751
|
van Diepeningen AD, Pál K, van der Lee TAJ, Hoekstra RF, Debets AJM. The het-c heterokaryon incompatibility gene in Aspergillus niger. ACTA ACUST UNITED AC 2008; 113:222-9. [PMID: 19015029 DOI: 10.1016/j.mycres.2008.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 09/22/2008] [Accepted: 10/13/2008] [Indexed: 11/15/2022]
Abstract
Heterokaryon incompatibility among Aspergillus niger strains is a widespread phenomenon that is observed as the inability to form stable heterokaryons. The genetic basis of heterokaryon incompatibility reactions is well established in some sexual filamentous fungi but largely unknown in presumed asexual species, such as A. niger. To test whether the genes that determine heterokaryon incompatibility in Neurospora crassa, such as het-c, vib-1 and pin-c, have a similar function in A. niger, we performed a short in silico search for homologues of these genes in the A. niger and several related genomes. For het-c, pin-c and vib-1 we did indeed identify putative orthologues. We then screened a genetically diverse worldwide collection of incompatible black Aspergilli for polymorphisms in the het-c orthologue. No size variation was observed in the variable het-c indel region that determines the specificity in N. crassa. Sequence comparison showed only minor variation in the number of glutamine coding triplets. However, introduction of one of the three N. crassa alleles (het-c2) in A. niger by transformation resulted in an abortive phenotype, reminiscent of the heterokaryon incompatibility in N. crassa. We conclude that although the genes required are present and the het-c homologue could potentially function as a heterokaryon incompatibility gene, het-c has no direct function in heterokaryon incompatibility in A. niger because the necessary allelic variation is absent.
Collapse
Affiliation(s)
- Anne D van Diepeningen
- Laboratory of Genetics, Department of Plant Sciences, Wageningen University, Arboretumlaan 4, 6703 BD Wageningen, The Netherlands.
| | | | | | | | | |
Collapse
|
752
|
Generation of large chromosomal deletions in koji molds Aspergillus oryzae and Aspergillus sojae via a loop-out recombination. Appl Environ Microbiol 2008; 74:7684-93. [PMID: 18952883 DOI: 10.1128/aem.00692-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We established a technique for efficiently generating large chromosomal deletions in the koji molds Aspergillus oryzae and A. sojae by using a ku70-deficient strain and a bidirectional marker. The approach allowed deletion of 200-kb and 100-kb sections of A. oryzae and A. sojae, respectively. The deleted regions contained putative aflatoxin biosynthetic gene clusters. The large genomic deletions generated by a loop-out deletion method (resolution-type recombination) enabled us to construct multiple deletions in the koji molds by marker recycling. No additional sequence remained in the resultant deletion strains, a feature of considerable value for breeding of food-grade microorganisms. Frequencies of chromosomal deletions tended to decrease in proportion to the length of the deletion range. Deletion efficiency was also affected by the location of the deleted region. Further, comparative genome hybridization analysis showed that no unintended deletion or chromosomal rearrangement occurred in the deletion strain. Strains with large deletions that were previously extremely laborious to construct in the wild-type ku70(+) strain due to the low frequency of homologous recombination were efficiently obtained from Delta ku70 strains in this study. The technique described here may be broadly applicable for the genomic engineering and molecular breeding of filamentous fungi.
Collapse
|
753
|
Filamentous fungi for production of food additives and processing aids. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008. [PMID: 18253709 DOI: 10.1007/10_2007_094] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Filamentous fungi are metabolically versatile organisms with a very wide distribution in nature. They exist in association with other species, e.g. as lichens or mycorrhiza, as pathogens of animals and plants or as free-living species. Many are regarded as nature's primary degraders because they secrete a wide variety of hydrolytic enzymes that degrade waste organic materials. Many species produce secondary metabolites such as polyketides or peptides and an increasing range of fungal species is exploited commercially as sources of enzymes and metabolites for food or pharmaceutical applications. The recent availability of fungal genome sequences has provided a major opportunity to explore and further exploit fungi as sources of enzymes and metabolites. In this review chapter we focus on the use of fungi in the production of food additives but take a largely pre-genomic, albeit a mainly molecular, view of the topic.
Collapse
|
754
|
van den Berg MA, Albang R, Albermann K, Badger JH, Daran JM, Driessen AJM, Garcia-Estrada C, Fedorova ND, Harris DM, Heijne WHM, Joardar V, Kiel JAKW, Kovalchuk A, Martín JF, Nierman WC, Nijland JG, Pronk JT, Roubos JA, van der Klei IJ, van Peij NNME, Veenhuis M, von Döhren H, Wagner C, Wortman J, Bovenberg RAL. Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. Nat Biotechnol 2008; 26:1161-8. [PMID: 18820685 DOI: 10.1038/nbt.1498] [Citation(s) in RCA: 349] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 08/27/2008] [Indexed: 11/09/2022]
Abstract
Industrial penicillin production with the filamentous fungus Penicillium chrysogenum is based on an unprecedented effort in microbial strain improvement. To gain more insight into penicillin synthesis, we sequenced the 32.19 Mb genome of P. chrysogenum Wisconsin54-1255 and identified numerous genes responsible for key steps in penicillin production. DNA microarrays were used to compare the transcriptomes of the sequenced strain and a penicillinG high-producing strain, grown in the presence and absence of the side-chain precursor phenylacetic acid. Transcription of genes involved in biosynthesis of valine, cysteine and alpha-aminoadipic acid-precursors for penicillin biosynthesis-as well as of genes encoding microbody proteins, was increased in the high-producing strain. Some gene products were shown to be directly controlling beta-lactam output. Many key cellular transport processes involving penicillins and intermediates remain to be characterized at the molecular level. Genes predicted to encode transporters were strongly overrepresented among the genes transcriptionally upregulated under conditions that stimulate penicillinG production, illustrating potential for future genomics-driven metabolic engineering.
Collapse
|
755
|
McDonagh A, Fedorova ND, Crabtree J, Yu Y, Kim S, Chen D, Loss O, Cairns T, Goldman G, Armstrong-James D, Haynes K, Haas H, Schrettl M, May G, Nierman WC, Bignell E. Sub-telomere directed gene expression during initiation of invasive aspergillosis. PLoS Pathog 2008; 4:e1000154. [PMID: 18787699 PMCID: PMC2526178 DOI: 10.1371/journal.ppat.1000154] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Accepted: 08/14/2008] [Indexed: 11/23/2022] Open
Abstract
Aspergillus fumigatus is a common mould whose spores are a
component of the normal airborne flora. Immune dysfunction permits developmental
growth of inhaled spores in the human lung causing aspergillosis, a significant
threat to human health in the form of allergic, and life-threatening invasive
infections. The success of A. fumigatus as a pathogen is unique
among close phylogenetic relatives and is poorly characterised at the molecular
level. Recent genome sequencing of several Aspergillus species
provides an exceptional opportunity to analyse fungal virulence attributes
within a genomic and evolutionary context. To identify genes preferentially
expressed during adaptation to the mammalian host niche, we generated multiple
gene expression profiles from minute samplings of A. fumigatus
germlings during initiation of murine infection. They reveal a highly
co-ordinated A. fumigatus gene expression programme, governing
metabolic and physiological adaptation, which allows the organism to prosper
within the mammalian niche. As functions of phylogenetic conservation and
genetic locus, 28% and 30%, respectively, of the
A. fumigatus subtelomeric and lineage-specific gene
repertoires are induced relative to laboratory culture, and physically clustered
genes including loci directing pseurotin, gliotoxin and siderophore biosyntheses
are a prominent feature. Locationally biased A. fumigatus gene
expression is not prompted by in vitro iron limitation, acid,
alkaline, anaerobic or oxidative stress. However, subtelomeric gene expression
is favoured following ex vivo neutrophil exposure and in
comparative analyses of richly and poorly nourished laboratory cultured
germlings. We found remarkable concordance between the A.
fumigatus host-adaptation transcriptome and those resulting from
in vitro iron depletion, alkaline shift, nitrogen
starvation and loss of the methyltransferase LaeA. This first transcriptional
snapshot of a fungal genome during initiation of mammalian infection provides
the global perspective required to direct much-needed diagnostic and therapeutic
strategies and reveals genome organisation and subtelomeric diversity as
potential driving forces in the evolution of pathogenicity in the genus
Aspergillus. Airborne spores of the fungus Aspergillus fumigatus are present
in significant quantities worldwide and are responsible for a range of illnesses
from allergy to deadly invasive lung infection. A number of fungal properties
are likely required for germination and growth of the fungus in the host, and
now that the genome sequence of A. fumigatus is available it is
possible to address which genes become important during initiation of infection.
Understanding this might lead to new therapeutics and diagnostic tools. We have
compared A. fumigatus gene activation during infection in a
murine model to that in a laboratory culture to identify fungal attributes
preferentially employed during disease. Our analysis entailed measurement of
activity from most of the >9000 A. fumigatus genes,
identifying iron limitation, alkaline stress, and nitrogen starvation as
prominent stresses imposed by the host environment. We also found that genes
preferentially employed for infection occur in clusters and are more likely to
reside near the end of chromosomes, otherwise known as telomeres.
Collapse
Affiliation(s)
- Andrew McDonagh
- Department of Microbiology, Imperial College London, London, United
Kingdom
| | - Natalie D. Fedorova
- The J. Craig Venter Institute, Rockville, Maryland, United States of
America
| | - Jonathan Crabtree
- Department of Microbiology, Imperial College London, London, United
Kingdom
| | - Yan Yu
- The J. Craig Venter Institute, Rockville, Maryland, United States of
America
| | - Stanley Kim
- Korea University, College of Medicine, Department of Medicine, Anam-Dong,
Seongbuk-Gu, Seoul, Korea
| | - Dan Chen
- The J. Craig Venter Institute, Rockville, Maryland, United States of
America
| | - Omar Loss
- Department of Microbiology, Imperial College London, London, United
Kingdom
| | - Timothy Cairns
- Department of Microbiology, Imperial College London, London, United
Kingdom
| | - Gustavo Goldman
- Faculdade de Ciências Farmacêuticas de
Ribeirão Preto, Universidade de São Paulo,
Brazil
| | | | - Ken Haynes
- Department of Microbiology, Imperial College London, London, United
Kingdom
| | - Hubertus Haas
- Biocenter-Divison of Molecular Biology, Innsbruck Medical University,
Innsbruck, Austria
| | - Markus Schrettl
- Biocenter-Divison of Molecular Biology, Innsbruck Medical University,
Innsbruck, Austria
| | - Gregory May
- Microbiology and Molecular Genetics, UT-Houston Medical School, Houston,
Texas, United States of America
| | - William C. Nierman
- The J. Craig Venter Institute, Rockville, Maryland, United States of
America
- The George Washington University School of Medicine, Department of
Biochemistry and Molecular Biology, Washington D.C., United States of
America
| | - Elaine Bignell
- Department of Microbiology, Imperial College London, London, United
Kingdom
- * E-mail:
| |
Collapse
|
756
|
Chiang YM, Szewczyk E, Nayak T, Davidson AD, Sanchez JF, Lo HC, Ho WY, Simityan H, Kuo E, Praseuth A, Watanabe K, Oakley BR, Wang CCC. Molecular genetic mining of the Aspergillus secondary metabolome: discovery of the emericellamide biosynthetic pathway. ACTA ACUST UNITED AC 2008; 15:527-32. [PMID: 18559263 DOI: 10.1016/j.chembiol.2008.05.010] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Revised: 04/28/2008] [Accepted: 05/06/2008] [Indexed: 01/21/2023]
Abstract
The recently sequenced genomes of several Aspergillus species have revealed that these organisms have the potential to produce a surprisingly large range of natural products, many of which are currently unknown. We have found that A. nidulans produces emericellamide A, an antibiotic compound of mixed origins with polyketide and amino acid building blocks. Additionally, we describe the discovery of four previously unidentified, related compounds that we designate emericellamide C-F. Using recently developed gene targeting techniques, we have identified the genes involved in emericellamide biosynthesis. The emericellamide gene cluster contains one polyketide synthase and one nonribosomal peptide synthetase. From the sequences of the genes, we are able to deduce a biosynthetic pathway for the emericellamides. The identification of this biosynthetic pathway opens the door to engineering novel analogs of this structurally complex metabolite.
Collapse
Affiliation(s)
- Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
757
|
Park J, Lee S, Choi J, Ahn K, Park B, Park J, Kang S, Lee YH. Fungal cytochrome P450 database. BMC Genomics 2008; 9:402. [PMID: 18755027 PMCID: PMC2542383 DOI: 10.1186/1471-2164-9-402] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 08/28/2008] [Indexed: 12/15/2022] Open
Abstract
Background Cytochrome P450 enzymes play critical roles in fungal biology and ecology. To support studies on the roles and evolution of cytochrome P450 enzymes in fungi based on rapidly accumulating genome sequences from diverse fungal species, an efficient bioinformatics platform specialized for this super family of proteins is highly desirable. Results The Fungal Cytochrome P450 Database (FCPD) archives genes encoding P450s in the genomes of 66 fungal and 4 oomycete species (4,538 in total) and supports analyses of their sequences, chromosomal distribution pattern, and evolutionary histories and relationships. The archived P450s were classified into 16 classes based on InterPro terms and clustered into 141 groups using tribe-MCL. The proportion of P450s in the total proteome and class distribution in individual species exhibited certain taxon-specific characteristics. Conclusion The FCPD will facilitate systematic identification and multifaceted analyses of P450s at multiple taxon levels via the web. All data and functions are available at the web site .
Collapse
Affiliation(s)
- Jongsun Park
- Fungal Bioinformatics Laboratory, Seoul National University, Seoul 151-921, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
758
|
Efficient cloning system for construction of gene silencing vectors in Aspergillus niger. Appl Microbiol Biotechnol 2008; 80:917-24. [PMID: 18704394 PMCID: PMC7420921 DOI: 10.1007/s00253-008-1640-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 11/27/2022]
Abstract
An approach based on Gateway recombination technology to efficiently construct silencing vectors was developed for use in the biotechnologically important fungus Aspergillus niger. The transcription activator of xylanolytic and cellulolytic genes XlnR of A. niger was chosen as target for gene silencing. Silencing was based on the expression vector pXLNRir that was constructed and used in co-transformation. From all the strains isolated (N = 77), nine showed poor xylan-degrading activities in two semi-quantitative plate assays testing different activities for xylan degradation. Upon induction on d-xylose, transcript levels of xlnR were decreased in the xlnR-silenced strains, compared to a wild-type background. Under these conditions, the transcript levels of xyrA and xynB (two genes regulated by XlnR) were also decreased for these xlnR-silenced strains. These results indicate that the newly developed system for rapid generation of silencing vectors is an effective tool for A. niger, and this can be used to generate strains with a tailored spectrum of enzyme activities or product formation by silencing specific genes encoding, e.g., regulators such as XlnR.
Collapse
|
759
|
An evolutionary conserved d-galacturonic acid metabolic pathway operates across filamentous fungi capable of pectin degradation. Fungal Genet Biol 2008; 45:1449-57. [PMID: 18768163 DOI: 10.1016/j.fgb.2008.08.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 08/01/2008] [Accepted: 08/01/2008] [Indexed: 11/21/2022]
Abstract
Transcriptome analysis of Aspergillus niger transfer cultures grown on galacturonic acid media identified a highly correlating cluster of four strongly induced hypothetical genes linked with a subset set of genes encoding pectin degrading enzymes. Three of the encoded hypothetical proteins now designated GAAA to GAAC are directly involved in further galacturonic acid catabolism. Functional and biochemical analysis revealed that GAAA is a novel d-galacturonic acid reductase. Two non-allelic Aspergillus nidulans strains unable to utilize galacturonic acid are mutated in orthologs of gaaA and gaaB, respectively. The A. niger gaaA and gaaC genes share a common promoter region. This feature appears to be strictly conserved in the genomes of plant cell wall degrading fungi from subphylum Pezizomycotina. Combined with the presence of homologs of the gaaB gene in the same set of fungi, these strongly suggest that a common d-galacturonic acid utilization pathway is operative in these species.
Collapse
|
760
|
Vrabl P, Mutschlechner W, Burgstaller W. Characteristics of glucose uptake by glucose- and NH4-limited grown Penicillium ochrochloron at low, medium and high glucose concentration. Fungal Genet Biol 2008; 45:1380-92. [PMID: 18722543 DOI: 10.1016/j.fgb.2008.07.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Revised: 06/30/2008] [Accepted: 07/26/2008] [Indexed: 11/15/2022]
Abstract
Glucose uptake by Penicillium ochrochloron (formerly Penicillium simplicissimum) was studied from 0.01 to 400 mM glucose using chemostat culture and bioreactor batch culture. The characteristics of glucose uptake varied considerably with the conditions of growth, harvest and uptake assay. Glucose-limited grown mycelium showed one saturable transport system [K(S) below 0.01 mM; v(max) 1.1-1.2 mmol (g dry weight)(-1)h(-1)] plus a first order process (permeability P=1.2x10(-7)cm s(-1)). Ammonium-limited grown mycelium showed only one saturable transport system [K(S) 0.3-0.7 mM; v(max) 0.5-0.8 mmol (g dry weight)(-1)h(-1)]. During exponential growth at high glucose concentration (300-400 mM) a first order process was found with a P value of 5.6-9.3x10(-7)cm s(-1). After ammonium exhaustion a second first order phase showed a lower P value (6.1-9.3x10(-8)cm s(-1)). A similar change in permeability was also found after a re-evaluation of published data for Gibberella fujikuroi, Aspergillus niger, Aspergillus awamori and Saccharomycopsis lipolytica. For the first order processes simple diffusion was ruled out as a mechanism for glucose uptake. Glucose uptake by P. ochrochloron was controlled more strongly by metabolism than by transport and was not rate limiting for overflow metabolism.
Collapse
Affiliation(s)
- Pamela Vrabl
- University of Innsbruck, Institute of Microbiology, Technikerstrasse 25, 6020 Innsbruck, Austria.
| | | | | |
Collapse
|
761
|
Strain-specific retrotransposon-mediated recombination in commercially used Aspergillus niger strain. Mol Genet Genomics 2008; 280:319-25. [PMID: 18677513 DOI: 10.1007/s00438-008-0367-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 07/16/2008] [Indexed: 01/02/2023]
Abstract
Transposons are usually present in multiple copies in their hosts' genomes. Recombination between two transposon copies can result in chromosomal rearrangements. Here, we describe a recombination event between two copies of the retrotransposon ANiTa1 within the genome of the fungus Aspergillus niger (strain CBS513.88). The observed chromosomal rearrangement appears to be strain-specific, as the corresponding genomic region in another strain, ATCC1015, shows a different organization. Strain ATCC1015 actually seems to lack full-length ANiTa1 copies and possesses only solo LTR sequences. Presumably strain ATCC1015 was once colonized by ANiTa1, but then the genome subsequently lost the ANiTa1 copies. The striking genomic differences in ANiTa1 copy distribution leading to differences in the chromosomal structure between the two strains, ATTC1015 and CBS513.88, suggest that the activity of transposons may profoundly affect the evolution of different fungal strains.
Collapse
|
762
|
Dissecting colony development of Neurospora crassa using mRNA profiling and comparative genomics approaches. EUKARYOTIC CELL 2008; 7:1549-64. [PMID: 18676954 DOI: 10.1128/ec.00195-08] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Colony development, which includes hyphal extension, branching, anastomosis, and asexual sporulation, is a fundamental aspect of the life cycle of filamentous fungi; genetic mechanisms underlying these phenomena are poorly understood. We conducted transcriptional profiling during colony development of the model filamentous fungus Neurospora crassa, using 70-mer oligonucleotide microarrays. Relative mRNA expression levels were determined for six sections of defined age excised from a 27-h-old N. crassa colony. Functional category analysis showed that the expression of genes involved in cell membrane biosynthesis, polar growth, and cellular signaling was enriched at the periphery of the colony. The relative expression of genes involved in protein synthesis and energy production was enriched in the middle section of the colony, while sections of the colony undergoing asexual development (conidiogenesis) were enriched in expression of genes involved in protein/peptide degradation and unclassified proteins. A cross-examination of the N. crassa data set with a published data set of Aspergillus niger revealed shared patterns in the spatiotemporal regulation of gene orthologs during colony development. At present, less than 50% of genes in N. crassa have functional annotation, which imposes the chief limitation on data analysis. Using an evolutionary approach, we observed that the expression of phylogenetically conserved groups of genes was enriched in the middle section of an N. crassa colony whereas expression of genes unique to euascomycete species and of N. crassa orphan genes was enriched at the colony periphery and in the older, conidiating sections of a fungal colony.
Collapse
|
763
|
Esteban A, Leong SLL, Hocking AD, Abarca ML, Cabañes FJ, Tran-Dinh N. Utility of Microsatellite Markers and Amplified Fragment Length Polymorphism in the Study of Potentially Ochratoxigenic Black Aspergilli. Curr Microbiol 2008; 57:348-55. [DOI: 10.1007/s00284-008-9201-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 05/08/2008] [Indexed: 11/28/2022]
|
764
|
Weignerová L, Filipi T, Manglová D, Křen V. Induction, purification and characterization of α-N-acetylgalactosaminidase from Aspergillus Niger. Appl Microbiol Biotechnol 2008; 79:769-74. [DOI: 10.1007/s00253-008-1485-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 03/31/2008] [Accepted: 03/31/2008] [Indexed: 11/24/2022]
|
765
|
Soanes DM, Alam I, Cornell M, Wong HM, Hedeler C, Paton NW, Rattray M, Hubbard SJ, Oliver SG, Talbot NJ. Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS One 2008; 3:e2300. [PMID: 18523684 PMCID: PMC2409186 DOI: 10.1371/journal.pone.0002300] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Accepted: 04/15/2008] [Indexed: 12/30/2022] Open
Abstract
Fungi and oomycetes are the causal agents of many of the most serious diseases of plants. Here we report a detailed comparative analysis of the genome sequences of thirty-six species of fungi and oomycetes, including seven plant pathogenic species, that aims to explore the common genetic features associated with plant disease-causing species. The predicted translational products of each genome have been clustered into groups of potential orthologues using Markov Chain Clustering and the data integrated into the e-Fungi object-oriented data warehouse (http://www.e-fungi.org.uk/). Analysis of the species distribution of members of these clusters has identified proteins that are specific to filamentous fungal species and a group of proteins found only in plant pathogens. By comparing the gene inventories of filamentous, ascomycetous phytopathogenic and free-living species of fungi, we have identified a set of gene families that appear to have expanded during the evolution of phytopathogens and may therefore serve important roles in plant disease. We have also characterised the predicted set of secreted proteins encoded by each genome and identified a set of protein families which are significantly over-represented in the secretomes of plant pathogenic fungi, including putative effector proteins that might perturb host cell biology during plant infection. The results demonstrate the potential of comparative genome analysis for exploring the evolution of eukaryotic microbial pathogenesis.
Collapse
Affiliation(s)
- Darren M. Soanes
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | - Intikhab Alam
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Mike Cornell
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Han Min Wong
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | - Cornelia Hedeler
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Norman W. Paton
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Magnus Rattray
- School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Simon J. Hubbard
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, United Kingdom
| | - Stephen G. Oliver
- Department of Biochemistry, University of Cambridge, Sanger Building, Cambridge, United Kingdom
| | - Nicholas J. Talbot
- School of Biosciences, Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
766
|
Vongsangnak W, Olsen P, Hansen K, Krogsgaard S, Nielsen J. Improved annotation through genome-scale metabolic modeling of Aspergillus oryzae. BMC Genomics 2008; 9:245. [PMID: 18500999 PMCID: PMC2413144 DOI: 10.1186/1471-2164-9-245] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Accepted: 05/23/2008] [Indexed: 11/10/2022] Open
Abstract
Background Since ancient times the filamentous fungus Aspergillus oryzae has been used in the fermentation industry for the production of fermented sauces and the production of industrial enzymes. Recently, the genome sequence of A. oryzae with 12,074 annotated genes was released but the number of hypothetical proteins accounted for more than 50% of the annotated genes. Considering the industrial importance of this fungus, it is therefore valuable to improve the annotation and further integrate genomic information with biochemical and physiological information available for this microorganism and other related fungi. Here we proposed the gene prediction by construction of an A. oryzae Expressed Sequence Tag (EST) library, sequencing and assembly. We enhanced the function assignment by our developed annotation strategy. The resulting better annotation was used to reconstruct the metabolic network leading to a genome scale metabolic model of A. oryzae. Results Our assembled EST sequences we identified 1,046 newly predicted genes in the A. oryzae genome. Furthermore, it was possible to assign putative protein functions to 398 of the newly predicted genes. Noteworthy, our annotation strategy resulted in assignment of new putative functions to 1,469 hypothetical proteins already present in the A. oryzae genome database. Using the substantially improved annotated genome we reconstructed the metabolic network of A. oryzae. This network contains 729 enzymes, 1,314 enzyme-encoding genes, 1,073 metabolites and 1,846 (1,053 unique) biochemical reactions. The metabolic reactions are compartmentalized into the cytosol, the mitochondria, the peroxisome and the extracellular space. Transport steps between the compartments and the extracellular space represent 281 reactions, of which 161 are unique. The metabolic model was validated and shown to correctly describe the phenotypic behavior of A. oryzae grown on different carbon sources. Conclusion A much enhanced annotation of the A. oryzae genome was performed and a genome-scale metabolic model of A. oryzae was reconstructed. The model accurately predicted the growth and biomass yield on different carbon sources. The model serves as an important resource for gaining further insight into our understanding of A. oryzae physiology.
Collapse
Affiliation(s)
- Wanwipa Vongsangnak
- Department of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark.
| | | | | | | | | |
Collapse
|
767
|
Sun J, Lu X, Rinas U, Zeng AP. Metabolic peculiarities of Aspergillus niger disclosed by comparative metabolic genomics. Genome Biol 2008; 8:R182. [PMID: 17784953 PMCID: PMC2375020 DOI: 10.1186/gb-2007-8-9-r182] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 07/13/2007] [Accepted: 09/04/2007] [Indexed: 11/10/2022] Open
Abstract
A genome-scale metabolic network and an in-depth genomic comparison of Aspergillus niger with seven other fungi is presented, revealing more than 1,100 enzyme-coding genes that are unique to A. niger. Background Aspergillus niger is an important industrial microorganism for the production of both metabolites, such as citric acid, and proteins, such as fungal enzymes or heterologous proteins. Despite its extensive industrial applications, the genetic inventory of this fungus is only partially understood. The recently released genome sequence opens a new horizon for both scientific studies and biotechnological applications. Results Here, we present the first genome-scale metabolic network for A. niger and an in-depth genomic comparison of this species to seven other fungi to disclose its metabolic peculiarities. The raw genomic sequences of A. niger ATCC 9029 were first annotated. The reconstructed metabolic network is based on the annotation of two A. niger genomes, CBS 513.88 and ATCC 9029, including enzymes with 988 unique EC numbers, 2,443 reactions and 2,349 metabolites. More than 1,100 enzyme-coding genes are unique to A. niger in comparison to the other seven fungi. For example, we identified additional copies of genes such as those encoding alternative mitochondrial oxidoreductase and citrate synthase in A. niger, which might contribute to the high citric acid production efficiency of this species. Moreover, nine genes were identified as encoding enzymes with EC numbers exclusively found in A. niger, mostly involved in the biosynthesis of complex secondary metabolites and degradation of aromatic compounds. Conclusion The genome-level reconstruction of the metabolic network and genome-based metabolic comparison disclose peculiarities of A. niger highly relevant to its biotechnological applications and should contribute to future rational metabolic design and systems biology studies of this black mold and related species.
Collapse
Affiliation(s)
- Jibin Sun
- Helmholtz Centre for Infection Research, Inhoffenstr., 38124 Braunschweig, Germany
| | - Xin Lu
- Helmholtz Centre for Infection Research, Inhoffenstr., 38124 Braunschweig, Germany
| | - Ursula Rinas
- Helmholtz Centre for Infection Research, Inhoffenstr., 38124 Braunschweig, Germany
| | - An Ping Zeng
- Helmholtz Centre for Infection Research, Inhoffenstr., 38124 Braunschweig, Germany
- Hamburg University of Technology, Institute of Bioprocess and Biosystems Engineering, Denickestr., 21071 Hamburg, Germany
| |
Collapse
|
768
|
Espagne E, Lespinet O, Malagnac F, Da Silva C, Jaillon O, Porcel BM, Couloux A, Aury JM, Ségurens B, Poulain J, Anthouard V, Grossetete S, Khalili H, Coppin E, Déquard-Chablat M, Picard M, Contamine V, Arnaise S, Bourdais A, Berteaux-Lecellier V, Gautheret D, de Vries RP, Battaglia E, Coutinho PM, Danchin EG, Henrissat B, Khoury RE, Sainsard-Chanet A, Boivin A, Pinan-Lucarré B, Sellem CH, Debuchy R, Wincker P, Weissenbach J, Silar P. The genome sequence of the model ascomycete fungus Podospora anserina. Genome Biol 2008; 9:R77. [PMID: 18460219 PMCID: PMC2441463 DOI: 10.1186/gb-2008-9-5-r77] [Citation(s) in RCA: 233] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 02/12/2008] [Accepted: 05/06/2008] [Indexed: 12/13/2022] Open
Abstract
A 10X draft sequence of Podospora anserina genome shows highly dynamic evolution since its divergence from Neurospora crassa. Background The dung-inhabiting ascomycete fungus Podospora anserina is a model used to study various aspects of eukaryotic and fungal biology, such as ageing, prions and sexual development. Results We present a 10X draft sequence of P. anserina genome, linked to the sequences of a large expressed sequence tag collection. Similar to higher eukaryotes, the P. anserina transcription/splicing machinery generates numerous non-conventional transcripts. Comparison of the P. anserina genome and orthologous gene set with the one of its close relatives, Neurospora crassa, shows that synteny is poorly conserved, the main result of evolution being gene shuffling in the same chromosome. The P. anserina genome contains fewer repeated sequences and has evolved new genes by duplication since its separation from N. crassa, despite the presence of the repeat induced point mutation mechanism that mutates duplicated sequences. We also provide evidence that frequent gene loss took place in the lineages leading to P. anserina and N. crassa. P. anserina contains a large and highly specialized set of genes involved in utilization of natural carbon sources commonly found in its natural biotope. It includes genes potentially involved in lignin degradation and efficient cellulose breakdown. Conclusion The features of the P. anserina genome indicate a highly dynamic evolution since the divergence of P. anserina and N. crassa, leading to the ability of the former to use specific complex carbon sources that match its needs in its natural biotope.
Collapse
Affiliation(s)
- Eric Espagne
- Univ Paris-Sud, Institut de Génétique et Microbiologie, UMR8621, 91405 Orsay cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
769
|
Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 2008; 26:553-60. [DOI: 10.1038/nbt1403] [Citation(s) in RCA: 908] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 03/07/2008] [Indexed: 11/08/2022]
|
770
|
Mort A, Zheng Y, Qiu F, Nimtz M, Bell-Eunice G. Structure of xylogalacturonan fragments from watermelon cell-wall pectin. Endopolygalacturonase can accommodate a xylosyl residue on the galacturonic acid just following the hydrolysis site. Carbohydr Res 2008; 343:1212-21. [DOI: 10.1016/j.carres.2008.03.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 03/07/2008] [Accepted: 03/12/2008] [Indexed: 11/30/2022]
|
771
|
Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ, Crabtree J, Silva JC, Badger JH, Albarraq A, Angiuoli S, Bussey H, Bowyer P, Cotty PJ, Dyer PS, Egan A, Galens K, Fraser-Liggett CM, Haas BJ, Inman JM, Kent R, Lemieux S, Malavazi I, Orvis J, Roemer T, Ronning CM, Sundaram JP, Sutton G, Turner G, Venter JC, White OR, Whitty BR, Youngman P, Wolfe KH, Goldman GH, Wortman JR, Jiang B, Denning DW, Nierman WC. Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet 2008; 4:e1000046. [PMID: 18404212 PMCID: PMC2289846 DOI: 10.1371/journal.pgen.1000046] [Citation(s) in RCA: 362] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2007] [Accepted: 03/04/2008] [Indexed: 01/23/2023] Open
Abstract
We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility (het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer (HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated “gene dumps” and, perhaps, simultaneously, as “gene factories”. Aspergillus is an extremely diverse genus of filamentous ascomycetous fungi (molds) found ubiquitously in soil and decomposing vegetation. Being supreme opportunists, aspergilli have adapted to overcome various chemical, physical, and biological stresses found in heterogeneous environments. While most species in the genus are saprophytes, a surprising number are able to infect wounded plants and animals. Remarkably, the allergic human host also responds abnormally to the aspergilli with lung and sinus disease. The advent of immunosuppressive agents and other medical advances have created a large worldwide pool of human hosts susceptible to some Aspergillus species, including the world's most harmful mold and the causative agent of invasive aspergillosis, Aspergillus fumigatus. In this study, we have used the power of comparative genomics to gain insight into genetic mechanisms that may contribute to the metabolic versatility and pathogenicity of this important human pathogen. Comparison of the genomes of two A. fumigatus clinical isolates and two closely related, but rarely pathogenic species showed that their genomes contain several large isolate- and species-specific chromosomal islands. The metabolic capabilities encoded by these highly labile regions are likely to contribute to their rapid adaptation to heterogeneous environments such as soil or a living host.
Collapse
Affiliation(s)
- Natalie D. Fedorova
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Nora Khaldi
- Department of Genetics, Smurfit Institute, University of Dublin, Trinity College, Dublin, Ireland
| | - Vinita S. Joardar
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rama Maiti
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Paolo Amedeo
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Michael J. Anderson
- School of Medicine and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Jonathan Crabtree
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Joana C. Silva
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Jonathan H. Badger
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Ahmed Albarraq
- School of Medicine and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Sam Angiuoli
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Howard Bussey
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Paul Bowyer
- School of Medicine and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Peter J. Cotty
- Agricultural Research Service, United States Department of Agriculture, Department of Plant Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Paul S. Dyer
- School of Biology, University of Nottingham, Nottingham, United Kingdom
| | - Amy Egan
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Kevin Galens
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Brian J. Haas
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Jason M. Inman
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Richard Kent
- School of Medicine and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Sebastien Lemieux
- Institute for Research in Immunology and Cancer, Department of Computer Science and Operations Research, Universite de Montreal, Montreal, Canada
| | - Iran Malavazi
- Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Joshua Orvis
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Terry Roemer
- Merck & Co., Inc., Whitehouse Station, New Jersey, United States of America
| | | | - Jaideep P. Sundaram
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Granger Sutton
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Geoff Turner
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - J. Craig Venter
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Owen R. White
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Brett R. Whitty
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Phil Youngman
- Merck & Co., Inc., Whitehouse Station, New Jersey, United States of America
| | - Kenneth H. Wolfe
- Department of Genetics, Smurfit Institute, University of Dublin, Trinity College, Dublin, Ireland
| | - Gustavo H. Goldman
- Departamento de Ciencias Farmaceuticas, Faculdade de Ciencias Farmaceuticas de Ribeirao Preto, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Jennifer R. Wortman
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Bo Jiang
- Merck & Co., Inc., Whitehouse Station, New Jersey, United States of America
| | - David W. Denning
- School of Medicine and Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - William C. Nierman
- The J. Craig Venter Institute, Rockville, Maryland, United States of America
- Department of Biochemistry and Molecular Biology, The George Washington University School of Medicine, Washington DC, United States of America
- * E-mail:
| |
Collapse
|
772
|
Fischer R, Zekert N, Takeshita N. Polarized growth in fungi--interplay between the cytoskeleton, positional markers and membrane domains. Mol Microbiol 2008; 68:813-26. [PMID: 18399939 DOI: 10.1111/j.1365-2958.2008.06193.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
One kind of the most extremely polarized cells in nature are the indefinitely growing hyphae of filamentous fungi. A continuous flow of secretion vesicles from the hyphal cell body to the growing hyphal tip is essential for cell wall and membrane extension. Because microtubules (MT) and actin, together with their corresponding motor proteins, are involved in the process, the arrangement of the cytoskeleton is a crucial step to establish and maintain polarity. In Saccharomyces cerevisiae and Schizosaccharomyces pombe, actin-mediated vesicle transportation is sufficient for polar cell extension, but in S. pombe, MTs are in addition required for the establishment of polarity. The MT cytoskeleton delivers the so-called cell-end marker proteins to the cell pole, which in turn polarize the actin cytoskeleton. Latest results suggest that this scenario may principally be conserved from S. pombe to filamentous fungi. In addition, in filamentous fungi, MTs could provide the tracks for long-distance vesicle movement. In this review, we will compare the interaction of the MT and the actin cytoskeleton and their relation to the cortex between yeasts and filamentous fungi. In addition, we will discuss the role of sterol-rich membrane domains in combination with cell-end marker proteins for polarity establishment.
Collapse
Affiliation(s)
- Reinhard Fischer
- Department of Applied Microbiology, University of Karlsruhe, Hertzstrasse 16, D-76187 Karlsruhe, Germany
| | | | | |
Collapse
|
773
|
Melin P, Stratford M, Plumridge A, Archer DB. Auxotrophy for uridine increases the sensitivity of Aspergillus niger to weak-acid preservatives. Microbiology (Reading) 2008; 154:1251-1257. [DOI: 10.1099/mic.0.2007/014332-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Petter Melin
- Department of Microbiology, Swedish University of Agricultural Sciences, PO Box 7025, SE-750 07 Uppsala, Sweden
- School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Malcolm Stratford
- School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Andrew Plumridge
- School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - David B. Archer
- School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| |
Collapse
|
774
|
Josic D, Kovač S. Application of proteomics in biotechnology – Microbial proteomics. Biotechnol J 2008; 3:496-509. [DOI: 10.1002/biot.200700234] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
775
|
Andersen MR, Nielsen ML, Nielsen J. Metabolic model integration of the bibliome, genome, metabolome and reactome of Aspergillus niger. Mol Syst Biol 2008; 4:178. [PMID: 18364712 PMCID: PMC2290933 DOI: 10.1038/msb.2008.12] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 01/28/2008] [Indexed: 11/09/2022] Open
Abstract
The release of the genome sequences of two strains of Aspergillus niger has allowed systems-level investigations of this important microbial cell factory. To this end, tools for doing data integration of multi-ome data are necessary, and especially interesting in the context of metabolism. On the basis of an A. niger bibliome survey, we present the largest model reconstruction of a metabolic network reported for a fungal species. The reconstructed gapless metabolic network is based on the reportings of 371 articles and comprises 1190 biochemically unique reactions and 871 ORFs. Inclusion of isoenzymes increases the total number of reactions to 2240. A graphical map of the metabolic network is presented. All levels of the reconstruction process were based on manual curation. From the reconstructed metabolic network, a mathematical model was constructed and validated with data on yields, fluxes and transcription. The presented metabolic network and map are useful tools for examining systemwide data in a metabolic context. Results from the validated model show a great potential for expanding the use of A. niger as a high-yield production platform.
Collapse
Affiliation(s)
- Mikael Rørdam Andersen
- Center for Microbial Biotechnology, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark
| | | | | |
Collapse
|
776
|
Repeat induced point mutation in two asexual fungi, Aspergillus niger and Penicillium chrysogenum. Curr Genet 2008; 53:287-97. [PMID: 18347798 DOI: 10.1007/s00294-008-0185-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 02/25/2008] [Accepted: 03/02/2008] [Indexed: 01/28/2023]
Abstract
Repeat induced point mutation (RIP) is a gene silencing mechanism present in fungal genomes. During RIP, duplicated sequences are efficiently and irreversibly mutated by transitions from C:G to T:A. For the first time, we have identified traces of RIP in transposable elements of Aspergillus niger and Penicillium chrysogenum, two biotechnologically relevant fungi. We found that RIP in P. chrysogenum has affected a large set of sequences, which also contain other mutations. On the other hand, RIP in A. niger is limited to only few sequences, but literally all mutations are RIP-like. Surprisingly, RIP occurred only in transposon sequences that have disrupted open reading frames in A. niger, a phenomenon not yet reported for other fungi. In both fungal species, we identified two sequences with strong sequence similarity to Neurospora crassa RID. RID is a putative DNA methyltransferase and the only known enzyme involved in the RIP process. Our findings suggest that both A. niger and P. chrysogenum either had a sexual past or have a sexual potential. These findings have important implications for future strain development of these fungi.
Collapse
|
777
|
Sanchez JF, Chiang YM, Wang CCC. Diversity of Polyketide Synthases Found in the Aspergillus and Streptomyces Genomes. Mol Pharm 2008; 5:226-33. [DOI: 10.1021/mp700139t] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- James F. Sanchez
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089, Graduate Institute of Pharmaceutical Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, ROC, and Department of Chemistry, College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089
| | - Yi-Ming Chiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089, Graduate Institute of Pharmaceutical Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, ROC, and Department of Chemistry, College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, California 90089, Graduate Institute of Pharmaceutical Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan, ROC, and Department of Chemistry, College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
778
|
A xyloglucan-specific family 12 glycosyl hydrolase from Aspergillus niger: recombinant expression, purification and characterization. Biochem J 2008; 411:161-70. [PMID: 18072936 DOI: 10.1042/bj20070819] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A new GH12 (glycosyl hydrolase 12) family XEG [xyloglucan-specific endo-β-1,4-glucanase (EC 3.2.1.151)] from Aspergillus niger, AnXEG12A, was overexpressed, purified and characterized. Whereas seven xyloglucanases from GH74 and two xyloglucanases from GH5 have been characterized previously, this is only the third characterized example of a GH12 family xyloglucanase. GH12 enzymes are structurally and mechanistically distinct from GH74 enzymes. Although over 100 GH12 sequences are now available, little is known about the structural and biochemical bases of xyloglucan binding and hydrolysis by GH12 enzymes. Comparison of the AnXEG12A cDNA sequence with the genome sequence of A. niger showed the presence of two introns, one in the coding region and the second one in the 333-nt-long 3′-untranslated region of the transcript. The enzyme was expressed recombinantly in A. niger and was readily purified from the culture supernatant. The isolated enzyme appeared to have been processed by a kexin-type protease, which removed a short prosequence. The substrate specificity was restricted to xyloglucan, with cleavage at unbranched glucose in the backbone. The apparent kinetic parameters were similar to those reported for other xyloglucan-degrading endoglucanases. The pH optimum (5.0) and temperature resulting in highest enzyme activity (50–60 °C) were higher than those reported for a GH12 family xyloglucanase from Aspergillus aculeatus, but similar to those of cellulose-specific endoglucanases from the GH12 family. Phylogenetic, sequence and structural comparisons of GH12 family endoglucanases helped to delineate features that appear to be correlated to xyloglucan specificity.
Collapse
|
779
|
Schneider P, Misiek M, Hoffmeister D. In Vivo and In Vitro Production Options for Fungal Secondary Metabolites. Mol Pharm 2008; 5:234-42. [DOI: 10.1021/mp7001544] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Patrick Schneider
- Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universität, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany, and Department of Plant Pathology, University of Minnesota—Twin Cities Campus, 1991 Upper Buford Circle, St. Paul, Minnesota 55108
| | - Mathias Misiek
- Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universität, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany, and Department of Plant Pathology, University of Minnesota—Twin Cities Campus, 1991 Upper Buford Circle, St. Paul, Minnesota 55108
| | - Dirk Hoffmeister
- Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universität, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany, and Department of Plant Pathology, University of Minnesota—Twin Cities Campus, 1991 Upper Buford Circle, St. Paul, Minnesota 55108
| |
Collapse
|
780
|
A trispecies Aspergillus microarray: comparative transcriptomics of three Aspergillus species. Proc Natl Acad Sci U S A 2008; 105:4387-92. [PMID: 18332432 DOI: 10.1073/pnas.0709964105] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The full-genome sequencing of the filamentous fungi Aspergillus nidulans, Aspergillus niger, and Aspergillus oryzae has opened possibilities for studying the cellular physiology of these fungi on a systemic level. As a tool to explore this, we are making available an Affymetrix GeneChip developed for transcriptome analysis of any of the three above-mentioned aspergilli. Transcriptome analysis of triplicate batch cultivations of all three aspergilli on glucose and xylose media was used to validate the performance of the microarray. Gene comparisons of all three species and cross-analysis with the expression data identified 23 genes to be a conserved response across Aspergillus sp., including the xylose transcriptional activator XlnR. A promoter analysis of the up-regulated genes in all three species indicates the conserved XlnR-binding site to be 5'-GGNTAAA-3'. The composition of the conserved gene-set suggests that xylose acts as a molecule, indicating the presence of complex carbohydrates such as hemicellulose, and triggers an array of degrading enzymes. With this case example, we present a validated tool for transcriptome analysis of three Aspergillus species and a methodology for conducting cross-species evolutionary studies within a genus using comparative transcriptomics.
Collapse
|
781
|
Yuan XL, van der Kaaij RM, van den Hondel CAMJJ, Punt PJ, van der Maarel MJEC, Dijkhuizen L, Ram AFJ. Aspergillus niger genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles. Mol Genet Genomics 2008; 279:545-61. [PMID: 18320228 PMCID: PMC2413074 DOI: 10.1007/s00438-008-0332-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 02/14/2008] [Indexed: 11/25/2022]
Abstract
The filamentous ascomycete Aspergillus niger is well known for its ability to produce a large variety of enzymes for the degradation of plant polysaccharide material. A major carbon and energy source for this soil fungus is starch, which can be degraded by the concerted action of α-amylase, glucoamylase and α-glucosidase enzymes, members of the glycoside hydrolase (GH) families 13, 15 and 31, respectively. In this study we have combined analysis of the genome sequence of A. niger CBS 513.88 with microarray experiments to identify novel enzymes from these families and to predict their physiological functions. We have identified 17 previously unknown family GH13, 15 and 31 enzymes in the A. niger genome, all of which have orthologues in other aspergilli. Only two of the newly identified enzymes, a putative α-glucosidase (AgdB) and an α-amylase (AmyC), were predicted to play a role in starch degradation. The expression of the majority of the genes identified was not induced by maltose as carbon source, and not dependent on the presence of AmyR, the transcriptional regulator for starch degrading enzymes. The possible physiological functions of the other predicted family GH13, GH15 and GH31 enzymes, including intracellular enzymes and cell wall associated proteins, in alternative α-glucan modifying processes are discussed.
Collapse
Affiliation(s)
- Xiao-Lian Yuan
- Clusius Laboratory, Molecular Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Institute of Biology Leiden, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
- Microarray Department, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
| | - Rachel M. van der Kaaij
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
- Centre for Carbohydrate Bioprocessing, TNO, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Cees A. M. J. J. van den Hondel
- Clusius Laboratory, Molecular Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Institute of Biology Leiden, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | - Peter J. Punt
- TNO Quality of Life, Business Unit Food and Biotechnology Innovations, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | - Marc J. E. C. van der Maarel
- Centre for Carbohydrate Bioprocessing, TNO, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
- TNO Quality of Life, Business Unit Food and Biotechnology Innovations, Rouaanstraat 27, 9723 CC Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
- Centre for Carbohydrate Bioprocessing, TNO, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Arthur F. J. Ram
- Clusius Laboratory, Molecular Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Institute of Biology Leiden, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| |
Collapse
|
782
|
Šolar T, Turšič J, Legiša M. The role of glucosamine-6-phosphate deaminase at the early stages of Aspergillus niger growth in a high-citric-acid-yielding medium. Appl Microbiol Biotechnol 2008; 78:613-9. [DOI: 10.1007/s00253-007-1339-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 12/19/2007] [Accepted: 12/19/2007] [Indexed: 10/22/2022]
|
783
|
van der Kaaij RM, Janeček Š, van der Maarel MJEC, Dijkhuizen L. Phylogenetic and biochemical characterization of a novel cluster of intracellular fungal alpha-amylase enzymes. MICROBIOLOGY-SGM 2008; 153:4003-4015. [PMID: 18048915 DOI: 10.1099/mic.0.2007/008607-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Currently known fungal alpha-amylases are well-characterized extracellular enzymes that are classified into glycoside hydrolase subfamily GH13_1. This study describes the identification, and phylogenetic and biochemical analysis of novel intracellular fungal alpha-amylases. The phylogenetic analysis shows that they cluster in the recently identified subfamily GH13_5 and display very low similarity to fungal alpha-amylases of family GH13_1. Homologues of these intracellular enzymes are present in the genome sequences of all filamentous fungi studied, including ascomycetes and basidiomycetes. One of the enzymes belonging to this new group, Amy1p from Histoplasma capsulatum, has recently been functionally linked to the formation of cell wall alpha-glucan. To study the biochemical characteristics of this novel cluster of alpha-amylases, we overexpressed and purified a homologue from Aspergillus niger, AmyD, and studied its activity product profile with starch and related substrates. AmyD has a relatively low hydrolysing activity on starch (2.2 U mg(-1)), producing mainly maltotriose. A possible function of these enzymes in relation to cell wall alpha-glucan synthesis is discussed.
Collapse
Affiliation(s)
- R M van der Kaaij
- Centre for Carbohydrate Bioprocessing, TNO-University of Groningen, Haren, The Netherlands.,Microbial Physiology Research Group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, The Netherlands
| | - Š Janeček
- Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - M J E C van der Maarel
- Business Unit Food and Biotechnology Innovations, TNO Quality of Life, Groningen, The Netherlands.,Centre for Carbohydrate Bioprocessing, TNO-University of Groningen, Haren, The Netherlands.,Microbial Physiology Research Group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, The Netherlands
| | - L Dijkhuizen
- Centre for Carbohydrate Bioprocessing, TNO-University of Groningen, Haren, The Netherlands.,Microbial Physiology Research Group, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, The Netherlands
| |
Collapse
|
784
|
Some distinguishable properties between acid-stable and neutral types of alpha-amylases from acid-producing koji. J Biosci Bioeng 2008; 104:353-62. [PMID: 18086434 DOI: 10.1263/jbb.104.353] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 07/31/2007] [Indexed: 11/17/2022]
Abstract
The highly humid climate of Japan facilitates the growth of various molds. Among these molds, Aspergillus oryzae is the most important and popular in Japan, and has been used as yellow-koji in producing many traditional fermented beverages and foods, such as Japanese sake, and soy sauce. Taka-amylase A (TAA), a major enzyme produced by the mold, is well known worldwide to be a leading enzyme for industrial utilization and academic study, since many extensive studies have been carried out with TAA. In southern Kyushu, the other koji's of citric acid-producing molds have often been used, such as in the production of a traditional distilled liquor of shochu. The koji molds black-koji and white-koji produce two types of alpha-amylase, namely, acid-stable (AA) and common neutral (NA). The latter enzyme is enzymatically and genetically similar to TAA. In this review, we investigate AA from three molds, Aspergillus niger, A. kawachii and A. awamori, and the yeast Cryptococcus sp. regarding the distinguishable properties between AA and NA. (i) The N-terminus amino acid sequences of AA determined by molecular cloning started with the sequence of L-S-A-, whereas those of NA started with A-T-P-. (ii) Most of the full sequences of AA were composed of, besides a core catalytic domain, an extra domain of a hinge region and a carbohydrate binding domain, which could be responsible for raw-starch-digestibility. The AA from A. niger has no exceptionally extra domain, similarly to NA. (iii) Simple methods for distinguishing AA from NA using CNP-alpha-G3 and G5 as substrates were developed by our group. (iv) The number of subsite in AA on the basis of its cleavage pattern of maltooligosaccharides was estimated to be five, which differs from that of TAA, 7-9. AA has many advantages in industrial applications, such as its acid-stability, thermostability, and raw-starch digesting properties.
Collapse
|
785
|
A novel screening method for cell wall mutants in Aspergillus niger identifies UDP-galactopyranose mutase as an important protein in fungal cell wall biosynthesis. Genetics 2008; 178:873-81. [PMID: 18245853 DOI: 10.1534/genetics.107.073148] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To identify cell wall biosynthetic genes in filamentous fungi and thus potential targets for the discovery of new antifungals, we developed a novel screening method for cell wall mutants. It is based on our earlier observation that the Aspergillus niger agsA gene, which encodes a putative alpha-glucan synthase, is strongly induced in response to cell wall stress. By placing the agsA promoter region in front of a selectable marker, the acetamidase (amdS) gene of A. nidulans, we reasoned that cell wall mutants with a constitutively active cell wall stress response pathway could be identified by selecting mutants for growth on acetamide as the sole nitrogen source. For the genetic screen, a strain was constructed that contained two reporter genes controlled by the same promoter: the metabolic reporter gene PagsA-amdS and PagsA-H2B-GFP, which encodes a GFP-tagged nuclear protein. The primary screen yielded 161 mutants that were subjected to various cell wall-related secondary screens. Four calcofluor white-hypersensitive, osmotic-remediable thermosensitive mutants were selected for complementation analysis. Three mutants were complemented by the same gene, which encoded a protein with high sequence identity with eukaryotic UDP-galactopyranose mutases (UgmA). Our results indicate that galactofuranose formation is important for fungal cell wall biosynthesis and represents an attractive target for the development of antifungals.
Collapse
|
786
|
The effects of bioprocess parameters on extracellular proteases in a recombinant Aspergillus niger B1-D. Appl Microbiol Biotechnol 2008; 78:333-41. [DOI: 10.1007/s00253-007-1298-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 11/10/2007] [Accepted: 11/22/2007] [Indexed: 11/27/2022]
|
787
|
Sauer M, Porro D, Mattanovich D, Branduardi P. Microbial production of organic acids: expanding the markets. Trends Biotechnol 2008; 26:100-8. [DOI: 10.1016/j.tibtech.2007.11.006] [Citation(s) in RCA: 460] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 11/05/2007] [Accepted: 11/06/2007] [Indexed: 10/22/2022]
|
788
|
Levasseur A, Piumi F, Coutinho PM, Rancurel C, Asther M, Delattre M, Henrissat B, Pontarotti P, Asther M, Record E. FOLy: an integrated database for the classification and functional annotation of fungal oxidoreductases potentially involved in the degradation of lignin and related aromatic compounds. Fungal Genet Biol 2008; 45:638-45. [PMID: 18308593 DOI: 10.1016/j.fgb.2008.01.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Revised: 01/14/2008] [Accepted: 01/15/2008] [Indexed: 10/22/2022]
Abstract
The breakdown of lignin by fungi is a key step during carbon recycling in terrestrial ecosystems. This process is of great interest for green and white biotechnological applications. Given the importance of these enzymatic processes, we have classified the enzymes potentially involved in lignin catabolism into sequence-based families and integrated them in a newly developed database, designated Fungal Oxidative Lignin enzymes (FOLy). Families were defined after sequence similarity searches starting from protein sequences and validated by the convergence of results with biochemical experiments reported in the literature. The resulting database was applied as a tool for the functional annotation of genomes from different fungi, namely (i) the Basidiomycota Coprinopsis cinerea, Phanerochaete chrysosporium and Ustilago maydis and (ii) the Ascomycota Aspergillus nidulans and Trichoderma reesei. Genomic comparison of the oxidoreductases of these fungi revealed significant differences in the putative enzyme arsenals. Two Ascomycota fungal genomes were annotated and new candidate genes were identified that could be useful for lignin degradation and (or) melanin synthesis, and their function investigated experimentally. This database efforts aims at providing the means to get new insights for the understanding and biotechnological exploitation of the lignin degradation. A WWW server giving access to the routinely updated FOLy classifications of enzymes potentially involved in lignin degradation can be found at http://foly.esil.univ-mrs.fr.
Collapse
Affiliation(s)
- Anthony Levasseur
- UMR 1163 INRA de Biotechnologie des Champignons Filamenteux, IFR86-BAIM, Universités de Provence et de la Méditerranée, ESIL, 163 Avenue de Luminy, Case Postale 925, 13288 Marseille Cedex 09, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
789
|
Regulation of transcription of cellulases- and hemicellulases-encoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Appl Microbiol Biotechnol 2008; 78:211-20. [PMID: 18197406 DOI: 10.1007/s00253-007-1322-0] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 12/06/2007] [Accepted: 12/08/2007] [Indexed: 10/22/2022]
Abstract
The filamentous fungi Aspergillus niger and Hypocrea jecorina (Trichoderma reesei) have been the subject of many studies investigating the mechanism of transcriptional regulation of hemicellulase- and cellulase-encoding genes. The transcriptional regulator XlnR that was initially identified in A. niger as the transcriptional regulator of xylanase-encoding genes controls the transcription of about 20-30 genes encoding hemicellulases and cellulases. The orthologous xyr1 (xylanase regulator 1-encoding) gene product of H. jecorina has a similar function as XlnR, although at points, the mechanisms seems to be different. Specifically in H. jecorina, the interaction of Xyr1 and the co-regulators Ace1 and Ace2 in the regulation of transcription of xylanases and cellulases has been studied. This paper describes the similarities and differences in the transcriptional regulation of expression of hemicellulases and cellulases in A. niger and H. jecorina.
Collapse
|
790
|
da Silva Castro N, Barbosa MS, Maia ZA, Báo SN, Felipe MSS, Santana JM, Soares Mendes-Giannini MJ, Pereira M, de Almeida Soares CM. Characterization ofParacoccidioides brasiliensis PbDfg5p, a cell-wall protein implicated in filamentous growth. Yeast 2008; 25:141-54. [DOI: 10.1002/yea.1574] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
791
|
Wang Y, Xue W, Sims AH, Zhao C, Wang A, Tang G, Qin J, Wang H. Isolation of four pepsin-like protease genes from Aspergillus niger and analysis of the effect of disruptions on heterologous laccase expression. Fungal Genet Biol 2008; 45:17-27. [DOI: 10.1016/j.fgb.2007.09.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 09/24/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
|
792
|
Fajardo López M, Dietz S, Grunze N, Bloschies J, Weiß M, Nehls U. The sugar porter gene family of Laccaria bicolor: function in ectomycorrhizal symbiosis and soil-growing hyphae. THE NEW PHYTOLOGIST 2008; 180:365-378. [PMID: 18627493 DOI: 10.1111/j.1469-8137.2008.02539.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Formation of ectomycorrhizas, a symbiosis with fine roots of woody plants, is one way for soil fungi to overcome carbohydrate limitation in forest ecosystems. Fifteen potential hexose transporter proteins, of which 10 group within three clusters, are encoded in the genome of the ectomycorrhizal model fungus Laccaria bicolor. For 14 of them, transcripts were detectable. When grown in liquid culture, carbon starvation resulted in at least twofold higher transcript abundances for seven genes. Temporarily elevated transcript abundance after sugar addition was observed for three genes. Compared with the extraradical mycelium, ectomycorrhiza formation resulted in a strongly enhanced expression of six genes, of which four revealed their highest observed transcript abundances in symbiosis. A function as hexose importer was proven for three of them. Only three genes, of which just one was expressed at a considerable level, revealed a reduced transcript content in mycorrhizas. From gene expression patterns and import kinetics, the L. bicolor hexose transporters could be divided into two groups: those responsible for uptake of carbohydrates by soil-growing hyphae, for improved carbon nutrition, and to reduce nutrient uptake competition by other soil microorganisms; and those responsible for efficient hexose uptake at the plant-fungus interface.
Collapse
Affiliation(s)
- Mónica Fajardo López
- Eberhard-Karls-Universität, Physiologische Ökologie der Pflanzen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | - Sandra Dietz
- Eberhard-Karls-Universität, Physiologische Ökologie der Pflanzen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | - Nina Grunze
- Eberhard-Karls-Universität, Physiologische Ökologie der Pflanzen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | - Jutta Bloschies
- Eberhard-Karls-Universität, Physiologische Ökologie der Pflanzen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | - Michael Weiß
- Eberhard-Karls-Universität, Spezielle Botanik und Mykologie, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| | - Uwe Nehls
- Eberhard-Karls-Universität, Physiologische Ökologie der Pflanzen, Auf der Morgenstelle 1, D-72076 Tübingen, Germany
| |
Collapse
|
793
|
Cochrane G, Akhtar R, Aldebert P, Althorpe N, Baldwin A, Bates K, Bhattacharyya S, Bonfield J, Bower L, Browne P, Castro M, Cox T, Demiralp F, Eberhardt R, Faruque N, Hoad G, Jang M, Kulikova T, Labarga A, Leinonen R, Leonard S, Lin Q, Lopez R, Lorenc D, McWilliam H, Mukherjee G, Nardone F, Plaister S, Robinson S, Sobhany S, Vaughan R, Wu D, Zhu W, Apweiler R, Hubbard T, Birney E. Priorities for nucleotide trace, sequence and annotation data capture at the Ensembl Trace Archive and the EMBL Nucleotide Sequence Database. Nucleic Acids Res 2008; 36:D5-12. [PMID: 18039715 PMCID: PMC2238915 DOI: 10.1093/nar/gkm1018] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 10/23/2007] [Accepted: 10/27/2007] [Indexed: 11/29/2022] Open
Abstract
The Ensembl Trace Archive (http://trace.ensembl.org/) and the EMBL Nucleotide Sequence Database (http://www.ebi.ac.uk/embl/), known together as the European Nucleotide Archive, continue to see growth in data volume and diversity. Selected major developments of 2007 are presented briefly, along with data submission and retrieval information. In the face of increasing requirements for nucleotide trace, sequence and annotation data archiving, data capture priority decisions have been taken at the European Nucleotide Archive. Priorities are discussed in terms of how reliably information can be captured, the long-term benefits of its capture and the ease with which it can be captured.
Collapse
Affiliation(s)
- Guy Cochrane
- EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
794
|
siRNA as a molecular tool for use in Aspergillus niger. Biotechnol Lett 2007; 30:885-90. [PMID: 18066687 DOI: 10.1007/s10529-007-9614-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 11/15/2007] [Indexed: 10/22/2022]
Abstract
Gene silencing using siRNA has been examined in the industrially-important fungus, Aspergillus niger. Protoplasts of an A. niger strain containing a single genomic copy of the Escherichia coli uidA gene, encoding beta-glucuronidase (GUS), under control of the A. niger glaA promoter at the same genomic locus, were exposed to siRNA targeted against the uidA gene. Down-regulation of uidA mRNA and GUS activity by siRNA was observed in mycelia that developed from the protoplasts. The down-regulation was transient and was not carried over to conidiation. We concluded that gene silencing by siRNA provides a relatively quick method for analysis of gene function in A. niger.
Collapse
|
795
|
Levin AM, de Vries RP, Conesa A, de Bekker C, Talon M, Menke HH, van Peij NNME, Wösten HAB. Spatial differentiation in the vegetative mycelium of Aspergillus niger. EUKARYOTIC CELL 2007; 6:2311-22. [PMID: 17951513 PMCID: PMC2168252 DOI: 10.1128/ec.00244-07] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2007] [Accepted: 10/10/2007] [Indexed: 11/20/2022]
Abstract
Fungal mycelia are exposed to heterogenic substrates. The substrate in the central part of the colony has been (partly) degraded, whereas it is still unexplored at the periphery of the mycelium. We here assessed whether substrate heterogeneity is a main determinant of spatial gene expression in colonies of Aspergillus niger. This question was addressed by analyzing whole-genome gene expression in five concentric zones of 7-day-old maltose- and xylose-grown colonies. Expression profiles at the periphery and the center were clearly different. More than 25% of the active genes showed twofold differences in expression between the inner and outermost zones of the colony. Moreover, 9% of the genes were expressed in only one of the five concentric zones, showing that a considerable part of the genome is active in a restricted part of the colony only. Statistical analysis of expression profiles of colonies that had either been or not been transferred to fresh xylose-containing medium showed that differential expression in a colony is due to the heterogeneity of the medium (e.g., genes involved in secretion, genes encoding proteases, and genes involved in xylose metabolism) as well as to medium-independent mechanisms (e.g., genes involved in nitrate metabolism and genes involved in cell wall synthesis and modification). Thus, we conclude that the mycelia of 7-day-old colonies of A. niger are highly differentiated. This conclusion is also indicated by the fact that distinct zones of the colony grow and secrete proteins, even after transfer to fresh medium.
Collapse
Affiliation(s)
- Ana M Levin
- Microbiology, Institute of Biomembranes, Utrecht University, Padulaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
796
|
Frisvad JC, Smedsgaard J, Samson RA, Larsen TO, Thrane U. Fumonisin B2 production by Aspergillus niger. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:9727-9732. [PMID: 17929891 DOI: 10.1021/jf0718906] [Citation(s) in RCA: 248] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The carcinogenic mycotoxin fumonisin B2 was detected for the first time in the industrially important Aspergillus niger. Fumonisin B2, known from Fusarium verticillioides and other Fusaria, was detected in cultures of three full genome sequenced strains of A. niger, in the ex type culture and in a culture of F. verticillioides by electrospray LC-MS analysis of methanolic extracts from agar plugs of cultures grown on several substrates. Whereas F. verticillioides produced fumonisins B1, B2, and B3 on agar media based on plant extracts, such as barley malt, oat, rice, potatoes, and carrots, A. niger produced fumonisin B2 best on agar media with a low water activity, including Czapek yeast autolysate agar with 5% NaCl. Of the media tested, only rice corn steep agar supported fumonisin production by both F. verticillioides and A. niger. However, A. niger had a different regulation of fumonisin production and a different quantitative profile of fumonisins, producing only B2 as compared to F. verticillioides. Fumonisin production by A. niger, which is a widely occurring species and an extremely important industrial organism, will have very important implications for biotechnology and especially food safety. A. niger is used for the production of citric acid and as producer of extracellular enzymes, and also as a transformation host for the expression of heterologous proteins. Certain strains of A. niger produce both ochratoxin A and fumonisins, so some foods and feeds may potentially contain two types of carcinogenic mycotoxins from this species.
Collapse
Affiliation(s)
- Jens C Frisvad
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | | | |
Collapse
|
797
|
Benoit I, Danchin EGJ, Bleichrodt RJ, de Vries RP. Biotechnological applications and potential of fungal feruloyl esterases based on prevalence, classification and biochemical diversity. Biotechnol Lett 2007; 30:387-96. [PMID: 17973091 DOI: 10.1007/s10529-007-9564-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 10/01/2007] [Indexed: 10/22/2022]
Abstract
Feruloyl esterases are part of the enzymatic spectrum employed by fungi and other microorganisms to degrade plant polysaccharides. They release ferulic acid and other aromatic acids from these polymeric structures and have received an increasing interest in industrial applications such as in the food, pulp and paper and bio-fuel industries. This review provides an overview of the current knowledge on fungal feruloyl esterases focussing in particular on the differences in substrate specificity, regulation of their production, prevalence of these enzymes in fungal genomes and industrial applications.
Collapse
Affiliation(s)
- Isabelle Benoit
- Unité Génie Microbiologique et Enzymatique, SupAgro-INRA, Bâtiment 32, 2 Place Pierre Viala, Montpellier, France
| | | | | | | |
Collapse
|
798
|
Yuan XL, Roubos JA, van den Hondel CAMJJ, Ram AFJ. Identification of InuR, a new Zn(II)2Cys6 transcriptional activator involved in the regulation of inulinolytic genes in Aspergillus niger. Mol Genet Genomics 2007; 279:11-26. [PMID: 17917744 PMCID: PMC2129107 DOI: 10.1007/s00438-007-0290-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 09/11/2007] [Indexed: 11/25/2022]
Abstract
The expression of inulinolytic genes in Aspergillus niger is co-regulated and induced by inulin and sucrose. We have identified a positive acting transcription factor InuR, which is required for the induced expression of inulinolytic genes. InuR is a member of the fungal specific class of transcription factors of the Zn(II)2Cys6 type. Involvement of InuR in inulin and sucrose metabolism was suspected because of the clustering of inuR gene with sucB, which encodes an intracellular invertase with transfructosylation activity and a putative sugar transporter encoding gene (An15g00310). Deletion of the inuR gene resulted in a strain displaying a severe reduction in growth on inulin and sucrose medium. Northern analysis revealed that expression of inulinolytic and sucrolytic genes, e.g., inuE, inuA, sucA, as well as the putative sugar transporter gene (An15g00310) is dependent on InuR. Genome-wide expression analysis revealed, three additional putative sugar transporters encoding genes (An15g04060, An15g03940 and An17g01710), which were strongly induced by sucrose in an InuR dependent way. In silico analysis of the promoter sequences of strongly InuR regulated genes suggests that InuR might bind as dimer to two CGG triplets, which are separated by eight nucleotides.
Collapse
Affiliation(s)
- Xiao-Lian Yuan
- Institute of Biology, Clusius Laboratory, Molecular Microbiology, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | - Cees A. M. J. J. van den Hondel
- Institute of Biology, Clusius Laboratory, Molecular Microbiology, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | - Arthur F. J. Ram
- Institute of Biology, Clusius Laboratory, Molecular Microbiology, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| |
Collapse
|
799
|
Kolaríková K, Galuszka P, Sedlárová I, Sebela M, Frébort I. Functional expression of amine oxidase from Aspergillus niger (AO-I) in Saccharomyces cerevisiae. Mol Biol Rep 2007; 36:13-20. [PMID: 17899443 DOI: 10.1007/s11033-007-9146-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
Abstract
The aim of this work was to prepare recombinant amine oxidase from Aspergillus niger after overexpressing in yeast. The yeast expression vector pDR197 that includes a constitutive PMA1 promoter was used for the expression in Saccharomyces cerevisiae. Recombinant amine oxidase was extracted from the growth medium of the yeast, purified to homogeneity and identified by activity assay and MALDI-TOF peptide mass fingerprinting. Similarity search in the newly published A. niger genome identified six genes coding for copper amine oxidase, two of them corresponding to the previously described enzymes AO-I a methylamine oxidase and three other genes coding for FAD amine oxidases. Thus, A. niger possesses an enormous metabolic gear to grow on amine compounds and thus support its saprophytic lifestyle.
Collapse
Affiliation(s)
- Katerina Kolaríková
- Department of Biochemistry, Palacký University, Slechtitelů 11, 783 71, Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
800
|
Shoji JY, Arioka M, Kitamoto K. Dissecting cellular components of the secretory pathway in filamentous fungi: insights into their application for protein production. Biotechnol Lett 2007; 30:7-14. [PMID: 17846708 DOI: 10.1007/s10529-007-9516-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 07/26/2007] [Accepted: 08/13/2007] [Indexed: 11/29/2022]
Abstract
Studies on protein production using filamentous fungi have mostly focused on improvement of the protein yields by genetic modifications such as overexpression. Recent genome sequencing in several filamentous fungal species now enables more systematic approaches based on reverse genetics and molecular biology of the secretion pathway. In this review, we summarize recent molecular-based advances in our understanding of vesicular trafficking in filamentous fungi, and discuss insights into their high secretion ability and application for protein production.
Collapse
Affiliation(s)
- Jun-ya Shoji
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-8657, Japan
| | | | | |
Collapse
|