7501
|
Histone deacetylase inhibitors in cell pluripotency, differentiation, and reprogramming. Stem Cells Int 2012; 2012:184154. [PMID: 22550500 PMCID: PMC3328162 DOI: 10.1155/2012/184154] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/19/2011] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylase inhibitors (HDACi) are small molecules that have important and pleiotropic effects on cell homeostasis. Under distinct developmental conditions, they can promote either self-renewal or differentiation of embryonic stem cells. In addition, they can promote directed differentiation of embryonic and tissue-specific stem cells along the neuronal, cardiomyocytic, and hepatic lineages. They have been used to facilitate embryo development following somatic cell nuclear transfer and induced pluripotent stem cell derivation by ectopic expression of pluripotency factors. In the latter method, these molecules not only increase effectiveness, but can also render the induction independent of the oncogenes c-Myc and Klf4. Here we review the molecular pathways that are involved in the functions of HDAC inhibitors on stem cell differentiation and reprogramming of somatic cells into pluripotency. Deciphering the mechanisms of HDAC inhibitor actions is very important to enable their exploitation for efficient and simple tissue regeneration therapies.
Collapse
|
7502
|
Calvo AC, Manzano R, Atencia-Cibreiro G, Oliván S, Muñoz MJ, Zaragoza P, Cordero-Vázquez P, Esteban-Pérez J, García-Redondo A, Osta R. Genetic biomarkers for ALS disease in transgenic SOD1(G93A) mice. PLoS One 2012; 7:e32632. [PMID: 22412900 PMCID: PMC3296719 DOI: 10.1371/journal.pone.0032632] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 01/28/2012] [Indexed: 12/11/2022] Open
Abstract
The pathophysiological mechanisms of both familial and sporadic Amyotrophic Lateral Sclerosis (ALS) are unknown, although growing evidence suggests that skeletal muscle tissue is a primary target of ALS toxicity. Skeletal muscle biopsies were performed on transgenic SOD1G93A mice, a mouse model of ALS, to determine genetic biomarkers of disease longevity. Mice were anesthetized with isoflurane, and three biopsy samples were obtained per animal at the three main stages of the disease. Transcriptional expression levels of seventeen genes, Ankrd1, Calm1, Col19a1, Fbxo32, Gsr, Impa1, Mef2c, Mt2, Myf5, Myod1, Myog, Nnt, Nogo A, Pax7, Rrad, Sln and Snx10, were tested in each muscle biopsy sample. Total RNA was extracted using TRIzol Reagent according to the manufacturer's protocol, and variations in gene expression were assayed by real-time PCR for all of the samples. The Pearson correlation coefficient was used to determine the linear correlation between transcriptional expression levels throughout disease progression and longevity. Consistent with the results obtained from total skeletal muscle of transgenic SOD1G93A mice and 74-day-old denervated mice, five genes (Mef2c, Gsr, Col19a1, Calm1 and Snx10) could be considered potential genetic biomarkers of longevity in transgenic SOD1G93A mice. These results are important because they may lead to the exploration of previously unexamined tissues in the search for new disease biomarkers and even to the application of these findings in human studies.
Collapse
Affiliation(s)
- Ana C. Calvo
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Raquel Manzano
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Gabriela Atencia-Cibreiro
- Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, SERMAS, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), Madrid, Spain
| | - Sara Oliván
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - María J. Muñoz
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Pilar Cordero-Vázquez
- Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, SERMAS, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), Madrid, Spain
| | - Jesús Esteban-Pérez
- Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, SERMAS, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), Madrid, Spain
| | - Alberto García-Redondo
- Unidad de ELA, Instituto de Investigación Hospital 12 de Octubre de Madrid, SERMAS, and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER U-723), Madrid, Spain
| | - Rosario Osta
- Laboratorio de Genética Bioquímica (LAGENBIO-I3A), Aragon's Institute of Health Sciences (IACS), Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
- * E-mail:
| |
Collapse
|
7503
|
Liongue C, O'Sullivan LA, Trengove MC, Ward AC. Evolution of JAK-STAT pathway components: mechanisms and role in immune system development. PLoS One 2012; 7:e32777. [PMID: 22412924 PMCID: PMC3296744 DOI: 10.1371/journal.pone.0032777] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 01/30/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lying downstream of a myriad of cytokine receptors, the Janus kinase (JAK)-Signal transducer and activator of transcription (STAT) pathway is pivotal for the development and function of the immune system, with additional important roles in other biological systems. To gain further insight into immune system evolution, we have performed a comprehensive bioinformatic analysis of the JAK-STAT pathway components, including the key negative regulators of this pathway, the SH2-domain containing tyrosine phosphatase (SHP), Protein inhibitors against Stats (PIAS), and Suppressor of cytokine signaling (SOCS) proteins across a diverse range of organisms. RESULTS Our analysis has demonstrated significant expansion of JAK-STAT pathway components co-incident with the emergence of adaptive immunity, with whole genome duplication being the principal mechanism for generating this additional diversity. In contrast, expansion of upstream cytokine receptors appears to be a pivotal driver for the differential diversification of specific pathway components. CONCLUSION Diversification of JAK-STAT pathway components during early vertebrate development occurred concurrently with a major expansion of upstream cytokine receptors and two rounds of whole genome duplications. This produced an intricate cell-cell communication system that has made a significant contribution to the evolution of the immune system, particularly the emergence of adaptive immunity.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Victoria, Australia
- Strategic Research Centre in Molecular & Medical Research, Deakin University, Victoria, Australia
| | - Lynda A. O'Sullivan
- School of Life & Environmental Sciences, Deakin University, Victoria, Australia
| | - Monique C. Trengove
- School of Medicine, Deakin University, Victoria, Australia
- Strategic Research Centre in Molecular & Medical Research, Deakin University, Victoria, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Victoria, Australia
- Strategic Research Centre in Molecular & Medical Research, Deakin University, Victoria, Australia
| |
Collapse
|
7504
|
Nerve sprouting contributes to increased severity of ventricular tachyarrhythmias by upregulating iGluRs in rats with healed myocardial necrotic injury. J Mol Neurosci 2012; 48:448-55. [PMID: 22383217 DOI: 10.1007/s12031-012-9720-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 02/07/2012] [Indexed: 12/12/2022]
Abstract
Sympathetic nerve sprouting in healed myocardial infarction (MI) has been associated with high incidences of lethal arrhythmias, but the underlying mechanisms are largely unknown. This study sought to test that sympathetic hyperinnervation and/or MI remodels the myocardial glutamate signaling and ultimately increases the severity of ventricular tachyarrhythmias. Myocardial necrotic injury (MNI) was created by liquid nitrogen freeze-thawing across an intact diaphragm to mimic MI. Cardiac sympathetic hyperinnervation was induced by chronic subcutaneous injection of 4-methylcatechol, a potent stimulator of nerve growth factor expression. The results showed that sympathetic hyperinnervation with or without MNI upregulated the myocardial expression of ionotropic glutamate receptors (iGluRs), including NMDA receptor (NMDAR) and AMPA receptor (AMPAR), and induced cardiomyocyte apoptosis. Intravenous infusion with either NMDA (12 mg/kg) or AMPA (15 mg/kg) triggered ventricular tachycardia and ventricular fibrillation in rats with healed MNI plus sympathetic hyperinnervation; these arrhythmias were prevented by respective antagonist of NMDAR or AMPAR. We conclude that MNI with sympathetic nerve sprouting upregulates the expression of NMDAR and AMPAR in the myocardium and this impact in turn enhances cardiac responses to stimulations of iGluRs and thus increases the incidence of ventricular tachyarrhythmias.
Collapse
|
7505
|
Abstract
G-protein-coupled receptors (GPCRs), which represent the largest gene family in the human genome, play a crucial role in multiple physiological functions as well as in tumor growth and metastasis. For instance, various molecules like hormones, lipids, peptides and neurotransmitters exert their biological effects by binding to these seven-transmembrane receptors coupled to heterotrimeric G-proteins, which are highly specialized transducers able to modulate diverse signaling pathways. Furthermore, numerous responses mediated by GPCRs are not dependent on a single biochemical route, but result from the integration of an intricate network of transduction cascades involved in many physiological activities and tumor development. This review highlights the emerging information on the various responses mediated by a selected choice of GPCRs and the molecular mechanisms by which these receptors exert a primary action in cancer progression. These findings provide a broad overview on the biological activity elicited by GPCRs in tumor cells and contribute to the identification of novel pharmacological approaches for cancer patients.
Collapse
|
7506
|
Abstract
PURPOSE OF REVIEW Vascular endothelial growth factor (VEGF), one of the major pathways involved in tumor angiogenesis, is often overexpressed in epithelial ovarian cancer (EOC), and therefore an attractive target for therapy. This review aims to evaluate the rationale for targeting angiogenic pathways by the usage of the anti-VEGF agent bevacizumab in EOC. RECENT FINDINGS Bevacizumab monotherapy has been shown to be effective in the treatment of EOC with response rate of 16-21% in phase II trials. In phase III trials, patients with advanced EOC who received combination chemotherapy (paclitaxel + carboplatin) plus bevacizumab with maintenance bevacizumab had significantly longer progression-free survival than those who received chemotherapy alone, but did not prolong overall survival. The most common grade 3/4 adverse events of bevacizumab monotherapy include hypertension and proteinuria, while heavily pretreated patients were at increased risk of bowel perforation. The addition of bevacizumab to the standard chemotherapy in patients with advanced EOC may not be cost-effective. SUMMARY Bevacizumab has significant activity and is the most promising drug in EOC. However, understanding of its unique adverse events and identification of predictive biomarkers of bevacizumab response are necessary in order to select patients most likely to benefit from this therapy.
Collapse
Affiliation(s)
- Shinya Sato
- Department of Obstetrics and Gynecology, Tottori University School of Medicine, Yonago, Tottori, Japan
| | | |
Collapse
|
7507
|
Abstract
BACKGROUND In old age, depressive syndromes often affect people with chronic medical illnesses, cognitive impairment, and disability, which can worsen the outcomes of other medical disorders and promote disability. Repetitive magnetic transcranial stimulation (rTMS) is a simple and effective treatment in patients with treatment-resistant depression. Therefore the use of rTMS could be of particular potential benefit in treatment-resistant elderly patients, who often cannot tolerate the higher doses of drugs needed or show phenomena of intolerance and interaction. However, several studies assessing the efficacy of rTMS found smaller response rates in elderly patients when compared to younger samples. Nevertheless, the correlation between age and response is still a controversial issue, and there is no strong evidence to date. The aim of our study was to retest the effectiveness and safety of low-frequency rTMS in a 3 weeks active treatment in a group of resistant-depressed patients, and to investigate the role of age in the response to stimulation treatment. METHODS Enrolled in this study were 102 treatment-resistant depressed patients. The patients were treated with low-frequency rTMS over the right dorso-lateral prefrontal cortex (DLPFC) for 3 weeks with a simple protocol (420 pulses per session for 15 sessions). At baseline, at the end of the second week, and at the end of the third week of treatment, the Hamilton Depression Rating Scale (HAM-D) and the Hamilton Anxiety Rating Scale (HAM-A) were administered. RESULTS Low-frequency rTMS on the prefrontal dorsolateral right area resulted in a statistically significant reduction of mean HAM-D scores in the entire group of patients at the end of treatment. The responder's rate in the whole group at the end of the third week was 56.86%. A significant inverse relationship between HAM-D reduction and age was found in the "older" (>60 years old) group, not in the "younger" (<60 years old) group. CONCLUSION Results from this study show that low-frequency rTMS over the right DLPFC, with a relatively low number of pulses (420 pulses per session) and a relatively short period of treatment, is effective in the treatment of resistant patients (in a sample also including elderly patients) in a 3-weeks treatment protocol with a low reduction with the progress of age. Furthermore, we found a greater response in younger patients and an inverse correlation between age and treatment response. Adaptations of the protocol according to age are reviewed.
Collapse
|
7508
|
Hall KC, Blobel CP. Interleukin-1 stimulates ADAM17 through a mechanism independent of its cytoplasmic domain or phosphorylation at threonine 735. PLoS One 2012; 7:e31600. [PMID: 22384041 PMCID: PMC3288042 DOI: 10.1371/journal.pone.0031600] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 01/16/2012] [Indexed: 12/15/2022] Open
Abstract
ADAM17 (a disintegrin and metalloproteinase) is a membrane-anchored metalloproteinase that regulates the release of EGFR-ligands, TNFα and other membrane proteins from cells. ADAM17 can be rapidly activated by a variety of signaling pathways, yet little is known about the underlying mechanism. Several studies have demonstrated that the cytoplasmic domain of ADAM17 is not required for its rapid activation by a variety of stimuli, including phorbol esters, tyrosine kinases and some G-protein coupled receptors. However, phosphorylation of cytoplasmic residue T735 was recently reported as a crucial step for activation of ADAM17 by IL-1β and by the p38 MAP-kinase pathway. One possible mechanism to reconcile these results would be that T735 has an inhibitory role and that it must be phosphorylated as a pre-requisite for the activation of ADAM17, which would then proceed via a mechanism that is independent of its cytoplasmic domain. To test this hypothesis, we performed rescue experiments of Adam17−/− cells with wild type and mutant forms of ADAM17. However, these experiments showed that an inactivating mutation (T735A) or an activating mutation (T735D) of cytoplasmic residue T735 or the removal of the cytoplasmic domain of ADAM17 did not significantly affect the stimulation of ADAM17 by IL-1β or by activation of MAP-kinase with anisomycin. Moreover, we found that the MAP-kinase inhibitor SB203580 blocked activation of cytoplasmic tail-deficient ADAM17 and of the T735A mutant by IL-1β or by anisomycin, providing further support for a model in which the activation mechanism of ADAM17 does not rely on its cytoplasmic domain or phosphorylation of T735.
Collapse
Affiliation(s)
- Katherine C. Hall
- Arthritis and Tissue Degeneration Program, The Hospital for Special Surgery, New York, New York, United States of America
- Cell Biology and Genetics Program, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Carl P. Blobel
- Arthritis and Tissue Degeneration Program, The Hospital for Special Surgery, New York, New York, United States of America
- Cell Biology and Genetics Program, Weill Medical College of Cornell University, New York, New York, United States of America
- Department of Medicine and Physiology, Biophysics and Systems Biology Program, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
7509
|
Abstract
The Ikzf1 gene encodes Ikaros-a DNA-binding zinc finger protein. Ikaros functions as a regulator of gene expression and chromatin remodeling. The biological roles of Ikaros include regulating the development and function of the immune system and acting as a master regulator of hematopoietic differentiation. Genomic profiling studies identified Ikzf1 as an important tumor suppressor in acute lymphoblastic leukemia (ALL), particularly in ALL that is associated with poor prognosis. This review summarizes currently available data regarding the structure and function of Ikaros, the clinical relevance of genetic inactivation of Ikzf1, and signal transduction pathways that regulate Ikaros function.
Collapse
|
7510
|
Mascall KS, Small GR, Gibson G, Nixon GF. Sphingosine-1-phosphate-induced release of TIMP-2 from vascular smooth muscle cells inhibits angiogenesis. J Cell Sci 2012; 125:2267-75. [PMID: 22344262 DOI: 10.1242/jcs.099044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Following myocardial infarction, angiogenesis occurs as a result of thrombus formation, which permits reperfusion of damaged myocardium. Sphingosine 1-phosphate (S1P) is a naturally occurring lipid mediator released from platelets and is found in high concentrations at sites of thrombosis. S1P might therefore be involved in regulating angiogenesis following myocardial infarction and might influence reperfusion. The aims of this study were to determine the effects of S1P in human coronary arterial cell angiogenesis and delineate the subsequent mechanisms. An in vitro model of angiogenesis was developed using a co-culture of human coronary artery endothelial cells, human coronary smooth muscle cells and human fibroblasts. In this model, S1P inhibited angiogenesis and this was dependent on the presence of smooth muscle cells. The mechanism of the inhibitory effect was through S1P-induced release of a soluble mediator from smooth muscle cells. This mediator was identified as tissue inhibitor of metalloproteinase-2 (TIMP-2). Release of TIMP-2 was dependent on S1P-induced activation of Rho kinase and directly contributed to incomplete formation of endothelial cell adherens junctions. This was observed as a diffuse localisation of VE-cadherin, leading to decreased tubulogenesis. A similar inhibitory response to S1P was demonstrated in an ex vivo human arterial model of angiogenesis. In summary, S1P-induced inhibition of angiogenesis in human artery endothelial cells is mediated by TIMP-2 from vascular smooth muscle cells. This reduces the integrity of intercellular junctions between nascent endothelial cells. S1P might therefore inhibit the angiogenic response following myocardial infarction.
Collapse
Affiliation(s)
- Keith S Mascall
- School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | | | | | | |
Collapse
|
7511
|
Induction of the cellular microRNA, Hs_154, by West Nile virus contributes to virus-mediated apoptosis through repression of antiapoptotic factors. J Virol 2012; 86:5278-87. [PMID: 22345437 DOI: 10.1128/jvi.06883-11] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of noncoding small RNAs that regulate multiple cellular processes, as well as the replication and pathogenesis of many DNA viruses and some RNA viruses. Examination of cellular miRNA profiles in West Nile virus (WNV)-infected HEK293 and SK-N-MC cells revealed increased expression of multiple miRNA species. One of these miRNAs, Hs_154, was significantly induced not only in WNV-infected neuronal cells in culture but also in the central nervous system tissues of infected mice and, upon transfection, caused a significant reduction in viral replication. Analysis of mRNA transcripts enriched through immunoprecipitation of the RNA-induced silencing complex identified several transcripts that contain seed sequence matches to Hs_154 in their 3' untranslated regions (UTRs). Two of these targets, the CCCTC-binding factor (CTCF) and the epidermal growth factor receptor (EGFR)-coamplified and overexpressed protein (ECOP/VOPP1) proteins display reduced expression in WNV-infected cells, and the 3' UTRs of these transcripts were sufficient to cause downregulation of expression in infected cells or in cells transfected with Hs_154, findings consistent with miRNA targeting of these transcripts. CTCF and ECOP have been shown to be associated with cell survival, implicating miRNA-directed repression of these targets in WNV-induced cell death. Consistent with this hypothesis, expression of these genes in WNV-infected cells results in a reduction in the number of cells undergoing apoptosis. These observations suggest that induction of Hs_154 expression after WNV infection modulates the apoptotic response to WNV and that cellular miRNA expression can be quickly altered during WNV infection to control aspects of the host response.
Collapse
|
7512
|
Kim A, Ueda Y, Naka T, Enomoto T. Therapeutic strategies in epithelial ovarian cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:14. [PMID: 22330607 PMCID: PMC3309949 DOI: 10.1186/1756-9966-31-14] [Citation(s) in RCA: 255] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/13/2012] [Indexed: 12/31/2022]
Abstract
Ovarian cancer is the most lethal gynecologic malignancy. It appears that the vast majority of what seem to be primary epithelial ovarian and primary peritoneal carcinomas is, in fact, secondary from the fimbria, the most distal part of the fallopian tube. Treatment of epithelial ovarian cancer is based on the combination of cytoreductive surgery and combination chemotherapy using taxane and platinum. Although clear cell type is categorized in indolent type, it is known to show relatively strong resistance to carboplatin and paclitaxel regimen and thus poor prognosis compared to serous adenocarcinoma, especially in advanced stages. Irinotecan plus cisplatin therapy may effective for the clear cell adenocarcinoma. The larger expectation for improved prognosis in ovarian carcinoma is related to the use of the new biological agents. One of the most investigated and promising molecular targeted drugs in ovarian cancer is bevacizumab, a monoclonal antibody directed against VEGF. PARP inhibitor is another one. A few recent studies demonstrated positive results of bevacizumab on progression-free survival in ovarian cancer patients, however, investigation of molecular targeting drugs in patients with ovarian cancer are still underway.
Collapse
Affiliation(s)
- Ayako Kim
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
7513
|
Hiss D. Optimizing molecular-targeted therapies in ovarian cancer: the renewed surge of interest in ovarian cancer biomarkers and cell signaling pathways. JOURNAL OF ONCOLOGY 2012; 2012:737981. [PMID: 22481932 PMCID: PMC3306947 DOI: 10.1155/2012/737981] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 11/24/2011] [Indexed: 12/18/2022]
Abstract
The hallmarks of ovarian cancer encompass the development of resistance, disease recurrence and poor prognosis. Ovarian cancer cells express gene signatures which pose significant challenges for cancer drug development, therapeutics, prevention and management. Despite enhancements in contemporary tumor debulking surgery, tentative combination regimens and abdominal radiation which can achieve beneficial response rates, the majority of ovarian cancer patients not only experience adverse effects, but also eventually relapse. Therefore, additional therapeutic possibilities need to be explored to minimize adverse events and prolong progression-free and overall response rates in ovarian cancer patients. Currently, a revival in cancer drug discovery is devoted to identifying diagnostic and prognostic ovarian cancer biomarkers. However, the sensitivity and reliability of such biomarkers may be complicated by mutations in the BRCA1 or BRCA2 genes, diverse genetic risk factors, unidentified initiation and progression elements, molecular tumor heterogeneity and disease staging. There is thus a dire need to expand existing ovarian cancer therapies with broad-spectrum and individualized molecular targeted approaches. The aim of this review is to profile recent developments in our understanding of the interrelationships among selected ovarian tumor biomarkers, heterogeneous expression signatures and related molecular signal transduction pathways, and their translation into more efficacious targeted treatment rationales.
Collapse
Affiliation(s)
- Donavon Hiss
- Molecular Oncology Research Laboratory, Department of Medical BioSciences, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
7514
|
Daskalopoulos EP, Janssen BJA, Blankesteijn WM. Myofibroblasts in the infarct area: concepts and challenges. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2012; 18:35-49. [PMID: 22214878 DOI: 10.1017/s143192761101227x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Myofibroblasts are differentiated fibroblasts that hold a key role in wound healing and remodeling following myocardial infarction (MI). A large repertoire of stimuli, such as mechanical stretch, growth factors, cytokines, and vasoactive peptides, induces myofibroblast differentiation. Myofibroblasts are responsible for the production and deposition of collagen, leading to the establishment of a dense extracellular matrix that strengthens the infarcted tissue and minimizes dilatation of the infarct area. In addition, cells contributing to fibrosis act on sites distal from the infarct area and promote collagen deposition in noninfarcted tissue, thus contributing to adverse remodeling and consequently to the development of congestive heart failure (CHF). Current drugs that are used to treat post-MI CHF do influence fibroblasts and myofibroblasts; however, their therapeutic efficacy is far from being regarded as ideal. Novel therapeutic agents targeting (myo)fibroblasts are being developed to successfully prevent the cardiac remodeling of sites remote from the infarct area and therefore hinder the establishment of CHF. The purpose of this review article is to discuss the basic concepts of the myofibroblasts' actions in cardiac wound healing processes, factors that influence them, currently available pharmacological agents, and future challenges in this area.
Collapse
Affiliation(s)
- Evangelos P Daskalopoulos
- Department of Pharmacology, Cardiovascular Research Institute Maastricht, Maastricht University, 50 Universiteitssingel, 6229ER Maastricht, P.O. Box 616, 6200MD Maastricht, The Netherlands
| | | | | |
Collapse
|
7515
|
Choi CH, Lee BH, Ahn SG, Oh SH. Proteasome inhibition-induced p38 MAPK/ERK signaling regulates autophagy and apoptosis through the dual phosphorylation of glycogen synthase kinase 3β. Biochem Biophys Res Commun 2012; 418:759-64. [PMID: 22310719 DOI: 10.1016/j.bbrc.2012.01.095] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 01/21/2012] [Indexed: 01/04/2023]
Abstract
Proteasome inhibition is a promising approach for cancer treatment; however, the underlying mechanisms involved have not been fully elucidated. Here, we show that proteasome inhibition-induced p38 mitogen-activated protein kinase regulates autophagy and apoptosis by modulating the phosphorylation status of glycogen synthase kinase 3β (GSK3β) and 70kDa ribosomal S6 kinase (p70S6K). The treatment of MDA-MB-231 cells with MG132 induced endoplasmic reticulum stress through the induction of ATF6a, PERK phosphorylation, and CHOP, and apoptosis through the cleavage of Bax and procaspase-3. MG132 caused the phosphorylation of GSK3β at Ser(9) and, to a lesser extent, Thr(390), the dephosphorylation of p70S6K at Thr(389), and the phosphorylation of p70S6K at Thr(421) and Ser(424). The specific p38 inhibitor SB203080 reduced the p-GSK3β(Ser9) and autophagy through the phosphorylation of p70S6K(Thr389); however, it augmented the levels of p-ERK, p-GSK3β(Thr390), and p-70S6K(Thr421/Ser424) induced by MG132, and increased apoptotic cell death. The GSK inhibitor SB216763, but not lithium, inhibited the MG132-induced phosphorylation of p38, and the downstream signaling pathway was consistent with that in SB203580-treated cells. Taken together, our data show that proteasome inhibition regulates p38/GSK(Ser9)/p70S6K(Thr380) and ERK/GSK3β(Thr390)/p70S6K(Thr421/Ser424) kinase signaling, which is involved in cell survival and cell death.
Collapse
Affiliation(s)
- Cheol-Hee Choi
- Research Center for Resistant Cells, Chosun University, Seosuk-dong, Dong-gu, Gwangju 501-759, Republic of Korea
| | | | | | | |
Collapse
|
7516
|
S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood 2012; 119:2478-88. [PMID: 22279055 DOI: 10.1182/blood-2011-06-358614] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The mechanisms of hematopoietic progenitor cell egress and clinical mobilization are not fully understood. Herein, we report that in vivo desensitization of Sphingosine-1-phosphate (S1P) receptors by FTY720 as well as disruption of S1P gradient toward the blood, reduced steady state egress of immature progenitors and primitive Sca-1(+)/c-Kit(+)/Lin(-) (SKL) cells via inhibition of SDF-1 release. Administration of AMD3100 or G-CSF to mice with deficiencies in either S1P production or its receptor S1P(1), or pretreated with FTY720, also resulted in reduced stem and progenitor cell mobilization. Mice injected with AMD3100 or G-CSF demonstrated transient increased S1P levels in the blood mediated via mTOR signaling, as well as an elevated rate of immature c-Kit(+)/Lin(-) cells expressing surface S1P(1) in the bone marrow (BM). Importantly, we found that S1P induced SDF-1 secretion from BM stromal cells including Nestin(+) mesenchymal stem cells via reactive oxygen species (ROS) signaling. Moreover, elevated ROS production by hematopoietic progenitor cells is also regulated by S1P. Our findings reveal that the S1P/S1P(1) axis regulates progenitor cell egress and mobilization via activation of ROS signaling on both hematopoietic progenitors and BM stromal cells, and SDF-1 release. The dynamic cross-talk between S1P and SDF-1 integrates BM stromal cells and hematopoeitic progenitor cell motility.
Collapse
|
7517
|
Protein kinase CK2 is implicated in early steps of the differentiation of pre-adipocytes into adipocytes. Mol Cell Biochem 2012; 365:37-45. [DOI: 10.1007/s11010-012-1241-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/14/2012] [Indexed: 12/13/2022]
|
7518
|
Mayeux PR, MacMillan-Crow LA. Pharmacological targets in the renal peritubular microenvironment: implications for therapy for sepsis-induced acute kidney injury. Pharmacol Ther 2012; 134:139-55. [PMID: 22274552 DOI: 10.1016/j.pharmthera.2012.01.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 12/19/2011] [Indexed: 01/15/2023]
Abstract
One of the most frequent and serious complications to develop in septic patients is acute kidney injury (AKI), a disorder characterized by a rapid failure of the kidneys to adequately filter the blood, regulate ion and water balance, and generate urine. AKI greatly worsens the already poor prognosis of sepsis and increases cost of care. To date, therapies have been mostly supportive; consequently there has been little change in the mortality rates over the last decade. This is due, at least in part, to the delay in establishing clinical evidence of an infection and the associated presence of the systemic inflammatory response syndrome and thus, a delay in initiating therapy. A second reason is a lack of understanding regarding the mechanisms leading to renal injury, which has hindered the development of more targeted therapies. In this review, we summarize recent studies, which have examined the development of renal injury during sepsis and propose how changes in the peritubular capillary microenvironment lead to and then perpetuate microcirculatory failure and tubular epithelial cell injury. We also discuss a number of potential therapeutic targets in the renal peritubular microenvironment, which may prevent or lessen injury and/or promote recovery.
Collapse
Affiliation(s)
- Philip R Mayeux
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | |
Collapse
|
7519
|
The mutagenic potential of 8-oxoG/single strand break-containing clusters depends on their relative positions. Mutat Res 2012; 732:34-42. [PMID: 22261346 DOI: 10.1016/j.mrfmmm.2011.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/12/2011] [Accepted: 12/22/2011] [Indexed: 11/20/2022]
Abstract
The biological consequences of clusters containing a single strand break and base lesion(s) remain largely unknown. In the present study we determined the mutagenicities of two- and three-lesion clustered damage sites containing a 1-nucleotide gap (GAP) and 8-oxo-7,8-dihydroguanine(s) (8-oxoG(s)) in Escherichia coli. The mutation frequencies (MFs) of bi-stranded two-lesion clusters (GAP/8-oxoG), especially in mutY-deficient strains, were high and were similar to those for bi-stranded clusters with 8-oxoG and base lesions/AP sites, suggesting that the GAP is processed with an efficiency similar to the efficiency of processing a base lesion or an AP site within a cluster. The MFs of tandem two-lesion clusters comprised of a GAP and an 8-oxoG on the same strand were comparable to or less than the MF of a single 8-oxoG. The mutagenic potential of three-lesion clusters, which were comprised of a tandem lesion (a GAP and an 8-oxoG) and an opposing single 8-oxoG, was higher than that of a single 8-oxoG, but was no more than that of a bi-stranded 8-oxoGs. We suggest that incorporation of a nucleotide opposite 8-oxoG is less mutagenic when a GAP is present in a cluster than when a GAP is absent. Our observations indicate that the repair of a GAP is retarded by an opposing 8-oxoG, but not by a tandem 8-oxoG, and that the extent of GAP repair determines the biological consequences.
Collapse
|
7520
|
Bain PA, Schuller KA. A glutathione peroxidase 4 (GPx4) homologue from southern bluefin tuna is a secreted protein: first report of a secreted GPx4 isoform in vertebrates. Comp Biochem Physiol B Biochem Mol Biol 2012; 161:392-7. [PMID: 22285500 DOI: 10.1016/j.cbpb.2012.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/08/2012] [Accepted: 01/09/2012] [Indexed: 01/18/2023]
Abstract
The antioxidant enzyme glutathione peroxidase 4 (GPx4) is capable of reducing complex lipid hydroperoxides in addition to hydrogen peroxide and organic hydroperoxides. Mammals express three GPx4 isoforms that are targeted to nucleoli, mitochondria or cytosol via variable amino termini. To better understand the role of this important antioxidant enzyme in marine finfish, we determined the subcellular localisation of a GPx4 homologue from southern bluefin tuna (Thunnus maccoyii; SBT). We created constructs for the expression of the selenocysteine-to-cysteine mutant of SBT GPx4 (GPx4C) tagged with enhanced green fluorescent protein (EGFP), including or lacking a putative amino-terminal signal peptide, and expressed the fusion proteins in a fish cell line. Fluorescence microscopy revealed that the full-length GPx4C-EGFP fusion protein localised to the trans-Golgi, suggesting that tuna GPx4 may be directed to the secretory pathway. Anti-GFP immunoblotting of cell lysates and proteins from culture media showed that the secretion of SBT GPx4 into the culture medium required an amino-terminal signal peptide. According to available sequence data, the SBT GPx4 isoform studied here is representative of other piscine GPx4 isoforms, suggesting that the secretion of at least one GPx4 isoform may be common amongst teleost fish.
Collapse
Affiliation(s)
- Peter A Bain
- School of Biological Sciences, Flinders University, Bedford Park, SA 5042, Australia.
| | | |
Collapse
|
7521
|
Dontigny E, Patenaude C, Cyr M, Massicotte G. Sphingomyelinase selectively reduces M1 muscarinic receptors in rat hippocampal membranes. Hippocampus 2012; 22:1589-96. [PMID: 22228652 DOI: 10.1002/hipo.21001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2011] [Indexed: 01/20/2023]
Abstract
Although there is evidence that nicotinic acetylcholine (Ach) receptors are influenced by ceramides, we do not currently know whether or not these sphingolipids can also regulate the muscarinic subtypes of Ach receptors. Using the whole-cell patch technique, we demonstrated that the effectiveness of the muscarinic receptor agonist pilocarpine, in enhancing spontaneous inhibitory postsynaptic currents in CA1 pyramidal cells, was completely abolished in hippocampal slices pre-exposed to the ceramide-generating enzyme sphingomyelinase (SMase). Western blot experiments, performed with biotinylated hippocampal membranes, showed that this electrophysiological defect possibly relies on the loss of M1 muscarinic Ach receptors at the cell surface. However, the effect appears to be relatively specific as the cell-surface expression of M4 muscarinic receptors was not found to be impacted by SMase treatment. Interestingly, we observed that G protein-coupled receptor kinases 2 and β-arrestin1/2 interactions with M1-immunoprecipitated proteins were substantially augmented in SMase-treated slices and that the reduction of cell-surface M1 muscarinic receptor expression generated was completely suppressed by the muscarinic antagonist atropine. Collectively, our data suggest that selective internalization of M1 muscarinic receptors can be accentuated in neurons subjected to high ceramide levels. The potential physiopathological implications of this finding are presented.
Collapse
Affiliation(s)
- Eve Dontigny
- Groupe de recherche en Neuroscience, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | | | | | | |
Collapse
|
7522
|
Bolognin S, Blanchard J, Wang X, Basurto-Islas G, Tung YC, Kohlbrenner E, Grundke-Iqbal I, Iqbal K. An experimental rat model of sporadic Alzheimer's disease and rescue of cognitive impairment with a neurotrophic peptide. Acta Neuropathol 2012; 123:133-51. [PMID: 22083255 DOI: 10.1007/s00401-011-0908-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 10/30/2011] [Accepted: 11/05/2011] [Indexed: 10/15/2022]
Abstract
Alzheimer's disease (AD) is multifactorial and, to date, no single cause of the sporadic form of this disease, which accounts for over 99% of the cases, has been established. In AD brain, protein phosphatase-2A (PP2A) activity is known to be compromised due to the cleavage and translocation of its potent endogenous inhibitor, I2PP2A, from the neuronal nucleus to the cytoplasm. Here, we show that adeno-associated virus vector-induced expression of the N-terminal I2NTF and C-terminal I2CTF halves of I2PP2A , also called SET, in brain reproduced key features of AD in Wistar rats. The I2NTF-CTF rats showed a decrease in brain PP2A activity, abnormal hyperphosphorylation and aggregation of tau, a loss of neuronal plasticity and impairment in spatial reference and working memories. To test whether early pharmacologic intervention with a neurotrophic molecule could rescue neurodegeneration and behavioral deficits, 2.5-month-old I2NTF-CTF rats and control littermates were treated for 40 days with Peptide 6, an 11-mer peptide corresponding to an active region of the ciliary neurotrophic factor. Peripheral administration of Peptide 6 rescued neurodegeneration and cognitive deficit in I2NTF-CTF animals by increasing dentate gyrus neurogenesis and mRNA level of brain derived neurotrophic factor. Moreover, Peptide 6-treated I2NTF-CTF rats showed a significant increase in dendritic and synaptic density as reflected by increased expression of synapsin I, synaptophysin and MAP2, especially in the pyramidal neurons of CA1 and CA3 of the hippocampus.
Collapse
|
7523
|
Watch the GAP: Emerging Roles for IQ Motif-Containing GTPase-Activating Proteins IQGAPs in Hepatocellular Carcinoma. Int J Hepatol 2012; 2012:958673. [PMID: 22973521 PMCID: PMC3438877 DOI: 10.1155/2012/958673] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/25/2012] [Accepted: 08/03/2012] [Indexed: 12/12/2022] Open
Abstract
IQ motif-containing GTPase-activating proteins IQGAP1 and IQGAP2 are highly homologous multidomain scaffolding proteins. Their major function consists of integration of Rho GTPase and Ca(2+)/calmodulin signals with cell adhesive and cytoskeletal reorganizational events. Recent studies showed that they play an important role in carcinogenesis. There is growing evidence that IQGAP2 is a novel tumor suppressor counteracting the effects of IQGAP1, an oncogene, in several cancers, especially in hepatocellular carcinoma (HCC). While HCC is highly prevalent and one of the deadliest cancers worldwide, the signaling pathways involved are not fully understood and treatment of advanced disease still represents an area of high unmet medical need. This paper compiles various findings from studies in mouse models, cell lines, and patient samples that support future development of IQGAPs into new therapeutic targets. It also discusses distinct features of IQGAP2 in an attempt to provide insight into the mechanism of the seemingly paradoxical opposing roles of the two very similar IQGAP proteins in carcinogenesis.
Collapse
|
7524
|
Employing the biology of successful fracture repair to heal critical size bone defects. Curr Top Microbiol Immunol 2012; 367:113-32. [PMID: 23239235 DOI: 10.1007/82_2012_291] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Bone has the natural ability to remodel and repair. Fractures and small noncritical size bone defects undergo regenerative healing via coordinated concurrent development of skeletal and vascular elements in a soft cartilage callus environment. Within this environment bone regeneration recapitulates many of the same cellular and molecular mechanisms that form embryonic bone. Angiogenesis is intimately involved with embryonic bone formation and with both endochondral and intramembranous bone formation in differentiated bone. During bone regeneration osteogenic cells are first associated with vascular tissue in the adjacent periosteal space or the adjacent injured marrow cavity that houses endosteal blood vessels. Critical size bone defects cannot heal without the assistance of therapeutic aids or materials designed to encourage bone regeneration. We discuss the prospects for using synthetic hydrogels in a bioengineering approach to repair critical size bone defects. Hydrogel scaffolds can be designed and fabricated to potentially trigger the same bone morphogenetic cascade that heals bone fractures and noncritical size defects naturally. Lastly, we introduce adult Xenopus laevis hind limb as a novel small animal model system for bone regeneration research. Xenopus hind limbs have been used successfully to screen promising scaffolds designed to heal critical size bone defects.
Collapse
|
7525
|
Pacini N, Abete MC, Dörr AJM, Prearo M, Natali M, Elia AC. Detoxifying response in juvenile tench fed by selenium diet. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 33:46-52. [PMID: 22104302 DOI: 10.1016/j.etap.2011.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 10/18/2011] [Accepted: 10/23/2011] [Indexed: 05/31/2023]
Abstract
The effects of a selenium (Se) diet (1.0 mg Se kg⁻¹) were investigated on growth, accumulation and antioxidant response in juvenile Tinca tinca at three endpoints (0, 4 and 8 weeks). Growth and condition factor (K>1.5) for both control (0.25 mg Se kg⁻¹) and Se tench were not significantly affected. Se exposed fish exhibited the highest Se level in the kidney and the liver after 4 weeks. By feeding more Se the accumulation capacity of tench did not increase and a plateau, mainly for the liver, was thus reached. Se level remained almost constant in the muscle if compared to own control and for each endpoint. Superoxide dismutase activity in both tissues was not affected by Se supplementation and the higher catalase level in the kidney might support the hypothesis that the enzyme was adequate to remove the hydrogen peroxide production following Se exposure. However, supplemented diet with higher Se level could be critical for tench, as it may cause a lowering of glutathione peroxidase and glutathione reductase activities facilitating the onset of oxidative damage. The enhancement of thiol level and glutathione S-transferase activity, mainly in the liver, could be the signals of the only protection against the oxidative damage induced by Se.
Collapse
Affiliation(s)
- Nicole Pacini
- Laboratory of Ecotoxicology, Department of Cellular and Environmental Biology, University of Perugia, 06123 Perugia, Italy
| | | | | | | | | | | |
Collapse
|
7526
|
Haider KH, Ashraf M. Preconditioning approach in stem cell therapy for the treatment of infarcted heart. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 111:323-56. [PMID: 22917238 DOI: 10.1016/b978-0-12-398459-3.00015-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nearly two decades of research in regenerative medicine have been focused on the development of stem cells as a therapeutic option for treatment of the ischemic heart. Given the ability of stem cells to regenerate the damaged tissue, stem-cell-based therapy is an ideal approach for cardiovascular disorders. Preclinical studies in experimental animal models and clinical trials to determine the safety and efficacy of stem cell therapy have produced encouraging results that promise angiomyogenic repair of the ischemically damaged heart. Despite these promising results, stem cell therapy is still confronted with issues ranging from uncertainty about the as-yet-undetermined "ideal" donor cell type to the nonoptimized cell delivery strategies to harness optimal clinical benefits. Moreover, these lacunae have significantly hampered the progress of the heart cell therapy approach from bench to bedside for routine clinical applications. Massive death of donor cells in the infarcted myocardium during acute phase postengraftment is one of the areas of prime concern, which immensely lowers the efficacy of the procedure. An overview of the published data relevant to stem cell therapy is provided here and the various strategies that have been adopted to develop and optimize the protocols to enhance donor stem cell survival posttransplantation are discussed, with special focus on the preconditioning approach.
Collapse
Affiliation(s)
- Khawaja Husnain Haider
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | | |
Collapse
|
7527
|
Klyosov AA, Traber PG. Galectins in Disease and Potential Therapeutic Approaches. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1115.ch001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Anatole A. Klyosov
- Galectin Therapeutics, Inc., 4960 Peachtree Industrial Blvd., Suite 240, Norcross, Georgia 30071
| | - Peter G. Traber
- Galectin Therapeutics, Inc., 4960 Peachtree Industrial Blvd., Suite 240, Norcross, Georgia 30071
| |
Collapse
|
7528
|
Affiliation(s)
- Yasumitsu Ogra
- Laboratory of Chemical Toxicology and Environmental Health, Showa Pharmaceutical University
- High Technology Research Center, Showa Pharmaceutical University
| | - Yasumi Anan
- Laboratory of Chemical Toxicology and Environmental Health, Showa Pharmaceutical University
| |
Collapse
|
7529
|
Calabrò E, Magazù S. Comparison Between Conventional Convective Heating and Microwave Heating: An FTIR Spectroscopy Study of the Effects of Microwave Oven Cooking of Bovine Breast Meat. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/jemaa.2012.411060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7530
|
Abstract
Liver fibrosis is the result of the entire organism responding to a chronic injury. Every cell type in the liver contributes to the fibrosis. This paper first discusses key intracellular signaling pathways that are induced during liver fibrosis. The paper then examines the effects of these signaling pathways on the major cell types in the liver. This will provide insights into the molecular pathophysiology of liver fibrosis and should identify therapeutic targets.
Collapse
|
7531
|
Suvorova II, Katolikova NV, Pospelov VA. New insights into cell cycle regulation and DNA damage response in embryonic stem cells. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:161-98. [PMID: 22959303 DOI: 10.1016/b978-0-12-394310-1.00004-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Embryonic stem cells (ESCs) have unlimited proliferative potential, while retaining the ability to differentiate into descendants of all three embryonic layers. High proliferation rate of ESCs is accompanied by a shortening of the G(1) phase and the lack of G(1) checkpoint following DNA damage. The absence of G(1) arrest in ESCs after DNA damage is likely caused by a dysfunction of the p53-dependent p21Waf1 pathway that is a key event for the maintenance of pluripotency. There are controversial data on the functional status of p53, but it is well established that one of the key p53 target-p21Waf1-is expressed in ESCs at a very low level. Despite the lack of G(1) checkpoint, ESCs are capable to repair DNA defects; moreover the DNA damage response (DDR) signaling operates very effectively throughout the cell cycle. This review covers also the results obtained with the reprogramming of somatic cells into the induced pluripotent stem cells, for which have been shown that a partial dysfunction of the p53Waf1 pathway increases the frequency of generation of pluripotent cells. In summary, these results indicate that the G(1) checkpoint control and DDR are distinct from somatic cells and their status is tightly connected with maintaining of pluripotency and self-renewal.
Collapse
Affiliation(s)
- Irina I Suvorova
- Institute of Cytology, Russian Academy of Sciences, St Petersburg, Russia
| | | | | |
Collapse
|
7532
|
Ragavendran P, Sophia D, Arulraj C, Gopalakrishnan VK. Cardioprotective effect of aqueous, ethanol and aqueous ethanol extract of Aerva lanata (Linn.) against doxorubicin induced cardiomyopathy in rats. Asian Pac J Trop Biomed 2012. [DOI: 10.1016/s2221-1691(12)60162-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
7533
|
Wang YE, Pernet O, Lee B. Regulation of the nucleocytoplasmic trafficking of viral and cellular proteins by ubiquitin and small ubiquitin-related modifiers. Biol Cell 2011; 104:121-38. [PMID: 22188262 PMCID: PMC3625690 DOI: 10.1111/boc.201100105] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 11/22/2011] [Indexed: 12/29/2022]
Abstract
Nucleocytoplasmic trafficking of many cellular proteins is regulated by nuclear import/export signals as well as post-translational modifications such as covalent conjugation of ubiquitin and small ubiquitin-related modifiers (SUMOs). Ubiquitination and SUMOylation are rapid and reversible ways to modulate the intracellular localisation and function of substrate proteins. These pathways have been co-opted by some viruses, which depend on the host cell machinery to transport their proteins in and out of the nucleus. In this review, we will summarise our current knowledge on the ubiquitin/SUMO-regulated nuclear/subnuclear trafficking of cellular proteins and describe examples of viral exploitation of these pathways.
Collapse
Affiliation(s)
- Yao E Wang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
7534
|
What is the purpose of launching World Journal of Neurology? World J Neurol 2011; 1:1-3. [DOI: 10.5316/wjn.v1.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The first issue of World Journal of Neurology, a bimonthly peer-reviewed, online, open-access journal will be published on December 28, 2011. The preparatory work for this journal was initiated on December 5, 2010. The WJN Editorial Board has now been established and consists of 100 members who are distinguished, world-renowned experts in neurology and related specialties (psychiatry, geriatric medicine, and internal medicine) from 30 countries. Our purpose in launching WJN is to publish peer-reviewed, high-quality articles via an open-access online publishing model. In this context, a multidisciplinary journal such as WJN may serve as a unique and useful platform for updated ”review”, “mini-review” and ”experimental” articles in neurological and psychiatric age-related research that would eventually help promote healthy lives in both adult and older individuals.
Collapse
|
7535
|
Aziz K, Nowsheen S, Pantelias G, Iliakis G, Gorgoulis VG, Georgakilas AG. Targeting DNA damage and repair: embracing the pharmacological era for successful cancer therapy. Pharmacol Ther 2011; 133:334-50. [PMID: 22197993 DOI: 10.1016/j.pharmthera.2011.11.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 12/19/2022]
Abstract
DNA is under constant assault from genotoxic agents which creates different kinds of DNA damage. The precise replication of the genome and the continuous surveillance of its integrity are critical for survival and the avoidance of carcinogenesis. Cells have evolved an arsenal of repair pathways and cell cycle checkpoints to detect and repair DNA damage. When repair fails, typically cell cycle progression is halted and apoptosis is initiated. Here, we review the different sources and types of DNA damage including DNA replication stress and oxidative stress, the repair pathways that cells utilize to repair damaged DNA, and discuss their biological significance, especially with reference to cancer induction and cancer therapy. We also describe the main methodologies currently used for the detection of DNA damage with their strengths and limitations. We conclude with an outline as to how this information can be used to identify novel pharmacological targets for DNA repair pathways or enhancers of DNA damage to develop improved treatment strategies that will benefit cancer patients.
Collapse
Affiliation(s)
- K Aziz
- Department of Radiation Oncology & Molecular Radiation Sciences, Johns Hopkins School of Medicine, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD 21231, USA
| | | | | | | | | | | |
Collapse
|
7536
|
Sharma D, Li G, Xu G, Liu Y, Xu Y. Atrial remodeling in atrial fibrillation and some related microRNAs. Cardiology 2011; 120:111-21. [PMID: 22179059 DOI: 10.1159/000334434] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 10/12/2011] [Indexed: 01/17/2023]
Abstract
Atrial fibrillation is the most common sustained arrhythmia associated with substantial cardiovascular morbidity and mortality, with stroke being the most critical complication. The role of atrial remodeling has emerged as the new pathophysiological mechanism of atrial fibrillation. Electrical remodeling and structural remodeling will increase the probability of generating multiple atrial wavelets by enabling rapid atrial activation and dispersion of refractoriness. MicroRNAs (miRNAs) are small non-coding RNAs of 20-25 nucleotides in length that regulate expression of target genes through sequence-specific hybridization to the 3' untranslated region of messenger RNAs and either block translation or direct degradation of their target messenger RNA. They have also been implicated in a variety of pathological conditions, such as arrhythmogenesis and atrial fibrillation. Target genes of miRNAs have the potential to affect atrial fibrillation vulnerability.
Collapse
Affiliation(s)
- Deepak Sharma
- International College of Tianjin Medical University, Tianjin, China
| | | | | | | | | |
Collapse
|
7537
|
Mousseau Y, Mollard S, Faucher-Durand K, Richard L, Nizou A, Cook-Moreau J, Baaj Y, Qiu H, Plainard X, Fourcade L, Funalot B, Sturtz FG. Fingolimod potentiates the effects of sunitinib malate in a rat breast cancer model. Breast Cancer Res Treat 2011; 134:31-40. [PMID: 22160641 DOI: 10.1007/s10549-011-1903-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/24/2011] [Indexed: 02/04/2023]
Abstract
Most of the antiangiogenic strategies used in oncology principally target endothelial cells through the vascular endothelial growth factor (VEGF) pathway. Multiple kinase inhibitors can secondarily reduce mural cell stabilization of the vessels by blocking platelet-derived growth factor receptor (PDGFR) activity. However, sphingosine-1-phosphate (S1P), which is also implicated in mural cell recruitment, has yet to be targeted in clinical practice. We therefore investigated the potential of a simultaneous blockade of the PDGF and S1P pathways on the chemotactic responses of vascular smooth muscle cells (VSMCs) and the resulting effects of this blockade on breast tumor growth. Due to crosstalk between the S1P and PDGF pathways, we used AG1296 and/or VPC-23019 to inhibit PDGFR-β and S1PR1/S1PR3 receptors, respectively. We showed that S1PR1 and S1PR3 are the principal receptors that mediate the S1P chemotactic signal on rat VSMCs and that they act synergistically with PDGFR-β during PDGF-B signaling. We also showed that simultaneous blockade of the PDGFR-β and S1PR1/S1PR3 signals had a synergistic effect, decreasing VSMC migration velocity toward endothelial cell and breast carcinoma cell-secreted cytokines by 65-90%. This blockade also strongly decreased the ability of VSMCs to form a three-dimensional cell network. Similar results were obtained with the combination of sunitinib malate (a VEGFR/PDGFR kinase inhibitor) and fingolimod (an S1P analog). Sunitinib malate is a clinically approved cancer treatment, whereas fingolimod is currently indicated only for treatment of multiple sclerosis. Orally administered, the combination of these drugs greatly decreased rat breast tumor growth in a syngeneic cancer model (Walker 256). This bi-therapy did not exert cumulative toxicity and histological analysis of the tumors revealed normalization of the tumor vasculature. The simultaneous blockade of these signaling pathways with sunitinib malate and fingolimod may provide an effective means of reducing tumor angiogenesis, and may improve the delivery of other chemotherapies.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Aorta, Thoracic/pathology
- Carcinoma 256, Walker/blood supply
- Carcinoma 256, Walker/drug therapy
- Carcinoma 256, Walker/pathology
- Cell Movement
- Cells, Cultured
- Drug Screening Assays, Antitumor
- Drug Synergism
- Female
- Fingolimod Hydrochloride
- Indoles/administration & dosage
- Male
- Mammary Neoplasms, Experimental/blood supply
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/physiology
- Neoplasm Transplantation
- Propylene Glycols/administration & dosage
- Proto-Oncogene Proteins c-sis/pharmacology
- Proto-Oncogene Proteins c-sis/physiology
- Pyrroles/administration & dosage
- Rats
- Rats, Sprague-Dawley
- Receptor, Platelet-Derived Growth Factor beta/antagonists & inhibitors
- Receptor, Platelet-Derived Growth Factor beta/metabolism
- Receptors, Lysosphingolipid/metabolism
- Receptors, Lysosphingolipid/physiology
- Sphingosine/administration & dosage
- Sphingosine/analogs & derivatives
- Sphingosine-1-Phosphate Receptors
- Statistics, Nonparametric
- Sunitinib
- Tumor Burden/drug effects
- Tyrphostins/pharmacology
Collapse
Affiliation(s)
- Yoanne Mousseau
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Limoges, Limoges, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7538
|
Zhou Y, Gunput RAF, Adolfs Y, Pasterkamp RJ. MICALs in control of the cytoskeleton, exocytosis, and cell death. Cell Mol Life Sci 2011; 68:4033-44. [PMID: 21822644 PMCID: PMC3221843 DOI: 10.1007/s00018-011-0787-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/14/2011] [Accepted: 07/19/2011] [Indexed: 12/19/2022]
Abstract
MICALs form an evolutionary conserved family of multidomain signal transduction proteins characterized by a flavoprotein monooxygenase domain. MICALs are being implicated in the regulation of an increasing number of molecular and cellular processes including cytoskeletal dynamics and intracellular trafficking. Intriguingly, some of these effects are dependent on the MICAL monooxygenase enzyme and redox signaling, while other functions rely on other parts of the MICAL protein. Recent breakthroughs in our understanding of MICAL signaling identify the ability of MICALs to bind and directly modify the actin cytoskeleton, link MICALs to the docking and fusion of exocytotic vesicles, and uncover MICALs as anti-apoptotic proteins. These discoveries could lead to therapeutic advances in neural regeneration, cancer, and other diseases.
Collapse
Affiliation(s)
- Yeping Zhou
- Department of Neuroscience and Pharmacology, University Medical Center Utrecht, STR 4.229, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Rou-Afza F. Gunput
- Department of Neuroscience and Pharmacology, University Medical Center Utrecht, STR 4.229, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Youri Adolfs
- Department of Neuroscience and Pharmacology, University Medical Center Utrecht, STR 4.229, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - R. Jeroen Pasterkamp
- Department of Neuroscience and Pharmacology, University Medical Center Utrecht, STR 4.229, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
7539
|
Physiological characterization of human muscle acetylcholine receptors from ALS patients. Proc Natl Acad Sci U S A 2011; 108:20184-8. [PMID: 22128328 DOI: 10.1073/pnas.1117975108] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by progressive degeneration of motor neurons leading to muscle paralysis. Research in transgenic mice suggests that the muscle actively contributes to the disease onset, but such studies are difficult to pursue in humans and in vitro models would represent a good starting point. In this work we show that tiny amounts of muscle from ALS or from control denervated muscle, obtained by needle biopsy, are amenable to functional characterization by two different technical approaches: "microtransplantation" of muscle membranes into Xenopus oocytes and culture of myogenic satellite cells. Acetylcholine (ACh)-evoked currents and unitary events were characterized in oocytes and multinucleated myotubes. We found that ALS acetylcholine receptors (AChRs) retain their native physiological characteristics, being activated by ACh and nicotine and blocked by α-bungarotoxin (α-BuTX), d-tubocurarine (dTC), and galantamine. The reversal potential of ACh-evoked currents and the unitary channel behavior were also typical of normal muscle AChRs. Interestingly, in oocytes injected with muscle membranes derived from ALS patients, the AChRs showed a significant decrease in ACh affinity, compared with denervated controls. Finally, riluzole, the only drug currently used against ALS, reduced, in a dose-dependent manner, the ACh-evoked currents, indicating that its action remains to be fully characterized. The two methods described here will be important tools for elucidating the role of muscle in ALS pathogenesis and for developing drugs to counter the effects of this disease.
Collapse
|
7540
|
Mankad P, James A, Siriwardena AK, Elliott AC, Bruce JIE. Insulin protects pancreatic acinar cells from cytosolic calcium overload and inhibition of plasma membrane calcium pump. J Biol Chem 2011; 287:1823-36. [PMID: 22128146 DOI: 10.1074/jbc.m111.326272] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Acute pancreatitis is a serious and sometimes fatal inflammatory disease of the pancreas without any reliable treatment or imminent cure. In recent years, impaired metabolism and cytosolic Ca(2+) ([Ca(2+)](i)) overload in pancreatic acinar cells have been implicated as the cardinal pathological events common to most forms of pancreatitis, regardless of the precise causative factor. Therefore, restoration of metabolism and protection against cytosolic Ca(2+) overload likely represent key therapeutic untapped strategies for the treatment of this disease. The plasma membrane Ca(2+)-ATPase (PMCA) provides a final common path for cells to "defend" [Ca(2+)](i) during cellular injury. In this paper, we use fluorescence imaging to show for the first time that insulin treatment, which is protective in animal models and clinical studies of human pancreatitis, directly protects pancreatic acinar cells from oxidant-induced cytosolic Ca(2+) overload and inhibition of the PMCA. This protection was independent of oxidative stress or mitochondrial membrane potential but appeared to involve the activation of Akt and an acute metabolic switch from mitochondrial to predominantly glycolytic metabolism. This switch to glycolysis appeared to be sufficient to maintain cellular ATP and thus PMCA activity, thereby preventing Ca(2+) overload, even in the face of impaired mitochondrial function.
Collapse
Affiliation(s)
- Parini Mankad
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9NT, United Kingdom
| | | | | | | | | |
Collapse
|
7541
|
Murphy ST, Alton G, Bailey S, Baxi SM, Burke BJ, Chappie TA, Ermolieff J, Ferre R, Greasley S, Hickey M, Humphrey J, Kablaoui N, Kath J, Kazmirski S, Kraus M, Kupchinsky S, Li J, Lingardo L, Marx MA, Richter D, Tanis SP, Tran K, Vernier W, Xie Z, Yin MJ, Yu XH. Discovery of novel, potent, and selective inhibitors of 3-phosphoinositide-dependent kinase (PDK1). J Med Chem 2011; 54:8490-500. [PMID: 22040023 DOI: 10.1021/jm201019k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Analogues substituted with various amines at the 6-position of the pyrazine ring on (4-amino-7-isopropyl-7H-pyrrolo[2,3-d]pyrimidin-5-yl)pyrazin-2-ylmethanone were discovered as potent and selective inhibitors of PDK1 with potential as anticancer agents. An early lead with 2-pyridine-3-ylethylamine as the pyrazine substituent showed moderate potency and selectivity. Structure-based drug design led to improved potency and selectivity against PI3Kα through a combination of cyclizing the ethylene spacer into a saturated, five-membered ring and substituting on the 4-position of the aryl ring with a fluorine. ADME properties were improved by lowering the lipophilicity with heteroatom replacements in the saturated, five-membered ring. The optimized analogues have a PDK1 Ki of 1 nM and >100-fold selectivity against PI3K/AKT-pathway kinases. The cellular potency of these analogues was assessed by the inhibition of AKT phosphorylation (T308) and by their antiproliferation activity against a number of tumor cell lines.
Collapse
Affiliation(s)
- Sean T Murphy
- Pfizer Global Research and Development, 10770 Science Center Drive, San Diego, California 92121, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7542
|
Abstract
The kidney is a highly vascularized organ that normally receives a fifth of the cardiac output. The unique spatial arrangement of the kidney vasculature with each nephron is crucial for the regulation of renal blood flow, GFR, urine concentration, and other specialized kidney functions. Thus, the proper and timely assembly of kidney vessels with their respective nephrons is a crucial morphogenetic event leading to the formation of a functioning kidney necessary for independent extrauterine life. Mechanisms that govern the development of the kidney vasculature are poorly understood. In this review, we discuss the anatomical development, embryological origin, lineage relationships, and key regulators of the kidney arterioles and postglomerular circulation. Because renal disease is associated with deterioration of the kidney microvasculature and/or the reenactment of embryonic pathways, understanding the morphogenetic events and processes that maintain the renal vasculature may open new avenues for the preservation of renal structure and function and prevent the progression of renal disease.
Collapse
Affiliation(s)
- Maria Luisa S Sequeira Lopez
- University of Virginia School of Medicine, 409 Lane Road, MR4 Building, Room 2001, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
7543
|
Zhu H, Fan GC. Role of microRNAs in the reperfused myocardium towards post-infarct remodelling. Cardiovasc Res 2011; 94:284-92. [PMID: 22038740 DOI: 10.1093/cvr/cvr291] [Citation(s) in RCA: 133] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Myocardial ischaemia/reperfusion (I/R)-induced remodelling generally includes cell death (necrosis and apoptosis), myocyte hypertrophy, angiogenesis, cardiac fibrosis, and myocardial dysfunction. It is becoming increasingly clear that microRNAs (miRNAs or miRs), a group of highly conserved small (∼18-24 nucleotide) non-coding RNAs, fulfil specific functions in the reperfused myocardium towards post-infarct remodelling. While miR-21, -133, -150, -195, and -214 regulate cardiomyocyte hypertrophy, miR-1/-133 and miR-208 have been elucidated to influence myocardial contractile function. In addition, miR-21, -24, -133, -210, -494, and -499 appear to protect myocytes against I/R-induced apoptosis, whereas miR-1, -29, -199a, and -320 promote apoptosis. Myocardial fibrosis can be regulated by the miR-29 family and miR-21. Moreover, miR-126 and miR-210 augment I/R-induced angiogenesis, but miR-24, -92a, and -320 suppress post-infarct neoangiogenesis. In this review, we summarize the latest advances in the identification of myocardial ischaemia-associated miRNAs and their functional significance in the modulation of I/R-triggered remodelling. Controversial effects of some miRNAs in post-infarct remodelling will be also discussed.
Collapse
Affiliation(s)
- Hongyan Zhu
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0575, USA
| | | |
Collapse
|
7544
|
Breitenbach JE, Shelby KS, Popham HJR. Baculovirus induced transcripts in hemocytes from the larvae of Heliothis virescens. Viruses 2011; 3:2047-64. [PMID: 22163334 PMCID: PMC3230841 DOI: 10.3390/v3112047] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 10/19/2011] [Accepted: 10/19/2011] [Indexed: 12/21/2022] Open
Abstract
Using RNA-seq digital difference expression profiling methods, we have assessed the gene expression profiles of hemocytes harvested from Heliothis virescens that were challenged with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV). A reference transcriptome of hemocyte-expressed transcripts was assembled from 202 million 42-base tags by combining the sequence data of all samples, and the assembled sequences were then subject to BLASTx analysis to determine gene identities. We used the fully sequenced HzSNPV reference genome to align 477,264 Illumina sequence tags from infected hemocytes in order to document expression of HzSNPV genes at early points during infection. A comparison of expression profiles of control insects to those lethally infected with HzSNPV revealed differential expression of key cellular stress response genes and genes involved in lipid metabolism. Transcriptional regulation of specific insect hormones in baculovirus-infected insects was also altered. A number of transcripts bearing homology to retroviral elements that were detected add to a growing body of evidence for extensive invasion of errantiviruses into the insect genome. Using this method, we completed the first and most comprehensive gene expression survey of both baculoviral infection and host immune defense in lepidopteran larvae.
Collapse
Affiliation(s)
- Jonathan E Breitenbach
- Biological Control of Insects Research Laboratory, Agricultural Research Service, USDA, Columbia, MO 65203, USA.
| | | | | |
Collapse
|
7545
|
Sphingosine-1-phosphate signaling and its role in disease. Trends Cell Biol 2011; 22:50-60. [PMID: 22001186 DOI: 10.1016/j.tcb.2011.09.003] [Citation(s) in RCA: 824] [Impact Index Per Article: 58.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 02/07/2023]
Abstract
The bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P) is now recognized as a critical regulator of many physiological and pathophysiological processes, including cancer, atherosclerosis, diabetes and osteoporosis. S1P is produced in cells by two sphingosine kinase isoenzymes, SphK1 and SphK2. Many cells secrete S1P, which can then act in an autocrine or paracrine manner. Most of the known actions of S1P are mediated by a family of five specific G protein-coupled receptors. More recently, it was shown that S1P also has important intracellular targets involved in inflammation, cancer and Alzheimer's disease. This suggests that S1P actions are much more complex than previously thought, with important ramifications for development of therapeutics. This review highlights recent advances in our understanding of the mechanisms of action of S1P and its roles in disease.
Collapse
|
7546
|
Cerebrospinal Fluid Tenascin-C in Cerebral Vasospasm After Aneurysmal Subarachnoid Hemorrhage. J Neurosurg Anesthesiol 2011; 23:310-7. [DOI: 10.1097/ana.0b013e31822aa1f2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
7547
|
Abstract
PURPOSE OF REVIEW The accumulation of macrophages in the vascular wall is a hallmark of atherosclerosis. The biological properties of atherosclerotic plaque macrophages determine lesion size, composition, and stability. In atherosclerotic plaques, macrophages encounter a microenvironment that comprises a variety of lipid oxidation products, each of which has diverse biological effects. In this review, we summarize recent advances in our understanding of the effects of plaque lipids on macrophage phenotypic polarization. RECENT FINDINGS Atherosclerotic lesions in mice and in humans contain various macrophage phenotypes, which play different roles in mediating inflammation, the clearance of dead cells, and possibly resolution. Macrophages alter their phenotype and biological function in response to plaque lipids through the upregulation of specific sets of genes. Interaction of oxidized lipids with pattern recognition receptors and activation of the inflammasome by cholesterol crystals drive macrophages toward an inflammatory M1 phenotype. A new phenotype, Mox, develops when oxidized phospholipids activate stress response genes via Nrf2. Other lipid mediators such as nitrosylated-fatty acids and omega-3 fatty acid-derived products polarize plaque macrophages toward anti-inflammatory and proresolving phenotypes. SUMMARY A deeper understanding of how lipids that accumulate in atherosclerotic plaques affect macrophage phenotype and function and thus atherosclerotic lesion development and stability will help to devise novel strategies for intervention.
Collapse
Affiliation(s)
| | - Norbert Leitinger
- Corresponding author: University of Virginia, Department of Pharmacology; 1340 Jefferson Park Avenue, Jordan Hall, 5th Floor, Rm 5036/5039, P.O. Box 800735, Charlottesville, VA 22908; Tel: 434-243-6363, Fax: 434-924-0149;
| |
Collapse
|
7548
|
Alteration of protein folding and degradation in motor neuron diseases: Implications and protective functions of small heat shock proteins. Prog Neurobiol 2011; 97:83-100. [PMID: 21971574 DOI: 10.1016/j.pneurobio.2011.09.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/16/2011] [Accepted: 09/20/2011] [Indexed: 12/12/2022]
Abstract
Motor neuron diseases (MNDs) are neurodegenerative disorders that specifically affect the survival and function of upper and/or lower motor neurons. Since motor neurons are responsible for the control of voluntary muscular movement, MNDs are characterized by muscle spasticity, weakness and atrophy. Different susceptibility genes associated with an increased risk to develop MNDs have been reported and several mutated genes have been linked to hereditary forms of MNDs. However, most cases of MNDs occur in sporadic forms and very little is known on their causes. Interestingly, several molecular mechanisms seem to participate in the progression of both the inherited and sporadic forms of MNDs. These include cytoskeleton organization, mitochondrial functions, DNA repair and RNA synthesis/processing, vesicle trafficking, endolysosomal trafficking and fusion, as well as protein folding and protein degradation. In particular, accumulation of aggregate-prone proteins is a hallmark of MNDs, suggesting that the protein quality control system (molecular chaperones and the degradative systems: ubiquitin-proteasome-system and autophagy) are saturated or not sufficient to allow the clearance of these altered proteins. In this review we mainly focus on the MNDs associated with disturbances in protein folding and protein degradation and on the potential implication of a specific class of molecular chaperones, the small heat shock proteins (sHSPs/HSPBs), in motor neuron function and survival. How boosting of specific HSPBs may be a potential useful therapeutic approach in MNDs and how mutations in specific HSPBs can directly cause motor neuron degeneration is discussed.
Collapse
|
7549
|
Skakauskas V, Katauskis P, Skvortsov A. A reaction-diffusion model of the receptor-toxin-antibody interaction. Theor Biol Med Model 2011; 8:32. [PMID: 21896208 PMCID: PMC3203254 DOI: 10.1186/1742-4682-8-32] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 09/07/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It was recently shown that the treatment effect of an antibody can be described by a consolidated parameter which includes the reaction rates of the receptor-toxin-antibody kinetics and the relative concentration of reacting species. As a result, any given value of this parameter determines an associated range of antibody kinetic properties and its relative concentration in order to achieve a desirable therapeutic effect. In the current study we generalize the existing kinetic model by explicitly taking into account the diffusion fluxes of the species. RESULTS A refined model of receptor-toxin-antibody (RTA) interaction is studied numerically. The protective properties of an antibody against a given toxin are evaluated for a spherical cell placed into a toxin-antibody solution. The selection of parameters for numerical simulation approximately corresponds to the practically relevant values reported in the literature with the significant ranges in variation to allow demonstration of different regimes of intracellular transport. CONCLUSIONS The proposed refinement of the RTA model may become important for the consistent evaluation of protective potential of an antibody and for the estimation of the time period during which the application of this antibody becomes the most effective. It can be a useful tool for in vitro selection of potential protective antibodies for progression to in vivo evaluation.
Collapse
|
7550
|
|