |
Collapse
|
733
|
Nonstructural protein p39 of feline calicivirus suppresses host innate immune response by preventing IRF-3 activation. Vet Microbiol 2016; 185:62-7. [PMID: 26931393 DOI: 10.1016/j.vetmic.2016.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 11/22/2022]
Abstract
Feline calicivirus (FCV) is an important veterinary pathogen that causes acute upper respiratory tract diseases and, occasionally, highly contagious febrile hemorrhagic syndrome in cats. Many viruses have adopted mechanisms for evading IFN-α/β signaling, particularly by directly or indirectly suppressing activation of IRF-3. In this study, we investigated whether nonstructural proteins of FCV possess these mechanisms. When p39, a nonstructural protein of FCV, was transiently expressed in 293T cells, it suppressed IFN-β and ISG15 mRNA production induced by dsRNA. Expression of p39 also suppressed phosphorylation and dimerization of IRF-3 induced by dsRNA. These results suggest that p39 suppresses type 1 IFN production by preventing IRF-3 activation. This may become an important factor in understanding the pathogenesis and virulence of FCV.
Collapse
|
734
|
Bukeirat M, Sarkar SN, Hu H, Quintana DD, Simpkins JW, Ren X. MiR-34a regulates blood-brain barrier permeability and mitochondrial function by targeting cytochrome c. J Cereb Blood Flow Metab 2016; 36:387-92. [PMID: 26661155 PMCID: PMC4759667 DOI: 10.1177/0271678x15606147] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/10/2015] [Indexed: 02/02/2023]
Abstract
The blood-brain barrier is composed of cerebrovascular endothelial cells and tight junctions, and maintaining its integrity is crucial for the homeostasis of the neuronal environment. Recently, we discovered that mitochondria play a critical role in maintaining blood-brain barrier integrity. We report for the first time a novel mechanism underlying blood-brain barrier integrity: miR-34a mediated regulation of blood-brain barrier through a mitochondrial mechanism. Bioinformatics analysis suggests miR-34a targets several mitochondria-associated gene candidates. We demonstrated that miR-34a triggers the breakdown of blood-brain barrier in cerebrovascular endothelial cell monolayer in vitro, paralleled by reduction of mitochondrial oxidative phosphorylation and adenosine triphosphate production, and decreased cytochrome c levels.
Collapse
Affiliation(s)
- Mimi Bukeirat
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia, USA
| | - Saumyendra N Sarkar
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia, USA
| | - Heng Hu
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia, USA Experimental Stroke Core, Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, West Virginia, USA
| | - Dominic D Quintana
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia, USA
| | - James W Simpkins
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia, USA Experimental Stroke Core, Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, West Virginia, USA
| | - Xuefang Ren
- Department of Physiology and Pharmacology, West Virginia University, Morgantown, West Virginia, USA Experimental Stroke Core, Center for Basic and Translational Stroke Research, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
735
|
Yoon CY, Park JT, Kee YK, Han SG, Han IM, Kwon YE, Park KS, Lee MJ, Han SH, Kang SW, Yoo TH. Low Mitochondrial DNA Copy Number is Associated With Adverse Clinical Outcomes in Peritoneal Dialysis Patients. Medicine (Baltimore) 2016; 95:e2717. [PMID: 26886611 PMCID: PMC4998611 DOI: 10.1097/md.0000000000002717] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Mitochondrial dysfunction may play an important role in abnormal glucose metabolism and systemic inflammation. We aimed to investigate the relationship between mitochondrial DNA (mtDNA) copy number and clinical outcomes in peritoneal dialysis (PD) patients. We recruited 120 prevalent PD patients and determined mtDNA copy number by PCR. Primary outcome was all-cause mortality, whereas secondary outcomes included cardiovascular events, technical PD failure, and incident malignancy. Cox proportional hazards analysis determined the independent association of mtDNA copy number with outcomes. The mean patient age was 52.3 years; 42.5% were men. The mean log mtDNA copy number was 3.30 ± 0.50. During a follow-up period of 35.4 ± 19.3 months, all-cause mortality and secondary outcomes were observed in 20.0% and 59.2% of patients, respectively. Secondary outcomes were significantly lower in the highest mtDNA copy number group than in the lower groups. In multiple Cox analysis, the mtDNA copy number was not associated with all-cause mortality (lower two vs highest tertile: hazard ratio [HR] = 1.208, 95% confidence interval [CI] = 0.477-3.061). However, the highest tertile group was significantly associated with lower incidences of secondary outcomes (lower two vs highest tertile: HR [95% CI] = 0.494 [0.277-0.882]) after adjusting for confounding factors. The decreased mtDNA copy number was significantly associated with adverse clinical outcomes in PD patients.
Collapse
Affiliation(s)
- Chang-Yun Yoon
- From the Department of Internal Medicine (C-YY, JTP, YKK, SGH, IMH, YEK, KSP, MJL, SHH, S-WK, T-HY), Yonsei University College of Medicine; and Severance Biomedical Science Institute (S-WK, T-HY), Brain Korea 21 PLUS, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
736
|
Hu H, Doll DN, Sun J, Lewis SE, Wimsatt JH, Kessler MJ, Simpkins JW, Ren X. Mitochondrial Impairment in Cerebrovascular Endothelial Cells is Involved in the Correlation between Body Temperature and Stroke Severity. Aging Dis 2016; 7:14-27. [PMID: 26816660 DOI: 10.14336/ad.2015.0906] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 09/06/2015] [Indexed: 02/05/2023] Open
Abstract
Stroke is the second leading cause of death worldwide. The prognostic influence of body temperature on acute stroke in patients has been recently reported; however, hypothermia has confounded experimental results in animal stroke models. This work aimed to investigate how body temperature could prognose stroke severity as well as reveal a possible mitochondrial mechanism in the association of body temperature and stroke severity. Lipopolysaccharide (LPS) compromises mitochondrial oxidative phosphorylation in cerebrovascular endothelial cells (CVECs) and worsens murine experimental stroke. In this study, we report that LPS (0.1 mg/kg) exacerbates stroke infarction and neurological deficits, in the mean time LPS causes temporary hypothermia in the hyperacute stage during 6 hours post-stroke. Lower body temperature is associated with worse infarction and higher neurological deficit score in the LPS-stroke study. However, warming of the LPS-stroke mice compromises animal survival. Furthermore, a high dose of LPS (2 mg/kg) worsens neurological deficits, but causes persistent severe hypothermia that conceals the LPS exacerbation of stroke infarction. Mitochondrial respiratory chain complex I inhibitor, rotenone, replicates the data profile of the LPS-stroke study. Moreover, we have confirmed that rotenone compromises mitochondrial oxidative phosphorylation in CVECs. Lastly, the pooled data analyses of a large sample size (n=353) demonstrate that stroke mice have lower body temperature compared to sham mice within 6 hours post-surgery; the body temperature is significantly correlated with stroke outcomes; linear regression shows that lower body temperature is significantly associated with higher neurological scores and larger infarct volume. We conclude that post-stroke body temperature predicts stroke severity and mitochondrial impairment in CVECs plays a pivotal role in this hypothermic response. These novel findings suggest that body temperature is prognostic for stroke severity in experimental stroke animal models and may have translational significance for clinical stroke patients - targeting endothelial mitochondria may be a clinically useful approach for stroke therapy.
Collapse
Affiliation(s)
- Heng Hu
- 1 Department of Physiology and Pharmacology,; 2 Experimental Stroke Core, Center for Basic and Translational Stroke Research
| | | | | | | | | | - Matthew J Kessler
- 4 Office of Laboratory Animal Resources, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia, 26506 USA
| | - James W Simpkins
- 1 Department of Physiology and Pharmacology,; 2 Experimental Stroke Core, Center for Basic and Translational Stroke Research
| | - Xuefang Ren
- 1 Department of Physiology and Pharmacology,; 2 Experimental Stroke Core, Center for Basic and Translational Stroke Research
| |
Collapse
|
737
|
Bronner DN, O'Riordan MX. Measurement of Mitochondrial DNA Release in Response to ER Stress. Bio Protoc 2016; 6:e1839. [PMID: 31106234 DOI: 10.21769/bioprotoc.1839] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mitochondria house the metabolic machinery for cellular ATP production. The mitochondrial network is sensitive to perturbations (e.g., oxidative stress and pathogen invasion) that can alter membrane potential, thereby compromising function. Healthy mitochondria maintain high membrane potential due to oxidative phosphorylation (Ly et al., 2003). Changes in mitochondrial function or calcium levels can cause depolarization, or a sharp decrease in mitochondrial membrane potential (Bernardi, 2013). Mitochondrial depolarization induces opening of the mitochondrial permeability transition pore (MPTP), which allows release of mitochondrial components like reactive oxygen species (mtROS), mitochondrial DNA (mtDNA) or intermembrane space proteins into the cytosol (Martinou and Green, 2001; Tait and Green, 2010; Bronner and O'Riordan, 2014). These contents trigger inflammation, and can lead to cell death (West et al., 2011). Both mtROS and cytosolic mtDNA contribute to the activation of inflammasomes, multiprotein complexes that process the proinflammatory cytokines, IL-18 and IL-1β. Studies indicate that cytosolic mtDNA in particular can bind two different inflammasome sensors, AIM2 and NLRP3, leading to inflammasome activation (Burckstummer et al., 2009; Hornung and Latz, 2010). In this protocol, you will be able to specifically extract cytosolic mtDNA and quantify the amount using a qPCR assay.
Collapse
Affiliation(s)
- Denise N Bronner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, USA
| | - Mary X O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
738
|
Abstract
In addition to oxidative phosphorylation (OXPHOS), mitochondria perform other functions such as heme biosynthesis and oxygen sensing and mediate calcium homeostasis, cell growth, and cell death. They participate in cell communication and regulation of inflammation and are important considerations in aging, drug toxicity, and pathogenesis. The cell's capacity to maintain its mitochondria involves intramitochondrial processes, such as heme and protein turnover, and those involving entire organelles, such as fusion, fission, selective mitochondrial macroautophagy (mitophagy), and mitochondrial biogenesis. The integration of these processes exemplifies mitochondrial quality control (QC), which is also important in cellular disorders ranging from primary mitochondrial genetic diseases to those that involve mitochondria secondarily, such as neurodegenerative, cardiovascular, inflammatory, and metabolic syndromes. Consequently, mitochondrial biology represents a potentially useful, but relatively unexploited area of therapeutic innovation. In patients with genetic OXPHOS disorders, the largest group of inborn errors of metabolism, effective therapies, apart from symptomatic and nutritional measures, are largely lacking. Moreover, the genetic and biochemical heterogeneity of these states is remarkably similar to those of certain acquired diseases characterized by metabolic and oxidative stress and displaying wide variability. This biologic variability reflects cell-specific and repair processes that complicate rational pharmacological approaches to both primary and secondary mitochondrial disorders. However, emerging concepts of mitochondrial turnover and dynamics along with new mitochondrial disease models are providing opportunities to develop and evaluate mitochondrial QC-based therapies. The goals of such therapies extend beyond amelioration of energy insufficiency and tissue loss and entail cell repair, cell replacement, and the prevention of fibrosis. This review summarizes current concepts of mitochondria as disease elements and outlines novel strategies to address mitochondrial dysfunction through the stimulation of mitochondrial biogenesis and quality control.
Collapse
Affiliation(s)
- Hagir B Suliman
- Departments of Medicine (C.A.P.), Anesthesiology (H.B.S.), Duke Cancer Institute (H.B.S.), and Pathology (C.A.P.), Duke University Medical Center, Durham North Carolina
| | - Claude A Piantadosi
- Departments of Medicine (C.A.P.), Anesthesiology (H.B.S.), Duke Cancer Institute (H.B.S.), and Pathology (C.A.P.), Duke University Medical Center, Durham North Carolina
| |
Collapse
|
739
|
Liu F, Du J, Song D, Xu M, Sun G. A sensitive fluorescent sensor for the detection of endogenous hydroxyl radicals in living cells and bacteria and direct imaging with respect to its ecotoxicity in living zebra fish. Chem Commun (Camb) 2016; 52:4636-9. [DOI: 10.1039/c5cc10658c] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
MPT-Cy2exhibited excellent selectivity and sensitivity toward ˙OH over other ROS and showed a high potential for the imaging of endogenous ˙OH in living cells and various types of bacteria.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Institute of Microbiology
- Guangzhou 510070
- P. R. China
| | - Juan Du
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Institute of Microbiology
- Guangzhou 510070
- P. R. China
| | - Da Song
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Institute of Microbiology
- Guangzhou 510070
- P. R. China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Institute of Microbiology
- Guangzhou 510070
- P. R. China
| | - Guoping Sun
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Institute of Microbiology
- Guangzhou 510070
- P. R. China
| |
Collapse
|
740
|
Approaching a Unified Theory for Particle-Induced Inflammation. CURRENT TOPICS IN ENVIRONMENTAL HEALTH AND PREVENTIVE MEDICINE 2016. [DOI: 10.1007/978-4-431-55732-6_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
741
|
Yu CY, Liang JJ, Li JK, Lee YL, Chang BL, Su CI, Huang WJ, Lai MMC, Lin YL. Dengue Virus Impairs Mitochondrial Fusion by Cleaving Mitofusins. PLoS Pathog 2015; 11:e1005350. [PMID: 26717518 PMCID: PMC4696832 DOI: 10.1371/journal.ppat.1005350] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022] Open
Abstract
Mitochondria are highly dynamic subcellular organelles participating in many signaling pathways such as antiviral innate immunity and cell death cascades. Here we found that mitochondrial fusion was impaired in dengue virus (DENV) infected cells. Two mitofusins (MFN1 and MFN2), which mediate mitochondrial fusion and participate in the proper function of mitochondria, were cleaved by DENV protease NS2B3. By knockdown and overexpression approaches, these two MFNs showed diverse functions in DENV infection. MFN1 was required for efficient antiviral retinoic acid-inducible gene I–like receptor signaling to suppress DENV replication, while MFN2 participated in maintaining mitochondrial membrane potential (MMP) to attenuate DENV-induced cell death. Cleaving MFN1 and MFN2 by DENV protease suppressed mitochondrial fusion and deteriorated DENV-induced cytopathic effects through subverting interferon production and facilitating MMP disruption. Thus, MFNs participate in host defense against DENV infection by promoting the antiviral response and cell survival, and DENV regulates mitochondrial morphology by cleaving MFNs to manipulate the outcome of infection. Dengue virus (DENV) threatens billions of people worldwide but no licensed vaccine or therapeutics is currently available. Knowing more details of DENV pathogenesis, such as antagonism of host immunity and cell death induction, may provide important clues to fight against this thorny disease. Incoming studies showed that mitochondria are not only energy providers but also regulators of antiviral signaling pathways including interferon innate immunity and cell death induction. Furthermore, the normal functions of mitochondrion can be regulated by its dynamics through constant fusion and fission. In this study, we found that DENV infection caused an impairment of mitochondrial fusion and the two key players, mitofusin-1 and -2, mediating the fusion processes in mitochondrial dynamics, were cleaved by DENV protease. Cleaving mitofusins altered mitochondrial morphology, attenuated antiviral responses, and facilitated cell death upon DENV infection. Thus, DENV could manipulate mitochondrial functions by taking over mitochondrial dynamics to benefit viral replication, and the viral protease of DENV may serve as a virulence factor besides being an enzyme responsible for the processing of viral proteins.
Collapse
Affiliation(s)
- Chia-Yi Yu
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- * E-mail: (CYY); (YLLi)
| | - Jian-Jong Liang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jin-Kun Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yi-Ling Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Bi-Lan Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chan-I Su
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Jheng Huang
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan
| | - Michael M. C. Lai
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- China Medical University, Taichung, Taiwan
| | - Yi-Ling Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- * E-mail: (CYY); (YLLi)
| |
Collapse
|
742
|
Owen DR, Wood DM, Archer JRH, Dargan PI. Phenibut (4-amino-3-phenyl-butyric acid): Availability, prevalence of use, desired effects and acute toxicity. Drug Alcohol Rev 2015; 35:591-6. [PMID: 26693960 DOI: 10.1111/dar.12356] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/19/2015] [Accepted: 09/22/2015] [Indexed: 02/03/2023]
Abstract
INTRODUCTION AND AIMS There has been a global increase in the availability and use of novel psychoactive substances (NPS) over the last decade. Phenibut (β-phenyl-γ-aminobutyric acid) is a GABAB agonist that is used as an NPS. Here, we bring together published scientific and grey information sources to further understand the prevalence of use, desired effects and acute toxicity of phenibut. DESIGN AND METHODS Using European Monitoring Centre for Drugs and Drug Addiction Internet snapshot methodology, we undertook an English language Internet snapshot survey in May 2015 to gather information on the availability and price of phenibut from Internet NPS retailers. To gather information on prevalence of use, desired effects and/or adverse effects, we searched grey literature (online drug discussion forums) and medical literature (PubMed and abstracts from selected International Toxicology conferences). RESULTS We found 48 unrelated Internet suppliers selling phenibut in amounts ranging from 5 g (US$1.60, £1.01/g) to 1000 kg (US$0.23, £0.14/g). Capsules containing 200-500 mg of phenibut were available in packs of between 6 (US$4.45, £2.80/g) and 360 (US$0.43, £0.27/g). According to the grey literature, phenibut is taken for its anxiolytic and euphoric properties, with tolerance and withdrawal syndromes commonly reported adverse effects. Phenibut is taken orally at an average dose of 2.4 g. Case reports in the medical literature feature users who present to emergency departments heavily sedated or experiencing withdrawal. There have been no reported deaths relating to phenibut use. DISCUSSION AND CONCLUSIONS Phenibut is readily available in the UK from Internet sites selling NPS. Its desired and adverse effects appear similar to other gamma-aminobutyric acid receptor agonists. [Owen DR, Wood DM, Archer JRH, Dargan PI. Phenibut (4-amino-3-phenyl-butyric acid): Availability, prevalence of use, desired effects and acute toxicity. Drug Alcohol Rev 2016;35:591-596].
Collapse
Affiliation(s)
- David R Owen
- Division of Brain Sciences, Imperial College London, London, UK
| | - David M Wood
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust and King's Health Partners, London, UK.,Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - John R H Archer
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust and King's Health Partners, London, UK
| | - Paul I Dargan
- Clinical Toxicology, Guy's and St Thomas' NHS Foundation Trust and King's Health Partners, London, UK. .,Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
743
|
Sisler JD, Morgan M, Raje V, Grande RC, Derecka M, Meier J, Cantwell M, Szczepanek K, Korzun WJ, Lesnefsky EJ, Harris TE, Croniger CM, Larner AC. The Signal Transducer and Activator of Transcription 1 (STAT1) Inhibits Mitochondrial Biogenesis in Liver and Fatty Acid Oxidation in Adipocytes. PLoS One 2015; 10:e0144444. [PMID: 26689548 PMCID: PMC4686975 DOI: 10.1371/journal.pone.0144444] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/18/2015] [Indexed: 12/31/2022] Open
Abstract
The transcription factor STAT1 plays a central role in orchestrating responses to various pathogens by activating the transcription of nuclear-encoded genes that mediate the antiviral, the antigrowth, and immune surveillance effects of interferons and other cytokines. In addition to regulating gene expression, we report that STAT1-/- mice display increased energy expenditure and paradoxically decreased release of triglycerides from white adipose tissue (WAT). Liver mitochondria from STAT1-/- mice show both defects in coupling of the electron transport chain (ETC) and increased numbers of mitochondria. Consistent with elevated numbers of mitochondria, STAT1-/- mice expressed increased amounts of PGC1α, a master regulator of mitochondrial biogenesis. STAT1 binds to the PGC1α promoter in fed mice but not in fasted animals, suggesting that STAT1 inhibited transcription of PGC1α. Since STAT1-/- mice utilized more lipids we examined white adipose tissue (WAT) stores. Contrary to expectations, fasted STAT1-/- mice did not lose lipid from WAT. β-adrenergic stimulation of glycerol release from isolated STAT1-/- WAT was decreased, while activation of hormone sensitive lipase was not changed. These findings suggest that STAT1-/- adipose tissue does not release glycerol and that free fatty acids (FFA) re-esterify back to triglycerides, thus maintaining fat mass in fasted STAT1-/- mice.
Collapse
Affiliation(s)
- Jennifer D. Sisler
- Department of Biochemistry and Molecular Biology, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Magdalena Morgan
- Department of Biochemistry and Molecular Biology, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Vidisha Raje
- Department of Biochemistry and Molecular Biology, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Rebecca C. Grande
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, United States of America
| | - Marta Derecka
- Department of Biochemistry and Molecular Biology, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Jeremy Meier
- Department of Biochemistry and Molecular Biology, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Marc Cantwell
- Department of Biochemistry and Molecular Biology, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Karol Szczepanek
- Department of Biochemistry and Molecular Biology, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
- Medical Service, McGuire Department of Veterans Affairs Medical Center, Richmond, VA, 23249, United States of America
| | - William J. Korzun
- Department of Clinical Chemistry, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Edward J. Lesnefsky
- Department of Biochemistry and Molecular Biology, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
- Medical Service, McGuire Department of Veterans Affairs Medical Center, Richmond, VA, 23249, United States of America
- Department of Internal Medicine, Division of Cardiology, and Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
| | - Thurl E. Harris
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, 22908, United States of America
| | - Colleen M. Croniger
- Department of Nutrition, Case Western University School of Medicine, Cleveland, OH, 44106, United States of America
| | - Andrew C. Larner
- Department of Biochemistry and Molecular Biology, and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, United States of America
- * E-mail:
| |
Collapse
|
744
|
Riché F, Gayat E, Barthélémy R, Le Dorze M, Matéo J, Payen D. Reversal of neutrophil-to-lymphocyte count ratio in early versus late death from septic shock. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:439. [PMID: 26671018 PMCID: PMC4699332 DOI: 10.1186/s13054-015-1144-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/19/2015] [Indexed: 12/29/2022]
Abstract
Introduction Septic shock is one of the most frequent causes of admission to the intensive care unit (ICU) and is associated with a poor prognosis. Early and late death in septic shock should be distinguished because they may involve different underlying mechanisms. In various conditions, the neutrophil-to-lymphocyte count ratio (NLCR) has been described as an easily measurable parameter to express injury severity. In the present study, we investigated whether the timing of death was related to a particular NLCR. Methods We conducted a prospective, single-center, observational study that included consecutive septic shock patients. Severity scores, early (before day 5) or late (on or after day 5 of septic shock onset) ICU mortality, and daily leukocyte counts were collected during the ICU stay. We assessed the association between leukocyte counts at admission and their evolution during the first 5 days with early or late death. The association between patient characteristics (including cell counts) and prognosis was estimated using Cox proportional cause-specific hazards models. Results The study included 130 patients who were diagnosed with abdominal (n = 99) or extra-abdominal (n = 31) septic shock. The median (interquartile range) NLCR was 12.5 (6.5–21.2) in survivors and 6.2 (3.7–12.6) in nonsurvivors (p = 0.001). The NLCR at admission was significantly lower in patients who died before day 5 than in survivors (5 [3.5–11.6] versus 12.5 [6.5–21.2], respectively; p = 0.01). From day 1 to day 5, an increased NLCR related to an increase in neutrophil count and a decrease in lymphocyte count was associated with late death (+34.8 % [−8.2 to 305.4] versus −20 % [−57.4 to 45.9]; p = 0.003). Those results were present in patients with abdominal origin sepsis as well as in those with extra-abdominal sepsis, who were analyzed separately. Conclusions In the present study, a reversed NLCR evolution was observed according to the timing of death. Septic shock patients at risk of early death had a low NLCR at admission, although late death was associated with an increased NLCR during the first 5 days. Electronic supplementary material The online version of this article (doi:10.1186/s13054-015-1144-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florence Riché
- Département d'Anesthésie - Réanimation - SMUR, Hôpitaux Universitaires Saint Louis - Lariboisière, Paris, France. .,UFR de Médecine, Université Paris Diderot, Paris, France.
| | - Etienne Gayat
- Département d'Anesthésie - Réanimation - SMUR, Hôpitaux Universitaires Saint Louis - Lariboisière, Paris, France. .,UFR de Médecine, Université Paris Diderot, Paris, France. .,UMR-S 942, INSERM, Paris, France.
| | - Romain Barthélémy
- Département d'Anesthésie - Réanimation - SMUR, Hôpitaux Universitaires Saint Louis - Lariboisière, Paris, France. .,UFR de Médecine, Université Paris Diderot, Paris, France.
| | - Matthieu Le Dorze
- Département d'Anesthésie - Réanimation - SMUR, Hôpitaux Universitaires Saint Louis - Lariboisière, Paris, France. .,UFR de Médecine, Université Paris Diderot, Paris, France.
| | - Joaquim Matéo
- Département d'Anesthésie - Réanimation - SMUR, Hôpitaux Universitaires Saint Louis - Lariboisière, Paris, France. .,UFR de Médecine, Université Paris Diderot, Paris, France.
| | - Didier Payen
- Département d'Anesthésie - Réanimation - SMUR, Hôpitaux Universitaires Saint Louis - Lariboisière, Paris, France. .,UFR de Médecine, Université Paris Diderot, Paris, France. .,UMR-S 1160, INSERM, Paris, France.
| |
Collapse
|
745
|
Namas RA, Mi Q, Namas R, Almahmoud K, Zaaqoq AM, Abdul-Malak O, Azhar N, Day J, Abboud A, Zamora R, Billiar TR, Vodovotz Y. Insights into the Role of Chemokines, Damage-Associated Molecular Patterns, and Lymphocyte-Derived Mediators from Computational Models of Trauma-Induced Inflammation. Antioxid Redox Signal 2015; 23:1370-87. [PMID: 26560096 PMCID: PMC4685502 DOI: 10.1089/ars.2015.6398] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
SIGNIFICANCE Traumatic injury elicits a complex, dynamic, multidimensional inflammatory response that is intertwined with complications such as multiple organ dysfunction and nosocomial infection. The complex interplay between inflammation and physiology in critical illness remains a challenge for translational research, including the extrapolation to human disease from animal models. RECENT ADVANCES Over the past decade, we and others have attempted to decipher the biocomplexity of inflammation in these settings of acute illness, using computational models to improve clinical translation. In silico modeling has been suggested as a computationally based framework for integrating data derived from basic biology experiments as well as preclinical and clinical studies. CRITICAL ISSUES Extensive studies in cells, mice, and human blunt trauma patients have led us to suggest (i) that while an adequate level of inflammation is required for healing post-trauma, inflammation can be harmful when it becomes self-sustaining via a damage-associated molecular pattern/Toll-like receptor-driven feed-forward circuit; (ii) that chemokines play a central regulatory role in driving either self-resolving or self-maintaining inflammation that drives the early activation of both classical innate and more recently recognized lymphoid pathways; and (iii) the presence of multiple thresholds and feedback loops, which could significantly affect the propagation of inflammation across multiple body compartments. FUTURE DIRECTIONS These insights from data-driven models into the primary drivers and interconnected networks of inflammation have been used to generate mechanistic computational models. Together, these models may be used to gain basic insights as well as serving to help define novel biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Rami A. Namas
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qi Mi
- Department of Sports Medicine and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rajaie Namas
- Department of Internal Medicine, Division of Rheumatology, University of Michigan, Ann Arbor, Michigan
| | - Khalid Almahmoud
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Akram M. Zaaqoq
- Department of Critical Care Medicine, University of Pittsburgh, Pennsylvania
| | - Othman Abdul-Malak
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Nabil Azhar
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Judy Day
- Department of Mathematics, University of Tennessee, Knoxville, Tennessee
| | - Andrew Abboud
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Center for Inflammation and Regenerative Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
746
|
Tomar D, Prajapati P, Lavie J, Singh K, Lakshmi S, Bhatelia K, Roy M, Singh R, Bénard G, Singh R. TRIM4; a novel mitochondrial interacting RING E3 ligase, sensitizes the cells to hydrogen peroxide (H2O2) induced cell death. Free Radic Biol Med 2015; 89:1036-48. [PMID: 26524401 DOI: 10.1016/j.freeradbiomed.2015.10.425] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
Abstract
The emerging evidences suggest that posttranslational modification of target protein by ubiquitin (Ub) not only regulate its turnover through ubiquitin proteasome system (UPS) but is a critical regulator of various signaling pathways. During ubiquitination, E3 ligase recognizes the target protein and determines the topology of ubiquitin chains. In current study, we studied the role of TRIM4, a member of the TRIM/RBCC protein family of RING E3 ligase, in regulation of hydrogen peroxide (H2O2) induced cell death. TRIM4 is expressed differentially in human tissues and expressed in most of the analyzed human cancer cell lines. The subcellular localization studies showed that TRIM4 forms distinct cytoplasmic speckle like structures which transiently interacts with mitochondria. The expression of TRIM4 induces mitochondrial aggregation and increased level of mitochondrial ROS in the presence of H2O2. It sensitizes the cells to H2O2 induced death whereas knockdown reversed the effect. TRIM4 potentiates the loss of mitochondrial transmembrane potential and cytochrome c release in the presence of H2O2. The analysis of TRIM4 interacting proteins showed its interaction with peroxiredoxin 1 (PRX1), including other proteins involved in regulation of mitochondrial and redox homeostasis. TRIM4 interaction with PRX1 is critical for the regulation of H2O2 induced cell death. Collectively, the evidences in the current study suggest the role of TRIM4 in regulation of oxidative stress induced cell death.
Collapse
Affiliation(s)
- Dhanendra Tomar
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India; Université de Bordeaux, Laboratoire Maladie Rares: Genetique et metabolisme, Hopital Pellegrin, 33076 Bordeaux, France
| | - Paresh Prajapati
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Julie Lavie
- Université de Bordeaux, Laboratoire Maladie Rares: Genetique et metabolisme, Hopital Pellegrin, 33076 Bordeaux, France
| | - Kritarth Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Sripada Lakshmi
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Khyati Bhatelia
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Milton Roy
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India
| | - Rochika Singh
- Department of Cell Biology, School of Biological Sciences and Biotechnology, Indian Institute of Advanced Research, Gandhinagar, India
| | - Giovanni Bénard
- Université de Bordeaux, Laboratoire Maladie Rares: Genetique et metabolisme, Hopital Pellegrin, 33076 Bordeaux, France.
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara 390002, Gujarat, India.
| |
Collapse
|
747
|
Jang Y, Lee AY, Jeong SH, Park KH, Paik MK, Cho NJ, Kim JE, Cho MH. Chlorpyrifos induces NLRP3 inflammasome and pyroptosis/apoptosis via mitochondrial oxidative stress in human keratinocyte HaCaT cells. Toxicology 2015; 338:37-46. [DOI: 10.1016/j.tox.2015.09.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 01/18/2023]
|
748
|
Jodeiri Farshbaf M, Ghaedi K, Megraw TL, Curtiss J, Shirani Faradonbeh M, Vaziri P, Nasr-Esfahani MH. Does PGC1α/FNDC5/BDNF Elicit the Beneficial Effects of Exercise on Neurodegenerative Disorders? Neuromolecular Med 2015; 18:1-15. [PMID: 26611102 DOI: 10.1007/s12017-015-8370-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/22/2015] [Indexed: 12/20/2022]
Abstract
Neurodegenerative disorders such as Alzheimer's, Parkinson's and Huntington's diseases have high prevalence among the elderly. Many strategies have been established to alleviate the symptoms experienced by affected individuals. Recent studies have shown that exercise helps patients with neurological disorders to regain lost physical abilities. PGC1α/FNDC5/BDNF has emerged recently as a critical pathway for neuroprotection. PGC1α is a highly conserved co-activator of transcription factors that preserves and protects neurons against destruction. PGC1α regulates FNDC5 and its processed and secreted peptide Irisin, which has been proposed to play a critical role in energy expenditure and to promote neural differentiation of mouse embryonic stem cells. FNDC5 may also increase the expression of the neurotrophic factor BDNF, a neuroprotective agent, in the hippocampus. BDNF is secreted from hippocampus, amygdala, cerebral cortex and hypothalamus neurons and initiates intracellular signaling pathways through TrkB receptors. These pathways have positive feedback on CREB activities and lead to enhancement in PGC1α expression in neurons. Therefore, FNDC5 could behave as a key regulator in neuronal survival and development. This review presents recent findings on the PGC1α/FNDC5/BDNF pathway and its role in neuroprotection, and discusses the controversial promise of irisin as a mediator of the positive benefits of exercise.
Collapse
Affiliation(s)
- Mohammad Jodeiri Farshbaf
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Royan Street, Salman Street, Khorasgan, Isfahan, 8165131378, Iran.,Department of Biology, School of Sciences, University of Isfahan, Hezarjerib Street, Azadi Square, Isfahan, 8174673441, Iran.,Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Kamran Ghaedi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Royan Street, Salman Street, Khorasgan, Isfahan, 8165131378, Iran. .,Department of Biology, School of Sciences, University of Isfahan, Hezarjerib Street, Azadi Square, Isfahan, 8174673441, Iran.
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University College of Medicine, West Call Street, Tallahassee, FL, 32306-4300, USA.
| | - Jennifer Curtiss
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Mahsa Shirani Faradonbeh
- Department of Biology, School of Sciences, University of Isfahan, Hezarjerib Street, Azadi Square, Isfahan, 8174673441, Iran
| | - Pooneh Vaziri
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Royan Street, Salman Street, Khorasgan, Isfahan, 8165131378, Iran.
| |
Collapse
|
749
|
Tailor A, Faulkner L, Naisbitt DJ, Park BK. The chemical, genetic and immunological basis of idiosyncratic drug–induced liver injury. Hum Exp Toxicol 2015; 34:1310-7. [DOI: 10.1177/0960327115606529] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Idiosyncratic drug reactions can be extremely severe and are not accounted for by the regular pharmacology of a drug. Thus, the mechanism of idiosyncratic drug–induced liver injury (iDILI), a phenomenon that occurs with many drugs including β-lactams, anti-tuberculosis drugs and non-steroidal anti-inflammatories, has been difficult to determine and remains a pressing issue for patients and drug companies. Evidence has shown that iDILI is multifactorial and multifaceted, which suggests that multiple cellular mechanisms may be involved. However, a common initiating event has been proposed to be the formation of reactive drug metabolites and covalently bound adducts. Although the fate of these metabolites are unclear, recent evidence has shown a possible link between iDILI and the adaptive immune system. This review highlights the role of reactive metabolites, the recent genetic innovations which have provided molecular targets for iDILI, and the current literature which suggests an immunological basis for iDILI.
Collapse
Affiliation(s)
- A Tailor
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, England
| | - L Faulkner
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, England
| | - DJ Naisbitt
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, England
| | - BK Park
- Department of Molecular and Clinical Pharmacology, MRC Centre for Drug Safety Science, University of Liverpool, Sherrington Building, Ashton Street, Liverpool, England
| |
Collapse
|
750
|
Targeting of host organelles by pathogenic bacteria: a sophisticated subversion strategy. Nat Rev Microbiol 2015; 14:5-19. [PMID: 26594043 DOI: 10.1038/nrmicro.2015.1] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many bacterial pathogens have evolved the ability to subvert and exploit host functions in order to enter and replicate in eukaryotic cells. For example, bacteria have developed specific mechanisms to target eukaryotic organelles such as the nucleus, the mitochondria, the endoplasmic reticulum and the Golgi apparatus. In this Review, we highlight the most recent advances in our understanding of the mechanisms that bacterial pathogens use to target these organelles. We also discuss how these strategies allow bacteria to manipulate host functions and to ultimately enable bacterial infection.
Collapse
|