751
|
Neurophysiological Differences between Flail Arm Syndrome and Amyotrophic Lateral Sclerosis. PLoS One 2015; 10:e0127601. [PMID: 26056822 PMCID: PMC4461255 DOI: 10.1371/journal.pone.0127601] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 04/16/2015] [Indexed: 11/19/2022] Open
Abstract
There are many clinical features of flail arm syndrome (FAS) that are different from amyotrophic lateral sclerosis (ALS), suggesting they are probably different entities. Studies on electrophysiological differences between them are limited at present, and still inconclusive. Therefore, we aimed to find clinical and neurophysiological differences between FAS and ALS. Eighteen healthy control subjects, six FAS patients and forty-one ALS patients were recruited. The upper motor neuron signs (UMNS), split-hand index (SI), resting motor threshold (RMT), central motor conduction time (CMCT) were evaluated and compared. There was no obvious upper motor neuron signs in FAS. The SI and RMT level in FAS was similar to control subjects, but significantly lower than that of in ALS. Compared with control group, the RMT and SI in ALS group were both significantly increased to higher level. However, no significant difference of CMCT was found between any two of these three groups. The differences in clinical and neurophysiological findings between FAS and ALS, argue against they are the same disease entity. Since there was no obvious UMNS, no split-hand phenomenon, and no obvious changes of RMT and CMCT in FAS patients, the development of FAS might be probably not originated from motor cortex.
Collapse
|
752
|
Bella R, Lanza G, Cantone M, Giuffrida S, Puglisi V, Vinciguerra L, Pennisi M, Ricceri R, D’Agate CC, Malaguarnera G, Ferri R, Pennisi G. Effect of a Gluten-Free Diet on Cortical Excitability in Adults with Celiac Disease. PLoS One 2015; 10:e0129218. [PMID: 26053324 PMCID: PMC4460029 DOI: 10.1371/journal.pone.0129218] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/06/2015] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION An imbalance between excitatory and inhibitory synaptic excitability was observed in de novo patients with celiac disease (CD) in a previous study with Transcranial Magnetic Stimulation (TMS), suggesting a subclinical involvement of GABAergic and glutamatergic neurotransmission in asymptomatic patients. The aim of this investigation was to monitor the eventual changes in the same cohort of patients, evaluated after a period of gluten-free diet. METHODS Patients were re-evaluated after a median period of 16 months during which an adequate gluten-free diet was maintained. Clinical, cognitive and neuropsychiatric assessment was repeated, as well as cortical excitability by means of single- and paired-pulse TMS from the first dorsal interosseous muscle of the dominant hand. RESULTS Compared to baseline, patients showed a significant decrease of the median resting motor threshold (from 35% to 33%, p<0.01). The other single-pulse (cortical silent period, motor evoked potentials latency and amplitude, central motor conduction time) and paired-pulse TMS measures (intracortical inhibition and intracortical facilitation) did not change significantly after the follow-up period. Antibodies were still present in 7 subjects. DISCUSSION In patients under a gluten-free diet, a global increase of cortical excitability was observed, suggesting a glutamate-mediated functional reorganization compensating for disease progression. We hypothesize that glutamate receptor activation, probably triggered by CD-related immune system dysregulation, might result in a long-lasting motor cortex hyperexcitability with increased excitatory post-synaptic potentials, probably related to phenomena of long-term plasticity. The impact of the gluten-free diet on subclinical neurological abnormalities needs to be further explored.
Collapse
Affiliation(s)
- Rita Bella
- Department ‘‘G.F. Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | - Giuseppe Lanza
- Department of Neurology I.C., “Oasi” Institute for Research on Mental Retardation and Brain Aging (I.R.C.C.S.), Troina (EN), Italy
| | - Mariagiovanna Cantone
- Department of Neurology I.C., “Oasi” Institute for Research on Mental Retardation and Brain Aging (I.R.C.C.S.), Troina (EN), Italy
| | - Salvatore Giuffrida
- Department ‘‘G.F. Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | - Valentina Puglisi
- Department ‘‘G.F. Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | - Luisa Vinciguerra
- Department ‘‘G.F. Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | - Manuela Pennisi
- Spinal Unit, Emergency Hospital “Cannizzaro”, Catania, Italy
| | - Riccardo Ricceri
- Department ‘‘G.F. Ingrassia”, Section of Neurosciences, University of Catania, Catania, Italy
| | | | | | - Raffaele Ferri
- Department of Neurology I.C., “Oasi” Institute for Research on Mental Retardation and Brain Aging (I.R.C.C.S.), Troina (EN), Italy
| | - Giovanni Pennisi
- Department“Specialità Medico-Chirurgiche”, University of Catania, Catania, Italy
| |
Collapse
|
753
|
Nojima I, Koganemaru S, Kawamata T, Fukuyama H, Mima T. Action observation with kinesthetic illusion can produce human motor plasticity. Eur J Neurosci 2015; 41:1614-23. [DOI: 10.1111/ejn.12921] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/13/2015] [Accepted: 04/15/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Ippei Nojima
- Department of Physical Therapy; Nagoya University Graduate School of Medicine; Nagoya Aichi Japan
| | - Satoko Koganemaru
- Human Brain Research Center; Kyoto University Graduate School of Medicine; Kyoto 606-8507 Japan
| | - Toshio Kawamata
- Kobe University Graduate School of Health Science; Kobe Hyogo Japan
| | - Hidenao Fukuyama
- Human Brain Research Center; Kyoto University Graduate School of Medicine; Kyoto 606-8507 Japan
| | - Tatsuya Mima
- Human Brain Research Center; Kyoto University Graduate School of Medicine; Kyoto 606-8507 Japan
| |
Collapse
|
754
|
Magalhães SC, Kaelin-Lang A, Sterr A, do Prado GF, Eckeli AL, Conforto AB. Transcranial magnetic stimulation for evaluation of motor cortical excitability in restless legs syndrome/Willis-Ekbom disease. Sleep Med 2015; 16:1265-73. [PMID: 26429756 DOI: 10.1016/j.sleep.2015.03.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/27/2015] [Accepted: 03/29/2015] [Indexed: 11/30/2022]
Abstract
There is no consensus about mechanisms underlying restless legs syndrome (RLS), also known as Willis-Ekbom disease (WED). Cortical excitability may be abnormal in RLS. Transcranial magnetic stimulation (TMS) can provide insight about cortical excitability. We reviewed studies about measures of excitability to TMS in RLS. Original studies published between January 1999 and January 2015 were searched in PubMed, Scopus, and Web of Science databases. Inclusion criteria were as follows: original studies involving primary RLS in patients from both sexes and ages between 18 and 85 years; TMS protocols clearly described; and they were written in English, in peer-reviewed journals. Fifteen manuscripts were identified. TMS protocols were heterogeneous across studies. Resting motor threshold, active motor threshold, and amplitudes of motor-evoked potentials were typically reported to be normal in RLS. A reduction in short-interval intracortical inhibition (SICI) was the most consistent finding, whereas conflicting results were described in regard to short-interval intracortical facilitation and the contralateral silent period. Decreased SICI can be reversed by treatment with dopaminergic agonists. Plasticity in the motor cortex and sensorimotor integration may be disrupted. TMS may become a useful biomarker of responsiveness to drug treatment in RLS. The field can benefit from increases in homogeneity and sizes of samples, as well as from decrease in methodological variability across studies.
Collapse
Affiliation(s)
| | | | | | | | - Alan Luiz Eckeli
- Hospital das Clínicas da Faculdade de Medicina da USP, Ribeirão Preto, São Paulo, Brazil
| | | |
Collapse
|
755
|
Karabanov A, Ziemann U, Hamada M, George MS, Quartarone A, Classen J, Massimini M, Rothwell J, Siebner HR. Consensus Paper: Probing Homeostatic Plasticity of Human Cortex With Non-invasive Transcranial Brain Stimulation. Brain Stimul 2015; 8:442-54. [DOI: 10.1016/j.brs.2015.01.404] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 01/03/2015] [Accepted: 01/13/2015] [Indexed: 01/03/2023] Open
|
756
|
Bocci T, Marceglia S, Vergari M, Cognetto V, Cogiamanian F, Sartucci F, Priori A. Transcutaneous spinal direct current stimulation modulates human corticospinal system excitability. J Neurophysiol 2015; 114:440-6. [PMID: 25925328 DOI: 10.1152/jn.00490.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 04/24/2015] [Indexed: 12/14/2022] Open
Abstract
This study aimed to assess the effects of thoracic anodal and cathodal transcutaneous spinal direct current stimulation (tsDCS) on upper and lower limb corticospinal excitability. Although there have been studies assessing how thoracic tsDCS influences the spinal ascending tract and reflexes, none has assessed the effects of this technique over upper and lower limb corticomotor neuronal connections. In 14 healthy subjects we recorded motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) from abductor hallucis (AH) and hand abductor digiti minimi (ADM) muscles before (baseline) and at different time points (0 and 30 min) after anodal or cathodal tsDCS (2.5 mA, 20 min, T9-T11 level). In 8 of the 14 subjects we also tested the soleus H reflex and the F waves from AH and ADM before and after tsDCS. Both anodal and cathodal tsDCS left the upper limb MEPs and F wave unchanged. Conversely, while leaving lower limb H reflex unchanged, they oppositely affected lower limb MEPs: whereas anodal tsDCS increased resting motor threshold [(mean ± SE) 107.33 ± 3.3% increase immediately after tsDCS and 108.37 ± 3.2% increase 30 min after tsDCS compared with baseline] and had no effects on MEP area and latency, cathodal tsDCS increased MEP area (139.71 ± 12.9% increase immediately after tsDCS and 132.74 ± 22.0% increase 30 min after tsDCS compared with baseline) without affecting resting motor threshold and MEP latency. Our results show that tsDCS induces polarity-specific changes in corticospinal excitability that last for >30 min after tsDCS offset and selectively affect responses in lower limb muscles innervated by lumbar and sacral motor neurons.
Collapse
Affiliation(s)
- Tommaso Bocci
- Fondazione IRCCS "Ca' Granda" Ospedale Maggiore di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milan, Italy; Unità Operativa di Neurologia, Dipartimento di Neuroscienze, Università di Pisa, Pisa, Italy
| | - Sara Marceglia
- Fondazione IRCCS "Ca' Granda" Ospedale Maggiore di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milan, Italy; Dipartimento di Ingegneria e Architettura, Università degli Studi di Trieste, Trieste, Italy; and
| | - Maurizio Vergari
- Fondazione IRCCS "Ca' Granda" Ospedale Maggiore di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milan, Italy
| | - Valeria Cognetto
- Fondazione IRCCS "Ca' Granda" Ospedale Maggiore di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milan, Italy
| | - Filippo Cogiamanian
- Fondazione IRCCS "Ca' Granda" Ospedale Maggiore di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milan, Italy
| | - Ferdinando Sartucci
- Unità Operativa di Neurologia, Dipartimento di Neuroscienze, Università di Pisa, Pisa, Italy; Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Alberto Priori
- Fondazione IRCCS "Ca' Granda" Ospedale Maggiore di Milano, Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Milan, Italy;
| |
Collapse
|
757
|
Bocci T, Barloscio D, Vergari M, Di Rollo A, Rossi S, Priori A, Sartucci F. Spinal Direct Current Stimulation Modulates Short Intracortical Inhibition. Neuromodulation 2015; 18:686-93. [DOI: 10.1111/ner.12298] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/09/2015] [Accepted: 02/25/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Tommaso Bocci
- Department of Clinical and Experimental Medicine, Unit of Neurology; Pisa University Medical School; Pisa Italy
- Department of Neurological and Neurosensorial Sciences, Neurology and Clinical Neurophysiology Section, Brain Investigation and Neuromodulation Lab.; Azienda Ospedaliera Universitaria Senese; Siena Italy
| | - Davide Barloscio
- Department of Clinical and Experimental Medicine, Unit of Neurology; Pisa University Medical School; Pisa Italy
| | - Maurizio Vergari
- Department of Neurological Sciences; University of Milan, Fondazione IRCCS Ospedale Maggiore Policlinico; Milan Italy
| | - Andrea Di Rollo
- Department of Clinical and Experimental Medicine, Cisanello Neurology Unit; Azienda Ospedaliera Universitaria Pisana; Pisa Italy
| | - Simone Rossi
- Department of Neurological and Neurosensorial Sciences, Neurology and Clinical Neurophysiology Section, Brain Investigation and Neuromodulation Lab.; Azienda Ospedaliera Universitaria Senese; Siena Italy
| | - Alberto Priori
- Department of Neurological Sciences; University of Milan, Fondazione IRCCS Ospedale Maggiore Policlinico; Milan Italy
| | - Ferdinando Sartucci
- Department of Clinical and Experimental Medicine, Unit of Neurology; Pisa University Medical School; Pisa Italy
- Department of Clinical and Experimental Medicine, Cisanello Neurology Unit; Azienda Ospedaliera Universitaria Pisana; Pisa Italy
- CNR Neuroscience Institute; Pisa Italy
| |
Collapse
|
758
|
Jono Y, Chujo Y, Nomura Y, Tani K, Nikaido Y, Hatanaka R, Hiraoka K. The effect of tonic contraction of the finger muscle on the motor cortical representation of the contracting adjacent muscle. Somatosens Mot Res 2015; 32:114-21. [PMID: 25874638 DOI: 10.3109/08990220.2014.994738] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This study examined the effect of tonic contraction of the finger muscle on the motor cortical representation of the contracting adjacent muscle. A representation map of the motor evoked potential (MEP) in the first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles was obtained with the subject at rest or during tonic contraction of the ADM muscle while the FDI muscle was tonically contracted. The center of gravity (COG) of the MEP map in the FDI muscle shifted medially during contraction of the ADM muscle. Motor cortical excitability in the motor cortical representation of the FDI muscle that did not overlap with the motor cortical representation of the ADM muscle was suppressed, but motor cortical excitability in the motor cortical representation of the FDI muscle overlapping with the motor cortical representation of the ADM muscle was not suppressed during contraction of the ADM muscle. The motor cortical representation of the FDI muscle not overlapping with the motor cortical representation of the ADM muscle was located lateral to that of the FDI muscle that did overlap with the motor cortical representation of the ADM muscle. Medial shift of the COG of the motor cortical representation of the contracting finger muscle induced by tonic contraction of the adjacent finger muscle must be due to suppression of motor cortical excitability in the lateral part of the representation, which is not shared by the adjacent representation.
Collapse
Affiliation(s)
- Yasutomo Jono
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University , Habikino City, Osaka , Japan and
| | | | | | | | | | | | | |
Collapse
|
759
|
Abstract
Models propose an auditory-motor mapping via a left-hemispheric dorsal speech-processing stream, yet its detailed contributions to speech perception and production are unclear. Using fMRI-navigated repetitive transcranial magnetic stimulation (rTMS), we virtually lesioned left dorsal stream components in healthy human subjects and probed the consequences on speech-related facilitation of articulatory motor cortex (M1) excitability, as indexed by increases in motor-evoked potential (MEP) amplitude of a lip muscle, and on speech processing performance in phonological tests. Speech-related MEP facilitation was disrupted by rTMS of the posterior superior temporal sulcus (pSTS), the sylvian parieto-temporal region (SPT), and by double-knock-out but not individual lesioning of pars opercularis of the inferior frontal gyrus (pIFG) and the dorsal premotor cortex (dPMC), and not by rTMS of the ventral speech-processing stream or an occipital control site. RTMS of the dorsal stream but not of the ventral stream or the occipital control site caused deficits specifically in the processing of fast transients of the acoustic speech signal. Performance of syllable and pseudoword repetition correlated with speech-related MEP facilitation, and this relation was abolished with rTMS of pSTS, SPT, and pIFG. Findings provide direct evidence that auditory-motor mapping in the left dorsal stream causes reliable and specific speech-related MEP facilitation in left articulatory M1. The left dorsal stream targets the articulatory M1 through pSTS and SPT constituting essential posterior input regions and parallel via frontal pathways through pIFG and dPMC. Finally, engagement of the left dorsal stream is necessary for processing of fast transients in the auditory signal.
Collapse
|
760
|
Pietrosimone BG, Lepley AS, Ericksen HM, Clements A, Sohn DH, Gribble PA. Neural Excitability Alterations After Anterior Cruciate Ligament Reconstruction. J Athl Train 2015; 50:665-74. [PMID: 25844855 DOI: 10.4085/1062-6050-50.1.11] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
CONTEXT Neuromuscular dysfunction is common after anterior cruciate ligament reconstruction (ACL-R). However, little is known about quadriceps spinal-reflex and descending corticomotor excitability after ACL-R. Understanding the effects of ACL-R on spinal-reflex and corticomotor excitability will help elucidate the origins of neuromuscular dysfunction. OBJECTIVE To determine whether spinal-reflex excitability and corticomotor excitability differed between the injured and uninjured limbs of patients with unilateral ACL-R and between these limbs and the matched limbs of healthy participants. DESIGN Case-control study. SETTING Laboratory. PATIENTS OR OTHER PARTICIPANTS A total of 28 patients with unilateral ACL-R (9 men, 19 women; age = 21.28 ± 3.79 years, height = 170.95 ± 10.04 cm, mass = 73.18 ± 18.02 kg, time after surgery = 48.10 ± 36.17 months) and 29 participants serving as healthy controls (9 men, 20 women; age = 21.55 ± 2.70 years, height = 170.59 ± 8.93 cm, mass = 71.89 ± 12.70 kg) volunteered. MAIN OUTCOME MEASURE(S) Active motor thresholds (AMTs) were collected from the vastus medialis (VM) using transcranial magnetic stimulation. We evaluated VM spinal reflexes using the Hoffmann reflex normalized to maximal muscle responses (H : M ratio). Voluntary quadriceps activation was measured with the superimposed-burst technique and calculated using the central activation ratio (CAR). We also evaluated whether ACL-R patients with high or low voluntary activation had different outcomes. RESULTS The AMT was higher in the injured than in the uninjured limb in the ACL-R group (t27 = 3.32, P = .003) and in the matched limb of the control group (t55 = 2.05, P = .04). The H : M ratio was bilaterally higher in the ACL-R than the control group (F1,55 = 5.17, P = .03). The quadriceps CAR was bilaterally lower in the ACL-R compared with the control group (F1,55 = 10.5, P = .002). The ACL-R group with low voluntary activation (CAR < 0.95) had higher AMT than the control group (P = .02), whereas the ACL-R group with high voluntary activation (CAR ≥ 0.95) demonstrated higher H : M ratios than the control group (P = .05). CONCLUSIONS The higher VM AMT in the injured limbs of ACL-R patients suggested that corticomotor deficits were present after surgery. Higher bilateral H : M ratios in ACL-R patients may be a strategy to reflexively increase excitability to maintain voluntary activation.
Collapse
Affiliation(s)
- Brian G Pietrosimone
- Department of Exercise and Sport Science, University of North Carolina at Chapel Hill; Departments of
| | | | - Hayley M Ericksen
- Department of Kinesiology and Health, Northern Kentucky University, Highland Heights
| | | | - David H Sohn
- Division of Orthopaedics, University of Toledo, OH
| | | |
Collapse
|
761
|
Immediate increases in quadriceps corticomotor excitability during an electromyography biofeedback intervention. J Electromyogr Kinesiol 2015; 25:316-22. [DOI: 10.1016/j.jelekin.2014.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 11/05/2014] [Accepted: 11/22/2014] [Indexed: 11/21/2022] Open
|
762
|
Cash RFH, Isayama R, Gunraj CA, Ni Z, Chen R. The influence of sensory afferent input on local motor cortical excitatory circuitry in humans. J Physiol 2015; 593:1667-84. [PMID: 25832926 PMCID: PMC4386965 DOI: 10.1113/jphysiol.2014.286245] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/21/2014] [Indexed: 11/08/2022] Open
Abstract
In human, sensorimotor integration can be investigated by combining sensory input and transcranial magnetic stimulation (TMS). Short latency afferent inhibition (SAI) refers to motor cortical inhibition 20-25 ms after median nerve stimulation. We investigated the interaction between SAI and short-interval intracortical facilitation (SICF), an excitatory motor cortical circuit. Seven experiments were performed. Contrary to expectations, SICF was facilitated in the presence of SAI (SICF(SAI)). This effect is specific to SICF since there was no effect at SICF trough 1 when SICF was absent. Furthermore, the facilitatory SICF(SAI) interaction increased with stronger SICF or SAI. SAI and SICF correlated between individuals, and this relationship was maintained when SICF was delivered in the presence of SAI, suggesting an intrinsic relationship between SAI and SICF in sensorimotor integration. The interaction was present at rest and during muscle contraction, had a broad degree of somatotopic influence and was present in different interneuronal SICF circuits induced by posterior-anterior and anterior-posterior current directions. Our results are compatible with the finding that projections from sensory to motor cortex terminate in both superficial layers where late indirect (I-) waves are thought to originate, as well as deeper layers with more direct effect on pyramidal output. This interaction is likely to be relevant to sensorimotor integration and motor control.
Collapse
Affiliation(s)
- Robin F H Cash
- Division of Neurology, Department of Medicine, University of Toronto, Division of Brain, Imaging and Behaviour – Systems Neuroscience, Toronto Western Research Institute, University Health NetworkToronto, Ontario, Canada
| | - Reina Isayama
- Division of Neurology, Department of Medicine, University of Toronto, Division of Brain, Imaging and Behaviour – Systems Neuroscience, Toronto Western Research Institute, University Health NetworkToronto, Ontario, Canada
| | - Carolyn A Gunraj
- Division of Neurology, Department of Medicine, University of Toronto, Division of Brain, Imaging and Behaviour – Systems Neuroscience, Toronto Western Research Institute, University Health NetworkToronto, Ontario, Canada
| | - Zhen Ni
- Division of Neurology, Department of Medicine, University of Toronto, Division of Brain, Imaging and Behaviour – Systems Neuroscience, Toronto Western Research Institute, University Health NetworkToronto, Ontario, Canada
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Division of Brain, Imaging and Behaviour – Systems Neuroscience, Toronto Western Research Institute, University Health NetworkToronto, Ontario, Canada
- Corresponding author R. Chen: 13MP-304, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada.
| |
Collapse
|
763
|
Kraus D, Gharabaghi A. Projecting Navigated TMS Sites on the Gyral Anatomy Decreases Inter-subject Variability of Cortical Motor Maps. Brain Stimul 2015; 8:831-7. [PMID: 25865772 DOI: 10.1016/j.brs.2015.03.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/17/2015] [Accepted: 03/23/2015] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND Magnetic resonance images are being increasingly deployed in conjunction with navigated transcranial magnetic stimulation (nTMS) to account for inter-individual differences in brain anatomy as well as to reduce the variability of mapping findings. OBJECTIVE However, despite the fact that the individual gyral anatomy has a significant impact on the TMS-induced electrical field distributions, these approaches still project the TMS coil positions as a plane grid of target points on the brain surface and fail to account for differences in cortex morphology. METHODS In this study, we have introduced a technique for projecting nTMS sites onto the gyral anatomy to decrease the variability of cortical motor maps between subjects in normalized space. This involved interpolating the discrete map points in the normalized volume space and performing additional surface coregistration. RESULTS By applying this technique, we increased the spatial overlap between the cortical maps of the extensor digitorum communis muscle between subjects from 80% to 100%. We also managed to significantly reduce the mean Euclidean distance between the average center of gravity and the average hotspots to the respective individual spots from 8 mm to 6.5 mm. CONCLUSION Our approach facilitates the study of the functional topography of distinct behavioral properties with high spatial resolution, thereby constituting a valuable tool for precise group analysis of cortical TMS maps.
Collapse
Affiliation(s)
- Dominic Kraus
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, Eberhard Karls University Tuebingen, Germany; Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University Tuebingen, Germany; Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen, Germany
| | - Alireza Gharabaghi
- Division of Functional and Restorative Neurosurgery, Department of Neurosurgery, Eberhard Karls University Tuebingen, Germany; Division of Translational Neurosurgery, Department of Neurosurgery, Eberhard Karls University Tuebingen, Germany; Neuroprosthetics Research Group, Werner Reichardt Centre for Integrative Neuroscience, Eberhard Karls University Tuebingen, Germany.
| |
Collapse
|
764
|
Bembenek JP, Kurczych K, Członkowska A. TMS-induced motor evoked potentials in Wilson's disease: a systematic literature review. Bioelectromagnetics 2015; 36:255-66. [PMID: 25808411 DOI: 10.1002/bem.21909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/22/2015] [Indexed: 12/18/2022]
Abstract
Wilson's disease (WD) is a metabolic brain disease resulting from improper copper metabolism. Although pyramidal symptoms are rarely observed, subclinical injury is highly possible as copper accumulates in all brain structures. The usefulness of motor evoked potentials (MEPs) in pyramidal tracts damage evaluation still appears to be somehow equivocal. We searched for original papers assessing the value of transcranial magnetic stimulation elicited MEPs with respect to motor function of upper and lower extremity in WD. We searched PubMed for original papers evaluating use of MEPs in WD using key words: "motor evoked potentials Wilson's disease" and "transcranial magnetic stimulation Wilson's disease." We found six articles using the above key words. One additional article and one case report were found while viewing the references lists. Therefore, we included eight studies. Number of patients in studies was low and their clinical characteristic was variable. There were also differences in methodology. Abnormal MEPs were confirmed in 20-70% of study participants. MEPs were not recorded in 7.6-66.7% of patients. Four studies reported significantly increased cortical excitability (up to 70% of patients). Prolonged central motor conduction time was observed in four studies (30-100% of patients). One study reported absent or prolonged central motor latency in 66.7% of patients. Although MEPs may be abnormal in WD, this has not been thoroughly assessed. Hence, further studies are indispensable to evaluate MEPs' usefulness in assessing pyramidal tract damage in WD.
Collapse
Affiliation(s)
- Jan P Bembenek
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | | |
Collapse
|
765
|
Input-Output Characteristics of Late Corticospinal Silent Period Induced by Transcranial Magnetic Stimulation. J Clin Neurophysiol 2015; 32:346-51. [PMID: 25784001 DOI: 10.1097/wnp.0000000000000177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Corticospinal silent period (SP) may be interrupted by a burst of muscle activity followed by a second (late) SP, generally assumed to be a continuation from the primary SP. Our objective was to characterize the input-output behavior of the late SP. METHODS Transcranial magnetic stimulation was applied on the cortical representation area of the right-hand muscles of 12 healthy subjects. Single-pulse transcranial magnetic stimulation was given with varying stimulation intensities normalized to the individual resting motor threshold (60% to 130% of the resting motor threshold) during voluntary muscle contraction. Electromyogram was recorded from first dorsal interosseous and abductor pollicis brevis muscles. Primary and late SPs were analyzed as absolute SPs, and input-output characteristics were assessed. RESULTS The late SP exhibited fundamentally different input-output characteristics from that of the primary SP. The late SP most likely presented itself at stimulation intensities of 90% to 100% of the resting motor threshold. CONCLUSIONS Different input-output characteristics of the late SP compared with the primary SP indicate that the late SP possess mechanisms different from the primary SP. The exact origin of the late SP remains unclear. Understanding the origins of the late SP could provide valuable insight on corticospinal inhibitory processes.
Collapse
|
766
|
Jaiser SR, Barnes JD, Baker SN, Baker MR. A multiple regression model of normal central and peripheral motor conduction times. Muscle Nerve 2015; 51:706-12. [PMID: 25154476 PMCID: PMC4858813 DOI: 10.1002/mus.24427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2014] [Indexed: 12/11/2022]
Abstract
Introduction The effects of age, height, and gender on magnetic central and peripheral motor conduction times (CMCT, PMCT) were analyzed using a multiple regression model. Methods Motor evoked potentials were recorded in 91 healthy volunteers. Magnetic stimulation was performed over the primary motor cortex (cortical latency) and over the cervical and lumbar spines (spinal latency). The spinal latency was taken as an estimate of PMCT and was subtracted from cortical latency to yield CMCT. Results Lower limb CMCT correlated significantly with height only; there were no significant predictors for upper limb CMCT. Upper and lower limb PMCT correlated with both age and height. Conclusions This is among the largest studies of CMCT in normal subjects. The multiple regression model unifies previously reported simple regression analyses, reconciles past discrepancies, and allows normal ranges to be individualized. Muscle Nerve51:706–712, 2015
Collapse
Affiliation(s)
- Stephan R Jaiser
- Institute of Neuroscience, Henry Wellcome Building, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | | | | | | |
Collapse
|
767
|
Lu MK, Chiou SM, Ziemann U, Huang HC, Yang YW, Tsai CH. Resetting tremor by single and paired transcranial magnetic stimulation in Parkinson's disease and essential tremor. Clin Neurophysiol 2015; 126:2330-6. [PMID: 25792076 DOI: 10.1016/j.clinph.2015.02.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/29/2015] [Accepted: 02/13/2015] [Indexed: 11/18/2022]
Abstract
OBJECTIVE The pathogenesis of tremor in Parkinson's disease (PD) and essential tremor (ET) is not fully understood. This study tested the role of primary motor cortex (M1), supplementary motor area (SMA) and cerebellar cortex on PD and ET tremor by single- and paired-pulse transcranial magnetic stimulation (TMS). METHODS Ten PD patients with resting tremor, six of them also with postural tremor, and ten ET patients with postural tremor were studied. Randomized single- and paired-pulse TMS with an interstimulus interval of 100 ms were delivered over M1, SMA and cerebellum. TMS effects were evaluated by calculating a tremor-resetting index (RI). RESULTS Single- vs. paired-pulse TMS showed no difference. M1-TMS and SMA-TMS but not by cerebellar TMS induced a significant RI in PD and ET. M1-TMS resulted in a significantly higher RI in PD than ET. Furthermore, M1-TMS in PD but not in ET resulted in a significantly higher RI than SMA-TMS. CONCLUSIONS Findings suggest a stronger involvement of M1 in resting and postural tremor in PD than postural tremor in ET. SIGNIFICANCE RI provides a useful marker to explore the differential functional role of M1, SMA and cerebellum in PD vs. ET tremor.
Collapse
Affiliation(s)
- Ming-Kuei Lu
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan; School of Medicine, Medical College, China Medical University, Taichung, Taiwan; Graduate Institute of Neural and Cognitive Science, China Medical University, Taichung, Taiwan.
| | - Shang-Ming Chiou
- School of Medicine, Medical College, China Medical University, Taichung, Taiwan; Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, Tübingen, Germany
| | - Hui-Chun Huang
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan; School of Medicine, Medical College, China Medical University, Taichung, Taiwan
| | - Yu-Wan Yang
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan; School of Medicine, Medical College, China Medical University, Taichung, Taiwan
| | - Chon-Haw Tsai
- Neuroscience Laboratory, Department of Neurology, China Medical University Hospital, Taichung, Taiwan; School of Medicine, Medical College, China Medical University, Taichung, Taiwan; Graduate Institute of Neural and Cognitive Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
768
|
Nojima I, Koganemaru S, Fukuyama H, Mima T. Static magnetic field can transiently alter the human intracortical inhibitory system. Clin Neurophysiol 2015; 126:2314-9. [PMID: 25792074 DOI: 10.1016/j.clinph.2015.01.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 01/28/2015] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Although recent studies have shown the suppressive effects of static magnetic fields (SMFs) on the human primary motor cortex (M1) possibly due to the deformed neural membrane channels, the effect of the clinical MRI scanner bore has not been studied in the same way. METHODS We tested whether the MRI scanner itself and compact magnet can alter the M1 function using single- and paired-pulse transcranial magnetic stimulation (TMS). RESULTS We found the transient suppression of the corticospinal pathway in both interventions. In addition, the transient enhancement of the short-latency intracortical inhibition (SICI) was observed immediately after compact magnet stimulation. CONCLUSIONS The present results suggest that not only the inhomogeneous SMFs induced by a compact magnet but also the homogeneous SMF produced by the MRI scanner bore itself can produce the transient cortical functional change. SIGNIFICANCE Static magnetic stimulation can modulate the intracortical inhibitory circuit of M1, which might be useful for clinical purposes.
Collapse
Affiliation(s)
- Ippei Nojima
- Department of Physical Therapy, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoko Koganemaru
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tatsuya Mima
- Human Brain Research Center, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| |
Collapse
|
769
|
Lepley AS, Gribble PA, Thomas AC, Tevald MA, Sohn DH, Pietrosimone BG. Quadriceps neural alterations in anterior cruciate ligament reconstructed patients: A 6-month longitudinal investigation. Scand J Med Sci Sports 2015; 25:828-39. [PMID: 25693627 DOI: 10.1111/sms.12435] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2015] [Indexed: 12/11/2022]
Abstract
The purpose of this investigation was to evaluate differences in quadriceps corticospinal excitability, spinal-reflexive excitability, strength, and voluntary activation before, 2 weeks post and 6 months post-anterior cruciate ligament reconstruction (ACLr). This longitudinal, case-control investigation examined 20 patients scheduled for ACLr (11 females, 9 males; age: 20.9 ± 4.4 years; height:172.4 ± 7.5 cm; weight:76.2 ± 11.8 kg) and 20 healthy controls (11 females, 9 males; age:21.7 ± 3.7 years; height: 173.7 ± 9.9 cm; weight: 76.1 ± 19.7 kg). Maximal voluntary isometric contractions (MVIC), central activation ratio (CAR), normalized Hoffmann spinal reflexes, active motor threshold (AMT), and normalized motor-evoked potential (MEP) amplitudes at 120% of AMT were measured in the quadriceps muscle at the specific time points. ACLr patients demonstrated bilateral reductions in spinal-reflexive excitability compared with controls before surgery (P = 0.02) and 2 weeks post-surgery (P ≤ 0.001). ACLr patients demonstrated higher AMT at 6 months post-surgery (P ≤ 0.001) in both limbs. No MEP differences were detected. Quadriceps MVIC and CAR were lower in both limbs of the ACLr group before surgery and 6 months post-surgery (P ≤ 0.05) compared with controls. Diminished excitability of spinal-reflexive and corticospinal pathways are present at different times following ACLr and occur in combination with clinical deficits in quadriceps strength and activation. Early rehabilitation strategies targeting spinal-reflexive excitability may help improve postoperative outcomes, while later-stage rehabilitation may benefit from therapeutic techniques aimed at improving corticospinal excitability.
Collapse
Affiliation(s)
- A S Lepley
- Department of Kinesiology and Health Promotion, University of Kentucky, Lexington, Kentucky, USA
| | - P A Gribble
- Department of Rehabilitation Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - A C Thomas
- Biodynamics Research Laboratory, Department of Kinesiology, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - M A Tevald
- Department of Rehabilitation Sciences, University of Toledo, Toledo, Ohio, USA
| | - D H Sohn
- Department of Orthopedic Surgery, University of Toledo, Toledo, Ohio, USA
| | - B G Pietrosimone
- Department of Exercise and Sports Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
770
|
Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 2015; 126:1071-1107. [PMID: 25797650 PMCID: PMC6350257 DOI: 10.1016/j.clinph.2015.02.001] [Citation(s) in RCA: 1926] [Impact Index Per Article: 192.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 01/22/2015] [Accepted: 02/01/2015] [Indexed: 12/14/2022]
Abstract
These guidelines provide an up-date of previous IFCN report on “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application” (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 “Report”, was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain–behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments.
Collapse
Affiliation(s)
- P M Rossini
- Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy
| | - D Burke
- Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia
| | - R Chen
- Division of Neurology, Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - L G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Z Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - R Di Iorio
- Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy.
| | - V Di Lazzaro
- Department of Neurology, University Campus Bio-medico, Rome, Italy
| | - F Ferreri
- Department of Neurology, University Campus Bio-medico, Rome, Italy; Department of Clinical Neurophysiology, University of Eastern Finland, Kuopio, Finland
| | - P B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, Australia
| | - M S George
- Medical University of South Carolina, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - M Hallett
- Human Motor Control Section, Medical Neurology Branch, NINDS, NIH, Bethesda, MD, USA
| | - J P Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - B Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - H Matsumoto
- Department of Neurology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - C Miniussi
- Department of Clinical and Experimental Sciences University of Brescia, Brescia, Italy; IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - M A Nitsche
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - A Pascual-Leone
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - W Paulus
- Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
| | - S Rossi
- Brain Investigation & Neuromodulation Lab, Unit of Neurology and Clinical Neurophysiology, Department of Neuroscience, University of Siena, Siena, Italy
| | - J C Rothwell
- Institute of Neurology, University College London, London, United Kingdom
| | - H R Siebner
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Y Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - V Walsh
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - U Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
771
|
Beaulieu LD, Massé-Alarie H, Brouwer B, Schneider C. Noninvasive neurostimulation in chronic stroke: a double-blind randomized sham-controlled testing of clinical and corticomotor effects. Top Stroke Rehabil 2015; 22:8-17. [PMID: 25776116 DOI: 10.1179/1074935714z.0000000032] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Repetitive peripheral magnetic stimulation (RPMS) is a painless and noninvasive method to produce afferents via the depolarization of the peripheral nervous system. A few studies tested RPMS after-effects on cerebral plasticity and motor recovery in stroke individuals, but evidences remain limited. OBJECTIVES This study aimed to explore whether RPMS could mediate improvements in corticomotor and clinical outcomes associated with ankle impairments in chronic stroke. METHODS Eighteen subjects with chronic stroke were randomly allocated to RPMS or sham group and compared to 14 healthy subjects. Stimulation was applied over the paretic tibialis anterior (TA). Ankle impairments on the paretic side and ipsilesional TA cortical motor representation were tested clinically and by transcranial magnetic stimulation (TMS), respectively. RESULTS In the RPMS group, ankle dorsiflexion mobility and maximal isometric strength increased and resistance to plantar flexor stretch decreased. The magnitude of change seemed to be related to cortical and corticospinal integrity. Sham stimulation yielded no effect. Changes in TMS outcome and their relationships with clinical improvements were limited. CONCLUSIONS RPMS improved ankle impairments in chronic stroke likely by a dynamic influence of sensory inputs on synaptic plasticity. The neurophysiological mechanisms potentially underlying the clinical effects are unclear. More studies are warranted to test the spinal and hemispheric changes responsible for the clinical improvements with emphasis on circuits spared by the lesion.
Collapse
|
772
|
Efficient and reliable characterization of the corticospinal system using transcranial magnetic stimulation. J Clin Neurophysiol 2015; 31:246-52. [PMID: 24887609 DOI: 10.1097/wnp.0000000000000057] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE The purpose of this study is to develop a method to reliably characterize multiple features of the corticospinal system in a more efficient manner than typically done in transcranial magnetic stimulation studies. METHODS Forty transcranial magnetic stimulation pulses of varying intensity were given over the first dorsal interosseous motor hot spot in 10 healthy adults. The first dorsal interosseous motor-evoked potential size was recorded during rest and activation to create recruitment curves. The Boltzmann sigmoidal function was fit to the data, and parameters relating to maximal motor-evoked potential size, curve slope, and stimulus intensity leading to half-maximal motor-evoked potential size were computed from the curve fit. RESULTS Good to excellent test-retest reliability was found for all corticospinal parameters at rest and during activation with 40 transcranial magnetic stimulation pulses. CONCLUSIONS Through the use of curve fitting, important features of the corticospinal system can be determined with fewer stimuli than typically used for the same information. Determining the recruitment curve provides a basis to understand the state of the corticospinal system and select subject-specific parameters for transcranial magnetic stimulation testing quickly and without unnecessary exposure to magnetic stimulation. This method can be useful in individuals who have difficulty in maintaining stillness, including children and patients with motor disorders.
Collapse
|
773
|
Todd GD, Abdellatif A, Sabouni A. BRAIN initiative: transcranial magnetic stimulation automation and calibration. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:502-5. [PMID: 25570006 DOI: 10.1109/embc.2014.6943638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In this paper, we introduced an automated TMS system with robot control and optical sensor combined with neuronavigation software. By using the robot, the TMS coil can be accurately positioned over any preselected brain region. The neuronavigation system provides an accurate positioning of a magnetic coil in order to induce a specific cortical excitation. An infrared optical measurement device is also used in order to detect and compensate for head movements of the patient. This procedure was simulated using a PC based robotic simulation program. The proposed automated robot system is integrated with TMS numerical solver and allows users to actually see the depth, location, and shape of the induced eddy current on the computer monitor.
Collapse
|
774
|
The uses and interpretations of the motor-evoked potential for understanding behaviour. Exp Brain Res 2015; 233:679-89. [DOI: 10.1007/s00221-014-4183-7] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 12/09/2014] [Indexed: 12/21/2022]
|
775
|
Fanjul-Vélez F, Salas-García I, Ortega-Quijano N, Arce-Diego JL. FDTD-based Transcranial Magnetic Stimulation model applied to specific neurodegenerative disorders. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2015; 118:34-43. [PMID: 25453382 DOI: 10.1016/j.cmpb.2014.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/02/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
Non-invasive treatment of neurodegenerative diseases is particularly challenging in Western countries, where the population age is increasing. In this work, magnetic propagation in human head is modelled by Finite-Difference Time-Domain (FDTD) method, taking into account specific characteristics of Transcranial Magnetic Stimulation (TMS) in neurodegenerative diseases. It uses a realistic high-resolution three-dimensional human head mesh. The numerical method is applied to the analysis of magnetic radiation distribution in the brain using two realistic magnetic source models: a circular coil and a figure-8 coil commonly employed in TMS. The complete model was applied to the study of magnetic stimulation in Alzheimer and Parkinson Diseases (AD, PD). The results show the electrical field distribution when magnetic stimulation is supplied to those brain areas of specific interest for each particular disease. Thereby the current approach entails a high potential for the establishment of the current underdeveloped TMS dosimetry in its emerging application to AD and PD.
Collapse
Affiliation(s)
- Félix Fanjul-Vélez
- Applied Optical Techniques Group, Electronics Technology, Systems and Automation Engineering Department, University of Cantabria, Avenida de los Castros S/N, 39005 Santander, Spain.
| | - Irene Salas-García
- Applied Optical Techniques Group, Electronics Technology, Systems and Automation Engineering Department, University of Cantabria, Avenida de los Castros S/N, 39005 Santander, Spain
| | - Noé Ortega-Quijano
- Applied Optical Techniques Group, Electronics Technology, Systems and Automation Engineering Department, University of Cantabria, Avenida de los Castros S/N, 39005 Santander, Spain
| | - José Luis Arce-Diego
- Applied Optical Techniques Group, Electronics Technology, Systems and Automation Engineering Department, University of Cantabria, Avenida de los Castros S/N, 39005 Santander, Spain
| |
Collapse
|
776
|
Lanza G, Lanuzza B, Aricò D, Cantone M, Cosentino FII, Pennisi M, Bella R, Pennisi G, Ferri R. Direct comparison of cortical excitability to transcranial magnetic stimulation in obstructive sleep apnea syndrome and restless legs syndrome. Sleep Med 2015; 16:138-142. [PMID: 25534710 DOI: 10.1016/j.sleep.2014.08.016] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 08/10/2014] [Accepted: 08/26/2014] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Changes to transcranial magnetic stimulation (TMS) have been reported in obstructive sleep apnea syndrome (OSAS) and restless legs syndrome (RLS), although no direct comparison study is available. The aim of this new investigation is to assess and compare cortical excitability of OSAS and RLS patients using the same methodology and under the same experimental conditions. METHODS Fourteen patients with OSAS and 12 with RLS were compared to 14 age-matched controls. All patients were untreated and had a severe degree of disease. Resting motor threshold (rMT), cortical silent period (CSP) and motor evoked potentials MEPs, as well as intracortical inhibition (ICI) and facilitation at interstimulus interval (ISI) of 3 and 10 ms, respectively, were explored from the right first dorsal interosseous muscle, during wakefulness. RESULTS rMT was higher in OSAS than in RLS and controls. CSP was shorter in RLS only when compared to apneic patients, whereas it was similar between OSAS and controls. OSAS subjects exhibited slightly prolonged central motor conductivity, whereas MEP amplitude was smaller in both patient groups. The ICI ratio at ISI of 3 ms was decreased in RLS patients only. CONCLUSIONS Distinct changes of responses at TMS were found, probably connected with the different neurophysiological substrates underlying OSAS and RLS and could not be interpreted as a mere reflection of the effects of sleep architecture alteration. TMS can be considered an additional tool for the understanding of clinical and pathophysiological aspects of sleep disorders, and possibly for the evaluation of the effect of therapy.
Collapse
Affiliation(s)
- Giuseppe Lanza
- Department of Neurology I.C., Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Via Conte Ruggero, 73 - 94018 Troina (EN), Italy.
| | - Bartolo Lanuzza
- Department of Neurology I.C., Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Via Conte Ruggero, 73 - 94018 Troina (EN), Italy
| | - Debora Aricò
- Department of Neurology I.C., Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Via Conte Ruggero, 73 - 94018 Troina (EN), Italy
| | - Mariagiovanna Cantone
- Department of Chemistry, University of Catania, Viale Andrea Doria, 6 - 95125 Catania, Italy
| | - Filomena Irene Ilaria Cosentino
- Department of Neurology I.C., Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Via Conte Ruggero, 73 - 94018 Troina (EN), Italy
| | - Manuela Pennisi
- Department of Chemistry, University of Catania, Viale Andrea Doria, 6 - 95125 Catania, Italy
| | - Rita Bella
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania. Via Santa Sofia, 78 - 95123 Catania, Italy
| | - Giovanni Pennisi
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania. Via Santa Sofia, 78 - 95123 Catania, Italy
| | - Raffaele Ferri
- Department of Neurology I.C., Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Via Conte Ruggero, 73 - 94018 Troina (EN), Italy
| |
Collapse
|
777
|
Pirotta S, Kidgell DJ, Daly RM. Effects of vitamin D supplementation on neuroplasticity in older adults: a double-blinded, placebo-controlled randomised trial. Osteoporos Int 2015; 26:131-40. [PMID: 25138265 DOI: 10.1007/s00198-014-2855-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 08/12/2014] [Indexed: 11/27/2022]
Abstract
UNLABELLED Vitamin D can improve muscle function and reduce falls, but whether it can strengthen neural connections within the brain and nervous system is not known. This 10-week randomised controlled trial indicates that treatment with 2,000 IU/day vitamin D3 does not significantly alter neuroplasticity relative to placebo in older adults. INTRODUCTION The purpose of this study was to examine the effects of vitamin D supplementation on neuroplasticity, serum brain-derived neurotrophic factor (BDNF) and muscle strength and function in older adults. METHODS This was a 10-week double-blinded, placebo-controlled randomised trial in which 26 older adults with 25-hydroxyvitamin D [25OHD] concentrations 25-60 nmol/L were randomised to 2,000 IU/day vitamin D3 or matched placebo. Single- and paired-pulse transcranial magnetic stimulation applied over the motor cortex was used to assess changes in motor-evoked potentials (MEPs) and short-interval intracortical inhibition (SICI), as measures of corticospinal excitability and inhibition respectively, by recording electromyography (EMG) responses to stimulation from the wrist extensors. Changes in muscle strength, stair climbing power, gait (timed-up-and-go), dynamic balance (four square step test), serum 25(OH)D and BDNF concentrations were also measured. RESULTS After 10 weeks, mean 25(OH)D levels increased from 46 to 81 nmol/L in the vitamin D group with no change in the placebo group. The vitamin D group experienced a significant 8-11% increase in muscle strength and a reduction in cortical excitability (MEP amplitude) and SICI relative to baseline (all P < 0.05), but these changes were not significantly different from placebo. There was no effect of vitamin D on muscle power, function or BDNF. CONCLUSIONS Daily supplementation with 2,000 IU vitamin D3 for 10 weeks had no significant effect on neuroplasticity compared to placebo, but the finding that vitamin D treatment alone was associated with a decrease in corticospinal excitability and intracortical inhibition warrants further investigation as this suggests that it may improve the efficacy of neural transmission within the corticospinal pathway.
Collapse
Affiliation(s)
- S Pirotta
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | | | | |
Collapse
|
778
|
Delvendahl I, Gattinger N, Berger T, Gleich B, Siebner HR, Mall V. The role of pulse shape in motor cortex transcranial magnetic stimulation using full-sine stimuli. PLoS One 2014; 9:e115247. [PMID: 25514673 PMCID: PMC4267841 DOI: 10.1371/journal.pone.0115247] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/20/2014] [Indexed: 11/18/2022] Open
Abstract
A full-sine (biphasic) pulse waveform is most commonly used for repetitive transcranial magnetic stimulation (TMS), but little is known about how variations in duration or amplitude of distinct pulse segments influence the effectiveness of a single TMS pulse to elicit a corticomotor response. Using a novel TMS device, we systematically varied the configuration of full-sine pulses to assess the impact of configuration changes on resting motor threshold (RMT) as measure of stimulation effectiveness with single-pulse TMS of the non-dominant motor hand area (M1). In young healthy volunteers, we (i) compared monophasic, half-sine, and full-sine pulses, (ii) applied two-segment pulses consisting of two identical half-sines, and (iii) manipulated amplitude, duration, and current direction of the first or second full-sine pulse half-segments. RMT was significantly higher using half-sine or monophasic pulses compared with full-sine. Pulses combining two half-sines of identical polarity and duration were also characterized by higher RMT than full-sine stimuli resulting. For full-sine stimuli, decreasing the amplitude of the half-segment inducing posterior-anterior oriented current in M1 resulted in considerably higher RMT, whereas varying the amplitude of the half-segment inducing anterior-posterior current had a smaller effect. These findings provide direct experimental evidence that the pulse segment inducing a posterior-anterior directed current in M1 contributes most to corticospinal pathway excitation. Preferential excitation of neuronal target cells in the posterior-anterior segment or targeting of different neuronal structures by the two half-segments can explain this result. Thus, our findings help understanding the mechanisms of neural stimulation by full-sine TMS.
Collapse
Affiliation(s)
- Igor Delvendahl
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig, Germany
| | - Norbert Gattinger
- Zentralinstitut für Medizintechnik, Technische Universität München (IMETUM), Garching, Germany
| | - Thomas Berger
- Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Bernhard Gleich
- Zentralinstitut für Medizintechnik, Technische Universität München (IMETUM), Garching, Germany
| | - Hartwig R. Siebner
- Danish Research Center for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Volker Mall
- Department of Pediatrics, Technische Universität München, Munich, Germany
- * E-mail:
| |
Collapse
|
779
|
Galhardoni R, Correia GS, Araujo H, Yeng LT, Fernandes DT, Kaziyama HH, Marcolin MA, Bouhassira D, Teixeira MJ, de Andrade DC. Repetitive transcranial magnetic stimulation in chronic pain: a review of the literature. Arch Phys Med Rehabil 2014; 96:S156-72. [PMID: 25437106 DOI: 10.1016/j.apmr.2014.11.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 11/18/2014] [Accepted: 11/20/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To review the literature on the analgesic effects of repetitive transcranial magnetic stimulation (rTMS) in chronic pain according to different pain syndromes and stimulation parameters. DATA SOURCES Publications on rTMS and chronic pain were searched in PubMed and Google Scholar using the following key words: chronic pain, analgesia, transcranial magnetic stimulation, neuropathic pain, fibromyalgia, and complex regional pain syndrome. STUDY SELECTION This review only included double-blind, controlled studies with >10 participants in each arm that were published from 1996 to 2014 and written in English. Studies with relevant information for the understanding of the effects of rTMS were also cited. DATA EXTRACTION The following data were retained: type of pain syndrome, type of study, coil type, target, stimulation intensity, frequency, number of pulses, orientation of induced current, number of session, and a brief summary of intervention outcomes. DATA SYNTHESIS A total of 33 randomized trials were found. Many studies reported significant pain relief by rTMS, especially high-frequency stimulation over the primary motor cortex performed in consecutive treatment sessions. Pain relief was frequently >30% compared with control treatment. Neuropathic pain, fibromyalgia, and complex regional pain syndrome were the pain syndromes more frequently studied. However, among all published studies, only a few performed repetitive sessions of rTMS. CONCLUSIONS rTMS has potential utility in the management of chronic pain; however, studies using maintenance sessions of rTMS and assessing the effects of rTMS on the different aspects of chronic pain are needed to provide a more solid basis for its clinical application for pain relief.
Collapse
Affiliation(s)
- Ricardo Galhardoni
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Guilherme S Correia
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Haniel Araujo
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Lin T Yeng
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Diego T Fernandes
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Helena H Kaziyama
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Marco A Marcolin
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Didier Bouhassira
- INSERM U-987, CHU Ambroise Paré, APHP, Boulogne-Billancourt, France; University of Versailles-Saint-Quentin, Versailles, France
| | - Manoel Jacobsen Teixeira
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil; Pain Center, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil
| | - Daniel Ciampi de Andrade
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil; Pain Center, Instituto do Câncer do Estado de São Paulo, São Paulo, Brazil.
| |
Collapse
|
780
|
van de Ruit M, Perenboom MJL, Grey MJ. TMS brain mapping in less than two minutes. Brain Stimul 2014; 8:231-9. [PMID: 25556004 DOI: 10.1016/j.brs.2014.10.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/23/2014] [Accepted: 10/23/2014] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) corticospinal excitability maps are a valuable tool to study plasticity in the corticospinal tract. Traditionally, data acquisition for a single map is time consuming, limiting the method's applicability when excitability changes quickly, such as during motor learning, and in clinical investigations where assessment time is a limiting factor. OBJECTIVE To reduce the time needed to create a reliable map by 1) investigating the minimum interstimulus interval (ISI) at which stimuli may be delivered, and 2) investigating the minimum number of stimuli required to create a map. METHOD Frameless stereotaxy was used to monitor coil position as the coil was moved pseudorandomly within a 6 × 6 cm square. Maps were acquired using 1-4 s ISIs in 12 participants. The minimum number of stimuli was determined by randomly extracting data and comparing the resulting map to the original data set. To confirm validity, the pseudorandom walk method was compared against a traditional mapping method. RESULTS Reliable maps could be created with 63 stimuli recorded with a 1 s ISI. Maps created acquiring data using the pseudorandom walk method were not significantly different from maps acquired following the traditional method. CONCLUSIONS To account for inter-participant variability, outliers, coil positioning errors and, most importantly, participant comfort during data acquisition, we recommend creating a map with 80 stimuli and a 1.5 s ISI. This makes it possible to acquire TMS maps in 2 min, making mapping a more feasible tool to study short- and long-term changes in cortical organization.
Collapse
Affiliation(s)
- Mark van de Ruit
- NIHR Surgical Reconstruction and Microbiology Research Centre, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston B15 2TT, UK; MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Matthijs J L Perenboom
- Department of Biomechanical Engineering, Delft University of Technology, Delft, the Netherlands
| | - Michael J Grey
- NIHR Surgical Reconstruction and Microbiology Research Centre, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston B15 2TT, UK; MRC-ARUK Centre for Musculoskeletal Ageing Research, School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Edgbaston B15 2TT, UK; Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
781
|
Hübers A, Voytovych H, Heidegger T, Müller-Dahlhaus F, Ziemann U. Acute effects of lithium on excitability of human motor cortex. Clin Neurophysiol 2014; 125:2240-2246. [DOI: 10.1016/j.clinph.2014.03.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/02/2014] [Accepted: 03/15/2014] [Indexed: 12/27/2022]
|
782
|
Kallioniemi E, Säisänen L, Könönen M, Awiszus F, Julkunen P. On the estimation of silent period thresholds in transcranial magnetic stimulation. Clin Neurophysiol 2014; 125:2247-2252. [DOI: 10.1016/j.clinph.2014.03.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 03/02/2014] [Accepted: 03/10/2014] [Indexed: 11/25/2022]
|
783
|
Evidence for sustained cortical involvement in peripheral stretch reflex during the full long latency reflex period. Neurosci Lett 2014; 584:214-8. [PMID: 25449867 DOI: 10.1016/j.neulet.2014.10.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/16/2014] [Accepted: 10/17/2014] [Indexed: 11/23/2022]
Abstract
Adaptation of reflexes to environment and task at hand is a key mechanism in optimal motor control, possibly regulated by the cortex. In order to locate the corticospinal integration, i.e. spinal or supraspinal, and to study the critical temporal window of reflex adaptation, we combined transcranial magnetic stimulation (TMS) and upper extremity muscle stretch reflexes at high temporal precision. In twelve participants (age 49 ± 13 years, eight male), afferent signals were evoked by 40 ms ramp and subsequent hold stretches of the m. flexor carpi radialis (FCR). Motor conduction delays (TMS time of arrival at the muscle) and TMS-motor threshold were individually assessed. Subsequently TMS pulses at 96% of active motor threshold were applied with a resolution of 5-10 ms between 10 ms before and 120 ms after onset of series of FCR stretches. Controlled for the individually assessed motor conduction delay, subthreshold TMS was found to significantly augment EMG responses between 60 and 90 ms after stretch onset. This sensitive temporal window suggests a cortical integration consistent with a long latency reflex period rather than a spinal integration consistent with a short latency reflex period. The potential cortical role in reflex adaptation extends over the full long latency reflex period, suggesting adaptive mechanisms beyond reflex onset.
Collapse
|
784
|
Koganemaru S, Sawamoto N, Aso T, Sagara A, Ikkaku T, Shimada K, Kanematsu M, Takahashi R, Domen K, Fukuyama H, Mima T. Task-specific brain reorganization in motor recovery induced by a hybrid-rehabilitation combining training with brain stimulation after stroke. Neurosci Res 2014; 92:29-38. [PMID: 25450315 DOI: 10.1016/j.neures.2014.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
Abstract
Recently, we have developed a new hybrid-rehabilitation combining 5Hz repetitive transcranial magnetic stimulation and extensor motor training of the paretic upper-limb for stroke patients with flexor hypertonia. We previously showed that the extensor-specific plastic change in M1 was associated with beneficial effects of our protocol (Koganemaru et al., 2010). Here, we investigated whether extensor-specific multiregional brain reorganization occurred after the hybrid-rehabilitation using functional magnetic resonance imaging. Eleven chronic stroke patients were scanned while performing upper-limb extensor movements. Untrained flexor movements were used as a control condition. The scanning and clinical assessments were done before, immediately and 2 weeks after the hybrid-rehabilitation. As a result, during the trained extensor movements, the imaging analysis showed a significant reduction of brain activity in the ipsilesional sensorimotor cortex, the contralesional cingulate motor cortex and the contralesional premotor cortex in association with functional improvements of the paretic hands. The activation change was not found for the control condition. Our results suggested that use-dependent plasticity induced by repetitive motor training with brain stimulation might be related to task-specific multi-regional brain reorganization. It provides a key to understand why repetitive training of the target action is one of the most powerful rehabilitation strategies to help patients.
Collapse
Affiliation(s)
- Satoko Koganemaru
- Brain Integrative Science, Kyoto University School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan; Human Brain Research Center, Kyoto University School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Nobukatsu Sawamoto
- Department of Neurology, Kyoto University School of Medicine, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Toshihiko Aso
- Human Brain Research Center, Kyoto University School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akiko Sagara
- Department of Physical and Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Tomoko Ikkaku
- Department of Physical and Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Kenji Shimada
- Department of Physical and Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Madoka Kanematsu
- Department of Physical and Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University School of Medicine, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazuhisa Domen
- Department of Physical and Rehabilitation Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663-8501, Japan
| | - Hidenao Fukuyama
- Human Brain Research Center, Kyoto University School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
| | - Tatsuya Mima
- Human Brain Research Center, Kyoto University School of Medicine, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
785
|
Kedzior KK, Reitz SK. Short-term efficacy of repetitive transcranial magnetic stimulation (rTMS) in depression- reanalysis of data from meta-analyses up to 2010. BMC Psychol 2014; 2:39. [PMID: 25685354 PMCID: PMC4317138 DOI: 10.1186/s40359-014-0039-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 09/23/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND According to a narrative review of 13 meta-analyses (published up to 2010), repetitive transcranial magnetic stimulation (rTMS) has a moderate, short-term antidepressant effect in the treatment of major depression. The aim of the current study was to reanalyse the data from these 13 meta-analyses with a uniform meta-analytical procedure and to investigate predictors of such an antidepressant response. METHODS A total of 40 double-blind, randomised, sham-controlled trials with parallel designs, utilising rTMS of the dorsolateral prefrontal cortex in the treatment of major depression, was included in the current meta-analysis. The studies were conducted in 15 countries on 1583 patients and published between 1997-2008. Depression severity was measured using the Hamilton Depression Rating Scale, Beck Depression Inventory, or Montgomery Åsberg Depression Rating Scale at baseline and after the last rTMS. A random-effects model with the inverse-variance weights was used to compute the overall mean weighted effect size, Cohen's d. RESULTS There was a significant and moderate reduction in depression scores from baseline to final, favouring rTMS over sham (overall d = -.54, 95% CI: -.68, -.41, N = 40 studies). Predictors of such a response were investigated in the largest group of studies (N = 32) with high-frequency (>1 Hz) left (HFL) rTMS. The antidepressant effect of HFL rTMS was present univariately in studies with patients receiving antidepressants (at stable doses or started concurrently with rTMS), with treatment-resistance, and with unipolar (or bipolar) depression without psychotic features. Univariate meta-regressions showed that depression scores were significantly lower after HFL rTMS in studies with higher proportion of female patients. There was little evidence for publication bias in the current analysis. CONCLUSIONS Daily rTMS (with any parameters) has a moderate, short-term antidepressant effect in studies published up to 2008. The clinical efficacy of HFL rTMS may be better in female patients not controlling for any other study parameters.
Collapse
Affiliation(s)
- Karina Karolina Kedzior
- Bremen International Graduate School of Social Sciences (BIGSSS), Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| | - Sarah Kim Reitz
- Bremen International Graduate School of Social Sciences (BIGSSS), Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
786
|
Nardone R, Höller Y, Brigo F, Orioli A, Tezzon F, Schwenker K, Christova M, Golaszewski S, Trinka E. Descending motor pathways and cortical physiology after spinal cord injury assessed by transcranial magnetic stimulation: a systematic review. Brain Res 2014; 1619:139-54. [PMID: 25251591 DOI: 10.1016/j.brainres.2014.09.036] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/06/2014] [Accepted: 09/15/2014] [Indexed: 02/02/2023]
Abstract
We performed here a systematic review of the studies using transcranial magnetic stimulation (TMS) as a research and clinical tool in patients with spinal cord injury (SCI). Motor evoked potentials (MEPs) elicited by TMS represent a highly accurate diagnostic test that can supplement clinical examination and neuroimaging findings in the assessment of SCI functional level. MEPs allows to monitor the changes in motor function and evaluate the effects of the different therapeutic approaches. Moreover, TMS represents a useful non-invasive approach for studying cortical physiology, and may be helpful in elucidating the pathophysiological mechanisms of brain reorganization after SCI. Measures of motor cortex reactivity, e.g., the short interval intracortical inhibition and the cortical silent period, seem to point to an increased cortical excitability. However, the results of TMS studies are sometimes contradictory or divergent, and should be replicated in a larger sample of subjects. Understanding the functional changes at brain level and defining their effects on clinical outcome is of crucial importance for development of evidence-based rehabilitation therapy. TMS techniques may help in identifying neurophysiological biomarkers that can reliably assess the extent of neural damage, elucidate the mechanisms of neural repair, predict clinical outcome, and identify therapeutic targets. Some researchers have begun to therapeutically use repetitive TMS (rTMS) in patients with SCI. Initial studies revealed that rTMS can induce acute and short duration beneficial effects especially on spasticity and neuropathic pain, but the evidence is to date still very preliminary and well-designed clinical trials are warranted. This article is part of a Special Issue entitled SI: Spinal cord injury.
Collapse
Affiliation(s)
- Raffaele Nardone
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University and Center for Cognitive Neuroscience, Salzburg, Austria; Department of Neurology, Franz Tappeiner Hospital, Merano, Via Rossini 5, 39012 Meran/o (BZ), Italy; Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria.
| | - Yvonne Höller
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University and Center for Cognitive Neuroscience, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - Francesco Brigo
- Department of Neurology, Franz Tappeiner Hospital, Merano, Via Rossini 5, 39012 Meran/o (BZ), Italy; Department of Neurological, Neuropsychological, Morphological and Movement Sciences, Section of Clinical Neurology, University of Verona, Italy
| | - Andrea Orioli
- Department of Neurology, Franz Tappeiner Hospital, Merano, Via Rossini 5, 39012 Meran/o (BZ), Italy
| | - Frediano Tezzon
- Department of Neurology, Franz Tappeiner Hospital, Merano, Via Rossini 5, 39012 Meran/o (BZ), Italy
| | - Kerstin Schwenker
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University and Center for Cognitive Neuroscience, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| | - Monica Christova
- Department of Physiology, Medical University of Graz, Graz, Austria
| | - Stefan Golaszewski
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University and Center for Cognitive Neuroscience, Salzburg, Austria
| | - Eugen Trinka
- Department of Neurology, Christian Doppler Klinik, Paracelsus Medical University and Center for Cognitive Neuroscience, Salzburg, Austria; Spinal Cord Injury and Tissue Regeneration Center, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
787
|
Premoli I, Rivolta D, Espenhahn S, Castellanos N, Belardinelli P, Ziemann U, Müller-Dahlhaus F. Characterization of GABAB-receptor mediated neurotransmission in the human cortex by paired-pulse TMS-EEG. Neuroimage 2014; 103:152-162. [PMID: 25245814 DOI: 10.1016/j.neuroimage.2014.09.028] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 11/25/2022] Open
Abstract
GABAB-receptor (GABABR) mediated inhibition is important in regulating neuronal excitability. The paired-pulse transcranial magnetic stimulation (TMS) protocol of long-interval intracortical inhibition (LICI) likely reflects this GABABergic inhibition. However, this view is based on indirect evidence from electromyographic (EMG) studies. Here we combined paired-pulse TMS with simultaneous electroencephalography (paired-pulse TMS-EEG) and pharmacology to directly investigate mechanisms of LICI at the cortical level. We tested the effects of a conditioning stimulus (CS100) applied 100ms prior to a test stimulus (TS) over primary motor cortex on TS-evoked EEG-potentials (TEPs). Healthy subjects were given a single oral dose of baclofen, a GABABR agonist, or diazepam, a positive modulator at GABAARs, in a placebo-controlled, pseudo-randomized double-blinded crossover study. LICI was quantified as the difference between paired-pulse TEPs (corrected for long-lasting EEG responses by the conditioning pulse) minus single-pulse TEPs. LICI at baseline (i.e. pre-drug intake) was characterized by decreased P25, N45, N100 and P180 and increased P70 TEP components. Baclofen resulted in a trend towards the enhancement of LICI of the N45 and N100, and significantly enhanced LICI of the P180. In contrast, diazepam consistently suppressed LICI of late potentials (i.e. N100, P180), without having an effect on LICI of earlier (i.e. P25, N45 and P70) potentials. These findings demonstrate for the first time directly at the system level of the human cortex that GABABR-mediated cortical inhibition contributes to LICI, while GABAAR-mediated inhibition occludes LICI. Paired-pulse TMS-EEG allows investigating cortical GABABR-mediated inhibition more directly and specifically than hitherto possible, and may thus inform on network abnormalities caused by disordered inhibition, e.g. in patients with schizophrenia or epilepsy.
Collapse
Affiliation(s)
- Isabella Premoli
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Germany; International Max Planck Research School, Tübingen, Germany
| | - Davide Rivolta
- School of Psychology, University of East London (UEL), London, UK
| | - Svenja Espenhahn
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Germany
| | - Nazareth Castellanos
- Laboratory of Cognitive and Computational Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Paolo Belardinelli
- Functional and Restorative Neurosurgery, University Hospital Tübingen, Eberhard-Karls-University Tübingen, Germany
| | - Ulf Ziemann
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Germany.
| | - Florian Müller-Dahlhaus
- Department of Neurology and Stroke, Hertie Institute for Clinical Brain Research, Eberhard-Karls-University Tübingen, Germany
| |
Collapse
|
788
|
Gruet M, Temesi J, Brisswalter J, Millet G, Vergès S. Stimulation magnétique transcrânienne : application à la physiologie de l’exercice. Sci Sports 2014. [DOI: 10.1016/j.scispo.2014.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
789
|
Cash RFH, Murakami T, Chen R, Thickbroom GW, Ziemann U. Augmenting Plasticity Induction in Human Motor Cortex by Disinhibition Stimulation. Cereb Cortex 2014; 26:58-69. [PMID: 25100853 DOI: 10.1093/cercor/bhu176] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cellular studies showed that disinhibition, evoked pharmacologically or by a suitably timed priming stimulus, can augment long-term plasticity (LTP) induction. We demonstrated previously that transcranial magnetic stimulation evokes a period of presumably GABA(B)ergic late cortical disinhibition (LCD) in human primary motor cortex (M1). Here, we hypothesized that, in keeping with cellular studies, LCD can augment LTP-like plasticity in humans. In Experiment 1, patterned repetitive TMS was applied to left M1, consisting of 6 trains (intertrain interval, 8 s) of 4 doublets (interpulse interval equal to individual peak I-wave facilitation, 1.3-1.5 ms) spaced by the individual peak LCD (interdoublet interval (IDI), 200-250 ms). This intervention (total of 48 pulses applied over ∼45 s) increased motor-evoked potential amplitude, a marker of corticospinal excitability, in a right hand muscle by 147% ± 4%. Control experiments showed that IDIs shorter or longer than LCD did not result in LTP-like plasticity. Experiment 2 indicated topographic specificity to the M1 hand region stimulated by TMS and duration of the LTP-like plasticity of 60 min. In conclusion, GABA(B)ergic LCD offers a powerful new approach for augmenting LTP-like plasticity induction in human cortex. We refer to this protocol as disinhibition stimulation (DIS).
Collapse
Affiliation(s)
- Robin F H Cash
- Australian Neuro-Muscular Research Institute and Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Perth, Australia Department of Neurology, Goethe-University of Frankfurt, Frankfurt, Germany Division of Brain, Imaging and Behaviour - Systems Neuroscience, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Takenobu Murakami
- Department of Neurology, Goethe-University of Frankfurt, Frankfurt, Germany Department of Neurology, Fukushima Medical University, Fukushima, Japan
| | - Robert Chen
- Division of Brain, Imaging and Behaviour - Systems Neuroscience, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Gary W Thickbroom
- Australian Neuro-Muscular Research Institute and Centre for Neuromuscular and Neurological Disorders, University of Western Australia, Perth, Australia
| | - Ulf Ziemann
- Department of Neurology, Goethe-University of Frankfurt, Frankfurt, Germany Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, Eberhard-Karls-University, Tübingen, Germany
| |
Collapse
|
790
|
Normalizing biased spatial attention with parietal rTMS in a patient with focal hand dystonia. Brain Stimul 2014; 7:912-4. [PMID: 25178660 DOI: 10.1016/j.brs.2014.07.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 11/22/2022] Open
|
791
|
The role of neuroplasticity in experimental neck pain: A study of potential mechanisms impeding clinical outcomes of training. ACTA ACUST UNITED AC 2014; 19:288-93. [DOI: 10.1016/j.math.2014.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 03/07/2014] [Accepted: 04/10/2014] [Indexed: 12/15/2022]
|
792
|
Transcranial direct current stimulation of the premotor cortex: Effects on hand dexterity. Brain Res 2014; 1576:52-62. [DOI: 10.1016/j.brainres.2014.06.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/16/2014] [Accepted: 06/19/2014] [Indexed: 11/18/2022]
|
793
|
Caliandro P, Padua L, Rossi A, Rossini PM, Stalberg E, Feurra M, Ulivelli M, Bartalini S, Giannini F, Rossi S. Jitter of Corticospinal Neurons During Repetitive Transcranial Magnetic Stimulation. Method and Possible Clinical Implications. Brain Stimul 2014; 7:580-6. [DOI: 10.1016/j.brs.2014.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 04/08/2014] [Accepted: 05/01/2014] [Indexed: 12/19/2022] Open
|
794
|
Liew SL, Santarnecchi E, Buch ER, Cohen LG. Non-invasive brain stimulation in neurorehabilitation: local and distant effects for motor recovery. Front Hum Neurosci 2014; 8:378. [PMID: 25018714 PMCID: PMC4072967 DOI: 10.3389/fnhum.2014.00378] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 05/14/2014] [Indexed: 01/01/2023] Open
Abstract
Non-invasive brain stimulation (NIBS) may enhance motor recovery after neurological injury through the causal induction of plasticity processes. Neurological injury, such as stroke, often results in serious long-term physical disabilities, and despite intensive therapy, a large majority of brain injury survivors fail to regain full motor function. Emerging research suggests that NIBS techniques, such as transcranial magnetic (TMS) and direct current (tDCS) stimulation, in association with customarily used neurorehabilitative treatments, may enhance motor recovery. This paper provides a general review on TMS and tDCS paradigms, the mechanisms by which they operate and the stimulation techniques used in neurorehabilitation, specifically stroke. TMS and tDCS influence regional neural activity underlying the stimulation location and also distant interconnected network activity throughout the brain. We discuss recent studies that document NIBS effects on global brain activity measured with various neuroimaging techniques, which help to characterize better strategies for more accurate NIBS stimulation. These rapidly growing areas of inquiry may hold potential for improving the effectiveness of NIBS-based interventions for clinical rehabilitation.
Collapse
Affiliation(s)
- Sook-Lei Liew
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, NIH Bethesda, MD, USA
| | | | - Ethan R Buch
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, NIH Bethesda, MD, USA ; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of Health Sciences Bethesda, MD, USA
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, National Institute of Neurological Disorders and Stroke, NIH Bethesda, MD, USA ; Center for Neuroscience and Regenerative Medicine, Uniformed Services University of Health Sciences Bethesda, MD, USA
| |
Collapse
|
795
|
Abstract
Combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) constitutes a powerful tool to directly assess human cortical excitability and connectivity. TMS of the primary motor cortex elicits a sequence of TMS-evoked EEG potentials (TEPs). It is thought that inhibitory neurotransmission through GABA-A receptors (GABAAR) modulates early TEPs (<50 ms after TMS), whereas GABA-B receptors (GABABR) play a role for later TEPs (at ∼100 ms after TMS). However, the physiological underpinnings of TEPs have not been clearly elucidated yet. Here, we studied the role of GABAA/B-ergic neurotransmission for TEPs in healthy subjects using a pharmaco-TMS-EEG approach. In Experiment 1, we tested the effects of a single oral dose of alprazolam (a classical benzodiazepine acting as allosteric-positive modulator at α1, α2, α3, and α5 subunit-containing GABAARs) and zolpidem (a positive modulator mainly at the α1 GABAAR) in a double-blind, placebo-controlled, crossover study. In Experiment 2, we tested the influence of baclofen (a GABABR agonist) and diazepam (a classical benzodiazepine) versus placebo on TEPs. Alprazolam and diazepam increased the amplitude of the negative potential at 45 ms after stimulation (N45) and decreased the negative component at 100 ms (N100), whereas zolpidem increased the N45 only. In contrast, baclofen specifically increased the N100 amplitude. These results provide strong evidence that the N45 represents activity of α1-subunit-containing GABAARs, whereas the N100 represents activity of GABABRs. Findings open a novel window of opportunity to study alteration of GABAA-/GABAB-related inhibition in disorders, such as epilepsy or schizophrenia.
Collapse
|
796
|
Can forearm muscle activity be selectively recorded using conventional surface EMG-electrodes in transcranial magnetic stimulation? A feasibility study. J Electromyogr Kinesiol 2014; 24:325-31. [DOI: 10.1016/j.jelekin.2014.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 12/28/2013] [Accepted: 02/24/2014] [Indexed: 11/23/2022] Open
|
797
|
Nardone R, Tezzon F, Höller Y, Golaszewski S, Trinka E, Brigo F. Transcranial magnetic stimulation (TMS)/repetitive TMS in mild cognitive impairment and Alzheimer's disease. Acta Neurol Scand 2014; 129:351-66. [PMID: 24506061 DOI: 10.1111/ane.12223] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2014] [Indexed: 12/20/2022]
Abstract
Several Transcranial Magnetic Stimulation (TMS) techniques can be applied to noninvasively measure cortical excitability and brain plasticity in humans. TMS has been used to assess neuroplastic changes in Alzheimer's disease (AD), corroborating findings that cortical physiology is altered in AD due to the underlying neurodegenerative process. In fact, many TMS studies have provided physiological evidence of abnormalities in cortical excitability, connectivity, and plasticity in patients with AD. Moreover, the combination of TMS with other neurophysiological techniques, such as high-density electroencephalography (EEG), makes it possible to study local and network cortical plasticity directly. Interestingly, several TMS studies revealed abnormalities in patients with early AD and even with mild cognitive impairment (MCI), thus enabling early identification of subjects in whom the cholinergic degeneration has occurred. Furthermore, TMS can influence brain function if delivered repetitively; repetitive TMS (rTMS) is capable of modulating cortical excitability and inducing long-lasting neuroplastic changes. Preliminary findings have suggested that rTMS can enhance performances on several cognitive functions impaired in AD and MCI. However, further well-controlled studies with appropriate methodology in larger patient cohorts are needed to replicate and extend the initial findings. The purpose of this paper was to provide an updated and comprehensive systematic review of the studies that have employed TMS/rTMS in patients with MCI and AD.
Collapse
Affiliation(s)
- R. Nardone
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University; Salzburg Austria
- Department of Neurology; Franz Tappeiner Hospital; Merano Italy
| | - F. Tezzon
- Department of Neurology; Franz Tappeiner Hospital; Merano Italy
| | - Y. Höller
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University; Salzburg Austria
| | - S. Golaszewski
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University; Salzburg Austria
| | - E. Trinka
- Department of Neurology; Christian Doppler Klinik; Paracelsus Medical University; Salzburg Austria
| | - F. Brigo
- Department of Neurology; Franz Tappeiner Hospital; Merano Italy
- Department of Neurological, Neuropsychological, Morphological and Movement Sciences; Section of Clinical Neurology; University of Verona; Verona Italy
| |
Collapse
|
798
|
TEMESI JOHN, RUPP THOMAS, MARTIN VINCENT, ARNAL PIERRICKJ, FÉASSON LÉONARD, VERGES SAMUEL, MILLET GUILLAUMEY. Central Fatigue Assessed by Transcranial Magnetic Stimulation in Ultratrail Running. Med Sci Sports Exerc 2014; 46:1166-75. [DOI: 10.1249/mss.0000000000000207] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
799
|
Deleterious effects of a low amount of ethanol on LTP-like plasticity in human cortex. Neuropsychopharmacology 2014; 39:1508-18. [PMID: 24385131 PMCID: PMC3988555 DOI: 10.1038/npp.2013.350] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 12/28/2013] [Accepted: 12/28/2013] [Indexed: 11/08/2022]
Abstract
Ingesting ethanol (EtOH) at low doses during social drinking is a common human behavior for its facilitating effects on social interactions. However, low-dose EtOH may have also detrimental effects that so far are underexplored. Here we sought to test the effects of low-dose EtOH on long-term potentiation (LTP)-like plasticity in human motor cortex. Previous cellular experiments showed that low-dose EtOH potentiates extrasynaptic GABAAR and reduces NMDAR-mediated currents, processes that would limit the expression of LTP. Paired associative transcranial magnetic stimulation (PASLTP) was employed in nine healthy subjects for induction of LTP-like plasticity, indexed by a long-term increase in motor-evoked potential input-output curves. Synaptic α1-GABAAR function was measured by saccadic peak velocity (SPV). Very low doses of EtOH (resulting in blood concentrations of <5 mM) suppressed LTP-like plasticity but did not affect SPV when compared with a placebo condition. In contrast, 1 mg of alprazolam, a classical benzodiazepine, or 10 mg of zolpidem, a non-benzodiazepine hypnotic, decreased SPV but did not significantly affect LTP-like plasticity when compared with placebo. This double dissociation of low-dose EtOH vs alprazolam/zolpidem effects is best explained by the putatively high affinity of EtOH but not alprazolam/zolpidem to extrasynaptic GABAARs and to NMDARs. Findings suggest that enhancement of extrasynaptic GABAAR-mediated tonic inhibition and/or reduction of NMDAR-mediated neurotransmission by EtOH blocks LTP-like plasticity in human cortex at very low doses that are easily reached during social drinking. Therefore, low-dose EtOH may jeopardize LTP-dependent processes, such as learning and memory formation.
Collapse
|
800
|
Hou J, Nelson R, Nissim N, Parmer R, Thompson FJ, Bose P. Effect of combined treadmill training and magnetic stimulation on spasticity and gait impairments after cervical spinal cord injury. J Neurotrauma 2014; 31:1088-106. [PMID: 24552465 DOI: 10.1089/neu.2013.3096] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Spasticity and gait impairments are two common disabilities after cervical spinal cord injury (C-SCI). In this study, we tested the therapeutic effects of early treadmill locomotor training (Tm) initiated at postoperative (PO) day 8 and continued for 6 weeks with injury site transcranial magnetic stimulation (TMSsc) on spasticity and gait impairments after low C6/7 moderate contusion C-SCI in a rat model. The combined treatment group (Tm+TMSsc) showed the most robust decreases in velocity-dependent ankle torques and triceps surae electromyography burst amplitudes that were time locked to the initial phase of lengthening, as well as the most improvement in limb coordination quantitated using three-dimensional kinematics and CatWalk gait analyses, compared to the control or single-treatment groups. These significant treatment-associated decreases in measures of spasticity and gait impairment were also accompanied by marked treatment-associated up-regulation of dopamine beta-hydroxylase, glutamic acid decarboxylase 67, gamma-aminobutyric acid B receptor, and brain-derived neurotrophic factor in the lumbar spinal cord (SC) segments of the treatment groups, compared to tissues from the C-SCI nontreated animals. We propose that the treatment-induced up-regulation of these systems enhanced the adaptive plasticity in the SC, in part through enhanced expression of pre- and postsynaptic reflex regulatory processes. Further, we propose that locomotor exercise in the setting of C-SCI may decrease aspects of the spontaneous maladaptive segmental and descending plasticity. Accordingly, TMSsc treatment is characterized as an adjuvant stimulation that may further enhance this capacity. These data are the first to suggest that a combination of Tm and TMSsc across the injury site can be an effective treatment modality for C-SCI-induced spasticity and gait impairments and provided a pre-clinical demonstration for feasibility and efficacy of early TMSsc intervention after C-SCI.
Collapse
Affiliation(s)
- Jiamei Hou
- 1 Department of Physiological Sciences, University of Florida , Gainesville, Florida
| | | | | | | | | | | |
Collapse
|