701
|
Abstract
Protein functions require conformational motions. We show here that the dominant conformational motions are slaved by the hydration shell and the bulk solvent. The protein contributes the structure necessary for function. We formulate a model that is based on experiments, insights from the physics of glass-forming liquids, and the concepts of a hierarchically organized energy landscape. To explore the effect of external fluctuations on protein dynamics, we measure the fluctuations in the bulk solvent and the hydration shell with broadband dielectric spectroscopy and compare them with internal fluctuations measured with the Mössbauer effect and neutron scattering. The result is clear. Large-scale protein motions are slaved to the fluctuations in the bulk solvent. They are controlled by the solvent viscosity, and are absent in a solid environment. Internal protein motions are slaved to the beta fluctuations of the hydration shell, are controlled by hydration, and are absent in a dehydrated protein. The model quantitatively predicts the rapid increase of the mean-square displacement above approximately 200 K, shows that the external beta fluctuations determine the temperature- and time-dependence of the passage of carbon monoxide through myoglobin, and explains the nonexponential time dependence of the protein relaxation after photodissociation.
Collapse
|
702
|
Song J. Insight into "insoluble proteins" with pure water. FEBS Lett 2009; 583:953-9. [PMID: 19233178 DOI: 10.1016/j.febslet.2009.02.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 02/14/2009] [Accepted: 02/16/2009] [Indexed: 10/21/2022]
Abstract
Many proteins are not refoldable and also insoluble. Previously no general method was available to solubilize them and consequently their structural properties remained unknown. Surprisingly, we recently discovered that all insoluble proteins in our laboratory, which are highly diverse, can be solubilized in pure water. Structural characterization by CD and NMR led to their classification into three groups, all of which appear trapped in the highly disordered or partially-folded states with a substantial exposure of hydrophobic side chains. In this review, I discuss our results in a wide context and subsequently propose a model to rationalize the discovery. The potential applications are also explored in studying protein folding, design and membrane proteins.
Collapse
Affiliation(s)
- Jianxing Song
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
703
|
Silva JL, Foguel D. Hydration, cavities and volume in protein folding, aggregation and amyloid assembly. Phys Biol 2009; 6:015002. [DOI: 10.1088/1478-3975/6/1/015002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
704
|
Mimicking direct protein–protein and solvent-mediated interactions in the CDP-methylerythritol kinase homodimer: a pharmacophore-directed virtual screening approach. J Mol Model 2009; 15:997-1007. [DOI: 10.1007/s00894-009-0458-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 12/02/2008] [Indexed: 11/25/2022]
|
705
|
Cooper JR, Wordeman L. The diffusive interaction of microtubule binding proteins. Curr Opin Cell Biol 2009; 21:68-73. [PMID: 19185482 DOI: 10.1016/j.ceb.2009.01.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 01/05/2009] [Accepted: 01/06/2009] [Indexed: 11/18/2022]
Abstract
Microtubule-based motility is often thought of as specifically referring to the directed stepping of microtubule-based motors such as kinesin or dynein. However, microtubule lattice diffusion (also known as diffusional motility) provides a second mode of transport that is shared by a much broader class of microtubule binding proteins. Microtubule lattice diffusion offers distinct advantages as a transport mechanism including speed, bidirectional microtubule end targeting, and no requirement for direct chemical energy (i.e. ATP). It remains to be seen whether a universal binding mechanism for this interaction will be identified but electrostatic interactions appear to play a significant role. In the meantime, the well-studied subject of DNA binding proteins that diffuse along the DNA backbone provides an insightful analog for understanding the nature of microtubule-based diffusional motility.
Collapse
Affiliation(s)
- Jeremy R Cooper
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | |
Collapse
|
706
|
Mitra L, Rouget JB, Garcia-Moreno B, Royer CA, Winter R. Towards a quantitative understanding of protein hydration and volumetric properties. Chemphyschem 2009; 9:2715-21. [PMID: 18814170 DOI: 10.1002/cphc.200800405] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Herein, we probe by pressure perturbation calorimetry (PPC) the coefficient of thermal expansion, the volumetric and the hydration properties of variants of a hyperstable variant of staphylococcal nuclease (SNase), Delta+PHS. The temperature-dependent volumetric properties of the folded and unfolded states of the wild-type protein are calculated with previously published data. The present PPC results are used to interpret the volume diagram and expansivity at a molecular level. We conclude that the expansivity of the unfolded state is, to a first approximation, temperature independent, while that of the folded state decreases with increasing temperature. Our data suggest that at low temperature the defining contribution to DeltaV comes mainly from excluded volume differences and DeltaV for unfolding is negative. In contrast, at high temperatures, differential solvation due to the increased exposed surface area of the unfolded state and, in particular, its larger thermal volume linked to the increased conformational dynamics of the unfolded state ensemble takes over and DeltaV for unfolding eventually becomes positive.
Collapse
Affiliation(s)
- Lally Mitra
- Dortmund University of Technology, Department of Chemistry, Physical Chemistry I-Biophysical Chemistry, Otto-Hahn Str. 6, 44227 Dortmund, Germany
| | | | | | | | | |
Collapse
|
707
|
An Atomistic View to the Gas Phase Proteome. Structure 2009; 17:88-95. [DOI: 10.1016/j.str.2008.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 10/14/2008] [Accepted: 11/06/2008] [Indexed: 11/22/2022]
|
708
|
Protein Sliding along DNA: Dynamics and Structural Characterization. J Mol Biol 2009; 385:1087-97. [DOI: 10.1016/j.jmb.2008.11.016] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 10/07/2008] [Accepted: 11/11/2008] [Indexed: 10/21/2022]
|
709
|
Alfonso I, Bolte M, Bru M, Burguete MI, Luis SV. Crystal structures of the HCl salts of pseudopeptidic macrocycles display “knobs into holes” hydrophobic interactions between aliphatic side chains. CrystEngComm 2009. [DOI: 10.1039/b821772f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
710
|
Fonari MS, Ganin EV, Chumakov YM, Botoshansky MM, Suwinska K, Basok SS, Simonov YA. Conformational mobility of 7,16-bis(4-methoxybenzyl)-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane in molecular and proton-transfer complexes: X-ray and DFT studies. NEW J CHEM 2009. [DOI: 10.1039/b902953b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
711
|
Lombardo TG, Giovambattista N, Debenedetti PG. Structural and mechanical properties of glassy water in nanoscale confinement. Faraday Discuss 2009; 141:359-76; discussion 443-65. [DOI: 10.1039/b805361h] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
712
|
Tychinsky VP, Kretushev AV, Klemyashov IV, Vyshenskaya TV, Filippova NA, Raikhlin NT, Shtil AA. Quantitative real-time analysis of nucleolar stress by coherent phase microscopy. JOURNAL OF BIOMEDICAL OPTICS 2008; 13:064032. [PMID: 19123678 DOI: 10.1117/1.3042241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We develop a method of coherent phase microscopy (CPM) for direct visualization of nonfixed, nonstained mammalian cells (both cultured cells and freshly isolated tumor biopsies) followed by computer-assisted data analysis. The major purpose of CPM is to evaluate the refractive properties of optically dense intracellular structures such as the nucleus and the nucleoli. In particular, we focus on quantitative real-time analysis of the nucleolar dynamics using phase thickness as an equivalent of optical path difference for optically nonhomogenous biological objects. Pharmacological inhibition of gene transcription leads to a dramatic decrease of the phase thickness of the nucleoli within the initial minutes of cell exposure. Furthermore, the acute depletion of intracellular ATP pool, depolymerization of microtubules and inhibition of DNA replication resulted in a rapid decrease of the nucleolar phase thickness. These optical effects were paralleled by segregation of nucleolar components as documented by electron microscopy. Thus, CPM detects early changes of nucleolar dynamics, in particular, the nucleolar segregation as part of general cellular response to cytotoxic stress, regardless of whether the nucleolus is or is not the primary target of the toxin. CPM is applicable for monitoring and quantitative analysis of the "nucleolar stress" in living mammalian cells.
Collapse
Affiliation(s)
- Vladimir P Tychinsky
- Moscow Institute of Radioengineering, Electronics and Automation, 78 Vernadsky Avenue Moscow 119454, Russia.
| | | | | | | | | | | | | |
Collapse
|
713
|
Scott JN, Nucci NV, Vanderkooi JM. Changes in water structure induced by the guanidinium cation and implications for protein denaturation. J Phys Chem A 2008; 112:10939-48. [PMID: 18839935 PMCID: PMC2646201 DOI: 10.1021/jp8058239] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of the guanidinium cation on the hydrogen bonding strength of water was analyzed using temperature-excursion Fourier transform infrared spectra of the OH stretching vibration in 5% H 2O/95% D 2O solutions containing a range of different guanidine-HCl and guanidine-HBr concentrations. Our findings indicate that the guanidinium cation causes the water H-bonds in solution to become more linear than those found in bulk water, and that it also inhibits the response of the H-bond network to increased temperature. Quantum chemical calculations also reveal that guanidinium affects both the charge distribution on water molecules directly H-bonded to it as well as the OH stretch frequency of H-bonds in which that water molecule is the donor. The implications of our findings to hydrophobic solvation and protein denaturation are discussed.
Collapse
Affiliation(s)
- J Nathan Scott
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovak Republic.
| | | | | |
Collapse
|
714
|
Affiliation(s)
- Damien Laage
- Chemistry Department, Ecole Normale Supérieure, 24 rue Lhomond 75005 Paris, France, CNRS UMR Pasteur, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215
| | - James T. Hynes
- Chemistry Department, Ecole Normale Supérieure, 24 rue Lhomond 75005 Paris, France, CNRS UMR Pasteur, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215
| |
Collapse
|
715
|
Prentiss MC, Wales DJ, Wolynes PG. Protein structure prediction using basin-hopping. J Chem Phys 2008; 128:225106. [PMID: 18554063 DOI: 10.1063/1.2929833] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Associative memory Hamiltonian structure prediction potentials are not overly rugged, thereby suggesting their landscapes are like those of actual proteins. In the present contribution we show how basin-hopping global optimization can identify low-lying minima for the corresponding mildly frustrated energy landscapes. For small systems the basin-hopping algorithm succeeds in locating both lower minima and conformations closer to the experimental structure than does molecular dynamics with simulated annealing. For large systems the efficiency of basin-hopping decreases for our initial implementation, where the steps consist of random perturbations to the Cartesian coordinates. We implemented umbrella sampling using basin-hopping to further confirm when the global minima are reached. We have also improved the energy surface by employing bioinformatic techniques for reducing the roughness or variance of the energy surface. Finally, the basin-hopping calculations have guided improvements in the excluded volume of the Hamiltonian, producing better structures. These results suggest a novel and transferable optimization scheme for future energy function development.
Collapse
Affiliation(s)
- Michael C Prentiss
- Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
716
|
Badasyan A, Liu Z, Chan HS. Probing possible downhill folding: native contact topology likely places a significant constraint on the folding cooperativity of proteins with approximately 40 residues. J Mol Biol 2008; 384:512-30. [PMID: 18823994 DOI: 10.1016/j.jmb.2008.09.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 09/06/2008] [Accepted: 09/10/2008] [Indexed: 10/21/2022]
Abstract
Experiments point to appreciable variations in folding cooperativity among natural proteins with approximately 40 residues, indicating that the behaviors of these proteins are valuable for delineating the contributing factors to cooperative folding. To explore the role of native topology in a protein's propensity to fold cooperatively and how native topology might constrain the degree of cooperativity achievable by a given set of physical interactions, we compared folding/unfolding kinetics simulated using three classes of native-centric C(alpha) chain models with different interaction schemes. The approach was applied to two homologous 45-residue fragments from the peripheral subunit-binding domain family and a 39-residue fragment of the N-terminal domain of ribosomal protein L9. Free-energy profiles as functions of native contact number were computed to assess the heights of thermodynamic barriers to folding. In addition, chevron plots of folding/unfolding rates were constructed as functions of native stability to facilitate comparison with available experimental data. Although common Gō-like models with pairwise Lennard-Jones-type interactions generally fold less cooperatively than real proteins, the rank ordering of cooperativity predicted by these models is consistent with experiment for the proteins investigated, showing increasing folding cooperativity with increasing nonlocality of a protein's native contacts. Models that account for water-expulsion (desolvation) barriers and models with many-body (nonadditive) interactions generally entail higher degrees of folding cooperativity indicated by more linear model chevron plots, but the rank ordering of cooperativity remains unchanged. A robust, experimentally valid rank ordering of model folding cooperativity independent of the multiple native-centric interaction schemes tested here argues that native topology places significant constraints on how cooperatively a protein can fold.
Collapse
Affiliation(s)
- Artem Badasyan
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | |
Collapse
|
717
|
Hydration dynamics in a partially denatured ensemble of the globular protein human alpha-lactalbumin investigated with molecular dynamics simulations. Biophys J 2008; 95:5257-67. [PMID: 18775960 DOI: 10.1529/biophysj.108.136531] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Atomistic molecular dynamics simulations are used to probe changes in the nature and subnanosecond dynamical behavior of solvation waters that accompany partial denaturation of the globular protein, human alpha-lactalbumin. A simulated ensemble of subcompact conformers, similar to the molten globule state of human alpha-lactalbumin, demonstrates a marginal increase in the amount of surface solvation relative to the native state. This increase is accompanied by subtle but distinct enhancement in surface water dynamics, less favorable protein-water interactions, and a marginal decrease in the anomalous behavior of solvation water dynamics. The extent of solvent influx is not proportional to the increased surface area, and the partially denatured conformers are less uniformly solvated compared to their native counterpart. The observed solvation in partially denatured conformers is lesser in extent compared to earlier experimental estimates in molten globule states, and is consistent with more recent descriptions based on nuclear magnetic relaxation dispersion studies.
Collapse
|
718
|
|
719
|
Dehydration of main-chain amides in the final folding step of single-chain monellin revealed by time-resolved infrared spectroscopy. Proc Natl Acad Sci U S A 2008; 105:13391-6. [PMID: 18757727 DOI: 10.1073/pnas.0801316105] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kinetic IR spectroscopy was used to reveal beta-sheet formation and water expulsion in the folding of single-chain monellin (SMN) composed of a five-stranded beta-sheet and an alpha-helix. The time-resolved IR spectra between 100 mus and 10 s were analyzed based on two consecutive intermediates, I(1) and I(2), appearing within 100 mus and with a time constant of approximately 100 ms, respectively. The initial unfolded state showed broad amide I' corresponded to a fluctuating conformation. In contrast, I(1) possessed a feature at 1,636 cm(-1) for solvated helix and weak features assignable to turns, demonstrating the rapid formation of helix and turns. I(2) possessed a line for solvated helix at 1,637 cm(-1) and major and minor lines for beta-sheet at 1,625 and 1,680 cm(-1), respectively. The splitting of the major and minor lines is smaller than that of the native state, implying an incomplete formation of the beta-sheet. Furthermore, both major and minor lines demonstrated a low-frequency shift compared to those of the native state, which was interpreted to be caused by hydration of the C O group in the beta-sheet. Together with the identification of solvated helix, the core domain of I(2) was interpreted as being hydrated. Finally, slow conversion of the water-penetrated core of I(2) to the dehydrated core of the native state was observed. We propose that both the expulsion of water, hydrogen-bonded to main-chain amides, and the completion of the secondary structure formation contribute to the energetic barrier of the rate-limiting step in SMN folding.
Collapse
|
720
|
Liu S, Gibb BC. High-definition self-assemblies driven by the hydrophobic effect: synthesis and properties of a supramolecular nanocapsule. Chem Commun (Camb) 2008:3709-16. [PMID: 18685753 PMCID: PMC2614893 DOI: 10.1039/b805446k] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
High definition self-assemblies, those that possess order at the molecular level, are most commonly made from subunits possessing metals and metal coordination sites, or groups capable of partaking in hydrogen bonding. In other words, enthalpy is the driving force behind the free energy of assembly. The hydrophobic effect engenders the possibility of (nominally) relying not on enthalpy but entropy to drive assembly. Towards this idea, we describe how template molecules can trigger the dimerization of a cavitand in aqueous solution, and in doing so are encapsulated within the resulting capsule. Although not held together by (enthalpically) strong and directional non-covalent forces, these capsules possess considerable thermodynamic and kinetic stability. As a result, they display unusual and even unique properties. We discuss some of these, including the use of the capsule as a nanoscale reaction chamber and how they can bring about the separation of hydrocarbon gases.
Collapse
Affiliation(s)
- Simin Liu
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
| | | |
Collapse
|
721
|
Pereverzev YV, Prezhdo OV, Sokurenko EV. Anomalously Increased Lifetimes of Biological Complexes at Zero Force Due to the Protein−Water Interface. J Phys Chem B 2008; 112:11440-5. [DOI: 10.1021/jp803819a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Yuriy V. Pereverzev
- Departments of Chemistry and Microbiology; University of Washington, Seattle, Washington 98195
| | - Oleg V. Prezhdo
- Departments of Chemistry and Microbiology; University of Washington, Seattle, Washington 98195
| | - Evgeni V. Sokurenko
- Departments of Chemistry and Microbiology; University of Washington, Seattle, Washington 98195
| |
Collapse
|
722
|
Ho CE, Chieng CC, Chen MH, Tseng FG. Micro-Stamp Systems for Batch-Filling, Parallel-Spotting, and Continuously Printing of Multiple Biosample Fluids. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/j.jala.2008.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Microarrays simultaneously screen tens to thousands of biosamples to observe biochemical activities in protein—protein, protein—nucleic acid and small molecule interactions. In this high throughput analysis, rapid and reliable printing technologies are highly desired with less deterioration on biosamples during process. This study introduces several micro-contact printing systems to print out multiple proteins simultaneously, uniformly and continuously with batch-filling capability for rapid microarray formation, with very gentle process for biosample preservation. This printing system consists of two chips, including a micro-filling chip and a micro-stamp chip, for rapid/accurate registration and batch operation. The micro-filling chip can simultaneously transfer numerous protein solutions into the micro-stamp chip in seconds by capillary force without cross-contamination, while preserving the functionality of proteins. Different proteins can be dispensed into the corresponding channels and driven into the tips of the micro stamps. The micro stamp can be then brought to contact with the substrate to produce bio-fluid spot arrays. These devices have a potential to be expanded to a high throughput system for simultaneously printing hundreds of bio-fluid spots for hundreds times in minutes, and to form dense bio-microarrays for disease diagnosis or drug screening.
Collapse
Affiliation(s)
- Cheng-En Ho
- National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| | | | - Ming-Hung Chen
- Nano Engineering and Micro Systems Institute, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| | - Fan-Gang Tseng
- National Tsing Hua University, Hsinchu, Taiwan, R.O.C
- Nano Engineering and Micro Systems Institute, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
| |
Collapse
|
723
|
Hierarchical organization of eglin c native state dynamics is shaped by competing direct and water-mediated interactions. Proc Natl Acad Sci U S A 2008; 105:10659-64. [PMID: 18664578 DOI: 10.1073/pnas.0801850105] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The native state dynamics of the small globular serine protease inhibitor eglin c has been studied in a long 336 ns computer simulation in explicit solvent. We have elucidated the energy landscape explored during the course of the simulation by using Principal Component Analysis. We observe several basins in the energy landscape in which the system lingers for extended periods. Through an iterative process we have generated a tree-like hierarchy of states describing the observed dynamics. We observe a range of divergent contact types including salt bridges, hydrogen bonds, hydrophilic interactions, and hydrophobic interactions, pointing to the frustration between competing interactions. Additionally, we find evidence of competing water-mediated interactions. Divergence in water-mediated interactions may be found to supplement existing direct contacts, but they are also found to be independent of such changes. Water-mediated contacts facilitate interactions between residues of like charge as observed in the simulation. Our results provide insight into the complexity of the dynamic native state of a globular protein and directly probe the residual frustration in the native state.
Collapse
|
724
|
Abstract
The structure and dynamics of water inside a water-soluble, bowl-shaped cavitand molecule with a hydrophobic interior are studied using molecular dynamics computer simulations. The simulations find that the number of inside water molecules is about 4.5, but it fluctuates from being completely empty to full on a time scale of tens of nanoseconds. The transition from empty to full is energetically favorable and entropically unfavorable. The water molecules inside have fewer hydrogen bonds than the bulk and in general weaker interactions; the lower energy results from the nearest-neighbor interactions with the cavitand atoms and the water molecules at the entrance of the cavitand, interactions that are lost upon dewetting. An analysis of translational and rotational motion suggests that the lower entropy of the inside water molecules is due to decreased translational entropy, which outweighs an increased orientational entropy. The cavitand molecule acts as a host binding hydrophobic guests, and dewetting can be induced by the presence of a hydrophobic guest molecule about 3 A above the entrance. At this position, the guest displaces the water molecules which stabilize the inside water molecules and the empty cavitand becomes more stable than the full.
Collapse
Affiliation(s)
- Jeffrey Ewell
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
| | | | | |
Collapse
|
725
|
Abstract
We describe the formation of protein-DNA contacts in the two-state route for DNA sequence recognition by a transcriptional regulator. Surprisingly, direct sequence readout establishes in the transition state and constitutes the bottleneck of complex formation. Although a few nonspecific ionic interactions are formed at this early stage, they mainly play a stabilizing role in the final consolidated complex. The interface is fairly plastic in the transition state, likely because of a high level of hydration. The overall picture of this two-state route largely agrees with a smooth energy landscape for binding that speeds up DNA recognition. This "direct" two-state route differs from the parallel multistep pathway described for this system, which involves nonspecific contacts and at least two intermediate species that must involve substantial conformational rearrangement in either or both macromolecules.
Collapse
|
726
|
Jana B, Pal S, Bagchi B. Hydrogen Bond Breaking Mechanism and Water Reorientational Dynamics in the Hydration Layer of Lysozyme. J Phys Chem B 2008; 112:9112-7. [DOI: 10.1021/jp800998w] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Biman Jana
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Subrata Pal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Biman Bagchi
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India
| |
Collapse
|
727
|
Rodríguez-Almazán C, Arreola R, Rodríguez-Larrea D, Aguirre-López B, de Gómez-Puyou MT, Pérez-Montfort R, Costas M, Gómez-Puyou A, Torres-Larios A. Structural basis of human triosephosphate isomerase deficiency: mutation E104D is related to alterations of a conserved water network at the dimer interface. J Biol Chem 2008; 283:23254-63. [PMID: 18562316 DOI: 10.1074/jbc.m802145200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human triosephosphate isomerase deficiency is a rare autosomal disease that causes premature death of homozygous individuals. The most frequent mutation that leads to this illness is in position 104, which involves a conservative change of a Glu for Asp. Despite the extensive work that has been carried out on the E104D mutant enzyme in hemolysates and whole cells, the molecular basis of this disease is poorly understood. Here, we show that the purified, recombinant mutant enzyme E104D, while exhibiting normal catalytic activity, shows impairments in the formation of active dimers and low thermostability and monomerizes under conditions in which the wild type retains its dimeric form. The crystal structure of the E104D mutant at 1.85 A resolution showed that its global structure was similar to that of the wild type; however, residue 104 is part of a conserved cluster of 10 residues, five from each subunit. An analysis of the available high resolution structures of TIM dimers revealed that this cluster forms a cavity that possesses an elaborate conserved network of buried water molecules that bridge the two subunits. In the E104D mutant, a disruption of contacts of the amino acid side chains in the conserved cluster leads to a perturbation of the water network in which the water-protein and water-water interactions that join the two monomers are significantly weakened and diminished. Thus, the disruption of this solvent system would stand as the underlying cause of the deficiency.
Collapse
Affiliation(s)
- Claudia Rodríguez-Almazán
- Departamento de Bioquímica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-243, Mexico City 04510, México
| | | | | | | | | | | | | | | | | |
Collapse
|
728
|
Molecular processes in biological thermosensation. JOURNAL OF BIOPHYSICS 2008; 2008:602870. [PMID: 20130806 PMCID: PMC2814129 DOI: 10.1155/2008/602870] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 04/16/2008] [Indexed: 12/30/2022]
Abstract
Since thermal gradients are almost everywhere, thermosensation could represent one of the oldest sensory transduction processes that evolved in organisms. There are many examples of temperature changes affecting the physiology of living cells. Almost all classes of biological macromolecules in a cell (nucleic acids, lipids, proteins) can present a target of the temperature-related stimuli. This review discusses some features of different classes of temperature-sensing molecules as well as molecular and biological processes that involve thermosensation. Biochemical, structural, and thermodynamic approaches are applied in the paper to organize the existing knowledge on molecular mechanisms of thermosensation. Special attention is paid to the fact that thermosensitive function cannot be assigned to any particular functional group or spatial structure but is rather of universal nature. For instance, the complex of thermodynamic, structural, and functional features of hemoglobin family proteins suggests their possible accessory role as “molecular thermometers”.
Collapse
|
729
|
Rasaiah JC, Garde S, Hummer G. Water in Nonpolar Confinement: From Nanotubes to Proteins and Beyond. Annu Rev Phys Chem 2008; 59:713-40. [DOI: 10.1146/annurev.physchem.59.032607.093815] [Citation(s) in RCA: 586] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Shekhar Garde
- The Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180;
| | - Gerhard Hummer
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520;
| |
Collapse
|
730
|
Abstract
Water-biomolecule interactions have been extensively studied in dilute solutions, crystals, and rehydrated powders, but none of these model systems may capture the behavior of water in the highly organized intracellular milieu. Because of the experimental difficulty of selectively probing the structure and dynamics of water in intact cells, radically different views about the properties of cell water have proliferated. To resolve this long-standing controversy, we have measured the (2)H spin relaxation rate in living bacteria cultured in D(2)O. The relaxation data, acquired in a wide magnetic field range (0.2 mT-12 T) and analyzed in a model-independent way, reveal water dynamics on a wide range of time scales. Contradicting the view that a substantial fraction of cell water is strongly perturbed, we find that approximately 85% of cell water in Escherichia coli and in the extreme halophile Haloarcula marismortui has bulk-like dynamics. The remaining approximately 15% of cell water interacts directly with biomolecular surfaces and is motionally retarded by a factor 15 +/- 3 on average, corresponding to a rotational correlation time of 27 ps. This dynamic perturbation is three times larger than for small monomeric proteins in solution, a difference we attribute to secluded surface hydration sites in supramolecular assemblies. The relaxation data also show that a small fraction ( approximately 0.1%) of cell water exchanges from buried hydration sites on the microsecond time scale, consistent with the current understanding of protein hydration in solutions and crystals.
Collapse
|
731
|
Nucci NV, Scott JN, Vanderkooi JM. Coupling of complex aromatic ring vibrations to solvent through hydrogen bonds: effect of varied on-ring and off-ring hydrogen-bonding substitutions. J Phys Chem B 2008; 112:4022-35. [PMID: 18331017 DOI: 10.1021/jp0758770] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we examine the coupling of a complex ring vibration to solvent through hydrogen-bonding interactions. We compare phenylalanine, tyrosine, l-dopa, dopamine, norepinephrine, epinephrine, and hydroxyl-dl-dopa, a group of physiologically important small molecules that vary by single differences in H-bonding substitution. By examination of the temperature dependence of infrared absorptions of these molecules, we show that complex, many-atom vibrations can be coupled to solvent through hydrogen bonds and that the extent of that coupling is dependent on the degree of both on- and off-ring H-bonding substitution. The coupling is seen as a temperature-dependent frequency shift in infrared spectra, but the determination of the physical origin of that shift is based on additional data from temperature-dependent optical experiments and ab initio calculations. The optical experiments show that these small molecules are most sensitive to their immediate H-bonding environment rather than to bulk solvent properties. Ab initio calculations demonstrate H-bond-mediated vibrational coupling for the system of interest and also show that the overall small molecule solvent dependence is determined by a complex interplay of specific interactions and bulk solvation characteristics. Our findings indicate that a full understanding of biomolecule vibrational properties must include consideration of explicit hydrogen-bonding interactions with the surrounding microenvironment.
Collapse
Affiliation(s)
- Nathaniel V Nucci
- Department of Biochemistry and Biophysics, University of Pennsylvania, 422 Curie Boulevard, Philadelphia, Pennsylvania 19104, USA.
| | | | | |
Collapse
|
732
|
Smolin N, Daggett V. Formation of Ice-like Water Structure on the Surface of an Antifreeze Protein. J Phys Chem B 2008; 112:6193-202. [DOI: 10.1021/jp710546e] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nikolai Smolin
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5013
| | - Valerie Daggett
- Department of Bioengineering, University of Washington, Seattle, Washington 98195-5013
| |
Collapse
|
733
|
Dougan L, Feng G, Lu H, Fernandez JM. Solvent molecules bridge the mechanical unfolding transition state of a protein. Proc Natl Acad Sci U S A 2008; 105:3185-90. [PMID: 18305176 PMCID: PMC2265161 DOI: 10.1073/pnas.0706075105] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Indexed: 11/18/2022] Open
Abstract
We demonstrate a combination of single molecule force spectroscopy and solvent substitution that captures the presence of solvent molecules in the transition state structure. We measure the effect of solvent substitution on the rate of unfolding of the I27 titin module, placed under a constant stretching force. From the force dependency of the unfolding rate, we determine Deltax(u), the distance to the transition state. Unfolding the I27 protein in water gives a Deltax(u) = 2.5 A, a distance that compares well to the size of a water molecule. Although the height of the activation energy barrier to unfolding is greatly increased in both glycerol and deuterium oxide solutions, Deltax(u) depends on the size of the solvent molecules. Upon replacement of water by increasing amounts of the larger glycerol molecules, Deltax(u) increases rapidly and plateaus at its maximum value of 4.4 A. In contrast, replacement of water by the similarly sized deuterium oxide does not change the value of Deltax(u). From these results we estimate that six to eight water molecules form part of the unfolding transition state structure of the I27 protein, and that the presence of just one glycerol molecule in the transition state is enough to lengthen Deltax(u). Our results show that solvent composition is important for the mechanical function of proteins. Furthermore, given that solvent composition is actively regulated in vivo, it may represent an important modulatory pathway for the regulation of tissue elasticity and other important functions in cellular mechanics.
Collapse
Affiliation(s)
- Lorna Dougan
- *Department of Biological Sciences, Columbia University, New York, NY 10027; and
| | - Gang Feng
- Department of Bioengineering, University of Illinois, Chicago, IL 60607
| | - Hui Lu
- Department of Bioengineering, University of Illinois, Chicago, IL 60607
| | - Julio M. Fernandez
- *Department of Biological Sciences, Columbia University, New York, NY 10027; and
| |
Collapse
|
734
|
Huang HC, Jupiter D, Qiu M, Briggs JM, VanBuren V. Cluster analysis of hydration waters around the active sites of bacterial alanine racemase using a 2-ns MD simulation. Biopolymers 2008; 89:210-9. [DOI: 10.1002/bip.20893] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
735
|
Horinek D, Serr A, Bonthuis DJ, Boström M, Kunz W, Netz RR. Molecular hydrophobic attraction and ion-specific effects studied by molecular dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2008; 24:1271-1283. [PMID: 18220430 DOI: 10.1021/la702485r] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Much is written about "hydrophobic forces" that act between solvated molecules and nonpolar interfaces, but it is not always clear what causes these forces and whether they should be labeled as hydrophobic. Hydrophobic effects roughly fall in two classes, those that are influenced by the addition of salt and those that are not. Bubble adsorption and cavitation effects plague experiments and simulations of interacting extended hydrophobic surfaces and lead to a strong, almost irreversible attraction that has little or no dependence on salt type and concentration. In this paper, we are concerned with hydrophobic interactions between single molecules and extended surfaces and try to elucidate the relation to electrostatic and ion-specific effects. For these nanoscopic hydrophobic forces, bubbles and cavitation effects play only a minor role and even if present cause no equilibration problems. In specific, we study the forced desorption of peptides from nonpolar interfaces by means of molecular dynamics simulations and determine the adsorption potential of mean force. The simulation results for peptides compare well with corresponding AFM experiments. An analysis of the various contributions to the total peptide-surface interactions shows that structural effects of water as well as van der Waals interactions between surface and peptide are important. Hofmeister ion effects are studied by separately determining the effective interaction of various ions with hydrophobic surfaces. An extension of the Poisson-Boltzmann equation that includes the ion-specific potential of mean force yields surface potentials, interfacial tensions, and effective interactions between hydrophobic surfaces. There, we also analyze the energetic contributions to the potential of mean force and find that the most important factor determining ion-specific adsorption at hydrophobic surfaces can best be described as surface-modified ion hydration.
Collapse
Affiliation(s)
- Dominik Horinek
- Physik Department, Technische Universität München, Garching, Germany
| | | | | | | | | | | |
Collapse
|
736
|
Hydrophobicity of protein surfaces: Separating geometry from chemistry. Proc Natl Acad Sci U S A 2008; 105:2274-9. [PMID: 18268339 DOI: 10.1073/pnas.0708088105] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To better understand the role of surface chemical heterogeneity in natural nanoscale hydration, we study via molecular dynamics simulation the structure and thermodynamics of water confined between two protein-like surfaces. Each surface is constructed to have interactions with water corresponding to those of the putative hydrophobic surface of a melittin dimer, but is flattened rather than having its native "cupped" configuration. Furthermore, peripheral charged groups are removed. Thus, the role of a rough surface topography is removed, and results can be productively compared with those previously observed for idealized, atomically smooth hydrophilic and hydrophobic flat surfaces. The results indicate that the protein surface is less hydrophobic than the idealized counterpart. The density and compressibility of water adjacent to a melittin dimer is intermediate between that observed adjacent to idealized hydrophobic or hydrophilic surfaces. We find that solvent evacuation of the hydrophobic gap (cavitation) between dimers is observed when the gap has closed to sterically permit a single water layer. This cavitation occurs at smaller pressures and separations than in the case of idealized hydrophobic flat surfaces. The vapor phase between the melittin dimers occupies a much smaller lateral region than in the case of the idealized surfaces; cavitation is localized in a narrow central region between the dimers, where an apolar amino acid is located. When that amino acid is replaced by a polar residue, cavitation is no longer observed.
Collapse
|
737
|
Michaux C, Wouters J, Perpète EA, Jacquemin D. Microhydration of Protonated Glycine: An ab initio Family Tree. J Phys Chem B 2008; 112:2430-8. [DOI: 10.1021/jp710034r] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
738
|
Restricted mobility of conserved residues in protein-protein interfaces in molecular simulations. Biophys J 2008; 94:3475-85. [PMID: 18227135 DOI: 10.1529/biophysj.107.114835] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Conserved residues in protein-protein interfaces correlate with residue hot-spots. To obtain insight into their roles, we have studied their mobility. We have performed 39 explicit solvent simulations of 15 complexes and their monomers, with the interfaces varying in size, shape, and function. The dynamic behavior of conserved residues in unbound monomers illustrates significantly lower flexibility as compared to their environment, suggesting that already before binding they are constrained in a boundlike configuration. To understand this behavior, we have analyzed the inter- and intrachain hydrogen-bond residence-time in the interfaces. We find that conserved residues are not involved significantly in hydrogen bonds across the interface as compared to nonconserved. However, the monomer simulations reveal that conserved residues contribute dominantly to hydrogen-bond formation before binding. Packing of conserved residues across the trajectories is significantly higher before and after the binding, rationalizing their lower mobility. Backbone torsional angle distributions show that conserved residues assume restricted regions of space and the most visited conformations in the bound and unbound trajectories are similar, suggesting that conserved residues are preorganized. Combined with previous studies, we conclude that conserved residues, hot spots, anchor, and interface-buried residues may be similar residues, fulfilling similar roles.
Collapse
|
739
|
Kim HM, Han KY, Park J, Kim GS, Kim SK. Solvent migration from the C- to the N-terminus of amino acid in photoionization of phenylglycine-water complex. J Chem Phys 2008; 128:041104. [DOI: 10.1063/1.2835351] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
740
|
Porter D, Vollrath F. The role of kinetics of and amide bonding in protein stability. SOFT MATTER 2008; 4:328-336. [PMID: 32907247 DOI: 10.1039/b713972a] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The physical properties and function of biological tissues depend critically upon the hydration of proteins; in particular, their thermal, mechanical, and chemical stability. Here, we show quantitatively how thermal, mechanical, and chemical conditions can denature a protein. An elastic instability criterion is applied to localised ab initio quantum mechanics simulations of water and amide bond energies to predict both denaturing conditions and the effect of water on the glass transition temperature of a protein. The kinetics of bond instability for denaturation over a wide range of time scales is quantified by an expression for a second order phase change using parameters derived directly from the quantum simulations. We also show how the zero point energy of vibrations in a potential energy well of intermolecular bonding can differentiate between crystal and amorphous states of matter and their corresponding transition temperatures; this is illustrated by calculating the crystal melt and glass transition temperatures of water.
Collapse
Affiliation(s)
- D Porter
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UKOX1 3PS.
| | - F Vollrath
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UKOX1 3PS.
| |
Collapse
|
741
|
Abstract
Protein folding and conformational changes are influenced by protein-water interactions and, as such, the energetics of protein function are necessarily linked to water activity. Here, we have chosen the helix-coil transition in poly(glutamic acid) as a model system to investigate the importance of hydration to protein structure by using the osmotic stress method combined with circular dichroism spectroscopy. Osmotic stress is applied using poly(ethylene glycol), molecular weight of 400, as the osmolyte. The energetics of the helix-coil transition under applied osmotic stress allows us to calculate the change in the number of preferentially included water molecules per residue accompanying the thermally induced conformational change. We find that osmotic stress raises the helix-coil transition temperature by favoring the more compact alpha-helical state over the more hydrated coil state. The contribution of other forces to alpha-helix stability also are explored by varying pH and studying a random copolymer, poly(glutamic acid-r-alanine). In this article, we clearly show the influence of osmotic pressure on the peptide folding equilibrium. Our results suggest that to study protein folding in vitro, the osmotic pressure, in addition to pH and salt concentration, should be controlled to better approximate the crowded environment inside cells.
Collapse
|
742
|
Gavrilov-Yusim N, Hahiashvili E, Tashker M, Yavelsky V, Karnieli O, Lobel L. Enhancement of hybridoma formation, clonability and cell proliferation in a nanoparticle-doped aqueous environment. BMC Biotechnol 2008; 8:3. [PMID: 18194567 PMCID: PMC2254390 DOI: 10.1186/1472-6750-8-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 01/14/2008] [Indexed: 11/16/2022] Open
Abstract
Background The isolation and production of human monoclonal antibodies is becoming an increasingly important pursuit as biopharmaceutical companies migrate their drug pipelines away from small organic molecules. As such, optimization of monoclonal antibody technologies is important, as this is becoming the new rate-limiting step for discovery and development of new pharmaceuticals. The major limitations of this system are the efficiency of isolating hybridoma clones, the process of stabilizing these clones and optimization of hybridoma cell secretion, especially for large-scale production. Many previous studies have demonstrated how perturbations in the aqueous environment can impact upon cell biology. In particular, radio frequency (RF) irradiation of solutions can have dramatic effects on behavior of solutions, cells and in particular membrane proteins, although this effect decays following removal of the RF. Recently, it was shown that nanoparticle doping of RF irradiated water (NPD water) produced a stabilized aqueous medium that maintained the characteristic properties of RF irradiated water for extended periods of time. Therefore, the ordering effect in water of the RF irradiation can now be studied in systems that required prolonged periods for analysis, such as eukaryotic cell culture. Since the formation of hybridoma cells involves the formation of a new membrane, a process that is affected by the surrounding aqueous environment, we tested these nanoparticle doped aqueous media formulations on hybridoma cell production. Results In this study, we tested the entire process of isolation and production of human monoclonal antibodies in NPD water as a means for further enhancing human monoclonal antibody isolation and production. Our results indicate an overall enhancement of hybridoma yield, viability, clonability and secretion. Furthermore, we have demonstrated that immortal cells proliferate faster whereas primary human fibroblasts proliferate slower in NPD water. Conclusion Overall, these studies indicate that NPD water can enhance cell proliferation, clonability and secretion. Furthermore, the results support the hypothesis that NPD water is effectively composed of stable microenvironments.
Collapse
Affiliation(s)
- Natalie Gavrilov-Yusim
- Department of Virology and Developmental Genetics, Ben Gurion University of the Negev, Beersheva 84105, Israel.
| | | | | | | | | | | |
Collapse
|
743
|
Abstract
Interactions governing protein folding, stability, recognition, and activity are mediated by hydration. Here, we use small-angle neutron scattering coupled with osmotic stress to investigate the hydration of two proteins, lysozyme and guanylate kinase (GK), in the presence of solutes. By taking advantage of the neutron contrast variation that occurs upon addition of these solutes, the number of protein-associated (solute-excluded) water molecules can be estimated from changes in both the zero-angle scattering intensity and the radius of gyration. Poly(ethylene glycol) exclusion varies with molecular weight. This sensitivity can be exploited to probe structural features such as the large internal GK cavity. For GK, small-angle neutron scattering is complemented by isothermal titration calorimetry with osmotic stress to also measure hydration changes accompanying ligand binding. These results provide a framework for studying other biomolecular systems and assemblies using neutron scattering together with osmotic stress.
Collapse
|
744
|
|
745
|
Reichmann D, Phillip Y, Carmi A, Schreiber G. On the Contribution of Water-Mediated Interactions to Protein-Complex Stability. Biochemistry 2007; 47:1051-60. [PMID: 18161993 DOI: 10.1021/bi7019639] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dana Reichmann
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yael Phillip
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Asaf Carmi
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Gideon Schreiber
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
746
|
Feng J, Goswami S, Howell EE. R67, the other dihydrofolate reductase: rational design of an alternate active site configuration. Biochemistry 2007; 47:555-65. [PMID: 18085798 DOI: 10.1021/bi701455x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
R67 dihydrofolate reductase (DHFR) bears no sequence or structural homologies with chromosomal DHFRs. The gene for this enzyme produces subunits that are 78 amino acids long, which assemble into a homotetramer possessing 222 symmetry. More recently, a tandem array of four gene copies linked in-frame was constructed, which produces a monomer containing 312 amino acids named Quad3. Asymmetric mutations in Quad3 have also been constructed to probe the role of Q67 and K32 residues in catalysis. This present study mixes and matches mutations to determine if the Q67H mutation, which tightens binding approximately 100-fold to both dihydrofolate (DHF) and NADPH, can help rescue the K32M mutation. While the latter mutation weakens DHF binding over 60-fold, it concurrently increases kcat by a factor of 5. Two Q67H mutations were added to gene copies 1 and 4 in conjunction with the K32M mutation in gene copies 1 and 3. Addition of these Q67H mutations tightens binding 40-fold, and the catalytic efficiency (kcat/Km(DHF)) of the resulting protein is similar to that of Quad3. Since these Q67H mutations can mostly compensate for the K32M lesion, K32 must not be necessary for DHF binding. Another multimutant combines the K32M mutation in gene copies 1 and 3 with the Q67H mutation in all gene copies. This mutant is inhibited by DHF but not NADPH, indicating that NADPH binds only to the wild type half of the pore, while DHF can bind to either the wild type or mutant half of the pore. This inhibition pattern contrasts with the mutant containing only the Q67H substitution in all four gene copies, which is severely inhibited by both NADPH and substrate. Since gene duplication and divergence are evolutionary tools for gaining function, these constructs are a first step toward building preferences for NADPH and DHF in each half of the active site pore of this primitive enzyme.
Collapse
Affiliation(s)
- Jian Feng
- Department of Biochemistry, Cellular, & Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA
| | | | | |
Collapse
|
747
|
Chopra S, Dooling RM, Horner CG, Howell EE. A balancing act between net uptake of water during dihydrofolate binding and net release of water upon NADPH binding in R67 dihydrofolate reductase. J Biol Chem 2007; 283:4690-8. [PMID: 18086667 DOI: 10.1074/jbc.m709443200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
R67 dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate using NADPH as a cofactor. This enzyme is a homotetramer possessing 222 symmetry, and a single active site pore traverses the length of the protein. A promiscuous binding surface can accommodate either DHF or NADPH, thus two nonproductive complexes can form (2NADPH or 2DHF) as well as a productive complex (NADPH.DHF). The role of water in binding was monitored using a number of different osmolytes. From isothermal titration calorimetry (ITC) studies, binding of NADPH is accompanied by the net release of 38 water molecules. In contrast, from both steady state kinetics and ITC studies, binding of DHF is accompanied by the net uptake of water. Although different osmolytes have similar effects on NADPH binding, variable results are observed when DHF binding is probed. Sensitivity to water activity can also be probed by an in vivo selection using the antibacterial drug, trimethoprim, where the water content of the media is decreased by increasing concentrations of sorbitol. The ability of wild type and mutant clones of R67 DHFR to allow host Escherichia coli to grow in the presence of trimethoprim plus added sorbitol parallels the catalytic efficiency of the DHFR clones, indicating water content strongly correlates with the in vivo function of R67 DHFR.
Collapse
Affiliation(s)
- Shaileja Chopra
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, USA
| | | | | | | |
Collapse
|
748
|
Svintradze DV, Mrevlishvili GM, Metreveli N, Jariashvili K, Namicheishvili L, Skopinska J, Sionkowska A. Collagen-DNA complex. Biomacromolecules 2007; 9:21-8. [PMID: 18052128 DOI: 10.1021/bm7008813] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Previously presented models of collagen-DNA (7) and collagen-siRNA (8) complexes point to a general description of delivery systems and indicate to what specific topology that system should be equipped with to effectively deliver the gene into the living body via in vivo and in vitro injection. We focused our interest on the nature of collagen-DNA complex structure and the molecular and environmental determinants of the self-association processes of collagen with the presence of DNA. In this aspect, the self-association of collagen-DNA complex offers an opportunity to characterize a unique system, which may be related to the general mechanisms of self-association of fiber macromolecules by water bridges. For characterizing the collagen-DNA interaction, we used FTIR-ATR, NMR, and AFM experiments done on a separate collagen film, DNA film, and on the peptide-DNA aqueous solution. We demonstrate that collagen-DNA spontaneously forms self-assembling complex systems in aqueous solution. Such self-association of the complex could be induced by electrostatic interactions between neutral collagen cylinders, having strong dipole moment, and negatively charged DNA cylinders. A final complex could be formed by hydrogen bonds between specified donor groups of collagen and phosphate acceptor groups of DNA. According to FTIR measurements, a collagen triple helix should not change global conformation during collagen-DNA complex formation.
Collapse
Affiliation(s)
- David V Svintradze
- Faculty of Physics and Mathematics, Ilia Chavchavadze State University, Chavchavadze Av. 32,Tbilisi 0157, Georgia.
| | | | | | | | | | | | | |
Collapse
|
749
|
Rational design of peptide ligand for affinity chromatography of tissue-type plasminogen activator by the combination of docking and molecular dynamics simulations. J Chromatogr A 2007; 1175:249-58. [DOI: 10.1016/j.chroma.2007.10.074] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 10/22/2007] [Accepted: 10/23/2007] [Indexed: 10/22/2022]
|
750
|
Abstract
Protein surface hydration is fundamental to its structure and activity. We report here the direct mapping of global hydration dynamics around a protein in its native and molten globular states, using a tryptophan scan by site-specific mutations. With 16 tryptophan mutants and in 29 different positions and states, we observed two robust, distinct water dynamics in the hydration layer on a few ( approximately 1-8 ps) and tens to hundreds of picoseconds ( approximately 20-200 ps), representing the initial local relaxation and subsequent collective network restructuring, respectively. Both time scales are strongly correlated with protein's structural and chemical properties. These results reveal the intimate relationship between hydration dynamics and protein fluctuations and such biologically relevant water-protein interactions fluctuate on picosecond time scales.
Collapse
|