751
|
Nóbrega CS, Saraiva IH, Carreira C, Devreese B, Matzapetakis M, Pauleta SR. The solution structure of the soluble form of the lipid-modified azurin from Neisseria gonorrhoeae , the electron donor of cytochrome c peroxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:169-176. [DOI: 10.1016/j.bbabio.2015.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/25/2015] [Accepted: 11/13/2015] [Indexed: 12/26/2022]
|
752
|
Fritzsching KJ, Hong M, Schmidt-Rohr K. Conformationally selective multidimensional chemical shift ranges in proteins from a PACSY database purged using intrinsic quality criteria. JOURNAL OF BIOMOLECULAR NMR 2016; 64:115-30. [PMID: 26787537 PMCID: PMC4933674 DOI: 10.1007/s10858-016-0013-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/08/2016] [Indexed: 05/24/2023]
Abstract
We have determined refined multidimensional chemical shift ranges for intra-residue correlations ((13)C-(13)C, (15)N-(13)C, etc.) in proteins, which can be used to gain type-assignment and/or secondary-structure information from experimental NMR spectra. The chemical-shift ranges are the result of a statistical analysis of the PACSY database of >3000 proteins with 3D structures (1,200,207 (13)C chemical shifts and >3 million chemical shifts in total); these data were originally derived from the Biological Magnetic Resonance Data Bank. Using relatively simple non-parametric statistics to find peak maxima in the distributions of helix, sheet, coil and turn chemical shifts, and without the use of limited "hand-picked" data sets, we show that ~94% of the (13)C NMR data and almost all (15)N data are quite accurately referenced and assigned, with smaller standard deviations (0.2 and 0.8 ppm, respectively) than recognized previously. On the other hand, approximately 6% of the (13)C chemical shift data in the PACSY database are shown to be clearly misreferenced, mostly by ca. -2.4 ppm. The removal of the misreferenced data and other outliers by this purging by intrinsic quality criteria (PIQC) allows for reliable identification of secondary maxima in the two-dimensional chemical-shift distributions already pre-separated by secondary structure. We demonstrate that some of these correspond to specific regions in the Ramachandran plot, including left-handed helix dihedral angles, reflect unusual hydrogen bonding, or are due to the influence of a following proline residue. With appropriate smoothing, significantly more tightly defined chemical shift ranges are obtained for each amino acid type in the different secondary structures. These chemical shift ranges, which may be defined at any statistical threshold, can be used for amino-acid type assignment and secondary-structure analysis of chemical shifts from intra-residue cross peaks by inspection or by using a provided command-line Python script (PLUQin), which should be useful in protein structure determination. The refined chemical shift distributions are utilized in a simple quality test (SQAT) that should be applied to new protein NMR data before deposition in a databank, and they could benefit many other chemical-shift based tools.
Collapse
Affiliation(s)
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | |
Collapse
|
753
|
Wu H, Wang C, Gong W, Wang J, Xuan J, Perrett S, Feng Y. The C-terminal region of human eukaryotic elongation factor 1Bδ. JOURNAL OF BIOMOLECULAR NMR 2016; 64:181-187. [PMID: 26762120 DOI: 10.1007/s10858-016-0012-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Huiwen Wu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chen Wang
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, Shandong, China
- Shandong Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, Shandong, China
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, Shandong, China
- Department of Biological Science and Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Weibin Gong
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinfeng Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jinsong Xuan
- Department of Biological Science and Engineering, School of Chemical and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Sarah Perrett
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yingang Feng
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, Shandong, China.
- Shandong Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, Shandong, China.
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, Shandong, China.
| |
Collapse
|
754
|
Green BR, Gajewiak J, Chhabra S, Skalicky JJ, Zhang MM, Rivier JE, Bulaj G, Olivera BM, Yoshikami D, Norton RS. Structural Basis for the Inhibition of Voltage-gated Sodium Channels by Conotoxin μO§-GVIIJ. J Biol Chem 2016; 291:7205-20. [PMID: 26817840 DOI: 10.1074/jbc.m115.697672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 11/06/2022] Open
Abstract
Cone snail toxins are well known blockers of voltage-gated sodium channels, a property that is of broad interest in biology and therapeutically in treating neuropathic pain and neurological disorders. Although most conotoxin channel blockers function by direct binding to a channel and disrupting its normal ion movement, conotoxin μO§-GVIIJ channel blocking is unique, using both favorable binding interactions with the channel and a direct tether via an intermolecular disulfide bond. Disulfide exchange is possible because conotoxin μO§-GVIIJ contains anS-cysteinylated Cys-24 residue that is capable of exchanging with a free cysteine thiol on the channel surface. Here, we present the solution structure of an analog of μO§-GVIIJ (GVIIJ[C24S]) and the results of structure-activity studies with synthetic μO§-GVIIJ variants. GVIIJ[C24S] adopts an inhibitor cystine knot structure, with two antiparallel β-strands stabilized by three disulfide bridges. The loop region linking the β-strands (loop 4) presents residue 24 in a configuration where it could bind to the proposed free cysteine of the channel (Cys-910, rat NaV1.2 numbering; at site 8). The structure-activity study shows that three residues (Lys-12, Arg-14, and Tyr-16) located in loop 2 and spatially close to residue 24 were also important for functional activity. We propose that the interaction of μO§-GVIIJ with the channel depends on not only disulfide tethering via Cys-24 to a free cysteine at site 8 on the channel but also the participation of key residues of μO§-GVIIJ on a distinct surface of the peptide.
Collapse
Affiliation(s)
- Brad R Green
- From the Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia, the Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Joanna Gajewiak
- the Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Sandeep Chhabra
- From the Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | | | - Min-Min Zhang
- the Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Jean E Rivier
- the Clayton Foundation Laboratories for Peptide Biology, The Salk Institute, La Jolla, California 92037
| | - Grzegorz Bulaj
- the Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, Utah 84108, and
| | | | - Doju Yoshikami
- the Department of Biology, University of Utah, Salt Lake City, Utah 84112,
| | - Raymond S Norton
- From the Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia,
| |
Collapse
|
755
|
Nuclear magnetic resonance evidence for the dimer formation of beta amyloid peptide 1-42 in 1,1,1,3,3,3-hexafluoro-2-propanol. Anal Biochem 2016; 498:59-67. [PMID: 26772162 DOI: 10.1016/j.ab.2015.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/04/2015] [Accepted: 12/29/2015] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease involves accumulation of senile plaques in which filamentous aggregates of amyloid beta (Aβ) peptides are deposited. Recent studies demonstrate that oligomerization pathways of Aβ peptides may be complicated. To understand the mechanisms of Aβ(1-42) oligomer formation in more detail, we have established a method to produce (15)N-labeled Aβ(1-42) suited for nuclear magnetic resonance (NMR) studies. For physicochemical studies, the starting protein material should be solely monomeric and all Aβ aggregates must be removed. Here, we succeeded in fractionating a "precipitation-resistant" fraction of Aβ(1-42) from an "aggregation-prone" fraction by high-performance liquid chromatography (HPLC), even from bacterially overexpressed Aβ(1-42). However, both Aβ(1-42) fractions after 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) treatment formed amyloid fibrils. This indicates that the "aggregation seed" was not completely monomerized during HFIP treatment. In addition, Aβ(1-42) dissolved in HFIP was found to display a monomer-dimer equilibrium, as shown by two-dimensional (1)H-(15)N NMR. We demonstrated that the initial concentration of Aβ during the HFIP pretreatment altered the kinetic profiles of Aβ fibril formation in a thioflavin T fluorescence assay. The findings described here should ensure reproducible results when studying the Aβ(1-42) peptide.
Collapse
|
756
|
Membrane-Induced Dichotomous Conformation of Amyloid β with the Disordered N-Terminal Segment Followed by the Stable C-Terminal β Structure. PLoS One 2016; 11:e0146405. [PMID: 26731546 PMCID: PMC4701388 DOI: 10.1371/journal.pone.0146405] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/16/2015] [Indexed: 11/19/2022] Open
Abstract
Various neurodegenerative disorders are ascribed to pathogenic molecular processes involving conformational transitions of amyloidogenic proteins into toxic aggregates characterized by their β structures. Accumulating evidence indicates that neuronal cell membranes provide platforms for such conformational transitions of pathogenic proteins as best exemplified by amyloid β (Aβ). Therefore, membrane-bound Aβ species can be promising targets for the development of novel drugs for Alzheimer’s disease. In the present study, solid-state nuclear magnetic resonance spectroscopy has elucidated the membrane-induced conformation of Aβ, in which the disordered N-terminal segment is followed by the stable C-terminal β strand. The data provides an insight into the molecular processes of the conformational transition of Aβ coupled with its assembly into parallel β structures.
Collapse
|
757
|
Dissecting the structural basis of MEIG1 interaction with PACRG. Sci Rep 2016; 6:18278. [PMID: 26726850 PMCID: PMC4698733 DOI: 10.1038/srep18278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/16/2015] [Indexed: 11/21/2022] Open
Abstract
The product of the meiosis-expressed gene 1 (MEIG1) is found in the cell bodies of spermatocytes and recruited to the manchette, a structure unique to elongating spermatids, by Parkin co-regulated gene (PACRG). This complex is essential for targeting cargo to the manchette during sperm flagellum assembly. Here we show that MEIG1 adopts a unique fold that provides a large surface for interacting with other proteins. We mutated 12 exposed and conserved amino acids and show that four of these mutations (W50A, K57E, F66A, Y68A) dramatically reduce binding to PACRG. These four amino acids form a contiguous hydrophobic patch on one end of the protein. Furthermore, each of these four mutations diminishes the ability of MEIG1 to stabilize PACRG when expressed in bacteria. Together these studies establish the unique structure and key interaction surface of MEIG1 and provide a framework to explore how MEIG1 recruits proteins to build the sperm tail.
Collapse
|
758
|
Baker LE, Ellena JF, Handing KB, Derewenda U, Utepbergenov D, Engel DA, Derewenda ZS. Molecular architecture of the nucleoprotein C-terminal domain from the Ebola and Marburg viruses. Acta Crystallogr D Struct Biol 2016; 72:49-58. [PMID: 26894534 PMCID: PMC4905509 DOI: 10.1107/s2059798315021439] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/11/2015] [Indexed: 11/10/2022] Open
Abstract
The Filoviridae family of negative-sense, single-stranded RNA (ssRNA) viruses is comprised of two species of Marburgvirus (MARV and RAVV) and five species of Ebolavirus, i.e. Zaire (EBOV), Reston (RESTV), Sudan (SUDV), Taï Forest (TAFV) and Bundibugyo (BDBV). In each of these viruses the ssRNA encodes seven distinct proteins. One of them, the nucleoprotein (NP), is the most abundant viral protein in the infected cell and within the viral nucleocapsid. It is tightly associated with the viral RNA in the nucleocapsid, and during the lifecycle of the virus is essential for transcription, RNA replication, genome packaging and nucleocapsid assembly prior to membrane encapsulation. The structure of the unique C-terminal globular domain of the NP from EBOV has recently been determined and shown to be structurally unrelated to any other known protein [Dziubańska et al. (2014), Acta Cryst. D70, 2420-2429]. In this paper, a study of the C-terminal domains from the NP from the remaining four species of Ebolavirus, as well as from the MARV strain of Marburgvirus, is reported. As expected, the crystal structures of the BDBV and TAFV proteins show high structural similarity to that from EBOV, while the MARV protein behaves like a molten globule with a core residual structure that is significantly different from that of the EBOV protein.
Collapse
Affiliation(s)
- Laura E. Baker
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908-0736, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0736, USA
| | - Jeffrey F. Ellena
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904-4319, USA
| | - Katarzyna B. Handing
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908-0736, USA
| | - Urszula Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908-0736, USA
| | - Darkhan Utepbergenov
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908-0736, USA
| | - Daniel A. Engel
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA 22908-0736, USA
| | - Zygmunt S. Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908-0736, USA
| |
Collapse
|
759
|
Dashti H, Tonelli M, Lee W, Westler WM, Cornilescu G, Ulrich EL, Markley JL. Probabilistic validation of protein NMR chemical shift assignments. JOURNAL OF BIOMOLECULAR NMR 2016; 64:17-25. [PMID: 26724815 PMCID: PMC4744101 DOI: 10.1007/s10858-015-0007-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/20/2015] [Indexed: 05/05/2023]
Abstract
Data validation plays an important role in ensuring the reliability and reproducibility of studies. NMR investigations of the functional properties, dynamics, chemical kinetics, and structures of proteins depend critically on the correctness of chemical shift assignments. We present a novel probabilistic method named ARECA for validating chemical shift assignments that relies on the nuclear Overhauser effect data . ARECA has been evaluated through its application to 26 case studies and has been shown to be complementary to, and usually more reliable than, approaches based on chemical shift databases. ARECA is available online at http://areca.nmrfam.wisc.edu/.
Collapse
Affiliation(s)
- Hesam Dashti
- Graduate Program in Biophysics, Biochemistry Department, University of Wisconsin-Madison, Madison, WI, USA
- Biochemistry Department, National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, USA
| | - Marco Tonelli
- Biochemistry Department, National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, USA
| | - Woonghee Lee
- Biochemistry Department, National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, USA
| | - William M Westler
- Biochemistry Department, National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, USA
| | - Gabriel Cornilescu
- Biochemistry Department, National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, USA
| | - Eldon L Ulrich
- BioMagResBank, Biochemistry Department, University of Wisconsin-Madison, Madison, WI, USA
| | - John L Markley
- Biochemistry Department, National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, USA.
- BioMagResBank, Biochemistry Department, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
760
|
Jin X, Zhu T, Zhang JZH, He X. A systematic study on RNA NMR chemical shift calculation based on the automated fragmentation QM/MM approach. RSC Adv 2016. [DOI: 10.1039/c6ra22518g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
1H, 13C and 15N NMR chemical shift calculations on RNAs were performed using the automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) approach.
Collapse
Affiliation(s)
- Xinsheng Jin
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Tong Zhu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
- NYU-ECNU Center for Computational Chemistry
| | - John Z. H. Zhang
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
- NYU-ECNU Center for Computational Chemistry
| | - Xiao He
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
- NYU-ECNU Center for Computational Chemistry
| |
Collapse
|
761
|
Kulminskaya N, Vasa SK, Giller K, Becker S, Kwan A, Sunde M, Linser R. Access to side-chain carbon information in deuterated solids under fast MAS through non-rotor-synchronized mixing. Chem Commun (Camb) 2016; 52:268-71. [DOI: 10.1039/c5cc07345f] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
MOCCA provides comprehensive solid-state NMR side chain carbon correlations despite perdeuteration and fast sample rotation, thereby inducing minimal power dissipation.
Collapse
Affiliation(s)
- Natalia Kulminskaya
- Max-Planck Institute for Biophysical Chemistry
- Department NMR-Based Structural Biology
- 37077 Göttingen
- Germany
| | - Suresh Kumar Vasa
- Max-Planck Institute for Biophysical Chemistry
- Department NMR-Based Structural Biology
- 37077 Göttingen
- Germany
| | - Karin Giller
- Max-Planck Institute for Biophysical Chemistry
- Department NMR-Based Structural Biology
- 37077 Göttingen
- Germany
| | - Stefan Becker
- Max-Planck Institute for Biophysical Chemistry
- Department NMR-Based Structural Biology
- 37077 Göttingen
- Germany
| | - Ann Kwan
- School of Medical Sciences and School of Molecular Bioscience
- University of Sydney
- Sydney
- Australia
| | - Margaret Sunde
- School of Medical Sciences and School of Molecular Bioscience
- University of Sydney
- Sydney
- Australia
| | - Rasmus Linser
- Max-Planck Institute for Biophysical Chemistry
- Department NMR-Based Structural Biology
- 37077 Göttingen
- Germany
| |
Collapse
|
762
|
Anamika, Spyracopoulos L. Molecular Basis for Phosphorylation-dependent SUMO Recognition by the DNA Repair Protein RAP80. J Biol Chem 2015; 291:4417-28. [PMID: 26719330 DOI: 10.1074/jbc.m115.705061] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 01/04/2023] Open
Abstract
Recognition and repair of double-stranded DNA breaks (DSB) involves the targeted recruitment of BRCA tumor suppressors to damage foci through binding of both ubiquitin (Ub) and the Ub-like modifier SUMO. RAP80 is a component of the BRCA1 A complex, and plays a key role in the recruitment process through the binding of Lys(63)-linked poly-Ub chains by tandem Ub interacting motifs (UIM). RAP80 also contains a SUMO interacting motif (SIM) just upstream of the tandem UIMs that has been shown to specifically bind the SUMO-2 isoform. The RAP80 tandem UIMs and SIM function collectively for optimal recruitment of BRCA1 to DSBs, although the molecular basis of this process is not well understood. Using NMR spectroscopy, we demonstrate that the RAP80 SIM binds SUMO-2, and that both specificity and affinity are enhanced through phosphorylation of the canonical CK2 site within the SIM. The affinity increase results from an enhancement of electrostatic interactions between the phosphoserines of RAP80 and the SIM recognition module within SUMO-2. The NMR structure of the SUMO-2·phospho-RAP80 complex reveals that the molecular basis for SUMO-2 specificity is due to isoform-specific sequence differences in electrostatic SIM recognition modules.
Collapse
Affiliation(s)
- Anamika
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Leo Spyracopoulos
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
763
|
Cyclophilin A promotes cell migration via the Abl-Crk signaling pathway. Nat Chem Biol 2015; 12:117-23. [PMID: 26656091 PMCID: PMC4718742 DOI: 10.1038/nchembio.1981] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/03/2015] [Indexed: 12/13/2022]
Abstract
Cyclophilin A (CypA) is overexpressed in a number of human cancer types, but the mechanisms by which the protein promotes oncogenic properties of cells are not understood. Here we demonstrate that CypA binds the CrkII adaptor protein and prevents it from switching to the inhibited state. CrkII influences cell motility and invasion by mediating signaling through its SH2 and SH3 domains. CrkII Tyr221 phosphorylation by the Abl or EGFR kinases induces an inhibited state of CrkII by means of an intramolecular SH2-pTyr221 interaction, causing signaling interruption. We show that the CrkII phosphorylation site constitutes a binding site for CypA. Recruitment of CypA sterically restricts the accessibility of Tyr221 to kinases, thereby suppressing CrkII phosphorylation and promoting the active state. Structural, biophysical and in vivo data show that CypA augments CrkII-mediated signaling. A strong stimulation of cell migration is observed in cancer cells wherein both CypA and CrkII are greatly upregulated.
Collapse
|
764
|
Shi C, Fricke P, Lin L, Chevelkov V, Wegstroth M, Giller K, Becker S, Thanbichler M, Lange A. Atomic-resolution structure of cytoskeletal bactofilin by solid-state NMR. SCIENCE ADVANCES 2015; 1:e1501087. [PMID: 26665178 PMCID: PMC4672760 DOI: 10.1126/sciadv.1501087] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/15/2015] [Indexed: 05/20/2023]
Abstract
Bactofilins are a recently discovered class of cytoskeletal proteins of which no atomic-resolution structure has been reported thus far. The bacterial cytoskeleton plays an essential role in a wide range of processes, including morphogenesis, cell division, and motility. Among the cytoskeletal proteins, the bactofilins are bacteria-specific and do not have a eukaryotic counterpart. The bactofilin BacA of the species Caulobacter crescentus is not amenable to study by x-ray crystallography or solution nuclear magnetic resonance (NMR) because of its inherent noncrystallinity and insolubility. We present the atomic structure of BacA calculated from solid-state NMR-derived distance restraints. We show that the core domain of BacA forms a right-handed β helix with six windings and a triangular hydrophobic core. The BacA structure was determined to 1.0 Å precision (heavy-atom root mean square deviation) on the basis of unambiguous restraints derived from four-dimensional (4D) HN-HN and 2D C-C NMR spectra.
Collapse
Affiliation(s)
- Chaowei Shi
- Department of Molecular Biophysics, Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Pascal Fricke
- Department of Molecular Biophysics, Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Lin Lin
- Prokaryotic Cell Biology Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Faculty of Biology, Philipps-Universität, 35043 Marburg, Germany
| | - Veniamin Chevelkov
- Department of Molecular Biophysics, Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
| | - Melanie Wegstroth
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Karin Giller
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Stefan Becker
- Department of NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Martin Thanbichler
- Prokaryotic Cell Biology Group, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Faculty of Biology, Philipps-Universität, 35043 Marburg, Germany
- LOEWE Center for Synthetic Microbiology, Philipps-Universität, 35043 Marburg, Germany
| | - Adam Lange
- Department of Molecular Biophysics, Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Corresponding author. E-mail:
| |
Collapse
|
765
|
Iqbal A, Moraes AH, Valente AP, Almeida FCL. Structures of the reduced and oxidized state of the mutant D24A of yeast thioredoxin 1: insights into the mechanism for the closing of the water cavity. JOURNAL OF BIOMOLECULAR NMR 2015; 63:417-423. [PMID: 26482062 DOI: 10.1007/s10858-015-9996-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 10/14/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Anwar Iqbal
- Institute of Medical Biochemistry, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373 CCS/Anexo CNRMN, Rio de Janeiro, RJ, 21941-920, Brazil
- Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adolfo Henrique Moraes
- Institute of Medical Biochemistry, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373 CCS/Anexo CNRMN, Rio de Janeiro, RJ, 21941-920, Brazil
- Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Valente
- Institute of Medical Biochemistry, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373 CCS/Anexo CNRMN, Rio de Janeiro, RJ, 21941-920, Brazil
- Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C L Almeida
- Institute of Medical Biochemistry, National Center of Nuclear Magnetic Resonance Jiri Jonas, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373 CCS/Anexo CNRMN, Rio de Janeiro, RJ, 21941-920, Brazil.
- Center of Structural Biology and Bioimaging (CENABIO), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
766
|
Hacker C, Christ NA, Duchardt-Ferner E, Korn S, Göbl C, Berninger L, Düsterhus S, Hellmich UA, Madl T, Kötter P, Entian KD, Wöhnert J. The Solution Structure of the Lantibiotic Immunity Protein NisI and Its Interactions with Nisin. J Biol Chem 2015; 290:28869-86. [PMID: 26459561 PMCID: PMC4661402 DOI: 10.1074/jbc.m115.679969] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/25/2015] [Indexed: 12/21/2022] Open
Abstract
Many Gram-positive bacteria produce lantibiotics, genetically encoded and posttranslationally modified peptide antibiotics, which inhibit the growth of other Gram-positive bacteria. To protect themselves against their own lantibiotics these bacteria express a variety of immunity proteins including the LanI lipoproteins. The structural and mechanistic basis for LanI-mediated lantibiotic immunity is not yet understood. Lactococcus lactis produces the lantibiotic nisin, which is widely used as a food preservative. Its LanI protein NisI provides immunity against nisin but not against structurally very similar lantibiotics from other species such as subtilin from Bacillus subtilis. To understand the structural basis for LanI-mediated immunity and their specificity we investigated the structure of NisI. We found that NisI is a two-domain protein. Surprisingly, each of the two NisI domains has the same structure as the LanI protein from B. subtilis, SpaI, despite the lack of significant sequence homology. The two NisI domains and SpaI differ strongly in their surface properties and function. Additionally, SpaI-mediated lantibiotic immunity depends on the presence of a basic unstructured N-terminal region that tethers SpaI to the membrane. Such a region is absent from NisI. Instead, the N-terminal domain of NisI interacts with membranes but not with nisin. In contrast, the C-terminal domain specifically binds nisin and modulates the membrane affinity of the N-terminal domain. Thus, our results reveal an unexpected structural relationship between NisI and SpaI and shed light on the structural basis for LanI mediated lantibiotic immunity.
Collapse
Affiliation(s)
- Carolin Hacker
- From the Institute for Molecular Biosciences and the Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University, 60438 Frankfurt am Main, Germany
| | - Nina A Christ
- From the Institute for Molecular Biosciences and the Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University, 60438 Frankfurt am Main, Germany
| | - Elke Duchardt-Ferner
- From the Institute for Molecular Biosciences and the Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University, 60438 Frankfurt am Main, Germany
| | - Sophie Korn
- From the Institute for Molecular Biosciences and
| | - Christoph Göbl
- the Department of Chemistry, Center for Integrated Protein Science Munich, Technical University München, Lichtenbergstraße 4, 85748 Garching, Germany, the Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | | | - Ute A Hellmich
- the Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University, 60438 Frankfurt am Main, Germany, the Institute of Pharmacy and Biochemistry, Gutenberg University, 55128 Mainz, Germany
| | - Tobias Madl
- the Department of Chemistry, Center for Integrated Protein Science Munich, Technical University München, Lichtenbergstraße 4, 85748 Garching, Germany, the Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany, the Institute of Molecular Biology & Biochemistry, Center of Molecular Medicine, Medical University of Graz, 8010 Graz, Austria, and the Omics Center Graz, BioTechMed Graz, 8010 Graz, Austria
| | - Peter Kötter
- From the Institute for Molecular Biosciences and
| | | | - Jens Wöhnert
- From the Institute for Molecular Biosciences and the Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University, 60438 Frankfurt am Main, Germany,
| |
Collapse
|
767
|
Kashyap M, Ganguly AK, Bhavesh NS. Structural delineation of stem-loop RNA binding by human TAF15 protein. Sci Rep 2015; 5:17298. [PMID: 26612539 PMCID: PMC4661536 DOI: 10.1038/srep17298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/28/2015] [Indexed: 11/09/2022] Open
Abstract
Human TATA binding protein associated factor 2 N (TAF15) and Fused in sarcoma (FUS) are nucleic acid binding proteins belonging to the conserved FET family of proteins. They are involved in diverse processes such as pre-mRNA splicing, mRNA transport, and DNA binding. The absence of information regarding the structural mechanism employed by the FET family in recognizing and discriminating their cognate and non-cognate RNA targets has hampered the attainment of consensus on modes of protein-RNA binding for this family. Our study provides a molecular basis of this RNA recognition using a combination of solution-state NMR spectroscopy, calorimetry, docking and molecular dynamics simulation. Analysis of TAF15-RRM solution structure and its binding with stem-loop RNA has yielded conclusive evidence of a non-canonical mode of RNA recognition. Rather than classical stacking interactions that occur across nitrogen bases and aromatic amino acids on ribonucleoprotein sites, moderate-affinity hydrogen bonding network between the nitrogen bases in the stem-loop RNA and a concave face on the RRM surface primarily mediate TAF15-RRM RNA interaction. We have compared the binding affinities across a set of single-stranded RNA oligonucleotides to conclusively establish that RNA binding is dependent upon structural elements in the RNA rather than sequence.
Collapse
Affiliation(s)
- Maruthi Kashyap
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, 110 067, New Delhi, India
| | - Akshay Kumar Ganguly
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, 110 067, New Delhi, India
| | - Neel Sarovar Bhavesh
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, 110 067, New Delhi, India
| |
Collapse
|
768
|
Boldbaatar D, Gunasekera S, El-Seedi HR, Göransson U. Synthesis, Structural Characterization, and Bioactivity of the Stable Peptide RCB-1 from Ricinus communis. JOURNAL OF NATURAL PRODUCTS 2015; 78:2545-2551. [PMID: 26509914 DOI: 10.1021/acs.jnatprod.5b00463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The Ricinus communis biomarker peptides RCB-1 to -3 comprise homologous sequences of 19 (RCB-1) or 18 (RCB-2 and -3) amino acid residues. They all include four cysteine moieties, which form two disulfide bonds. However, neither the 3D structure nor the biological activity of any of these peptides is known. The synthesis of RCB-1, using microwave-assisted, Fmoc-based solid-phase peptide synthesis, and a method for its oxidative folding are reported. The tertiary structure of RCB-1, subsequently established using solution-state NMR, reveals a twisted loop fold with antiparallel β-sheets reinforced by the two disulfide bonds. Moreover, RCB-1 was tested for antibacterial, antifungal, and cytotoxic activity, as well as in a serum stability assay, in which it proved to be remarkably stable.
Collapse
Affiliation(s)
- Delgerbat Boldbaatar
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre , Box 574, SE-751 23 Uppsala, Sweden
- School of Engineering and Applied Sciences, National University of Mongolia , Ulaanbaatar-46, Mongolia
| | - Sunithi Gunasekera
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre , Box 574, SE-751 23 Uppsala, Sweden
| | - Hesham R El-Seedi
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre , Box 574, SE-751 23 Uppsala, Sweden
- Department of Chemistry, Faculty of Science, University of Malaya , 50603 Kuala Lumpur, Malaysia
| | - Ulf Göransson
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre , Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|
769
|
Zhang Z, Keramisanou D, Dudhat A, Paré M, Gelis I. The C-terminal domain of human Cdc37 studied by solution NMR. JOURNAL OF BIOMOLECULAR NMR 2015; 63:315-321. [PMID: 26400850 DOI: 10.1007/s10858-015-9988-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 09/19/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Ziming Zhang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave. CHE 205, Tampa, FL, 33620, USA
| | - Dimitra Keramisanou
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave. CHE 205, Tampa, FL, 33620, USA
| | - Amit Dudhat
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave. CHE 205, Tampa, FL, 33620, USA
| | - Michael Paré
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave. CHE 205, Tampa, FL, 33620, USA
| | - Ioannis Gelis
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave. CHE 205, Tampa, FL, 33620, USA.
| |
Collapse
|
770
|
Stine JM, Sun Y, Armstrong G, Bowler BE, Briknarová K. Structure and unfolding of the third type III domain from human fibronectin. Biochemistry 2015; 54:6724-33. [PMID: 26517579 DOI: 10.1021/acs.biochem.5b00818] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fibronectin is a modular extracellular matrix protein that is essential for vertebrate development. The third type III domain (3FN3) in fibronectin interacts with other parts of fibronectin and with anastellin, a protein fragment that causes fibronectin aggregation. 3FN3 opens readily both as an isolated domain in solution and when part of fibronectin in stretched fibrils, and it was proposed that this opening is important for anastellin binding. We determined the structure of 3FN3 using nuclear magnetic resonance spectroscopy, and we investigated its stability, folding, and unfolding. Similar to most other FN3 domains, 3FN3 contains two antiparallel β-sheets that are composed of three (A, B, and E) and four (C, D, F, and G) β-strands, respectively, and are held together by a conserved hydrophobic interface. cis-trans isomerization of P847 at the end of β-strand C leads to observable conformational heterogeneity in 3FN3, with a cis peptide bond present in almost one-quarter of the molecules. The chemical stability of 3FN3 is relatively low, but the folding rate constant in the absence of denaturant is in the same range as those of other, more stable FN3 domains. Interestingly, the unfolding rate constant in the absence of denaturant is several orders of magnitude higher than the unfolding rate constants of other FN3 domains investigated to date. This unusually fast rate is comparable to the rate of binding of 3FN3 to anastellin at saturating anastellin concentrations, consistent with the model in which 3FN3 has to unfold to interact with anastellin.
Collapse
Affiliation(s)
- Jessica M Stine
- Department of Chemistry and Biochemistry, University of Montana , Missoula, Montana 59812, United States
| | - Yizhi Sun
- Department of Chemistry and Biochemistry, University of Montana , Missoula, Montana 59812, United States
| | - Geoffrey Armstrong
- Department of Chemistry and Biochemistry, University of Colorado at Boulder , Boulder, Colorado 80309, United States
| | - Bruce E Bowler
- Department of Chemistry and Biochemistry, University of Montana , Missoula, Montana 59812, United States.,Center for Biomolecular Structure and Dynamics, University of Montana , Missoula, Montana 59812, United States
| | - Klára Briknarová
- Department of Chemistry and Biochemistry, University of Montana , Missoula, Montana 59812, United States.,Center for Biomolecular Structure and Dynamics, University of Montana , Missoula, Montana 59812, United States
| |
Collapse
|
771
|
Benjamin S, Williams F, Kerry L, Matthews S. NMR assignment of the immune mapped protein 1 (IMP1) homologue from Plasmodium falciparum. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:393-395. [PMID: 25947350 DOI: 10.1007/s12104-015-9616-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 04/29/2015] [Indexed: 06/04/2023]
Abstract
Plasmodium falciparum is responsible for causing cerebral malaria in humans. IMP1 is an immunogenic protein, present in the parasite, which has been shown to induce an immune response against apicomplexan parasites in a species-specific manner. Here, we report the complete NMR assignments of PfIMP1.
Collapse
Affiliation(s)
- Stefi Benjamin
- Imperial College London, Exhibition Road, South Kensington, SW7 2AZ, London, UK
| | - Felix Williams
- Imperial College London, Exhibition Road, South Kensington, SW7 2AZ, London, UK
| | - Louise Kerry
- Imperial College London, Exhibition Road, South Kensington, SW7 2AZ, London, UK
| | - Steve Matthews
- Imperial College London, Exhibition Road, South Kensington, SW7 2AZ, London, UK.
| |
Collapse
|
772
|
Cavaliere P, Norel F, Sizun C. (1)H, (13)C and (15)N resonance assignments of σ(S) activating protein Crl from Salmonella enterica serovar Typhimurium. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:397-401. [PMID: 25943268 DOI: 10.1007/s12104-015-9617-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
The general stress response in Enterobacteria, like Escherichia coli or Salmonella, is controlled by the transcription factor σ(S), encoded by the rpoS gene, which accumulates during stationary phase growth and associates with the core RNA polymerase enzyme (E) to promote transcription of genes involved in cell survival. Tight regulation of σ(S) is essential to preserve the balance between self-preservation under stress conditions and nutritional competence in the absence of stress. Whereas σ factors are generally inactivated upon interaction with anti-sigma proteins, σ(S) binding by the Crl protein facilitates the formation of the holoenzyme Eσ(S), and therefore σ(S)-controlled transcription. Previously, critical residues in both Crl and σ(S) were identified and assigned to the binding interface in the Crl-σ(S) complex. However, high-resolution structural data are missing to fully understand the molecular mechanisms underlying σ(S) activation by Crl, in particular the possible role of Crl in triggering domain rearrangements in the multi-domain protein σ(S). Here we provide the (1)H, (13)C and (15)N resonance assignments of Salmonella enterica serovar Typhimurium Crl, as a starting point for CrlSTM structure determination and further structural investigation of the CrlSTM-σ STM (S) complex.
Collapse
Affiliation(s)
- Paola Cavaliere
- Département de Microbiologie, Laboratoire Systèmes Macromoléculaires et Signalisation, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France
- CNRS ERL3526, rue du Docteur Roux, 75015, Paris, France
| | - Françoise Norel
- Département de Microbiologie, Laboratoire Systèmes Macromoléculaires et Signalisation, Institut Pasteur, 25 rue du Docteur Roux, 75015, Paris, France
- CNRS ERL3526, rue du Docteur Roux, 75015, Paris, France
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
773
|
Mujo A, Lixa C, Carneiro LAM, Anobom CD, Almeida FC, Pinheiro AS. (1)H, (15)N and (13)C resonance assignments of the RRM1 domain of the key post-transcriptional regulator HuR. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:281-284. [PMID: 25487676 DOI: 10.1007/s12104-014-9592-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/03/2014] [Indexed: 06/04/2023]
Abstract
Human antigen R (HuR) is a ubiquitous protein that recognizes adenylate and uridylate-rich elements in mRNA, thereby interfering with the fate of protein translation. This protein plays a central role in the outcome of the inflammatory response as it may stabilize or silence mRNAs of key components of the immune system. HuR is able to interact with other RNA-binding proteins, reflecting a complex network that dictates mRNAs post-transcriptional control. HuR is composed of three functional domains, known as RNA-recognition motifs (RRM1, RRM2 and RRM3). It is known that RRM1 is the most important domain for mRNA-binding affinity. In this study, we completed the NMR chemical shift assignment of the RRM1 domain of HuR, as a first step to further establishing the structure, dynamics and function relationship for this protein.
Collapse
Affiliation(s)
- Amanda Mujo
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Carolina Lixa
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Letícia A M Carneiro
- Department of Immunology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Cristiane D Anobom
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Fábio C Almeida
- National Center for Nuclear Magnetic Resonance Jiri Jonas, Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-909, Brazil.
| |
Collapse
|
774
|
Rathner A, Chandra K, Rathner P, Horničáková M, Schlagnitweit J, Kohoutová J, Ettrich R, Müller N. Resonance assignment of PsbP: an extrinsic protein from photosystem II of Spinacia oleracea. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:341-346. [PMID: 25903141 PMCID: PMC4568021 DOI: 10.1007/s12104-015-9606-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/11/2015] [Indexed: 06/04/2023]
Abstract
PsbP (23 kDa) is an extrinsic eukaryotic protein of photosystem II found in the thylakoid membrane of higher plants and green algae. It has been proven to be indispensable for proper functioning of the oxygen evolving complex. By interaction with other extrinsic proteins (PsbQ, PsbO and PsbR), it modulates the concentration of two cofactors of the water splitting reaction, Ca(2+) and Cl(-). The crystallographic structure of PsbP from Spinacia oleracea lacks the N-terminal part as well as two inner regions which were modelled as loops. Those unresolved parts are believed to be functionally crucial for the binding of PsbP to the thylakoid membrane. In this NMR study we report (1)H, (15)N and (13)C resonance assignments of the backbone and side chain atoms of the PsbP protein. Based on these data, an estimate of the secondary structure has been made. The structural motifs found fit the resolved parts of the crystallographic structure very well. In addition, the complete assignment set provides preliminary insight into the dynamic regions.
Collapse
Affiliation(s)
- Adriana Rathner
- Institute of Organic Chemistry, Johannes Kepler University, Altenbergerstraße 69, 4040, Linz, Austria
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Kousik Chandra
- Institute of Organic Chemistry, Johannes Kepler University, Altenbergerstraße 69, 4040, Linz, Austria
| | - Petr Rathner
- Institute of Organic Chemistry, Johannes Kepler University, Altenbergerstraße 69, 4040, Linz, Austria
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Michaela Horničáková
- Institute of Organic Chemistry, Johannes Kepler University, Altenbergerstraße 69, 4040, Linz, Austria
- Lohmann Animal Health, Heinz-Lohmann-Straße 4, 27472, Cuxhaven, Germany
| | - Judith Schlagnitweit
- Institute of Organic Chemistry, Johannes Kepler University, Altenbergerstraße 69, 4040, Linz, Austria
- Centre de RMN à très Hauts Champs, Institut des Sciences Analytiques, Université de Lyon, 5 Rue de la Doua, 69100, Villeurbanne, France
| | - Jaroslava Kohoutová
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Centrum of Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nové Hrady, Czech Republic
| | - Rüdiger Ettrich
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Centrum of Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech Republic, Nové Hrady, Czech Republic
| | - Norbert Müller
- Institute of Organic Chemistry, Johannes Kepler University, Altenbergerstraße 69, 4040, Linz, Austria.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| |
Collapse
|
775
|
Hacker C, Christ NA, Duchardt-Ferner E, Korn S, Berninger L, Kötter P, Entian KD, Wöhnert J. NMR resonance assignments of the lantibiotic immunity protein NisI from Lactococcus lactis. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:293-297. [PMID: 25613223 DOI: 10.1007/s12104-015-9595-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/13/2015] [Indexed: 06/04/2023]
Abstract
The lantibiotic nisin is a small antimicrobial peptide which acts against a wide range of Gram-positive bacteria. Nisin-producing Lactococcus lactis strains express four genes for self-protection against their own antimicrobial compound. This immunity system consists of the lipoprotein NisI and the ABC transporter NisFEG. NisI is attached to the outside of the cytoplasmic membrane via a covalently linked diacylglycerol anchor. Both the lipoprotein and the ABC transporter are needed for full immunity but the exact immunity mechanism is still unclear. To gain insights into the highly specific immunity mechanism of nisin producing strains on a structural level we present here the backbone resonance assignment of NisI (25.8 kDa) as well as the virtually complete (1)H,(15)N,(13)C chemical shift assignments for the isolated 12.7 kDa N-terminal and 14.6 kDa C-terminal domains of NisI.
Collapse
Affiliation(s)
- Carolin Hacker
- Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-Universität Frankfurt/M., 60438, Frankfurt, Germany
| | - Nina Alexandra Christ
- Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-Universität Frankfurt/M., 60438, Frankfurt, Germany
| | - Elke Duchardt-Ferner
- Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-Universität Frankfurt/M., 60438, Frankfurt, Germany
| | - Sophie Korn
- Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Lucija Berninger
- Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Peter Kötter
- Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Karl-Dieter Entian
- Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Jens Wöhnert
- Institut für Molekulare Biowissenschaften, Johann-Wolfgang-Goethe-Universität Frankfurt/M., Max-von-Laue-Str. 9, 60438, Frankfurt, Germany.
- Center for Biomolecular Magnetic Resonance (BMRZ), Johann-Wolfgang-Goethe-Universität Frankfurt/M., 60438, Frankfurt, Germany.
| |
Collapse
|
776
|
Tom1 Modulates Binding of Tollip to Phosphatidylinositol 3-Phosphate via a Coupled Folding and Binding Mechanism. Structure 2015; 23:1910-1920. [DOI: 10.1016/j.str.2015.07.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 11/18/2022]
|
777
|
Yao X, Xiao Y, Cui Q, Feng Y. (1)H, (15)N and (13)C resonance assignments of translationally-controlled tumor protein from photosynthetic microalga Nannochloropsis oceanica. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:325-328. [PMID: 25680850 DOI: 10.1007/s12104-015-9602-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
Translationally-controlled tumor protein (TCTP) is a eukaryote-conserved protein with crucial roles in cellular growth. It has also been proposed that plant TCTP has functions specific to plant, while no structure of TCTP from photosynthetic organism has been reported. Nannochloropsis is a photosynthetic microalga with high yield of lipid and high-value polyunsaturated fatty acid, which is promising for biodiesel production. Study of growth-related proteins may provide new clue for improving the yield of lipid. TCTP from Nannochloropsis oceanica shares low sequence identity with structure-known TCTPs. Here we reported the NMR resonance assignments of TCTP from N. oceanica for further structural and functional studies.
Collapse
Affiliation(s)
- Xingzhe Yao
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Xiao
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
| | - Qiu Cui
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China.
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China.
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, Shandong, China.
| | - Yingang Feng
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China.
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China.
| |
Collapse
|
778
|
Börger C, Schünke S, Lecher J, Stoldt M, Winkhaus F, Kaupp UB, Willbold D. Resonance assignment of the ligand-free cyclic nucleotide-binding domain from the murine ion channel HCN2. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:243-246. [PMID: 25324217 DOI: 10.1007/s12104-014-9583-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/26/2014] [Indexed: 06/04/2023]
Abstract
Hyperpolarization activated and cyclic nucleotide-gated (HCN) ion channels as well as cyclic nucleotide-gated (CNG) ion channels are essential for the regulation of cardiac cells, neuronal excitability, and signaling in sensory cells. Both classes are composed of four subunits. Each subunit comprises a transmembrane region, intracellular N- and C-termini, and a C-terminal cyclic nucleotide-binding domain (CNBD). Binding of cyclic nucleotides to the CNBD promotes opening of both CNG and HCN channels. In case of CNG channels, binding of cyclic nucleotides to the CNBD is sufficient to open the channel. In contrast, HCN channels open upon membrane hyperpolarization and their activity is modulated by binding of cyclic nucleotides shifting the activation potential to more positive values. Although several high-resolution structures of CNBDs from HCN and CNG channels are available, the gating mechanism for murine HCN2 channel, which leads to the opening of the channel pore, is still poorly understood. As part of a structural investigation, here, we report the complete backbone and side chain resonance assignments of the murine HCN2 CNBD with part of the C-linker.
Collapse
Affiliation(s)
- Claudia Börger
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Sven Schünke
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Justin Lecher
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Matthias Stoldt
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Friederike Winkhaus
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, 53175, Bonn, Germany
- Pharma Technical Development Penzberg, Roche Diagnostics GmbH, Nonnenwald 2, 82377, Penzberg, Germany
| | - U Benjamin Kaupp
- Department of Molecular Sensory Systems, Center of Advanced European Studies and Research, 53175, Bonn, Germany
| | - Dieter Willbold
- Institute of Complex Systems, Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425, Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany.
| |
Collapse
|
779
|
Carneiro MG, Koharudin LMI, Griesinger C, Gronenborn AM, Lee D. (1)H, (13)C and (15)N resonance assignment of the anti-HIV lectin from Oscillatoria agardhii. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:317-319. [PMID: 25680849 PMCID: PMC4537409 DOI: 10.1007/s12104-015-9600-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
Lectins from different sources are known to interfere with HIV infection. The anti-viral activity is mediated by binding to high mannose sugars present on the viral envelope, thereby inhibiting cell entry. The lectin from Oscillatoria agardhii agglutinin (OAA) specifically recognizes a unique substructure of high mannose sugars and exhibits broad anti-HIV activity. Here we report the assignment of backbone and side-chain (1)H, (13)C and (15)N resonances of free OAA.
Collapse
Affiliation(s)
- Marta G Carneiro
- Department for NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Leonardus M I Koharudin
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1050 Biomedical Science Tower 3, 3501 5th Ave, Pittsburgh, PA, 15260, USA
| | - Christian Griesinger
- Department for NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, 1050 Biomedical Science Tower 3, 3501 5th Ave, Pittsburgh, PA, 15260, USA
| | - Donghan Lee
- Department for NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
780
|
Dantas JM, Silva E Sousa M, Salgueiro CA, Bruix M. Backbone, side chain and heme resonance assignments of cytochrome OmcF from Geobacter sulfurreducens. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:365-368. [PMID: 25939275 DOI: 10.1007/s12104-015-9611-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Gene knockout studies on Geobacter sulfurreducens (Gs) cells showed that the outer membrane cytochrome OmcF is involved in respiratory pathways leading to the extracellular reduction of Fe(III) citrate and U(VI) oxide. In addition, microarray analysis of OmcF-deficient mutant versus the wild-type strain revealed that many of the genes with decreased transcript level were those whose expression is upregulated in cells grown with a graphite electrode as electron acceptor. This suggests that OmcF also regulates the electron transfer to electrode surfaces and the concomitant electrical current production by Gs in microbial fuel cells. Extracellular electron transfer processes (EET) constitute nowadays the foundations to develop biotechnological applications in biofuel production, bioremediation and bioenergy. Therefore, the structural characterization of OmcF is a fundamental step to understand the mechanisms underlying EET. Here, we report the complete assignment of the heme proton signals together with (1)H, (13)C and (15)N backbone and side chain assignments of the OmcF, excluding the hydrophobic residues of the N-terminal predicted lipid anchor.
Collapse
Affiliation(s)
- Joana M Dantas
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus Caparica, 2829-516, Caparica, Portugal
| | - Marta Silva E Sousa
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus Caparica, 2829-516, Caparica, Portugal
| | - Carlos A Salgueiro
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus Caparica, 2829-516, Caparica, Portugal.
| | - Marta Bruix
- Departamento de Química Física Biológica, Instituto de Química-Física "Rocasolano", CSIC, Serrano 119, 28006, Madrid, Spain.
| |
Collapse
|
781
|
Putney DR, Todd EA, Berndsen CE, Wright NT. Chemical shift assignments for S. cerevisiae Ubc13. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:407-410. [PMID: 25947351 DOI: 10.1007/s12104-015-9619-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/03/2015] [Indexed: 06/04/2023]
Abstract
The ubiquitination pathway controls several human cellular processes, most notably protein degradation. Ubiquitin, a small signaling protein, is activated by the E1 activating enzyme, transferred to an E2 conjugating enzyme, and then attached to a target substrate through a process that can be facilitated by an E3 ligase enzyme. The enzymatic mechanism of ubiquitin transfer from the E2 conjugating enzyme onto substrate is not clear. The highly conserved HPN motif in E2 catalytic domains is generally thought to help stabilize an oxyanion intermediate formed during ubiquitin transfer. However recent work suggests this motif is instead involved in a structural, non-enzymatic role. As a platform to better understand the E2 catalyzed ubiquitin transfer mechanism, we determined the chemical shift assignments of S. cerevisiae E2 enzyme Ubc13.
Collapse
Affiliation(s)
- D Reid Putney
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA, 22807, USA
| | - Emily A Todd
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA, 22807, USA
| | - Christopher E Berndsen
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA, 22807, USA
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA, 22807, USA.
| |
Collapse
|
782
|
Ding X, Chen C, Cui Q, Li W, Feng Y. Resonance assignments of the periplasmic domain of a cellulose-sensing trans-membrane anti-sigma factor from Clostridium thermocellum. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:321-324. [PMID: 25682099 DOI: 10.1007/s12104-015-9601-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
The cellulosome of Clostridium thermocellum is an elegant and efficient multi-enzyme complex for degrading lignocellulose. The cellulosome contains several dozens of carbohydrate hydrolysis enzymes, which are regulated by the presence of environmental substrates through several pairs of sigma and anti-sigma factors. The anti-sigma factors sense the presence of substrates and transduce the signals into the cell. The sigma factors are then released from the corresponding anti-sigma factors, and they recruit RNA polymerase to transcribe specific cellulosomal genes. However, it is not clear how the extracellular signals are transduced into the cell by the anti-sigma factors. The anti-sigma factors of C. thermocellum contain an N-terminal intracellular domain, a trans-membrane helix, a periplasmic domain, a proline-rich region which is probably required for crossing the cell wall, and a C-terminal carbohydrate-binding domain or glycoside hydrolase domain. The periplasmic domain may play a key role in signal transduction; however, its three-dimensional structure is still unknown. Here we report the NMR resonance assignments of the periplasmic domain of anti-sigma factor RsgI2 from C. thermocellum as a basis for further structural determination and functional studies.
Collapse
Affiliation(s)
- Xiaoke Ding
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
| | - Chao Chen
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
| | - Qiu Cui
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, Shandong, China
| | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Yingang Feng
- Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China.
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao, 266101, China.
| |
Collapse
|
783
|
Xu Y, Ong ACM, Williamson MP, Hounslow AM. Backbone assignment and secondary structure of the PLAT domain of human polycystin-1. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:369-373. [PMID: 25943267 DOI: 10.1007/s12104-015-9612-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
Polycystin-1 is a large transmembrane protein mutated in the common genetic disorder autosomal dominant polycystic kidney disease. One of the predicted intracellular domains of polycystin-1 is PLAT (Polycystin-1, Lipoxygenase and Alpha Toxin), which consists of 116 amino acids and is anchored to the membrane by linkers at both ends. It is predicted to have a large number of hydrophobic residues on the surface. Assignment of the NMR spectrum was hampered by considerable line broadening, and hence a programme of site-directed mutagenesis and searching for suitable solution conditions was undertaken. The optimum construct required fusion of the GB1 domain at the N-terminus and a His tag at the C-terminus, and proved to have several additional amino acids at both ends beyond the canonical domain boundaries, as well as mutation of W3128 to alanine. Optimum solubility required 500 mM sodium chloride, and usable spectra could only be obtained by perdeuteration. Backbone assignment was made using standard triple resonance spectra and is 88 % complete. The chemical shifts obtained suggest that a loop consisting of residues 3223-3228 is mobile in solution, and that the protein is similar in structure to a prediction produced by Swiss-Model based on the structure of a homologous protein.
Collapse
Affiliation(s)
- Yaoxian Xu
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
- Kidney Genetics Group, Academic Unit of Nephrology, Department of Infection and Immunity, University of Sheffield Medical School, Sheffield, S10 2RX, UK
| | - Albert C M Ong
- Kidney Genetics Group, Academic Unit of Nephrology, Department of Infection and Immunity, University of Sheffield Medical School, Sheffield, S10 2RX, UK.
| | - Mike P Williamson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK.
| | - Andrea M Hounslow
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
784
|
YongE F, GaoShan K. Identify Beta-Hairpin Motifs with Quadratic Discriminant Algorithm Based on the Chemical Shifts. PLoS One 2015; 10:e0139280. [PMID: 26422468 PMCID: PMC4589334 DOI: 10.1371/journal.pone.0139280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/09/2015] [Indexed: 01/13/2023] Open
Abstract
Successful prediction of the beta-hairpin motif will be helpful for understanding the of the fold recognition. Some algorithms have been proposed for the prediction of beta-hairpin motifs. However, the parameters used by these methods were primarily based on the amino acid sequences. Here, we proposed a novel model for predicting beta-hairpin structure based on the chemical shift. Firstly, we analyzed the statistical distribution of chemical shifts of six nuclei in not beta-hairpin and beta-hairpin motifs. Secondly, we used these chemical shifts as features combined with three algorithms to predict beta-hairpin structure. Finally, we achieved the best prediction, namely sensitivity of 92%, the specificity of 94% with 0.85 of Mathew’s correlation coefficient using quadratic discriminant analysis algorithm, which is clearly superior to the same method for the prediction of beta-hairpin structure from 20 amino acid compositions in the three-fold cross-validation. Our finding showed that the chemical shift is an effective parameter for beta-hairpin prediction, suggesting the quadratic discriminant analysis is a powerful algorithm for the prediction of beta-hairpin.
Collapse
Affiliation(s)
- Feng YongE
- College of Science, Inner Mongolia Agriculture University, Hohhot, PR China
- * E-mail:
| | - Kou GaoShan
- College of Science, Inner Mongolia Agriculture University, Hohhot, PR China
| |
Collapse
|
785
|
Goodrich AC, Harden BJ, Frueh DP. Solution Structure of a Nonribosomal Peptide Synthetase Carrier Protein Loaded with Its Substrate Reveals Transient, Well-Defined Contacts. J Am Chem Soc 2015; 137:12100-9. [PMID: 26334259 DOI: 10.1021/jacs.5b07772] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonribosomal peptide synthetases (NRPSs) are microbial enzymes that produce a wealth of important natural products by condensing substrates in an assembly line manner. The proper sequence of substrates is obtained by tethering them to phosphopantetheinyl arms of holo carrier proteins (CPs) via a thioester bond. CPs in holo and substrate-loaded forms visit NRPS catalytic domains in a series of transient interactions. A lack of structural information on substrate-loaded carrier proteins has hindered our understanding of NRPS synthesis. Here, we present the first structure of an NRPS aryl carrier protein loaded with its substrate via a native thioester bond, together with the structure of its holo form. We also present the first quantification of NRPS CP backbone dynamics. Our results indicate that prosthetic moieties in both holo and loaded forms are in contact with the protein core, but they also sample states in which they are disordered and extend in solution. We observe that substrate loading induces a large conformational change in the phosphopantetheinyl arm, thereby modulating surfaces accessible for binding to other domains. Our results are discussed in the context of NRPS domain interactions.
Collapse
Affiliation(s)
- Andrew C Goodrich
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , Hunterian 701, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Bradley J Harden
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , Hunterian 701, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| | - Dominique P Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine , Hunterian 701, 725 North Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
786
|
Baßler J, Paternoga H, Holdermann I, Thoms M, Granneman S, Barrio-Garcia C, Nyarko A, Lee W, Stier G, Clark SA, Schraivogel D, Kallas M, Beckmann R, Tollervey D, Barbar E, Sinning I, Hurt E. A network of assembly factors is involved in remodeling rRNA elements during preribosome maturation. ACTA ACUST UNITED AC 2015; 210:169-70. [PMID: 26150393 PMCID: PMC4494009 DOI: 10.1083/jcb.20140811106112015c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jochen Baßler
- Biochemistry Center of Heidelberg University, INF328, D-69120 Heidelberg, Germany
| | - Helge Paternoga
- Biochemistry Center of Heidelberg University, INF328, D-69120 Heidelberg, Germany
| | - Iris Holdermann
- Biochemistry Center of Heidelberg University, INF328, D-69120 Heidelberg, Germany
| | - Matthias Thoms
- Biochemistry Center of Heidelberg University, INF328, D-69120 Heidelberg, Germany
| | | | - Clara Barrio-Garcia
- Gene Center, Department of Chemistry and Biochemistry, University of Munich, 80539 Munich, Germany
| | - Afua Nyarko
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - Woonghee Lee
- National Magnetic Resonance Facility, and Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706
| | - Gunter Stier
- Biochemistry Center of Heidelberg University, INF328, D-69120 Heidelberg, Germany
| | - Sarah A Clark
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - Daniel Schraivogel
- Biochemistry Center of Heidelberg University, INF328, D-69120 Heidelberg, Germany
| | - Martina Kallas
- Biochemistry Center of Heidelberg University, INF328, D-69120 Heidelberg, Germany
| | - Roland Beckmann
- Gene Center, Department of Chemistry and Biochemistry, University of Munich, 80539 Munich, Germany
| | - David Tollervey
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, Scotland, UK
| | - Elisar Barbar
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - Irmi Sinning
- Biochemistry Center of Heidelberg University, INF328, D-69120 Heidelberg, Germany
| | - Ed Hurt
- Biochemistry Center of Heidelberg University, INF328, D-69120 Heidelberg, Germany
| |
Collapse
|
787
|
Binding interface between the Salmonella σ(S)/RpoS subunit of RNA polymerase and Crl: hints from bacterial species lacking crl. Sci Rep 2015; 5:13564. [PMID: 26338235 PMCID: PMC4559669 DOI: 10.1038/srep13564] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/30/2015] [Indexed: 01/30/2023] Open
Abstract
In many Gram-negative bacteria, including Salmonella enterica serovar Typhimurium (S. Typhimurium), the sigma factor RpoS/σS accumulates during stationary phase of growth, and associates with the core RNA polymerase enzyme (E) to promote transcription initiation of genes involved in general stress resistance and starvation survival. Whereas σ factors are usually inactivated upon interaction with anti-σ proteins, σS binding to the Crl protein increases σS activity by favouring its association to E. Taking advantage of evolution of the σS sequence in bacterial species that do not contain a crl gene, like Pseudomonas aeruginosa, we identified and assigned a critical arginine residue in σS to the S. Typhimurium σS-Crl binding interface. We solved the solution structure of S. Typhimurium Crl by NMR and used it for NMR binding assays with σS and to generate in silico models of the σS-Crl complex constrained by mutational analysis. The σS-Crl models suggest that the identified arginine in σS interacts with an aspartate of Crl that is required for σS binding and is located inside a cavity enclosed by flexible loops, which also contribute to the interface. This study provides the basis for further structural investigation of the σS-Crl complex.
Collapse
|
788
|
Suzuki Y, Kawanishi S, Yamazaki T, Aoki A, Saito H, Asakura T. Structural Determination of the Tandem Repeat Motif in Samia cynthia ricini Liquid Silk by Solution NMR. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01717] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yu Suzuki
- Tenure-Track
Program for Innovative Research, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui 910-8507, Japan
| | - Shuto Kawanishi
- Department
of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Toshimasa Yamazaki
- National
Institute
of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Akihiro Aoki
- Department
of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Hitoshi Saito
- Department
of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Tetsuo Asakura
- Department
of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
789
|
Kou G, Feng Y. Identify five kinds of simple super-secondary structures with quadratic discriminant algorithm based on the chemical shifts. J Theor Biol 2015; 380:392-8. [DOI: 10.1016/j.jtbi.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 10/23/2022]
|
790
|
Marassi FM, Ding Y, Schwieters CD, Tian Y, Yao Y. Backbone structure of Yersinia pestis Ail determined in micelles by NMR-restrained simulated annealing with implicit membrane solvation. JOURNAL OF BIOMOLECULAR NMR 2015; 63:59-65. [PMID: 26143069 PMCID: PMC4577439 DOI: 10.1007/s10858-015-9963-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/30/2015] [Indexed: 06/04/2023]
Abstract
The outer membrane protein Ail (attachment invasion locus) is a virulence factor of Yersinia pestis that mediates cell invasion, cell attachment and complement resistance. Here we describe its three-dimensional backbone structure determined in decyl-phosphocholine (DePC) micelles by NMR spectroscopy. The NMR structure was calculated using the membrane function of the implicit solvation potential, eefxPot, which we have developed to facilitate NMR structure calculations in a physically realistic environment. We show that the eefxPot force field guides the protein towards its native fold. The resulting structures provide information about the membrane-embedded global position of Ail, and have higher accuracy, higher precision and improved conformational properties, compared to the structures calculated with the standard repulsive potential.
Collapse
Affiliation(s)
- Francesca M Marassi
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| | - Yi Ding
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Charles D Schwieters
- Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Building 12A, Bethesda, MD, 20892-5624, USA
| | - Ye Tian
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yong Yao
- Sanford-Burnham Medical Research Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
791
|
Mantsyzov AB, Shen Y, Lee JH, Hummer G, Bax A. MERA: a webserver for evaluating backbone torsion angle distributions in dynamic and disordered proteins from NMR data. JOURNAL OF BIOMOLECULAR NMR 2015; 63. [PMID: 26219516 PMCID: PMC4577467 DOI: 10.1007/s10858-015-9971-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
MERA (Maximum Entropy Ramachandran map Analysis from NMR data) is a new webserver that generates residue-by-residue Ramachandran map distributions for disordered proteins or disordered regions in proteins on the basis of experimental NMR parameters. As input data, the program currently utilizes up to 12 different parameters. These include three different types of short-range NOEs, three types of backbone chemical shifts ((15)N, (13)C(α), and (13)C'), six types of J couplings ((3)JHNHα, (3)JC'C', (3)JC'Hα, (1)JHαCα, (2)JCαN and (1)JCαN), as well as the (15)N-relaxation derived J(0) spectral density. The Ramachandran map distributions are reported in terms of populations of their 15° × 15° voxels, and an adjustable maximum entropy weight factor is available to ensure that the obtained distributions will not deviate more from a newly derived coil library distribution than required to account for the experimental data. MERA output includes the agreement between each input parameter and its distribution-derived value. As an application, we demonstrate performance of the program for several residues in the intrinsically disordered protein α-synuclein, as well as for several static and dynamic residues in the folded protein GB3.
Collapse
Affiliation(s)
- Alexey B Mantsyzov
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Moscow, Russian Federation, 119991
| | - Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jung Ho Lee
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Gerhard Hummer
- Max Planck Institute of Biophysics, Max-von-Laue-Straße 3, 60438, Frankfurt am Main, Germany
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
792
|
Rathner P, Rathner A, Horničáková M, Wohlschlager C, Chandra K, Kohoutová J, Ettrich R, Wimmer R, Müller N. Solution NMR and molecular dynamics reveal a persistent alpha helix within the dynamic region of PsbQ from photosystem II of higher plants. Proteins 2015; 83:1677-86. [PMID: 26138376 PMCID: PMC4758407 DOI: 10.1002/prot.24853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 06/16/2015] [Accepted: 06/24/2015] [Indexed: 11/10/2022]
Abstract
The extrinsic proteins of photosystem II of higher plants and green algae PsbO, PsbP, PsbQ, and PsbR are essential for stable oxygen production in the oxygen evolving center. In the available X-ray crystallographic structure of higher plant PsbQ residues S14-Y33 are missing. Building on the backbone NMR assignment of PsbQ, which includes this "missing link", we report the extended resonance assignment including side chain atoms. Based on nuclear Overhauser effect spectra a high resolution solution structure of PsbQ with a backbone RMSD of 0.81 Å was obtained from torsion angle dynamics. Within the N-terminal residues 1-45 the solution structure deviates significantly from the X-ray crystallographic one, while the four-helix bundle core found previously is confirmed. A short α-helix is observed in the solution structure at the location where a β-strand had been proposed in the earlier crystallographic study. NMR relaxation data and unrestrained molecular dynamics simulations corroborate that the N-terminal region behaves as a flexible tail with a persistent short local helical secondary structure, while no indications of forming a β-strand are found.
Collapse
Affiliation(s)
- Petr Rathner
- Institute of Organic Chemistry, Johannes Kepler University LinzLinz4040Austria,Faculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| | - Adriana Rathner
- Institute of Organic Chemistry, Johannes Kepler University LinzLinz4040Austria
| | - Michaela Horničáková
- Institute of Organic Chemistry, Johannes Kepler University LinzLinz4040Austria,Lohmann Animal HealthCuxhaven27472Germany
| | | | - Kousik Chandra
- Institute of Organic Chemistry, Johannes Kepler University LinzLinz4040Austria
| | - Jaroslava Kohoutová
- Faculty of Science, University of South BohemiaČeské BudějoviceCzech Republic,Center of Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech RepublicNové HradyCzech Republic
| | - Rüdiger Ettrich
- Faculty of Science, University of South BohemiaČeské BudějoviceCzech Republic,Center of Nanobiology and Structural Biology, Institute of Microbiology, Academy of Sciences of the Czech RepublicNové HradyCzech Republic
| | - Reinhard Wimmer
- Department of BiotechnologyChemistry and Environmental Engineering, Aalborg UniversityAalborg9220Denmark
| | - Norbert Müller
- Institute of Organic Chemistry, Johannes Kepler University LinzLinz4040Austria,Faculty of Science, University of South BohemiaČeské BudějoviceCzech Republic
| |
Collapse
|
793
|
Xu Y, Streets AJ, Hounslow AM, Tran U, Jean-Alphonse F, Needham AJ, Vilardaga JP, Wessely O, Williamson MP, Ong ACM. The Polycystin-1, Lipoxygenase, and α-Toxin Domain Regulates Polycystin-1 Trafficking. J Am Soc Nephrol 2015; 27:1159-73. [PMID: 26311459 DOI: 10.1681/asn.2014111074] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 07/21/2015] [Indexed: 12/24/2022] Open
Abstract
Mutations in polycystin-1 (PC1) give rise to autosomal dominant polycystic kidney disease, an important and common cause of kidney failure. Despite its medical importance, the function of PC1 remains poorly understood. Here, we investigated the role of the intracellular polycystin-1, lipoxygenase, and α-toxin (PLAT) signature domain of PC1 using nuclear magnetic resonance, biochemical, cellular, and in vivo functional approaches. We found that the PLAT domain targets PC1 to the plasma membrane in polarized epithelial cells by a mechanism involving the selective binding of the PLAT domain to phosphatidylserine and L-α-phosphatidylinositol-4-phosphate (PI4P) enriched in the plasma membrane. This process is regulated by protein kinase A phosphorylation of the PLAT domain, which reduces PI4P binding and recruits β-arrestins and the clathrin adaptor AP2 to trigger PC1 internalization. Our results reveal a physiological role for the PC1-PLAT domain in renal epithelial cells and suggest that phosphorylation-dependent internalization of PC1 is closely linked to its function in renal development and homeostasis.
Collapse
Affiliation(s)
- Yaoxian Xu
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, United Kingdom; Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Andrew J Streets
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Andrea M Hounslow
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Uyen Tran
- Department of Cellular and Molecular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio; and
| | - Frederic Jean-Alphonse
- Laboratory of GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Andrew J Needham
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Jean-Pierre Vilardaga
- Laboratory of GPCR Biology, Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Oliver Wessely
- Department of Cellular and Molecular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio; and
| | - Michael P Williamson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Albert C M Ong
- Kidney Genetics Group, Academic Nephrology Unit, University of Sheffield Medical School, Sheffield, United Kingdom;
| |
Collapse
|
794
|
Meng D, Bruschweiler-Li L, Zhang F, Brüschweiler R. Modulation and Functional Role of the Orientations of the N- and P-Domains of Cu+-Transporting ATPase along the Ion Transport Cycle. Biochemistry 2015. [DOI: 10.1021/acs.biochem.5b00420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Dan Meng
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Lei Bruschweiler-Li
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Fengli Zhang
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - Rafael Brüschweiler
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
795
|
Shen Y, Bax A. Homology modeling of larger proteins guided by chemical shifts. Nat Methods 2015; 12:747-50. [PMID: 26053889 PMCID: PMC4521993 DOI: 10.1038/nmeth.3437] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 03/25/2015] [Indexed: 12/22/2022]
Abstract
We describe an approach to the structure determination of large proteins that relies on experimental NMR chemical shifts, plus sparse nuclear Overhauser effect (NOE) data if available. Our alignment method, POMONA (protein alignments obtained by matching of NMR assignments), directly exploits pre-existing bioinformatics algorithms to match experimental chemical shifts to values predicted for the crystallographic database. Protein templates generated by POMONA are subsequently used as input for chemical shift-based Rosetta comparative modeling (CS-RosettaCM) to generate reliable full-atom models.
Collapse
Affiliation(s)
- Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, US National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
796
|
Himeno K, Rosengren KJ, Inoue T, Perez RH, Colgrave ML, Lee HS, Chan LY, Henriques ST, Fujita K, Ishibashi N, Zendo T, Wilaipun P, Nakayama J, Leelawatcharamas V, Jikuya H, Craik DJ, Sonomoto K. Identification, Characterization, and Three-Dimensional Structure of the Novel Circular Bacteriocin, Enterocin NKR-5-3B, from Enterococcus faecium. Biochemistry 2015; 54:4863-76. [PMID: 26174911 DOI: 10.1021/acs.biochem.5b00196] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enterocin NKR-5-3B, one of the multiple bacteriocins produced by Enterococcus faecium NKR-5-3, is a 64-amino acid novel circular bacteriocin that displays broad-spectrum antimicrobial activity. Here we report the identification, characterization, and three-dimensional nuclear magnetic resonance solution structure determination of enterocin NKR-5-3B. Enterocin NKR-5-3B is characterized by four helical segments that enclose a compact hydrophobic core, which together with its circular backbone impart high stability and structural integrity. We also report the corresponding structural gene, enkB, that encodes an 87-amino acid precursor peptide that undergoes a yet to be described enzymatic processing that involves adjacent cleavage and ligation of Leu(24) and Trp(87) to yield the mature (circular) enterocin NKR-5-3B.
Collapse
Affiliation(s)
- Kohei Himeno
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | - Tomoko Inoue
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Rodney H Perez
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | | - Koji Fujita
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Naoki Ishibashi
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Takeshi Zendo
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Pongtep Wilaipun
- ⊥Department of Fishery Products, Faculty of Fisheries, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Jiro Nakayama
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Vichien Leelawatcharamas
- @Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
| | - Hiroyuki Jikuya
- #Department of Functional Metabolic Design, Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | - Kenji Sonomoto
- †Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.,#Department of Functional Metabolic Design, Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| |
Collapse
|
797
|
Abstract
The action of the spliceosome depends on the stepwise cooperative assembly and disassembly of its components. Very strong cooperativity was observed for the RES (Retention and Splicing) hetero-trimeric complex where the affinity from binary to tertiary interactions changes more than 100-fold and affects RNA binding. The RES complex is involved in splicing regulation and retention of not properly spliced pre-mRNA with its three components—Snu17p, Pml1p and Bud13p—giving rise to the two possible intermediate dimeric complexes Pml1p-Snu17p and Bud13p-Snu17p. Here we determined the three-dimensional structure and dynamics of the Pml1p-Snu17p and Bud13p-Snu17p dimers using liquid state NMR. We demonstrate that localized as well as global changes occur along the RES trimer assembly pathway. The stepwise rigidification of the Snu17p structure following the binding of Pml1p and Bud13p provides a basis for the strong cooperative nature of RES complex assembly.
Collapse
Affiliation(s)
- Piotr Wysoczanski
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan Becker
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Markus Zweckstetter
- 1] Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany [2] German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany [3] Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University Medical Center, 37073 Göttingen, Germany
| |
Collapse
|
798
|
Abstract
Dengue virus (DENV) is an important human pathogen causing millions of disease cases and thousands of deaths worldwide. Non-structural protein 4A (NS4A) is a vital component of the viral replication complex (RC) and plays a major role in the formation of host cell membrane-derived structures that provide a scaffold for replication. The N-terminal cytoplasmic region of NS4A(1–48) is known to preferentially interact with highly curved membranes. Here, we provide experimental evidence for the stable binding of NS4A(1–48) to small liposomes using a liposome floatation assay and identify the lipid binding sequence by NMR spectroscopy. Mutations L6E;M10E were previously shown to inhibit DENV replication and to interfere with the binding of NS4A(1–48) to small liposomes. Our results provide new details on the interaction of the N-terminal region of NS4A with membranes and will prompt studies of the functional relevance of the curvature sensitive membrane anchor at the N-terminus of NS4A.
Collapse
|
799
|
Structural Impact of Tau Phosphorylation at Threonine 231. Structure 2015; 23:1448-1458. [PMID: 26165593 DOI: 10.1016/j.str.2015.06.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 11/22/2022]
Abstract
Phosphorylation of the microtubule-associated protein Tau influences the assembly and stabilization of microtubules and is deregulated in several neurodegenerative diseases. The high flexibility of Tau, however, has prevented an atomic-level description of its phosphorylation-induced structural changes. Employing an extensive set of distance and orientational restraints together with a novel ensemble calculation approach, we determined conformational ensembles of Tau fragments in the non-phosphorylated state and, when phosphorylated at T231/S235 or T231/S235/S237/S238, four important sites of phosphorylation in Alzheimer disease. Comparison of the molecular ensembles showed that phosphorylation of the regulatory T231 does not perturb the backbone conformation of the proximal microtubule-binding (225)KVAVVR(230) motif. Instead, phosphorylated T231 selectively engages in a salt bridge with R230 that can compete with the formation of intermolecular salt bridges to tubulin. Our study provides an ensemble description which will be useful for the analysis of conformational transitions in Tau and other intrinsically disordered proteins.
Collapse
|
800
|
Li D, Brüschweiler R. PPM_One: a static protein structure based chemical shift predictor. JOURNAL OF BIOMOLECULAR NMR 2015; 62:403-9. [PMID: 26091586 DOI: 10.1007/s10858-015-9958-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 06/12/2015] [Indexed: 05/07/2023]
Abstract
We mined the most recent editions of the BioMagResDataBank and the protein data bank to parametrize a new empirical knowledge-based chemical shift predictor of protein backbone atoms using either a linear or an artificial neural network model. The resulting chemical shift predictor PPM_One accepts a single static 3D structure as input and emulates the effect of local protein dynamics via interatomic steric contacts. Furthermore, the chemical shift prediction was extended to most side-chain protons and it is found that the prediction accuracy is at a level allowing an independent assessment of stereospecific assignments. For a previously established set of test proteins some overall improvement was achieved over current top-performing chemical shift prediction programs.
Collapse
Affiliation(s)
- Dawei Li
- Campus Chemical Instrument Center, The Ohio State University, Columbus, OH, 43210, USA
| | | |
Collapse
|