751
|
Reslan OM, Khalil RA. Vascular effects of estrogenic menopausal hormone therapy. Rev Recent Clin Trials 2012; 7:47-70. [PMID: 21864249 DOI: 10.2174/157488712799363253] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2011] [Revised: 07/22/2011] [Accepted: 07/29/2011] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) is more common in men and postmenopausal women (Post-MW) than premenopausal women (Pre-MW). Despite recent advances in preventive measures, the incidence of CVD in women has shown a rise that matched the increase in the Post-MW population. The increased incidence of CVD in Post-MW has been related to the decline in estrogen levels, and hence suggested vascular benefits of endogenous estrogen. Experimental studies have identified estrogen receptor ERα, ERβ and a novel estrogen binding membrane protein GPR30 (GPER) in blood vessels of humans and experimental animals. The interaction of estrogen with vascular ERs mediates both genomic and non-genomic effects. Estrogen promotes endothelium-dependent relaxation by increasing nitric oxide, prostacyclin, and hyperpolarizing factor. Estrogen also inhibits the mechanisms of vascular smooth muscle (VSM) contraction including [Ca2+]i, protein kinase C and Rho-kinase. Additional effects of estrogen on the vascular cytoskeleton, extracellular matrix, lipid profile and the vascular inflammatory response have been reported. In addition to the experimental evidence in animal models and vascular cells, initial observational studies in women using menopausal hormonal therapy (MHT) have suggested that estrogen may protect against CVD. However, randomized clinical trials (RCTs) such as the Heart and Estrogen/ progestin Replacement Study (HERS) and the Women's Health Initiative (WHI), which examined the effects of conjugated equine estrogens (CEE) in older women with established CVD (HERS) or without overt CVD (WHI), failed to demonstrate protective vascular effects of estrogen treatment. Despite the initial set-back from the results of MHT RCTs, growing evidence now supports the 'timing hypothesis', which suggests that MHT could increase the risk of CVD if started late after menopause, but may produce beneficial cardiovascular effects in younger women during the perimenopausal period. The choice of an appropriate MHT dose, route of administration, and estrogen/progestin combination could maximize the vascular benefits of MHT and minimize other adverse effects, especially if given within a reasonably short time after menopause to women that seek MHT for the relief of menopausal symptoms.
Collapse
Affiliation(s)
- Ossama M Reslan
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
752
|
Sugasini D, Lokesh BR. Uptake of α-Linolenic Acid and Its Conversion to Long Chain Omega-3 Fatty Acids in Rats Fed Microemulsions of Linseed Oil. Lipids 2012; 47:1155-67. [DOI: 10.1007/s11745-012-3731-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
|
753
|
Estrogen receptor prevents p53-dependent apoptosis in breast cancer. Proc Natl Acad Sci U S A 2012; 109:18060-5. [PMID: 23077249 DOI: 10.1073/pnas.1018858109] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
More than two-thirds of breast cancers express the estrogen receptor (ER) and depend on estrogen for growth and survival. Therapies targeting ER function, including aromatase inhibitors that block the production of estrogens and ER antagonists that alter ER transcriptional activity, play a central role in the treatment of ER+ breast cancers of all stages. In contrast to ER- breast cancers, which frequently harbor mutations in the p53 tumor suppressor, ER+ breast cancers are predominantly wild type for p53. Despite harboring wild-type p53, ER+ breast cancer cells are resistant to chemotherapy-induced apoptosis in the presence of estrogen. Using genome-wide approaches, we have addressed the mechanism by which ER antagonizes the proapoptotic function of p53. Interestingly, both ER agonists such as estradiol and the selective ER modulator (SERM) tamoxifen promote p53 antagonism. In contrast, the full ER antagonist fulvestrant blocks the ability of ER to inhibit p53-mediated cell death. This inhibition works through a mechanism involving the modulation of a subset of p53 and ER target genes that can predict the relapse-free survival of patients with ER+ breast cancer. These findings suggest an improved strategy for the treatment of ER+ breast cancer using antagonists that completely block ER action together with drugs that activate p53-mediated cell death.
Collapse
|
754
|
Renoir JM. Estradiol receptors in breast cancer cells: associated co-factors as targets for new therapeutic approaches. Steroids 2012; 77:1249-61. [PMID: 22917634 DOI: 10.1016/j.steroids.2012.07.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/18/2012] [Accepted: 07/25/2012] [Indexed: 02/07/2023]
Abstract
Estrogen receptors α (ERα) and β (ERβ) are nuclear receptors which transduce estradiol (E2) response in many tissues including the mammary gland and breast cancers (BC). They activate or inhibit specific genes involved in cell cycle progression and cell survival through multiple enzyme activities leading to malignant transformation. Hormone therapy (antiestrogens (AEs) and aromatase inhibitors (AIs) have been widely used to block the mitogenic action of E2 in patients with ER-positive BC. ERs act in concert with numerous other proteins outside and inside the nucleus where co-activators such as histone modifying enzymes help reaching optimum gene activation. Moreover, E2-mediated gene regulation can occur through ERs located at the plasma membrane or G protein-coupled estrogen receptor (GPER), triggering protein kinase signaling cascades. Classical AEs as well as AIs are inefficient to block the cascades of events emanating from the membrane and from E2 binding to GPER, leading patients to escape anti-hormone treatments and hormone therapy resistance. Many pathways are involved in resistance, mostly resulting from over-expression of growth factor membrane receptors, in particular the HER2/ErbB2 which can be inhibited by specific antibodies or tyrosine kinases inhibitors. Together with the Hsp90 molecular chaperone machinery, a complex interplay between ERs, co-activators, co-repressors and growth factor-activated membrane pathways represents potent targets which warrant to be manipulated alone and in combination to designing novel therapies. The discovery of new potential targets arising from micro array studies gives the opportunity to activate or inhibit different new ER-modulating effectors for innovative therapeutic interventions.
Collapse
|
755
|
Marcucci F, Corti A. Improving drug penetration to curb tumor drug resistance. Drug Discov Today 2012; 17:1139-46. [DOI: 10.1016/j.drudis.2012.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 05/24/2012] [Accepted: 06/08/2012] [Indexed: 12/21/2022]
|
756
|
Cellular and molecular mechanisms of hepatocellular carcinoma: an update. Arch Toxicol 2012; 87:227-47. [PMID: 23007558 DOI: 10.1007/s00204-012-0931-2] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 08/27/2012] [Indexed: 12/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant tumor that accounts for ~80 % of all liver cancer cases worldwide. It is a multifactorial disease caused by a variety of risk factors and often develops in the background of underlying cirrhosis. A number of cellular phenomena, such as tumor microenvironment, inflammation, oxidative stress, and hypoxia act in concert with various molecular events to facilitate tumor initiation, progression, and metastasis. The emergence of microRNAs and molecular-targeted therapies adds a new dimension in our efforts to combat this deadly disease. Intense research in this multitude of areas has led to significant progress in our understanding of cellular processes and molecular mechanisms that occur during multistage events that lead to hepatocarcinogenesis. In this review, we discuss the current knowledge of HCC, focusing mainly on advances that have occurred during the past 5 years and on the development of novel therapeutics for liver cancer.
Collapse
|
757
|
Baumhoer D, Zillmer S, Unger K, Rosemann M, Atkinson MJ, Irmler M, Beckers J, Siggelkow H, von Luettichau I, Jundt G, Smida J, Nathrath M. MicroRNA profiling with correlation to gene expression revealed the oncogenic miR-17-92 cluster to be up-regulated in osteosarcoma. Cancer Genet 2012; 205:212-9. [PMID: 22682620 DOI: 10.1016/j.cancergen.2012.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/20/2012] [Accepted: 03/01/2012] [Indexed: 01/07/2023]
Abstract
Osteosarcomas are genetically complex tumors with abundant structural and numerical alterations. The molecular pathogenesis of the disease is, however, still poorly understood. Aside from various oncogenes and tumor suppressor genes, deregulated microRNAs (miRNAs) are known to influence tumor development and biology. We therefore investigated six well-established osteosarcoma cell lines (HOS58, U2-OS, Saos-2, MNNG/HOS, SJSA-1, and MG-63) for genome-wide miRNA expression (miRBase Version 15.0, http://www.mirbase.org/) and correlated our findings with gene expression. Cultured osteoblasts (hFOB 1.19) and mesenchymal stem cells (L87/4) were used as normal references. Focusing only on miRNAs that were deregulated in the majority of osteosarcoma cell lines, we identified several miRNAs with oncogenic and tumor suppressor properties, including various members of the oncogenic miR-17-92 cluster. In addition, several genes involved in differentiation (RGMB, LRRC17), cell cycle control (CCNE1), and apoptosis (LIMA1, CAMK2N1) were found to be deregulated in osteosarcoma cell lines, most likely due to altered miRNA expression patterns. Our findings indicate a crucial impact of deregulated miRNAs with consecutive changes in gene expression in osteosarcomas, which strongly suggests pathogenetic and potentially therapeutic implications.
Collapse
Affiliation(s)
- Daniel Baumhoer
- Bone Tumor Reference Center at the Institute of Pathology, University Hospital Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
758
|
Induction of IL-4Rα-dependent microRNAs identifies PI3K/Akt signaling as essential for IL-4-driven murine macrophage proliferation in vivo. Blood 2012; 120:2307-16. [PMID: 22855601 DOI: 10.1182/blood-2012-02-408252] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macrophage (MΦ) activation must be tightly controlled to preclude overzealous responses that cause self-damage. MicroRNAs promote classical MΦ activation by blocking antiinflammatory signals and transcription factors but also can prevent excessive TLR signaling. In contrast, the microRNA profile associated with alternatively activated MΦ and their role in regulating wound healing or antihelminthic responses has not been described. By using an in vivo model of alternative activation in which adult Brugia malayi nematodes are implanted surgically in the peritoneal cavity of mice, we identified differential expression of miR-125b-5p, miR-146a-5p, miR-199b-5p, and miR-378-3p in helminth-induced MΦ. In vitro experiments demonstrated that miR-378-3p was specifically induced by IL-4 and revealed the IL-4-receptor/PI3K/Akt-signaling pathway as a target. Chemical inhibition of this pathway showed that intact Akt signaling is an important enhancement factor for alternative activation in vitro and in vivo and is essential for IL-4-driven MΦ proliferation in vivo. Thus, identification of miR-378-3p as an IL-4Rα-induced microRNA led to the discovery that Akt regulates the newly discovered mechanism of IL-4-driven macrophage proliferation. Together, the data suggest that negative regulation of Akt signaling via microRNAs might play a central role in limiting MΦ expansion and alternative activation during type 2 inflammatory settings.
Collapse
|
759
|
Marino M, Pellegrini M, La Rosa P, Acconcia F. Susceptibility of estrogen receptor rapid responses to xenoestrogens: Physiological outcomes. Steroids 2012; 77:910-7. [PMID: 22410438 DOI: 10.1016/j.steroids.2012.02.019] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/13/2012] [Accepted: 02/24/2012] [Indexed: 02/06/2023]
Abstract
17β-Estradiol (E2) binding induces rapid modification in the conformation of its cognate receptors (i.e., ERα and ERβ). These allosteric changes allow the association of ERs with cell specific transcriptional cofactors, thus determining cellular contexts specific variations in gene expression. In addition, E2-ER complexes could also interact with membrane and cytosolic signal molecules triggering extra-nuclear signalling pathways. The synergy between these mechanisms is necessary for E2-induced pleiotropic actions in target tissues. Besides E2, the ER ligand binding domains can accommodate many other natural and synthetic ligands. Several of these compounds act as agonist or antagonist of ER transcriptional activity due to their ability to modify the interactions between ERs and transcriptional co-regulators. However, the ability of natural or manmade ER ligands to affect the extra-nuclear interactions of the ERs has been rarely evaluated. Here, the ability of two diet-derived flavonoids (i.e., naringenin and quercetin) and of the synthetic food-contaminant bisphenol A to modulate specifically ER extra-nuclear signalling pathways will be reported. All the tested compounds bind to both ER subtypes even if lesser than E2 activating divergent signal transduction pathways. In fact, in the presence of ERα, both naringenin and quercetin decouple ERα activities by specifically interfering with ERα membrane initiating signals. On the other hand, bisphenol A, but not flavonoids, maintains ERβ at the membrane thus impairing the activation of the downstream kinases. As a whole, extra-nuclear ER signals are highly susceptible to different ligands that, by unbalancing E2-induced cell functions drive cells to different functional endpoints.
Collapse
Affiliation(s)
- Maria Marino
- Department of Biology, University Roma TRE, viale G. Marconi, 446, I-00146 Rome, Italy.
| | | | | | | |
Collapse
|
760
|
Interleukin-6 counteracts therapy-induced cellular oxidative stress in multiple myeloma by up-regulating manganese superoxide dismutase. Biochem J 2012; 444:515-27. [PMID: 22471522 PMCID: PMC3365439 DOI: 10.1042/bj20112019] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IL (interleukin)-6, an established growth factor for multiple myeloma cells, induces myeloma therapy resistance, but the resistance mechanisms remain unclear. The present study determines the role of IL-6 in re-establishing intracellular redox homoeostasis in the context of myeloma therapy. IL-6 treatment increased myeloma cell resistance to agents that induce oxidative stress, including IR (ionizing radiation) and Dex (dexamethasone). Relative to IR alone, myeloma cells treated with IL-6 plus IR demonstrated reduced annexin/propidium iodide staining, caspase 3 activation, PARP [poly(ADP-ribose) polymerase] cleavage and mitochondrial membrane depolarization with increased clonogenic survival. IL-6 combined with IR or Dex increased early intracellular pro-oxidant levels that were causally related to activation of NF-κB (nuclear factor κB) as determined by the ability of N-acetylcysteine to suppress both pro-oxidant levels and NF-κB activation. In myeloma cells, upon combination with hydrogen peroxide treatment, relative to TNF (tumour necrosis factor)-α, IL-6 induced an early perturbation in reduced glutathione level and increased NF-κB-dependent MnSOD (manganese superoxide dismutase) expression. Furthermore, knockdown of MnSOD suppressed the IL-6-induced myeloma cell resistance to radiation. MitoSOX Red staining showed that IL-6 treatment attenuated late mitochondrial oxidant production in irradiated myeloma cells. The present study provides evidence that increases in MnSOD expression mediate IL-6-induced resistance to Dex and radiation in myeloma cells. The results of the present study indicate that inhibition of antioxidant pathways could enhance myeloma cell responses to radiotherapy and/or chemotherapy.
Collapse
|
761
|
Abstract
The selective estrogen receptor downregulator (SERD) fulvestrant can be used as second-line treatment for patients relapsing after treatment with tamoxifen, a selective estrogen receptor modulator (SERM). Unlike tamoxifen, SERDs are devoid of partial agonist activity. While the full antiestrogenicity of SERDs may result in part from their capacity to downregulate levels of estrogen receptor alpha (ERα) through proteasome-mediated degradation, SERDs are also fully antiestrogenic in the absence of increased receptor turnover in HepG2 cells. Here we report that SERDs induce the rapid and strong SUMOylation of ERα in ERα-positive and -negative cell lines, including HepG2 cells. Four sites of SUMOylation were identified by mass spectrometry analysis. In derivatives of the SERD ICI164,384, SUMOylation was dependent on the length of the side chain and correlated with full antiestrogenicity. Preventing SUMOylation by the overexpression of a SUMO-specific protease (SENP) deSUMOylase partially derepressed transcription in the presence of full antiestrogens in HepG2 cells without a corresponding increase in activity in the presence of agonists or of the SERM tamoxifen. Mutations increasing transcriptional activity in the presence of full antiestrogens reduced SUMOylation levels and suppressed stimulation by SENP1. Our results indicate that ERα SUMOylation contributes to full antiestrogenicity in the absence of accelerated receptor turnover.
Collapse
|
762
|
Picard N, Caron V, Bilodeau S, Sanchez M, Mascle X, Aubry M, Tremblay A. Identification of estrogen receptor β as a SUMO-1 target reveals a novel phosphorylated sumoylation motif and regulation by glycogen synthase kinase 3β. Mol Cell Biol 2012; 32:2709-2721. [PMID: 22586270 PMCID: PMC3416183 DOI: 10.1128/mcb.06624-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 04/30/2012] [Indexed: 01/01/2023] Open
Abstract
SUMO conjugation has emerged as a dynamic process in regulating protein function. Here we identify estrogen receptor β (ERβ) to be a new target of SUMO-1. ERβ SUMO-1 modification occurs on a unique nonconsensus sumoylation motif which becomes fully competent upon phosphorylation of its contained serine residue, which provides the essential negative charge for sumoylation. This process is further regulated by phosphorylation of additional adjacent serine residues by glycogen synthase kinase 3β (GSK3β), which maximizes ERβ sumoylation in response to hormone. SUMO-1 attachment prevents ERβ degradation by competing with ubiquitin at the same acceptor site and dictates ERβ transcriptional inhibition by altering estrogen-responsive target promoter occupancy and gene expression in breast cancer cells. These findings uncovered a novel phosphorylated sumoylation motif (pSuM), which consists of the sequence ψKXS (where ψ represents a large hydrophobic residue) and which is connected to a GSK3-activated extension that functions as a SUMO enhancer. This extended pSuM offers a valuable signature to predict SUMO substrates under protein kinase regulation.
Collapse
Affiliation(s)
- Nathalie Picard
- Sainte-Justine Hospital Research Center
- Departments of Biochemistry
| | | | | | - Mélanie Sanchez
- Sainte-Justine Hospital Research Center
- Departments of Biochemistry
| | | | | | - André Tremblay
- Sainte-Justine Hospital Research Center
- Departments of Biochemistry
- Obstetrics and Gynecology, University of Montreal, Montréal, Québec, Canada
| |
Collapse
|
763
|
Paolino D, Licciardi M, Celia C, Giammona G, Fresta M, Cavallaro G. Folate-targeted supramolecular vesicular aggregates as a new frontier for effective anticancer treatment in in vivo model. Eur J Pharm Biopharm 2012; 82:94-102. [PMID: 22705641 DOI: 10.1016/j.ejpb.2012.06.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 05/31/2012] [Accepted: 06/01/2012] [Indexed: 12/25/2022]
Abstract
Supramolecular vesicular aggregates (SVAs), made up by self-assembling liposomes and polyasparthydrazide co-polymers conjugated to folic acid molecules were extensively investigated in this manuscript as potential active targeting formulation for anticancer drug delivery. Folate-targeted systems (FT-SVAs) were used to treat breast cancer and to further proof the potential in vivo administration of these systems for the therapeutic treatment for several aggressive solid tumors. The physicochemical and technological parameters of FT-SVAs are suitable for their potential in vivo administration. The chemotherapeutic activity of GEM-loaded FT-SVAs was increased during in vivo experiments. NOD-SCID mice bearing MCF-7 human xenograft is used as breast cancer model. The measurement of the volume and weight of tumor masses decreased when animal models are treated by using GEM-loaded FT-SVAs, compared to data obtained by using GEM-loaded mPEG-SUVs and the free form of GEM. An almost complete regression of the tumor (≈ 0.2 cm(3)) was observed in NOD-SCID mice bearing MCF-7 human xenografts treated by GEM-loaded FT-SVAs due to the noticeable improvement of GEM pharmacokinetic parameters provided by FT-SVAs with respect to native anticancer drug. The obtained data showed that supramolecular systems could represent an innovative drug delivery system by self-assembling liposomes and biocompatible polymers to be potentially used for anticancer treatment.
Collapse
Affiliation(s)
- Donatella Paolino
- Department of Health Sciences, University Magna Græcia of Catanzaro, Germaneto-Catanzaro, Italy
| | | | | | | | | | | |
Collapse
|
764
|
Cortés-Vieyra R, Bravo-Patiño A, Valdez-Alarcón JJ, Juárez MC, Finlay BB, Baizabal-Aguirre VM. Role of glycogen synthase kinase-3 beta in the inflammatory response caused by bacterial pathogens. JOURNAL OF INFLAMMATION-LONDON 2012; 9:23. [PMID: 22691598 PMCID: PMC3506434 DOI: 10.1186/1476-9255-9-23] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 05/22/2012] [Indexed: 02/08/2023]
Abstract
Glycogen synthase kinase 3β (GSK3β) plays a fundamental role during the inflammatory response induced by bacteria. Depending on the pathogen and its virulence factors, the type of cell and probably the context in which the interaction between host cells and bacteria takes place, GSK3β may promote or inhibit inflammation. The goal of this review is to discuss recent findings on the role of the inhibition or activation of GSK3β and its modulation of the inflammatory signaling in monocytes/macrophages and epithelial cells at the transcriptional level, mainly through the regulation of nuclear factor-kappaB (NF-κB) activity. Also included is a brief overview on the importance of GSK3 in non-inflammatory processes during bacterial infection.
Collapse
Affiliation(s)
- Ricarda Cortés-Vieyra
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico.
| | | | | | | | | | | |
Collapse
|
765
|
Han ZG. Functional genomic studies: insights into the pathogenesis of liver cancer. Annu Rev Genomics Hum Genet 2012; 13:171-205. [PMID: 22703171 DOI: 10.1146/annurev-genom-090711-163752] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Liver cancer is the sixth-most-common cancer overall but the third-most-frequent cause of cancer death. Among primary liver cancers, hepatocellular carcinoma (HCC), the major histological subtype, is associated with multiple risk factors, including hepatitis B and C virus infection, alcohol consumption, obesity, and diet contamination. Although previous studies have revealed that certain genetic and epigenetic changes, such as TP53 and β-catenin mutations, occur in HCC cells, the pathogenesis of this cancer remains obscure. Functional genomic approaches-including genome-wide association studies, whole-genome and whole-exome sequencing, array-based comparative genomic hybridization, global DNA methylome mapping, and gene or noncoding RNA expression profiling-have recently been applied to HCC patients with different clinical features to uncover the genetic risk factors and underlying molecular mechanisms involved in this cancer's initiation and progression. The genome-wide analysis of germline and somatic genetic and epigenetic events facilitates understanding of the pathogenesis and molecular classification of liver cancer as well as the identification of novel diagnostic biomarkers and therapeutic targets for cancer.
Collapse
Affiliation(s)
- Ze-Guang Han
- National Human Genome Center of Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
766
|
Qin LX. Inflammatory immune responses in tumor microenvironment and metastasis of hepatocellular carcinoma. CANCER MICROENVIRONMENT 2012; 5:203-9. [PMID: 22678823 DOI: 10.1007/s12307-012-0111-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 05/22/2012] [Indexed: 02/07/2023]
Abstract
Metastasis is a multistage process that requires cancer cells to escape from the primary tumor, survive in the circulation, seed at distant sites and grow. Each of these processes involves rate-limiting steps that are influenced by non-malignant cells of the tumor microenvironment. There are growing evidences that tumors are sustained and promoted by inflammatory signals from the surrounding microenvironment. This review describes experimental data demonstrating the role of the inflammatory immune responses of microenvironment in metastases of hepatocellular carcinoma (HCC), points out the prospective areas for future research and possible new therapeutic approaches to control the metastasis of HCC.
Collapse
Affiliation(s)
- Lun-Xiu Qin
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai, 200032, China,
| |
Collapse
|
767
|
Alfaro NS, Salvetti NR, Velazquez MM, Stangaferro ML, Rey F, Ortega HH. Steroid receptor mRNA expression in the ovarian follicles of cows with cystic ovarian disease. Res Vet Sci 2012; 92:478-85. [DOI: 10.1016/j.rvsc.2011.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 03/25/2011] [Accepted: 04/11/2011] [Indexed: 11/26/2022]
|
768
|
Anson M, Viguier M, Perret C, Couty JP. [NKT cells in the liver environment interact with Wnt/β-catenin and promote the emergence of liver carcinoma]. Med Sci (Paris) 2012; 28:473-5. [PMID: 22642999 DOI: 10.1051/medsci/2012285010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
769
|
MicroRNA Involvement in Osteosarcoma. Sarcoma 2012; 2012:359739. [PMID: 22550419 PMCID: PMC3329862 DOI: 10.1155/2012/359739] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 01/26/2012] [Accepted: 01/27/2012] [Indexed: 01/04/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor, usually arising in the long bones of adolescents and young adults. While our knowledge of the molecular pathogenesis of OS has increased in recent years, we are still far from a comprehensive understanding of the molecular mechanisms of the disease, such as its tumorigenesis, specific mediators of disease progression, occurrence of chemoresistance, and development of metastasis. After the recent discovery of microRNAs (miRNAs), their critical roles in molecular biological processes have been of great interest in the cancer research field, including research on sarcomas. MiRNAs are highly conserved noncoding RNAs which play important roles as oncogenic or suppressive genes to simultaneously regulate multiple targets. Recent genome-wide screening using miRNA expression profiles has identified specific miRNA expression patterns that are associated with the biological and clinical properties of cancers. Additionally, miRNAs and their target genes or proteins can be potential novel biomarkers or therapeutic targets for cancer. However, there are several challenges that must be addressed in order to translate miRNA-based therapeutics to the clinical setting. In this review, we summarize the current understanding of the roles that miRNAs play in OS, and highlight their potential as biomarkers or therapeutic targets.
Collapse
|
770
|
La Rosa P, Pesiri V, Leclercq G, Marino M, Acconcia F. Palmitoylation regulates 17β-estradiol-induced estrogen receptor-α degradation and transcriptional activity. Mol Endocrinol 2012; 26:762-74. [PMID: 22446104 DOI: 10.1210/me.2011-1208] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The estrogen receptor-α (ERα) is a transcription factor that regulates gene expression through the binding to its cognate hormone 17β-estradiol (E2). ERα transcriptional activity is regulated by E2-evoked 26S proteasome-mediated ERα degradation and ERα serine (S) residue 118 phosphorylation. Furthermore, ERα mediates fast cell responses to E2 through the activation of signaling cascades such as the MAPK/ERK and phosphoinositide-3-kinase/v-akt murine thymoma viral oncogene homolog 1 pathways. These E2 rapid effects require a population of the ERα located at the cell plasma membrane through palmitoylation, a dynamic enzymatic modification mediated by palmitoyl-acyl-transferases. However, whether membrane-initiated and transcriptional ERα activities integrate in a unique picture or represent parallel pathways still remains to be firmly clarified. Hence, we evaluated here the impact of ERα palmitoylation on E2-induced ERα degradation and S118 phosphorylation. The lack of palmitoylation renders ERα more susceptible to E2-dependent degradation, blocks ERα S118 phosphorylation and prevents E2-induced ERα estrogen-responsive element-containing promoter occupancy. Consequently, ERα transcriptional activity is prevented and the receptor addressed to the nuclear matrix subnuclear compartment. These data uncover a circuitry in which receptor palmitoylation links E2-dependent ERα degradation, S118 phosphorylation, and transcriptional activity in a unique molecular mechanism. We propose that rapid E2-dependent signaling could be considered as a prerequisite for ERα transcriptional activity and suggest an integrated model of ERα intracellular signaling where E2-dependent early extranuclear effects control late receptor-dependent nuclear actions.
Collapse
|
771
|
Anbalagan M, Huderson B, Murphy L, Rowan BG. Post-translational modifications of nuclear receptors and human disease. NUCLEAR RECEPTOR SIGNALING 2012; 10:e001. [PMID: 22438791 PMCID: PMC3309075 DOI: 10.1621/nrs.10001] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 08/19/2011] [Indexed: 12/12/2022]
Abstract
Nuclear receptors (NR) impact a myriad of physiological processes including homeostasis, reproduction, development, and metabolism. NRs are regulated by post-translational modifications (PTM) that markedly impact receptor function. Recent studies have identified NR PTMs that are involved in the onset and progression of human diseases, including cancer. The majority of evidence linking NR PTMs with disease has been demonstrated for phosphorylation, acetylation and sumoylation of androgen receptor (AR), estrogen receptor α (ERα), glucocorticoid receptor (GR) and peroxisome proliferator activated receptor γ (PPARγ). Phosphorylation of AR has been associated with hormone refractory prostate cancer and decreased disease-specific survival. AR acetylation and sumoylation increased growth of prostate cancer tumor models. AR phosphorylation reduced the toxicity of the expanded polyglutamine AR in Kennedy's Disease as a consequence of reduced ligand binding. A comprehensive evaluation of ERα phosphorylation in breast cancer revealed several sites associated with better clinical outcome to tamoxifen therapy, whereas other phosphorylation sites were associated with poorer clinical outcome. ERα acetylation and sumoylation may also have predictive value for breast cancer. GR phosphorylation and acetylation impact GR responsiveness to glucocorticoids that are used as anti-inflammatory drugs. PPARγ phosphorylation can regulate the balance between growth and differentiation in adipose tissue that is linked to obesity and insulin resistance. Sumoylation of PPARγ is linked to repression of inflammatory genes important in patients with inflammatory diseases. NR PTMs provide an additional measure of NR function that can be used as both biomarkers of disease progression, and predictive markers for patient response to NR-directed treatments.
Collapse
Affiliation(s)
- Muralidharan Anbalagan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | | | | | | |
Collapse
|
772
|
Wanet A, Tacheny A, Arnould T, Renard P. miR-212/132 expression and functions: within and beyond the neuronal compartment. Nucleic Acids Res 2012; 40:4742-53. [PMID: 22362752 PMCID: PMC3367188 DOI: 10.1093/nar/gks151] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
During the last two decades, microRNAs (miRNAs) emerged as critical regulators of gene expression. By modulating the expression of numerous target mRNAs mainly at the post-transcriptional level, these small non-coding RNAs have been involved in most, if not all, biological processes as well as in the pathogenesis of a number of diseases. miR-132 and miR-212 are tandem miRNAs whose expression is necessary for the proper development, maturation and function of neurons and whose deregulation is associated with several neurological disorders, such as Alzheimer's disease and tauopathies (neurodegenerative diseases resulting from the pathological aggregation of tau protein in the human brain). Although their involvement in neuronal functions is the most described, evidences point towards a role of these miRNAs in many other biological processes, including inflammation and immune functions. Incidentally, miR-132 was recently classified as a ‘neurimmiR’, a class of miRNAs operating within and between the neural and immune compartments. In this review, we propose an outline of the current knowledge about miR-132 and miR-212 functions in neurons and immune cells, by describing the signalling pathways and transcription factors regulating their expression as well as their putative or demonstrated roles and validated mRNA targets.
Collapse
Affiliation(s)
- Anaïs Wanet
- Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (FUNDP), 61 rue de Bruxelles, 5000 Namur, Belgium
| | | | | | | |
Collapse
|
773
|
Jones KB, Salah Z, Del Mare S, Galasso M, Gaudio E, Nuovo GJ, Lovat F, LeBlanc K, Palatini J, Randall RL, Volinia S, Stein GS, Croce CM, Lian JB, Aqeilan RI. miRNA signatures associate with pathogenesis and progression of osteosarcoma. Cancer Res 2012; 72:1865-77. [PMID: 22350417 DOI: 10.1158/0008-5472.can-11-2663] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Osteosarcoma remains a leading cause of cancer death in adolescents. Treatment paradigms and survival rates have not improved in two decades. Driving the lack of therapeutic inroads, the molecular etiology of osteosarcoma remains elusive. MicroRNAs (miRNAs) have demonstrated far-reaching effects on the cellular biology of development and cancer. Their role in osteosarcomagenesis remains largely unexplored. Here we identify for the first time an miRNA signature reflecting the pathogenesis of osteosarcoma from surgically procured samples from human patients. The signature includes high expression of miR-181a,miR-181b, and miR-181c as well as reduced expression of miR-16, miR-29b, and miR-142-5p. We also demonstrate that miR-181b and miR-29b exhibit restricted expression to distinct cell populations in the tumor tissue. Further, higher expression of miR-27a and miR-181c* in pre-treatment biopsy samples characterized patients who developed clinical metastatic disease. In addition, higher expression of miR-451 and miR-15b in pre-treatment samples correlated with subsequent positive response to chemotherapy. In vitro and in vivo functional validation in osteosarcoma cell lines confirmed the tumor suppressive role of miR-16 and the pro-metastatic role of miR-27a. Furthermore, predicted target genes for miR-16 and miR-27a were confirmed as down-regulated by real-time PCR. Affymetrix array profiling of cDNAs from the osteosarcoma specimens and controls were interrogated according to predicted targets of miR-16, miR142-5p, miR-29b, miR-181a/b, and miR-27a. This analysis revealed positive and negative correlations highlighting pathways of known importance to osteosarcoma, as well as novel genes. Thus, our findings establish a miRNA signature associated with pathogenesis of osteosarcoma as well as critical pre-treatment biomarkers of metastasis and responsiveness to therapy.
Collapse
Affiliation(s)
- Kevin B Jones
- Department of Orthopaedics and Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
774
|
Chen Y, Yang Y, Yuan Z, Wang C, Shi Y. Predicting chemosensitivity in osteosarcoma prior to chemotherapy: An investigational study of biomarkers with immunohistochemistry. Oncol Lett 2012; 3:1011-1016. [PMID: 22783382 DOI: 10.3892/ol.2012.604] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 01/23/2012] [Indexed: 11/05/2022] Open
Abstract
Osteosarcoma has one of the worst prognoses in adolescents; only 20-60% of patients have high rates of histological necrosis with intensive neoadjuvant chemotherapy. In this study, we investigated the prognostic values of hypoxia-inducible factor 1 α (HIF-1α), apurinic endonuclease 1 (APE1), vascular endothelial growth factor (VEGF) and cycloogenase-2 (COX-2) protein expression and their predictive value of tumor necrosis rate and prognosis, as well as their interrelationships. Formalin-fixed paraffin-embedded tissue samples were obtained from 49 patients with osteosarcoma. Immunohistochemistry assays were performed in pre-chemotherapy samples to determine HIF-1α, VEGF, APE1 and COX-2 protein expression levels and hematoxylin and eosin staining was performed in post-operative samples to determine the tumor necrosis rate. Univariate and multivariate analyses were used to assess the impact of protein expression on prognosis. HIF-1α was significantly correlated with every protein we tested: VEGF (P=0.032), APE1 (P<0.001) and COX-2 (P<0.001). HIF-1α protein expression had a significant impact on disease-free survival (P=0.006). Expression of HIF-1α had a sensitivity of 64.7% and a specificity of 71.9% for a poor pathological response (<90% tumor necrosis) versus a good pathological response (≥90% tumor necrosis). In conclusion, expression of HIF-1α is a predictor of tumor response to neoadjuvant chemotherapy and outcome in osteosarcoma, and correlates with VEGF, APE1 and COX-2.
Collapse
Affiliation(s)
- Yong Chen
- Department of Surgical Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | | | | | | | | |
Collapse
|
775
|
Moghadam SJ, Hanks AM, Keyomarsi K. Breaking the cycle: An insight into the role of ERα in eukaryotic cell cycles. J Carcinog 2011; 10:25. [PMID: 22190867 PMCID: PMC3243079 DOI: 10.4103/1477-3163.90440] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/07/2011] [Indexed: 12/31/2022] Open
Abstract
There have been numerous reviews written to date on estrogen receptor (ER), focusing on topics such as its role in the etiology of breast cancer, its mode of regulation, its role as a transcriptional activator and how to target it therapeutically, just to name a few. One reason for so much attention on this nuclear receptor is that it acts not only as a prognostic marker, but also as a target for therapy. However, a relatively undiscovered area in the literature regarding ER is how its activity in the presence and absence of ligand affects its role in proliferation and cell cycle transition. In this review, we provide a brief overview of ER signaling, ligand dependent and independent, genomic and non-genomic, and how these signaling events affect the role of ER in the mammalian cell cycle.
Collapse
Affiliation(s)
- Sonia Javan Moghadam
- Department of Experimental Radiation Oncology at University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
776
|
Regulation of estrogen receptor α N-terminus conformation and function by peptidyl prolyl isomerase Pin1. Mol Cell Biol 2011; 32:445-57. [PMID: 22064478 DOI: 10.1128/mcb.06073-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Estrogen receptor alpha (ERα), a key driver of growth in the majority of breast cancers, contains an unstructured transactivation domain (AF1) in its N terminus that is a convergence point for growth factor and hormonal activation. This domain is controlled by phosphorylation, but how phosphorylation impacts AF1 structure and function is unclear. We found that serine 118 (S118) phosphorylation of the ERα AF1 region in response to estrogen (agonist), tamoxifen (antagonist), and growth factors results in recruitment of the peptidyl prolyl cis/trans isomerase Pin1. Phosphorylation of S118 is critical for Pin1 binding, and mutation of S118 to alanine prevents this association. Importantly, Pin1 isomerizes the serine118-proline119 bond from a cis to trans isomer, with a concomitant increase in AF1 transcriptional activity. Pin1 overexpression promotes ligand-independent and tamoxifen-inducible activity of ERα and growth of tamoxifen-resistant breast cancer cells. Pin1 expression correlates with proliferation in ERα-positive rat mammary tumors. These results establish phosphorylation-coupled proline isomerization as a mechanism modulating AF1 functional activity and provide insight into the role of a conformational switch in the functional regulation of the intrinsically disordered transactivation domain of ERα.
Collapse
|
777
|
Abdi J, Engels F, Garssen J, Redegeld F. The role of Toll-like receptor mediated signalling in the pathogenesis of multiple myeloma. Crit Rev Oncol Hematol 2011; 80:225-40. [DOI: 10.1016/j.critrevonc.2010.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 10/05/2010] [Accepted: 12/08/2010] [Indexed: 12/12/2022] Open
|
778
|
Vincenzi B, Napolitano A, D'Onofrio L, Frezza AM, Silletta M, Venditti O, Santini D, Tonini G. Targeted therapy in sarcomas: mammalian target of rapamycin inhibitors from bench to bedside. Expert Opin Investig Drugs 2011; 20:1685-705. [DOI: 10.1517/13543784.2011.628984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bruno Vincenzi
- University Campus Bio-Medico, Medical Oncology, via Alvaro del Portillo, 200, Rome, Italy
| | - Andrea Napolitano
- University Campus Bio-Medico, Medical Oncology, via Alvaro del Portillo, 200, Rome, Italy
| | - Loretta D'Onofrio
- University Campus Bio-Medico, Medical Oncology, via Alvaro del Portillo, 200, Rome, Italy
| | - Anna Maria Frezza
- University Campus Biomedico, Via Emilio Longoni 69, 155, Rome, Italy
| | - Marianna Silletta
- University Campus Bio-Medico, Medical Oncology, via Alvaro del Portillo, 200, Rome, Italy
| | - Olga Venditti
- University Campus Bio-Medico, Medical Oncology, via Alvaro del Portillo, 200, Rome, Italy
| | - Daniele Santini
- University Campus Biomedico, Via Emilio Longoni 69, 155, Rome, Italy
| | - Giuseppe Tonini
- University Campus Biomedico, Via Emilio Longoni 69, 155, Rome, Italy
| |
Collapse
|
779
|
Le Romancer M, Poulard C, Cohen P, Sentis S, Renoir JM, Corbo L. Cracking the estrogen receptor's posttranslational code in breast tumors. Endocr Rev 2011; 32:597-622. [PMID: 21680538 DOI: 10.1210/er.2010-0016] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estrogen signaling pathways, because of their central role in regulating the growth and survival of breast tumor cells, have been identified as suitable and efficient targets for cancer therapies. Agents blocking estrogen activity are already widely used clinically, and many new molecules have entered clinical trials, but intrinsic or acquired resistance to treatment limits their efficacy. The basic molecular studies underlying estrogen signaling have defined the critical role of estrogen receptors (ER) in many aspects of breast tumorigenesis. However, important knowledge gaps remain about the role of posttranslational modifications (PTM) of ER in initiation and progression of breast carcinogenesis. Whereas major attention has been focused on the phosphorylation of ER, many other PTM (such as acetylation, ubiquitination, sumoylation, methylation, and palmitoylation) have been identified as events modifying ER expression and stability, subcellular localization, and sensitivity to hormonal response. This article will provide an overview of the current and emerging knowledge on ER PTM, with a particular focus on their deregulation in breast cancer. We also discuss their clinical relevance and the functional relationship between PTM. A thorough understanding of the complete picture of these modifications in ER carcinogenesis might not only open new avenues for identifying new markers for prognosis or prediction of response to endocrine therapy but also could promote the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Muriel Le Romancer
- Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Bâtiment Cheney D, 28 rue Laennec, 69373 Lyon Cedex 08, France.
| | | | | | | | | | | |
Collapse
|
780
|
Biales AD, Bencic DC, Villeneuve DL, Ankley GT, Lattier DL. Proteomic analysis of zebrafish brain tissue following exposure to the pesticide prochloraz. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:618-628. [PMID: 21963592 DOI: 10.1016/j.aquatox.2011.08.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/22/2011] [Accepted: 08/25/2011] [Indexed: 05/31/2023]
Abstract
The hypothalamus-pituitary-gonadal (HPG) axis plays a central role in the maintenance of homeostasis and disruptions in its function can have important implications for reproduction and other critical biological processes. A number of compounds found in aquatic environments are known to affect the HPG axis. In the present study, we used two-dimensional electrophoresis to investigate the proteome of female and male zebrafish brain after 96 h exposure to the fungicide prochloraz. Prochloraz has known effects on a number of key HPG molecules, including antagonism of Cyp17 and Cyp19 (aromatase). Twenty-eight proteins were shown to be differentially expressed in the brains of females and 22 in males. Proteins were identified using LC-MS/MS and identities were examined relative to brain function in the context of changing steroid hormone levels. There was little overlap between sexes in proteins exhibiting differential expression. Proteins with known roles in metabolism, learning, neuroprotection, and calcium regulation were determined to be differentially regulated. Relationships between identified proteins were also examined using Ingenuity Pathway Analysis, and females were shown to exhibit enrichment of several metabolic pathways. We used differentially expressed proteins to establish a putative classifier consisting of three proteins that was able to discriminate prochloraz-exposed from control females. Putatively impacted brain functions and specific protein changes that were observed have the potential to be generalized to other that similarly impact steroid hormone levels.
Collapse
Affiliation(s)
- Adam D Biales
- Environmental Protection Agency, Office Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | | | | | | | | |
Collapse
|
781
|
MicroRNA cloning and sequencing in osteosarcoma cell lines: differential role of miR-93. Cell Oncol (Dordr) 2011; 35:29-41. [PMID: 21959981 DOI: 10.1007/s13402-011-0059-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2011] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Studies show that abnormalities in non-coding genes can contribute to carcinogenesis; microRNA levels may modulate cancer growth and metastatic diffusion. METHOD MicroRNA libraries were built and sequenced from two osteosarcoma cell lines (MG-63 and 143B), which differ in proliferation and transmigration. By cloning and transfection, miR-93, expressed in both cell lines, was then investigated for its involvement in osteosarcoma progression. RESULTS Six of the 19 miRNA identified were expressed in both cell lines with higher expression levels of miR-93 in 143B and in primary osteosarcoma cultures compared to normal osteoblasts. Interestingly, levels of miR-93 were significantly higher in metastases from osteosarcoma than in paired primary tumours. When 143B and MG-63 were transfected with miR-93, clones appeared to respond differently to microRNA overexpression. Ectopic expression of miR-93 more significantly increased cell proliferation and invasivity in 143B than in MG-63 clones. Furthermore, increased mRNA and protein levels of E2F1, one of the potential miR-93 targets, were seen in osteosarcoma cellular clones and its involvement in 143B cell proliferation was confirmed by E2F1 silencing. CONCLUSION Although further studies are needed to evaluate miRNA involvement in osteosarcoma progression, miR-93 overexpression seems to play an important role in osteosarcoma cell growth and invasion.
Collapse
|
782
|
Rota R, Ciarapica R, Giordano A, Miele L, Locatelli F. MicroRNAs in rhabdomyosarcoma: pathogenetic implications and translational potentiality. Mol Cancer 2011; 10:120. [PMID: 21943149 PMCID: PMC3212852 DOI: 10.1186/1476-4598-10-120] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 09/24/2011] [Indexed: 12/21/2022] Open
Abstract
There is growing evidence that interconnections among molecular pathways governing tissue differentiation are nodal points for malignant transformation. In this scenario, microRNAs appear as crucial players. This class of non-coding small regulatory RNA molecules controls developmental programs by modulating gene expression through post-transcriptional silencing of target mRNAs. During myogenesis, muscle-specific and ubiquitously-expressed microRNAs tightly control muscle tissue differentiation. In recent years, microRNAs have emerged as prominent players in cancer as well. Rhabdomyosarcoma is a pediatric skeletal muscle-derived soft-tissue sarcoma that originates from myogenic precursors arrested at different stages of differentiation and that continue to proliferate indefinitely. MicroRNAs involved in muscle cell fate determination appear down-regulated in rhabdomyosarcoma primary tumors and cell lines compared to their normal counterparts. More importantly, they behave as tumor suppressors in this malignancy, as their re-expression is sufficient to restore the differentiation capability of tumor cells and to prevent tumor growth in vivo. In addition, up-regulation of pro-oncogenic microRNAs has also been recently detected in rhabdomyosarcoma. In this review, we provide an overview of current knowledge on microRNAs de-regulation in rhabdomyosarcoma. Additionally, we examine the potential of microRNAs as prognostic and diagnostic markers in this soft-tissue sarcoma, and discuss possible therapeutic applications and challenges of a "microRNA therapy".
Collapse
Affiliation(s)
- Rossella Rota
- Department of Oncohematology, Ospedale Pediatrico Bambino Gesù, IRCCS, Roma, Italy.
| | | | | | | | | |
Collapse
|
783
|
Abstract
Rhabdomyosarcoma (RMS) is a morphologically and clinically heterogeneous group of malignant tumors that resemble developing skeletal muscle and is the most common soft-tissue sarcoma in children and adolescents. The most prominent sites involve head and neck structures (~40%), genito-urinary track (~25%), and extremities (~20%). Embryonal (ERMS) and alveolar (ARMS) are the two major RMS subtypes that are distinct in their morphology and genetic make-up. The prognosis for this cancer depends strongly on tumor size, location, staging, and child's age. In general, ERMS has a more favorable outcome, whereas the mortality rate remains high in patients with ARMS, because of its aggressive and metastatic nature. Over the past two decades, researchers have made concerted efforts to delineate genetic and epigenetic changes associated with RMS pathogenesis. These molecular signatures have presented golden opportunities to design targeted therapies for treating this aggressive cancer. This article highlights recent advances in understanding the molecular pathogenesis of RMS, and addresses promising research areas for further exploration.
Collapse
Affiliation(s)
- C Wang
- Department of Oral Biology and Center for Molecular Biology of Oral Diseases, University of Illinois at Chicago, 801 South Paulina Street, RM530CB, m/c 860, Chicago, IL 60612, USA.
| |
Collapse
|
784
|
|
785
|
Giamas G, Filipović A, Jacob J, Messier W, Zhang H, Yang D, Zhang W, Shifa BA, Photiou A, Tralau-Stewart C, Castellano L, Green AR, Coombes RC, Ellis IO, Ali S, Lenz HJ, Stebbing J. Kinome screening for regulators of the estrogen receptor identifies LMTK3 as a new therapeutic target in breast cancer. Nat Med 2011; 17:715-9. [PMID: 21602804 DOI: 10.1038/nm.2351] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 03/10/2011] [Indexed: 12/20/2022]
Abstract
Therapies targeting estrogen receptor α (ERα, encoded by ESR1) have transformed the treatment of breast cancer. However, large numbers of women relapse, highlighting the need for the discovery of new regulatory targets modulating ERα pathways. An siRNA screen identified kinases whose silencing alters the estrogen response including those previously implicated in regulating ERα activity (such as mitogen-activated protein kinase and AKT). Among the most potent regulators was lemur tyrosine kinase-3 (LMTK3), for which a role has not previously been assigned. In contrast to other modulators of ERα activity, LMTK3 seems to have been subject to Darwinian positive selection, a noteworthy result given the unique susceptibility of humans to ERα+ breast cancer. LMTK3 acts by decreasing the activity of protein kinase C (PKC) and the phosphorylation of AKT (Ser473), thereby increasing binding of forkhead box O3 (FOXO3) to the ESR1 promoter. LMTK3 phosphorylated ERα, protecting it from proteasomal degradation in vitro. Silencing of LMTK3 reduced tumor volume in an orthotopic mouse model and abrogated proliferation of ERα+ but not ERα- cells, indicative of its role in ERα activity. In human cancers, LMTK3 abundance and intronic polymorphisms were significantly associated with disease-free and overall survival and predicted response to endocrine therapies. These findings yield insights into the natural history of breast cancer in humans and reveal LMTK3 as a new therapeutic target.
Collapse
Affiliation(s)
- Georgios Giamas
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital Campus, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
786
|
Sarmah JK, Mahanta R, Bhattacharjee SK, Mahanta R, Biswas A. Controlled release of tamoxifen citrate encapsulated in cross-linked guar gum nanoparticles. Int J Biol Macromol 2011; 49:390-6. [PMID: 21641924 DOI: 10.1016/j.ijbiomac.2011.05.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Revised: 05/19/2011] [Accepted: 05/19/2011] [Indexed: 10/18/2022]
Abstract
Natural polysaccharides, due to their outstanding merits, have received more and more attention in the field of drug delivery. In the present study tamoxifen citrate, TMX (a non-steroidal antiestrogenic drug) loaded guar gum nanoparticles, GG NPs, crosslinked with glutaraldehyde were prepared for treatment of breast cancer. An oil in water (o/w) emulsion polymer cross-linking method was employed for preparation of blank and drug loaded sustained release nature biodegradable nanoparticles. Prepared nanoparticles were characterized by morphology in scanning electron microscope (SEM), size distribution in transmission electron microscope (TEM), TMX loading by high performance liquid chromatography (HPLC) and in vitro drug release characteristics. An overall sustained release of the drug from the biodegradable nanoparticles was observed in in vitro release studies. The release of TMX from GG NPs was found to be effected by guar gum and glutaraldehyde concentration. Regression coefficient (R(2)) analysis suggested that the predominant mechanism behind the drug release from the nanoparticles was time dependent release and diffusion. In vivo studies on female albino mice demonstrated maximum uptake of the drug by mammary tissue after 24h of administration with drug loaded guar gum nanoparticles in comparison with that with the tablet form of the drug. These findings demonstrate that controlled release of TMX from GG NPs could be a potential alternative pharmaceutical formulation in passive targeting of TMX in breast cancer treatments.
Collapse
|
787
|
Santin AP, Furlanetto TW. Role of estrogen in thyroid function and growth regulation. J Thyroid Res 2011; 2011:875125. [PMID: 21687614 PMCID: PMC3113168 DOI: 10.4061/2011/875125] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 02/24/2011] [Indexed: 11/23/2022] Open
Abstract
Thyroid diseases are more prevalent in women, particularly between puberty and menopause. It is wellknown that estrogen (E) has indirect effects on the thyroid economy. Direct effects of this steroid hormone on thyroid cells have been described more recently; so, the aim of the present paper was to review the evidences of these effects on thyroid function and growth regulation, and its mechanisms. The expression and ratios of the two E receptors, α and β, that mediate the genomic effects of E on normal and abnormal thyroid tissue were also reviewed, as well as nongenomic, distinct molecular pathways. Several evidences support the hypothesis that E has a direct role in thyroid follicular cells; understanding its influence on the growth and function of the thyroid in normal and abnormal conditions can potentially provide new targets for the treatment of thyroid diseases.
Collapse
Affiliation(s)
- Ana Paula Santin
- Postgraduation Program in Medicine and Medical Sciences, Federal University of Rio Grande do Sul, 90035-003 Porto Alegre, RS, Brazil
| | | |
Collapse
|
788
|
Ao A, Morrison BJ, Wang H, López JA, Reynolds BA, Lu J. Response of estrogen receptor-positive breast cancer tumorspheres to antiestrogen treatments. PLoS One 2011; 6:e18810. [PMID: 21533195 PMCID: PMC3077404 DOI: 10.1371/journal.pone.0018810] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Accepted: 03/18/2011] [Indexed: 12/20/2022] Open
Abstract
Estrogen signaling plays a critical role in the pathogenesis of breast cancer.
Because the majority of breast carcinomas express the estrogen receptor ERα,
endocrine therapy that impedes estrogen-ER signaling reduces breast cancer
mortality and has become a mainstay of breast cancer treatment. However,
patients remain at continued risk of relapse for many years after endocrine
treatment. It has been proposed that cancer recurrence may be attributed to
cancer stem cells (CSCs)/tumor-initiating cells (TICs). Previous studies in
breast cancer have shown that such cells can be enriched and propagated
in vitro by culturing the cells in suspension as
mammospheres/tumorspheres. Here we established tumorspheres from
ERα-positive human breast cancer cell line MCF7 and investigated their
response to antiestrogens Tamoxifen and Fulvestrant. The tumorsphere cells
express lower levels of ERα and are more tumorigenic in xenograft assays
than the parental cells. Both 4-hydroxytamoxifen (4-OHT) and Fulvestrant
attenuate tumorsphere cell proliferation, but only 4-OHT at high concentrations
interferes with sphere formation. However, treated tumorsphere cells retain the
self-renewal capacity. Upon withdrawal of antiestrogens, the treated cells
resume tumorsphere formation and their tumorigenic potential remains undamaged.
Depletion of ERα shows that ERα is dispensable for tumorsphere formation
and xenograft tumor growth in mice. Surprisingly, ERα-depleted tumorspheres
display heightened sensitivity to 4-OHT and their sphere-forming capacity is
diminished after the drug is removed. These results imply that 4-OHT may inhibit
cellular targets besides ERα that are essential for tumorsphere growth, and
provide a potential strategy to sensitize tumorspheres to endocrine
treatment.
Collapse
Affiliation(s)
- Ada Ao
- Department of Biochemistry and Molecular
Biology, University of Florida College of Medicine, Gainesville, Florida, United
States of America
- * E-mail: (JL); (AA)
| | - Brian J. Morrison
- Queensland Institute of Medical Research,
Royal Brisbane Hospital, Brisbane, Australia
- Griffith University, Nathan,
Australia
| | - Heiman Wang
- Department of Biochemistry and Molecular
Biology, University of Florida College of Medicine, Gainesville, Florida, United
States of America
| | - J. Alejandro López
- Queensland Institute of Medical Research,
Royal Brisbane Hospital, Brisbane, Australia
- Griffith University, Nathan,
Australia
| | - Brent A. Reynolds
- Department of Neurosurgery, McKnight Brain
Institute, University of Florida, Gainesville, Florida, United States of
America
| | - Jianrong Lu
- Department of Biochemistry and Molecular
Biology, University of Florida College of Medicine, Gainesville, Florida, United
States of America
- * E-mail: (JL); (AA)
| |
Collapse
|
789
|
Park JK, Henry JC, Jiang J, Esau C, Gusev Y, Lerner MR, Postier RG, Brackett DJ, Schmittgen TD. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor. Biochem Biophys Res Commun 2011; 406:518-23. [PMID: 21329664 PMCID: PMC3069485 DOI: 10.1016/j.bbrc.2011.02.065] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 02/10/2011] [Indexed: 02/07/2023]
Abstract
Numerous microRNAs (miRNAs) are reported as differentially expressed in cancer, however the consequence of miRNA deregulation in cancer is unknown for many miRNAs. We report that two miRNAs located on chromosome 17p13, miR-132 and miR-212, are over-expressed in pancreatic adenocarcinoma (PDAC) tissues. Both miRNAs are predicted to target the retinoblastoma tumor suppressor, Rb1. Validation of this interaction was confirmed by luciferase reporter assay and western blot in a pancreatic cancer cell line transfected with pre-miR-212 and pre-miR-132 oligos. Cell proliferation was enhanced in Panc-1 cells transfected with pre-miR-132/-212 oligos. Conversely, antisense oligos to miR-132/-212 reduced cell proliferation and caused a G(2)/M cell cycle arrest. The mRNA of a number of E2F transcriptional targets were increased in cells over expressing miR-132/-212. Exposing Panc-1 cells to the β2 adrenergic receptor agonist, terbutaline, increased the miR-132 and miR-212 expression by 2- to 4-fold. We report that over-expression of miR-132 and miR-212 result in reduced pRb protein in pancreatic cancer cells and that the increase in cell proliferation from over-expression of these miRNAs is likely due to increased expression of several E2F target genes. The β2 adrenergic pathway may play an important role in this novel mechanism.
Collapse
Affiliation(s)
- Jong-Kook Park
- College of Pharmacy, Ohio State University, Columbus, Ohio
| | - Jon C. Henry
- Department of Surgery, Ohio State University, Columbus, Ohio
| | - Jinmai Jiang
- College of Pharmacy, Ohio State University, Columbus, Ohio
| | | | - Yuriy Gusev
- Lombardi Cancer Center, Georgetown University, Washington, D.C
| | | | - Russell G. Postier
- Department of Surgery, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | | | | |
Collapse
|
790
|
Gougelet A, Perez J, Pissaloux D, Besse A, Duc A, Decouvelaere AV, Ranchere-Vince D, Blay JY, Alberti L. miRNA Profiling: How to Bypass the Current Difficulties in the Diagnosis and Treatment of Sarcomas. Sarcoma 2011; 2011:460650. [PMID: 21437224 PMCID: PMC3061295 DOI: 10.1155/2011/460650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 11/17/2010] [Accepted: 01/03/2011] [Indexed: 12/22/2022] Open
Abstract
Sarcomas are divided into a group with specific alterations and a second presenting a complex karyotype, sometimes difficult to diagnose or with few therapeutic options available. We assessed if miRNA profiling by TaqMan low density arrays could predict the response of undifferentiated rhabdomyosarcoma (RMS) and osteosarcoma to treatment. We showed that miRNA signatures in response to a therapeutic agent (chemotherapy or the mTOR inhibitor RAD-001) were cell and drug specific on cell lines and a rat osteosarcoma model. This miRNA signature was related to cell or tumour sensitivity to this treatment and might be not due to chromosomal aberrations, as revealed by a CGH array analysis of rat tumours. Strikingly, miRNA profiling gave promising results for patient rhabdomyosarcoma, discriminating all types of RMS: (Pax+) or undifferentiated alveolar RMS as well as embryonal RMS. As highlighted by these results, miRNA profiling emerges as a potent molecular diagnostic tool for complex karyotype sarcomas.
Collapse
Affiliation(s)
- Angélique Gougelet
- Unité INSERM U590 équipe Cytokines et Cancer, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon cedex 08, France
- Conticanet (FP6-06188), France
| | - Jennifer Perez
- Unité INSERM U590 équipe Cytokines et Cancer, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon cedex 08, France
- Conticanet (FP6-06188), France
| | - Daniel Pissaloux
- Service d'Anatomie et Cytologie Pathologiques, Centre Léon Bérard, 69373 Lyon cedex 08, France
| | - Anthony Besse
- Unité INSERM U590 équipe Cytokines et Cancer, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon cedex 08, France
| | - Adeline Duc
- Unité INSERM U590 équipe Cytokines et Cancer, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon cedex 08, France
| | | | | | - Jean-Yves Blay
- Unité INSERM U590 équipe Cytokines et Cancer, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon cedex 08, France
- Conticanet (FP6-06188), France
- EORTC, 83/11 avenue Mounierlaan, 1200 Brussels, Belgium
| | - Laurent Alberti
- Unité INSERM U590 équipe Cytokines et Cancer, Centre Léon Bérard, 28 rue Laennec, 69373 Lyon cedex 08, France
- Conticanet (FP6-06188), France
| |
Collapse
|
791
|
Maj T, Switała-Jelen K, Miazek A, Szafarowicz-Basta B, Kiczak L, Slawek A, Chelmonska-Soyta A. Effects of tamoxifen on estrogen receptor-α level in immune cells and humoral specific response after immunization of C3H/He male mice with syngeneic testicular germ cells (TGC). Autoimmunity 2011; 44:520-30. [DOI: 10.3109/08916934.2010.549529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
792
|
Kocanova S, Mazaheri M, Caze-Subra S, Bystricky K. Ligands specify estrogen receptor alpha nuclear localization and degradation. BMC Cell Biol 2010; 11:98. [PMID: 21143970 PMCID: PMC3009626 DOI: 10.1186/1471-2121-11-98] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 12/10/2010] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The estrogen receptor alpha (ERα) is found predominately in the nucleus, both in hormone stimulated and untreated cells. Intracellular distribution of the ERα changes in the presence of agonists but the impact of different antiestrogens on the fate of ERα is a matter of debate. RESULTS A MCF-7 cell line stably expressing GFP-tagged human ERα (SK19 cell line) was created to examine the localization of ligand-bound GFP-ERα. We combined digitonin-based cell fractionation analyses with fluorescence and immuno-electron microscopy to determine the intracellular distribution of ligand-bound ERα and/or GFP-ERα.Using fluorescence- and electron microscopy we demonstrate that both endogenous ERα and GFP-ERα form numerous nuclear focal accumulations upon addition of agonist, 17β-estradiol (E2), and pure antagonists (selective estrogen regulator disruptor; SERD), ICI 182,780 or RU58,668, while in the presence of partial antagonists (selective estrogen regulator modulator; SERM), 4-hydroxytamoxifen (OHT) or RU39,411, diffuse nuclear staining persisted.Digitonin based cell fractionation analyses confirmed that endogenous ERα and GFP-ERα predominantly reside in the nuclear fraction. Overall ERα protein levels were reduced after estradiol treatment. In the presence of SERMs ERα was stabilized in the nuclear soluble fraction, while in the presence of SERDs protein levels decreased drastically and the remaining ERα was largely found in a nuclear insoluble fraction. mRNA levels of ESR1 were reduced compared to untreated cells in the presence of all ligands tested, including E2. E2 and SERDs induced ERα degradation occurred in distinct nuclear foci composed of ERα and the proteasome providing a simple explanation for ERα sequestration in the nucleus. CONCLUSIONS Our results indicate that chemical structure of ligands directly affect the nuclear fate and protein turnover of the estrogen receptor alpha independently of their impact on transcription. These findings provide a molecular basis for the selection of antiestrogen compounds issue from pharmacological studies aimed at improving treatment of breast cancer.
Collapse
Affiliation(s)
- Silvia Kocanova
- Université de Toulouse; UPS; Laboratoire de Biologie Moléculaire Eucaryote; F-31062 Toulouse, France
| | | | | | | |
Collapse
|
793
|
Langer P. The impacts of organochlorines and other persistent pollutants on thyroid and metabolic health. Front Neuroendocrinol 2010; 31:497-518. [PMID: 20797403 DOI: 10.1016/j.yfrne.2010.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 08/12/2010] [Accepted: 08/19/2010] [Indexed: 12/24/2022]
Abstract
High prevalence of thyroid and metabolic disorders has been repeatedly observed in the population living in the area of eastern Slovakia highly polluted by a mixture of PCBs, DDE and HCB since about 50 years ago. Among thyroid disorders, increase of thyroid volume as measured by ultrasound volumetry may be suggested as one of notable findings which appeared possibly related to increased OCs levels and to autoimmunity signs (e.g. positive thyroperoxidase antibodies in blood and/or hypoechogenicity image obtained by ultrasound), while some participation of individual susceptibility and also of immunogenic effect of OCs and iodine in this iodine replete country cannot be excluded. Another notable finding has been the increase of blood FT4 and TT3 positively related to high PCBs level. Such increased FT4 level has been found associated with TSH level in hyperthyroid range in about 2% of examined population from polluted area. High prevalence of thyroid autoimmune disorders strongly supported the assumption on impaired immune system and thus also on presumably increased prevalence of other autoimmune disorders in highly exposed population. In addition, markedly increased prevalence of prediabetes and diabetes significantly related to major OCs (PCBs, DDE and HCB) levels and accompanied by increasing level of cholesterol and triglycerides has been observed. The observations also suggested a role of prenatal exposure to OCs in the development of several adverse health signs (e.g. increased prevalence of thyroid antibodies, impaired fasting glucose level, increased thyroid volume, decreased thymus volume, decreased neurobehavioral performance, increased hearing and dental disorders) in young generation born to highly exposed mothers in polluted area.
Collapse
Affiliation(s)
- Pavel Langer
- Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
794
|
Gomes GRO, Yasuhara F, Siu ER, Fernandes SAF, Avellar MCW, Lazari MFM, Porto CS. In vivo treatments with fulvestrant and anastrozole differentially affect gene expression in the rat efferent ductules. Biol Reprod 2010; 84:52-61. [PMID: 20826728 DOI: 10.1095/biolreprod.110.085340] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Estrogen plays a key role in maintaining the morphology and function of the efferent ductules. We previously demonstrated that the antiestrogen fulvestrant markedly affected gene expression in the rat efferent ductules. The mechanism of fulvestrant action to modulate gene expression may involve not only the blockade of ESR1 and ESR2 estrogen receptors, but also the activation of ESR1 and ESR2 when the receptors are tethered to AP-1 or SP1 transcription factors, or the activation of the G protein-coupled estrogen receptor 1. We therefore compared the effects of two strategies to interfere with estrogen action in the rat efferent ductules: treatment with fulvestrant or with the aromatase inhibitor anastrozole. Whereas fulvestrant markedly increased Mmp7 and Spp1, and reduced Nptx1 mRNA levels, no changes were observed with anastrozole. Fulvestrant caused changes in epithelial morphology that were not seen with anastrozole. Fulvestrant shifted MMP7 immunolocalization in the epithelial cells from the supranuclear to the apical region; this effect was less pronounced with anastrozole. In vitro studies of (35)S-methionine incorporation showed that protein release was increased, whereas tissue protein content in the efferent ductules of fulvestrant-treated rats was decreased. Although fulvestrant markedly affected gene expression, no changes were observed on AP-1 and SP1 DNA-binding activity. The blockade of ESRs seems to be the major reason explaining the differences between both treatments. At least some of the effects of fulvestrant appear to result from compensatory mechanisms activated by the dramatic changes caused by ESR1 blockade.
Collapse
Affiliation(s)
- Gisele Renata Oliveira Gomes
- Section of Experimental Endocrinology, Department of Pharmacology, Universidade Federal de São Paulo, Instituto Nacional de Farmacologia e Biologia Molecular, Vila Clementino, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
795
|
Mahoney MM, Padmanabhan V. Developmental programming: impact of fetal exposure to endocrine-disrupting chemicals on gonadotropin-releasing hormone and estrogen receptor mRNA in sheep hypothalamus. Toxicol Appl Pharmacol 2010; 247:98-104. [PMID: 20621667 PMCID: PMC2914852 DOI: 10.1016/j.taap.2010.05.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/14/2010] [Accepted: 05/24/2010] [Indexed: 01/31/2023]
Abstract
Bisphenol-A (BPA) and methoxychlor (MXC), two endocrine-disrupting chemicals (EDCs) with estrogenic and antiandrogenic effects, disrupt the reproductive system. BPA has profound effects on luteinizing hormone (LH) surge amplitude, and MXC has profound effects on on LH surge timing in sheep. The neural mechanisms involved in the differential disruption of the LH surge by these two EDCs remain to be elucidated. We tested the hypothesis that the differential effects of BPA and MXC on LH surge system involved changes in hypothalamic gonadotropin-releasing hormone (GnRH) and estrogen receptors (ESR), ESR1 and ESR2, mRNA expression. Pregnant sheep were given daily injections of cottonseed oil (controls), MXC, or BPA (5mg/kg/day) from day 30 to 90 of gestation (term 147d). Offspring from these animals were euthanized as adults, during the late follicular phase following synchronization of estrus with prostaglandin F(2alpha), just before the expected onset of preovulatory LH surge and changes in mRNA expression of hypothalamic GnRH, ESR1, and ESR2 quantified following in situ hybridization. GnRH mRNA expression was significantly lower in both groups of EDC-treated females compared to controls. ESR1 expression was increased in prenatal BPA- but not MXC-treated females in medial preoptic area relative to controls. In contrast, ESR2 expression was reduced in the medial preoptic area of both EDC-treated groups. Differences in expression of ESR1/ESR2 receptors may contribute to the differential effects of BPA and MXC on the LH surge system. These findings provide support that prenatal exposure to EDCs alters the neural developmental trajectory leading to long-term reproductive consequences in the adult female.
Collapse
Affiliation(s)
- Megan M Mahoney
- Veterinary Biosciences and Neuroscience Program, University of Illinois, 2001 S. Lincoln Ave., Urbana, IL 61802, USA
| | | |
Collapse
|
796
|
Urbinati G, Marsaud V, Plassat V, Fattal E, Lesieur S, Renoir JM. Liposomes loaded with histone deacetylase inhibitors for breast cancer therapy. Int J Pharm 2010; 397:184-93. [DOI: 10.1016/j.ijpharm.2010.06.046] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/23/2010] [Accepted: 06/24/2010] [Indexed: 10/19/2022]
|
797
|
Schülke JP, Wochnik GM, Lang-Rollin I, Gassen NC, Knapp RT, Berning B, Yassouridis A, Rein T. Differential impact of tetratricopeptide repeat proteins on the steroid hormone receptors. PLoS One 2010; 5:e11717. [PMID: 20661446 PMCID: PMC2908686 DOI: 10.1371/journal.pone.0011717] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 06/24/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Tetratricopeptide repeat (TPR) motif containing co-chaperones of the chaperone Hsp90 are considered control modules that govern activity and specificity of this central folding platform. Steroid receptors are paradigm clients of Hsp90. The influence of some TPR proteins on selected receptors has been described, but a comprehensive analysis of the effects of TPR proteins on all steroid receptors has not been accomplished yet. METHODOLOGY AND PRINCIPAL FINDINGS We compared the influence of the TPR proteins FK506 binding proteins 51 and 52, protein phosphatase-5, C-terminus of Hsp70 interacting protein, cyclophillin 40, hepatitis-virus-B X-associated protein-2, and tetratricopeptide repeat protein-2 on all six steroid hormone receptors in a homogeneous mammalian cell system. To be able to assess each cofactor's effect on the transcriptional activity of on each steroid receptor we employed transient transfection in a reporter gene assay. In addition, we evaluated the interactions of the TPR proteins with the receptors and components of the Hsp90 chaperone heterocomplex by coimmunoprecipitation. In the functional assays, corticosteroid and progesterone receptors displayed the most sensitive and distinct reaction to the TPR proteins. Androgen receptor's activity was moderately impaired by most cofactors, whereas the Estrogen receptors' activity was impaired by most cofactors only to a minor degree. Second, interaction studies revealed that the strongly receptor-interacting co-chaperones were all among the inhibitory proteins. Intriguingly, the TPR-proteins also differentially co-precipitated the heterochaperone complex components Hsp90, Hsp70, and p23, pointing to differences in their modes of action. CONCLUSION AND SIGNIFICANCE The results of this comprehensive study provide important insight into chaperoning of diverse client proteins via the combinatorial action of (co)-chaperones. The differential effects of the TPR proteins on steroid receptors bear on all physiological processes related to steroid hormone activity.
Collapse
MESH Headings
- Animals
- Cell Line
- Cell Line, Tumor
- Peptidyl-Prolyl Isomerase F
- Cyclophilins/genetics
- Cyclophilins/metabolism
- HSP40 Heat-Shock Proteins/genetics
- HSP40 Heat-Shock Proteins/metabolism
- Heat-Shock Proteins
- Humans
- Immunoblotting
- Immunoprecipitation
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Mice
- Molecular Chaperones
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Phosphoprotein Phosphatases/genetics
- Phosphoprotein Phosphatases/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Receptors, Progesterone/genetics
- Receptors, Progesterone/metabolism
- Receptors, Steroid/genetics
- Receptors, Steroid/metabolism
- Tacrolimus Binding Proteins/genetics
- Tacrolimus Binding Proteins/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Jan-Philip Schülke
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | | - Barbara Berning
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| | | | - Theo Rein
- Chaperone Research Group, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
798
|
Abstract
The endothelium is a dynamic interface between the blood vessel and the circulating blood that plays a pivotal role in vascular homeostasis. As such, studies on sex steroid regulation of endothelial function are critical to understanding the role of sex steroids in cardiovascular health and disease. The classical model of steroid action involves liganded steroid receptors binding to specific response elements on target genes to regulate gene transcription. In whole organisms, the time lag between steroid administration and observable effects produced by newly synthesized protein is typically in the order of hours to days. And yet, some effects of steroids, such as vasodilatation, occur within seconds to minutes of steroid administration. Studies in multiple cell types have also shown that steroids can cause the rapid initiation of multiple signaling cascades and second messenger systems, prompting investigations into alternate, transcription independent mechanisms of steroid action. Studies of the endothelium over the past two decades have revealed fundamental mechanisms in rapid sex steroid signaling. In particular, endothelium-dependent vasodilatation by estradiol-induced activation of endothelial nitric oxide synthase has proven to be an uniquely informative model to study sex steroid signaling via classical sex steroid receptors localized to the cell membrane. Despite the complexity of feedback and cross talk between rapid sex steroid signaling and other modes of steroid action, recent studies in this field are facilitating the development of steroidal drugs that selectively target the ability of sex steroids to initiate signaling cascades.
Collapse
Affiliation(s)
- Renee W Y Chow
- Heart Research Institute, 7 Eliza Street, Newtown, Sydney, New South Wales 2042, Australia
| | | | | |
Collapse
|
799
|
Liu H, Qiu J, Li N, Chen T, Cao X. Human phosphatidylethanolamine-binding protein 4 promotes transactivation of estrogen receptor alpha (ERalpha) in human cancer cells by inhibiting proteasome-dependent ERalpha degradation via association with Src. J Biol Chem 2010; 285:21934-42. [PMID: 20460377 DOI: 10.1074/jbc.m110.109876] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We identified human phosphatidylethanolamine-binding protein 4 (hPEBP4) as a human-derived novel member of the phosphatidylethanolamine-binding protein family, which is involved in apoptosis resistance of tumor cells. Because of its preferential expression in estrogen-related cancers, we wondered whether hPEBP4 plays a role in estrogen-induced cancer cell growth. Here, we demonstrated that hPEBP4 inhibited the 17beta-estradiol (E(2))-induced, proteasome-dependent estrogen receptor alpha (ERalpha) degradation to increase the protein level of ERalpha. Silencing of hPEBP4 inhibited the recruitment of ERalpha to the promoter of the ERalpha target gene pS2 in MCF-7 breast cancer cells after E(2) treatment. E(2)-induced, ERalpha-mediated transcription via the estrogen-response element, as well as the cellular proliferation, was significantly suppressed in hPEBP4-silenced MCF-7 cells. We found that Src, whose association with ERalpha facilitates the ERalpha binding to components of proteolytic machinery, could associate with hPEBP4 and that overexpression of hPEBP4 prevented the E(2)-induced interaction between ERalpha and Src. ERalpha overexpression, proteasome inhibitor, or Src inhibitor could reverse the suppression of ERalpha-mediated transactivation by hPEBP4 silencing. The inhibition of the proteasome degradation and the promotion of transactivation of ERalpha by hPEBP4 via the Src pathway were further confirmed in HeLa cells. Finally, we found that the promoting effects of hPEBP4 on ERalpha-mediated transactivation and estrogen-induced proliferation of cancer cells did not depend on its regulation of Akt and ERK activity. Our data suggest that hPEBP4 inhibits proteasome-dependent ERalpha degradation through the Src pathway, thus enhancing ERalpha-mediated transactivation and promoting the proliferation of cancer cells in response to estrogen.
Collapse
Affiliation(s)
- Haibo Liu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
800
|
Güç E, Gündüz G, Gündüz U. Fatty acid based hyperbranched polymeric nanoparticles for hydrophobic drug delivery. Drug Dev Ind Pharm 2010; 36:1139-48. [DOI: 10.3109/03639041003691906] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|