751
|
|
752
|
Liu C, Zou G, Peng S, Wang Y, Yang W, Wu F, Jiang Z, Zhang X, Zhou X. 5-Formyluracil as a Multifunctional Building Block in Biosensor Designs. Angew Chem Int Ed Engl 2018; 57:9689-9693. [DOI: 10.1002/anie.201804007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/27/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Chaoxing Liu
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Guangrong Zou
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Yafen Wang
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Wei Yang
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Fan Wu
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Zhuoran Jiang
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Xiong Zhang
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences; Key Laboratory of Biomedical Polymers of, Ministry of Education; The Institute for Advanced Studies; Hubei Province Key Laboratory of Allergy and Immunology; Wuhan University; Wuhan Hubei 430072 P. R. China
| |
Collapse
|
753
|
Cai X, Hu F, Feng G, Kwok RTK, Liu B, Tang BZ. Organic Mitoprobes based on Fluorogens with Aggregation-Induced Emission. Isr J Chem 2018. [DOI: 10.1002/ijch.201800031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaolei Cai
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
| | - Fang Hu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
| | - Guangxue Feng
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
| | - Ryan Tsz Kin Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study and Division of Life Science; The Hong Kong University of Science and Technology; Clear Water Bay, Kowloon, Hong Kong China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study and Division of Life Science; The Hong Kong University of Science and Technology; Clear Water Bay, Kowloon, Hong Kong China
| |
Collapse
|
754
|
Melnik S, Dvornikov D, Müller-Decker K, Depner S, Stannek P, Meister M, Warth A, Thomas M, Muley T, Risch A, Plass C, Klingmüller U, Niehrs C, Glinka A. Cancer cell specific inhibition of Wnt/β-catenin signaling by forced intracellular acidification. Cell Discov 2018; 4:37. [PMID: 29977599 PMCID: PMC6028397 DOI: 10.1038/s41421-018-0033-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 01/02/2023] Open
Abstract
Use of the diabetes type II drug Metformin is associated with a moderately lowered risk of cancer incidence in numerous tumor entities. Studying the molecular changes associated with the tumor-suppressive action of Metformin we found that the oncogene SOX4, which is upregulated in solid tumors and associated with poor prognosis, was induced by Wnt/β-catenin signaling and blocked by Metformin. Wnt signaling inhibition by Metformin was surprisingly specific for cancer cells. Unraveling the underlying specificity, we identified Metformin and other Mitochondrial Complex I (MCI) inhibitors as inducers of intracellular acidification in cancer cells. We demonstrated that acidification triggers the unfolded protein response to induce the global transcriptional repressor DDIT3, known to block Wnt signaling. Moreover, our results suggest that intracellular acidification universally inhibits Wnt signaling. Based on these findings, we combined MCI inhibitors with H+ ionophores, to escalate cancer cells into intracellular hyper-acidification and ATP depletion. This treatment lowered intracellular pH both in vitro and in a mouse xenograft tumor model, depleted cellular ATP, blocked Wnt signaling, downregulated SOX4, and strongly decreased stemness and viability of cancer cells. Importantly, the inhibition of Wnt signaling occurred downstream of β-catenin, encouraging applications in treatment of cancers caused by APC and β-catenin mutations.
Collapse
Affiliation(s)
- Svitlana Melnik
- 1Division of Epigenetics and Cancer Risks Factors, German Cancer Research Center, Heidelberg, D-69120 Germany.,2DNA vectors, German Cancer Research Center, Heidelberg, D-69120 Germany
| | - Dmytro Dvornikov
- 3Division of Systems Biology and Signal Transduction, German Cancer Research Center, Heidelberg, D-69120 Germany.,4Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Karin Müller-Decker
- 5Tumor Models Unit, Center for Preclinical Research, German Cancer Research Center, Heidelberg, D-69120 Germany
| | - Sofia Depner
- 3Division of Systems Biology and Signal Transduction, German Cancer Research Center, Heidelberg, D-69120 Germany
| | - Peter Stannek
- Division of Molecular Embryology, DKFZ-ZMBH Allianz, German Cancer Research Center, Heidelberg, D-69120 Germany
| | - Michael Meister
- 4Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,7Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, Heidelberg, D-69126 Germany
| | - Arne Warth
- 4Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,8Institute of Pathology, Heidelberg University Hospital, Heidelberg, 69120 Germany
| | - Michael Thomas
- 4Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,7Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, Heidelberg, D-69126 Germany
| | - Tomas Muley
- 4Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,7Translational Research Unit, Thoraxklinik at University Hospital Heidelberg, Heidelberg, D-69126 Germany
| | - Angela Risch
- 1Division of Epigenetics and Cancer Risks Factors, German Cancer Research Center, Heidelberg, D-69120 Germany.,4Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany.,9Department of Molecular Biology, University of Salzburg, Salzburg, 5020 Austria.,Cancer Cluster Salzburg, Salzburg, 5020 Austria
| | - Christoph Plass
- 1Division of Epigenetics and Cancer Risks Factors, German Cancer Research Center, Heidelberg, D-69120 Germany.,4Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Ursula Klingmüller
- 3Division of Systems Biology and Signal Transduction, German Cancer Research Center, Heidelberg, D-69120 Germany.,4Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Allianz, German Cancer Research Center, Heidelberg, D-69120 Germany.,11Institute of Molecular Biology (IMB), Mainz, 55128 Germany
| | - Andrey Glinka
- Division of Molecular Embryology, DKFZ-ZMBH Allianz, German Cancer Research Center, Heidelberg, D-69120 Germany
| |
Collapse
|
755
|
Athreya AP, Gaglio AJ, Cairns J, Kalari KR, Weinshilboum RM, Wang L, Kalbarczyk ZT, Iyer RK. Machine Learning Helps Identify New Drug Mechanisms in Triple-Negative Breast Cancer. IEEE Trans Nanobioscience 2018; 17:251-259. [PMID: 29994716 DOI: 10.1109/tnb.2018.2851997] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper demonstrates the ability of mach- ine learning approaches to identify a few genes among the 23,398 genes of the human genome to experiment on in the laboratory to establish new drug mechanisms. As a case study, this paper uses MDA-MB-231 breast cancer single-cells treated with the antidiabetic drug metformin. We show that mixture-model-based unsupervised methods with validation from hierarchical clustering can identify single-cell subpopulations (clusters). These clusters are characterized by a small set of genes (1% of the genome) that have significant differential expression across the clusters and are also highly correlated with pathways with anticancer effects driven by metformin. Among the identified small set of genes associated with reduced breast cancer incidence, laboratory experiments on one of the genes, CDC42, showed that its downregulation by metformin inhibited cancer cell migration and proliferation, thus validating the ability of machine learning approaches to identify biologically relevant candidates for laboratory experiments. Given the large size of the human genome and limitations in cost and skilled resources, the broader impact of this work in identifying a small set of differentially expressed genes after drug treatment lies in augmenting the drug-disease knowledge of pharmacogenomics experts in laboratory investigations, which could help establish novel biological mechanisms associated with drug response in diseases beyond breast cancer.
Collapse
|
756
|
Dan J, Gong X, Li D, Zhu G, Wang L, Li F. Inhibition of gastric cancer by local anesthetic bupivacaine through multiple mechanisms independent of sodium channel blockade. Biomed Pharmacother 2018; 103:823-828. [DOI: 10.1016/j.biopha.2018.04.106] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 11/29/2022] Open
|
757
|
Woolbright BL, Ayres M, Taylor JA. Metabolic changes in bladder cancer. Urol Oncol 2018; 36:327-337. [DOI: 10.1016/j.urolonc.2018.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/05/2018] [Accepted: 04/17/2018] [Indexed: 12/12/2022]
|
758
|
Garcia-Bermudez J, Baudrier L, La K, Zhu XG, Fidelin J, Sviderskiy VO, Papagiannakopoulos T, Molina H, Snuderl M, Lewis CA, Possemato RL, Birsoy K. Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nat Cell Biol 2018; 20:775-781. [PMID: 29941933 PMCID: PMC6030478 DOI: 10.1038/s41556-018-0118-z] [Citation(s) in RCA: 300] [Impact Index Per Article: 42.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/09/2018] [Indexed: 12/27/2022]
Abstract
As oxygen is essential for many metabolic pathways, tumour hypoxia may impair cancer cell proliferation1-4. However, the limiting metabolites for proliferation under hypoxia and in tumours are unknown. Here, we assessed proliferation of a collection of cancer cells following inhibition of the mitochondrial electron transport chain (ETC), a major metabolic pathway requiring molecular oxygen5. Sensitivity to ETC inhibition varied across cell lines, and subsequent metabolomic analysis uncovered aspartate availability as a major determinant of sensitivity. Cell lines least sensitive to ETC inhibition maintain aspartate levels by importing it through an aspartate/glutamate transporter, SLC1A3. Genetic or pharmacologic modulation of SLC1A3 activity markedly altered cancer cell sensitivity to ETC inhibitors. Interestingly, aspartate levels also decrease under low oxygen, and increasing aspartate import by SLC1A3 provides a competitive advantage to cancer cells at low oxygen levels and in tumour xenografts. Finally, aspartate levels in primary human tumours negatively correlate with the expression of hypoxia markers, suggesting that tumour hypoxia is sufficient to inhibit ETC and, consequently, aspartate synthesis in vivo. Therefore, aspartate may be a limiting metabolite for tumour growth, and aspartate availability could be targeted for cancer therapy.
Collapse
Affiliation(s)
- Javier Garcia-Bermudez
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Lou Baudrier
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Konnor La
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Xiphias Ge Zhu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Justine Fidelin
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | | | | | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Matija Snuderl
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | | | - Richard L Possemato
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
759
|
Spinelli JB, Haigis MC. The multifaceted contributions of mitochondria to cellular metabolism. Nat Cell Biol 2018; 20:745-754. [PMID: 29950572 PMCID: PMC6541229 DOI: 10.1038/s41556-018-0124-1] [Citation(s) in RCA: 979] [Impact Index Per Article: 139.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/17/2018] [Indexed: 02/07/2023]
Abstract
Although classically appreciated for their role as the powerhouse of the cell, the metabolic functions of mitochondria reach far beyond bioenergetics. In this Review, we discuss how mitochondria catabolize nutrients for energy, generate biosynthetic precursors for macromolecules, compartmentalize metabolites for the maintenance of redox homeostasis and function as hubs for metabolic waste management. We address the importance of these roles in both normal physiology and in disease.
Collapse
Affiliation(s)
- Jessica B Spinelli
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Ludwig Center, Harvard Medical School, Boston, MA, USA
| | - Marcia C Haigis
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
- Ludwig Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
760
|
Tyszka-Czochara M, Bukowska-Strakova K, Kocemba-Pilarczyk KA, Majka M. Caffeic Acid Targets AMPK Signaling and Regulates Tricarboxylic Acid Cycle Anaplerosis while Metformin Downregulates HIF-1α-Induced Glycolytic Enzymes in Human Cervical Squamous Cell Carcinoma Lines. Nutrients 2018; 10:nu10070841. [PMID: 29958416 PMCID: PMC6073805 DOI: 10.3390/nu10070841] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/14/2022] Open
Abstract
The small molecules, natural antioxidant Caffeic Acid (trans-3,4-Dihydroxycinnamic acid CA) and anti-diabetic drug Metformin (Met), activate 5′-adenosine monophosphate-activated protein kinase (AMPK) and interfere with metabolic reprogramming in human cervical squamous carcinoma cells. Here, to gain more insight into the ability of CA, Met and the combination of both compounds to impair aerobic glycolysis (the “Warburg effect”) and disrupt bioenergetics of cancer cells, we employed the cervical tumor cell lines C-4I and HTB-35/SiHa. In epithelial C-4I cells derived from solid tumors, CA alleviated glutamine anaplerosis by downregulation of Glutaminase (GLS) and Malic Enzyme 1 (ME1), which resulted in the reduction of NADPH levels. CA treatment of the cells altered tricarboxylic acid (TCA) cycle supplementation with pyruvate via Pyruvate Dehydrogenase Complex (PDH), increased ROS formation and enhanced cell death. Additionally, CA and CA/Met evoked intracellular energetic stress, which was followed by activation of AMPK and the impairment of unsaturated FA de novo synthesis. In invasive HTB-35 cells, Met inhibited Hypoxia-inducible Factor 1 (HIF-1α) and suppressed the expression of the proteins involved in the “Warburg effect”, such as glucose transporters (GLUT1, GLUT3) and regulatory enzymes of glycolytic pathway Hexokinase 2 (HK2), 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase 4 (PFKFB4), Pyruvate Kinase (PKM) and Lactate Dehydrogenase A (LDH). Met suppressed the expression of c-Myc, BAX and cyclin-D1 (CCND1) and evoked apoptosis in HTB-35 cells. In conclusion, both small molecules CA and Met are capable of disrupting energy homeostasis, regulating oxidative metabolism/glycolysis in cervical tumor cells in regard to specific metabolic phenotype of the cells. CA and Met may provide a promising approach in the prevention of cervical cancer progression.
Collapse
Affiliation(s)
- Malgorzata Tyszka-Czochara
- Department of Food Chemistry and Nutrition, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland.
| | - Karolina Bukowska-Strakova
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Wielicka 265, 30-663 Krakow, Poland.
| | | | - Marcin Majka
- Department of Department of Transplantation, Faculty of Medicine, Jagiellonian University Medical College, Wielicka 258, 30-688 Krakow, Poland.
| |
Collapse
|
761
|
Xu S, Catapang A, Braas D, Stiles L, Doh HM, Lee JT, Graeber TG, Damoiseaux R, Shirihai O, Herschman HR. A precision therapeutic strategy for hexokinase 1-null, hexokinase 2-positive cancers. Cancer Metab 2018; 6:7. [PMID: 29988332 PMCID: PMC6022704 DOI: 10.1186/s40170-018-0181-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/17/2018] [Indexed: 01/19/2023] Open
Abstract
Background Precision medicine therapies require identification of unique molecular cancer characteristics. Hexokinase (HK) activity has been proposed as a therapeutic target; however, different hexokinase isoforms have not been well characterized as alternative targets. While HK2 is highly expressed in the majority of cancers, cancer subtypes with differential HK1 and HK2 expression have not been characterized for their sensitivities to HK2 silencing. Methods HK1 and HK2 expression in the Cancer Cell Line Encyclopedia dataset was analyzed. A doxycycline-inducible shRNA silencing system was used to examine the effect of HK2 knockdown in cultured cells and in xenograft models of HK1−HK2+ and HK1+HK2+ cancers. Glucose consumption and lactate production rates were measured to monitor HK activity in cell culture, and 18F-FDG PET/CT was used to monitor HK activity in xenograft tumors. A high-throughput screen was performed to search for synthetically lethal compounds in combination with HK2 inhibition in HK1−HK2+ liver cancer cells, and a combination therapy for liver cancers with this phenotype was developed. A metabolomic analysis was performed to examine changes in cellular energy levels and key metabolites in HK1−HK2+ cells treated with this combination therapy. The CRISPR Cas9 method was used to establish isogenic HK1+HK2+ and HK1−HK2+ cell lines to evaluate HK1−HK2+ cancer cell sensitivity to the combination therapy. Results Most tumors express both HK1 and HK2, and subsets of cancers from a wide variety of tissues of origin express only HK2. Unlike HK1+HK2+ cancers, HK1−HK2+ cancers are sensitive to HK2 silencing-induced cytostasis. Synthetic lethality was achieved in HK1−HK2+ liver cancer cells, by the combination of DPI, a mitochondrial complex I inhibitor, and HK2 inhibition, in HK1−HK2+ liver cancer cells. Perhexiline, a fatty acid oxidation inhibitor, further sensitizes HK1−HK2+ liver cancer cells to the complex I/HK2-targeted therapeutic combination. Although HK1+HK2+ lung cancer H460 cells are resistant to this therapeutic combination, isogenic HK1KOHK2+ cells are sensitive to this therapy. Conclusions The HK1−HK2+ cancer subsets exist among a wide variety of cancer types. Selective inhibition of the HK1−HK2+ cancer cell-specific energy production pathways (HK2-driven glycolysis, oxidative phosphorylation and fatty acid oxidation), due to the unique presence of only the HK2 isoform, appears promising to treat HK1−HK2+ cancers. This therapeutic strategy will likely be tolerated by most normal tissues, where only HK1 is expressed. Electronic supplementary material The online version of this article (10.1186/s40170-018-0181-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shili Xu
- 1Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Arthur Catapang
- 1Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Daniel Braas
- 1Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.,3UCLA Metabolomics Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Linsey Stiles
- 6Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Hanna M Doh
- 1Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Jason T Lee
- 1Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.,4Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.,5Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Thomas G Graeber
- 1Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.,3UCLA Metabolomics Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.,4Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.,5Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Robert Damoiseaux
- 1Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.,7California NanoSystems Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Orian Shirihai
- 6Division of Endocrinology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| | - Harvey R Herschman
- 1Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.,2Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.,4Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.,5Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA.,8Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA
| |
Collapse
|
762
|
Mitofusin2 Induces Cell Autophagy of Pancreatic Cancer through Inhibiting the PI3K/Akt/mTOR Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2798070. [PMID: 30046371 PMCID: PMC6038474 DOI: 10.1155/2018/2798070] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/30/2018] [Accepted: 04/15/2018] [Indexed: 12/31/2022]
Abstract
Aim Pancreatic cancer is one of the most quickly fatal cancers around the world. Burgeoning researches have begun to prove that mitochondria play a crucial role in cancer treatment. Mitofusin2 (Mfn2) plays an indispensable role in mitochondrial fusion and adjusting function. However, the role and underlying mechanisms of Mfn2 on cell autophagy of pancreatic cancer is still unclear. Our aim was to explore the effect of Mfn2 on multiple biological functions involving cell autophagy in pancreatic cancer. Methods Pancreatic cancer cell line, Aspc-1, was treated with Ad-Mfn2 overexpression. Western blotting, caspase-3 activity measurement, and CCK-8 and reactive oxygen species (ROS) assay were used to examine the effects of Mfn2 on pancreatic cancer autophagy, apoptosis, cell proliferation, oxidative stress, and PI3K/Akt/mTOR signaling. The expression of tissue Mfn2 was detected by immunohistochemical staining. Survival analysis of Mfn2 was evaluated by OncoLnc. Results Mfn2 improved the expression of LC3-II and Bax and downregulated the expression of P62 and Bcl-2 in pancreatic cancer cells. Meanwhile, Mfn2 also significantly inhibited the expression of p-PI3K, p-Akt, and p-mTOR proteins in pancreatic cancer cells. In addition, Mfn2 inhibited pancreatic cancer cell proliferation and ROS production. Assessment of Kaplan-Meier curves showed that Mfn2− pancreatic cancer has a worse prognosis than Mfn2+ pancreatic cancer has. Conclusions Our finding suggests that Mfn2 induces cell autophagy of pancreatic cancer through inhibiting the PI3K/Akt/mTOR signaling pathway. Meanwhile, Mfn2 also influences multiple biological functions of pancreatic cancer cells. Mfn2 may act as a therapeutic target in pancreatic cancer treatment.
Collapse
|
763
|
Counihan JL, Grossman EA, Nomura DK. Cancer Metabolism: Current Understanding and Therapies. Chem Rev 2018; 118:6893-6923. [DOI: 10.1021/acs.chemrev.7b00775] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jessica L. Counihan
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Elizabeth A. Grossman
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| | - Daniel K. Nomura
- Departments of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
764
|
Chen YC, Lu MC, El-Shazly M, Lai KH, Wu TY, Hsu YM, Lee YL, Liu YC. Breaking down Leukemia Walls: Heteronemin, a Sesterterpene Derivative, Induces Apoptosis in Leukemia Molt4 Cells through Oxidative Stress, Mitochondrial Dysfunction and Induction of Talin Expression. Mar Drugs 2018; 16:md16060212. [PMID: 29914195 PMCID: PMC6025351 DOI: 10.3390/md16060212] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/11/2022] Open
Abstract
Heteronemin, the most abundant secondary metabolite in the sponge Hippospongia sp., exhibited potent cytotoxic activity against several cancer cell lines. It increased the percentage of apoptotic cells and reactive oxygen species (ROS) in Molt4 cells. The use of ROS scavenger, N-acetyl cysteine (NAC), suppressed both the production of ROS from mitochondria and cell apoptosis that were induced by heteronemin treatment. Heteronemin upregulated talin and phosphorylated talin expression in Molt4 cells but it only upregulated the expression of phosphorylated talin in HEK293 cells. However, pretreatment with NAC reversed these effects. Talin siRNA reversed the activation of pro-apoptotic cleaved caspases 3 and 9. On the other hand, the downstream proteins including FAK and NF-κB (p65) were not affected. In addition, we confirmed that heteronemin directly modulated phosphorylated talin expression through ROS generation resulting in cell apoptosis, but it did not affect talin/FAK complex. Furthermore, heteronemin interfered with actin microfilament and caused morphology changes. Taken together, these findings suggest that the cytotoxic effect of heteronemin is associated with oxidative stress and induction of phosphorylated talin expression. Our results suggest that heteronemin represents an interesting candidate which can be further developed as a drug lead against leukemia.
Collapse
Affiliation(s)
- Yu-Cheng Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 404, Taiwan.
| | - Mei-Chin Lu
- Graduate Institute of Marine Biotechnology, National Dong Hwa University, Pingtung 944, Taiwan.
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan.
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt.
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11432, Egypt.
| | - Kuei-Hung Lai
- National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan.
| | - Tung-Ying Wu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yu-Ming Hsu
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Lun Lee
- Department of Urology, Sinying Hospital, Ministry of Health and Welfare, Tainan 730, Taiwan.
| | - Yi-Chang Liu
- Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
765
|
Zhao Z, Rajagopalan R, Zweifach A. A Novel Multiple-Read Screen for Metabolically Active Compounds Based on a Genetically Encoded FRET Sensor for ATP. SLAS DISCOVERY 2018; 23:907-918. [PMID: 29898642 DOI: 10.1177/2472555218780636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Both glycolysis and mitochondrial energetics are targets of interest for developing antiproliferative cancer therapeutics. We developed a novel multiple-read assay based on long-term expression in K562 cells of a genetically encoded intramolecular Förster resonance energy transfer sensor for adenosine triphosphate (ATP). The assay, conducted in a fluorescent plate reader, can identify compounds that inhibit oxidative phosphorylation-dependent ATP production, glycolysis, or both after short-term treatment. We screened a National Cancer Institute (NCI) compound library, identifying inhibitors of oxidative phosphorylation-dependent ATP production and glycolysis. Three glycolysis inhibitors blocked hexokinase activity, demonstrating that our assay can serve as the initial step in a workflow to identify compounds that inhibit glycolysis via a defined desired mechanism. Finally, upon reviewing the literature, we found surprisingly little evidence that inhibiting glycolysis with small molecules is antiproliferative. Using NCI data on proliferation of K562 cells, we found that inhibitors of oxidative phosphorylation-dependent ATP production were no more antiproliferative than the overall library, whereas all glycolysis inhibitors were in the top third of most effective antiproliferative compounds. Our results thus present a powerful new way to screen for compounds that affect cellular metabolism and also provide important support for the idea that blocking glycosis is antiproliferative.
Collapse
Affiliation(s)
- Ziyan Zhao
- 1 Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Rahul Rajagopalan
- 1 Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Adam Zweifach
- 1 Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
766
|
Mitochondria-targeted platinum(II) complexes induce apoptosis-dependent autophagic cell death mediated by ER-stress in A549 cancer cells. Eur J Med Chem 2018; 155:639-650. [PMID: 29935437 DOI: 10.1016/j.ejmech.2018.06.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/03/2018] [Accepted: 06/06/2018] [Indexed: 01/02/2023]
Abstract
Agents with multiple modes of tumor cell death can be effective chemotherapeutic drugs. One example of a bimodal chemotherapeutic approach is an agent that can induce both apoptosis and autophagic death. Thus far, no clinical anticancer drug has been shown to simultaneously induce both these pathways. Mono-functional platinum complexes are potent anticancer drug candidates which act through mechanisms distinct from cisplatin. Here, we describe the synthesis and characterize of two mono-functional platinum complexes containing 8-substituted quinoline derivatives as ligands, [PtL1Cl]Cl [L1 = (Z)-1-(pyridin-2-yl)-N-(quinolin-8-ylmethylene) methanamine] (Mon-Pt-1) and [PtL2Cl]Cl [L2 = (Z)-2-(pyridin-2-yl)-N-(quinolin-8-ylmethylene) ethanamine] (Mon-Pt-2). In comparison to cisplatin, Mon-Pt-2 exhibited a greater in vitro cytotoxicity, was more effective in resistant cells and elicited a better anticancer effect. Mechanistic experiments indicate that Mon-Pt-2 mainly accumulates in mitochondria, and stimulates significant TrxR inhibition ROS release and an ER stress response, mediated by mitochondrial dysfunction, ultimately resulting in a simultaneous induction of apoptosis and autophagy. Importantly, compared to cisplatin, Mon-Pt-2 exhibits lower acute toxicity and better anticancer activity in a murine tumor model. To the best of our knowledge, Mon-Pt-2 is the first mono-functional platinum complex inducing pro-death autophagy and apoptosis of cancer cells.
Collapse
|
767
|
Gazzano E, Lazzarato L, Rolando B, Kopecka J, Guglielmo S, Costamagna C, Chegaev K, Riganti C. Mitochondrial Delivery of Phenol Substructure Triggers Mitochondrial Depolarization and Apoptosis of Cancer Cells. Front Pharmacol 2018; 9:580. [PMID: 29915539 PMCID: PMC5994430 DOI: 10.3389/fphar.2018.00580] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/15/2018] [Indexed: 12/16/2022] Open
Abstract
Antitumor chemotherapy remains one of the most important challenge of the medicinal chemistry. Emerging research in chemotherapy is focused on exploiting the biochemical differences between cancer cell and normal cell metabolism in order to reduce the side effects and increase antitumor therapy efficacy. The higher mitochondrial transmembrane potential of cancer cells compared to not-transformed cells favors the intra-mitochondrial accumulation of cationic drugs in the former. This feature could be exploited to allow selective delivery of antineoplastic drugs to the cancer cells. In this work we designed and synthetized phenol derivatives joined to the triphenylphosphonium (TPP) cation, a well-known vector for mitochondrial targeting. Two designed phenol TPP-derivatives 1 and 2 show remarkable cytotoxic activity against different cancer cell lines, but were less toxic against normal cells. The differential cytotoxicity relied on the higher mitochondrial biogenesis and oxidative-phosphorylation metabolism of the former. By reducing mitochondrial mass and energetic metabolism, and increasing at the same time the levels of intra-mitochondrial reactive oxygen species, phenol TPP-derivatives 1 and 2 induced mitochondria depolarization and triggered a caspase 9/3-mediated apoptosis, limited to cancer cells. This work provides the rationale to further develop phenol TPP-derivatives targeting mitochondria as new and selective anticancer tools.
Collapse
Affiliation(s)
- Elena Gazzano
- Department of Oncology, University of Turin, Turin, Italy
| | - Loretta Lazzarato
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Barbara Rolando
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Joanna Kopecka
- Department of Oncology, University of Turin, Turin, Italy
| | - Stefano Guglielmo
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | | | - Konstantin Chegaev
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Chiara Riganti
- Department of Oncology, University of Turin, Turin, Italy
| |
Collapse
|
768
|
Wu Y, Gao WN, Xue YN, Zhang LC, Zhang JJ, Lu SY, Yan XY, Yu HM, Su J, Sun LK. SIRT3 aggravates metformin-induced energy stress and apoptosis in ovarian cancer cells. Exp Cell Res 2018; 367:137-149. [DOI: 10.1016/j.yexcr.2018.03.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 02/07/2023]
|
769
|
Wang J, Sheng Z, Cai Y. SIRT6 overexpression inhibits HIF1α expression and its impact on tumor angiogenesis in lung cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2940-2947. [PMID: 31938419 PMCID: PMC6958067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/13/2018] [Indexed: 06/10/2023]
Abstract
OBJECTIVE To investigate the effect of silencing information regulator 6 (SIRT6) on HIF1α expression of cell line A549 in non-small cell lung cancer and on tumor angiogenesis in lung cancer. METHODS Cell line A549 in the logarithmic growth phase was transfected with Ad-SIRT6 and Ad-null respectively. According to the study design, the cells were divided into control group, Ad-null group and Ad-SIRT6 group. The HIF1α and HIF2α mRNA expression in each group were detected by real-time quantitative PCR (qPCR). The level of prolyl hydroxylase (PHD) 1-3 after 48 h of Ad-SIRT6-transfected cell line A549 and the levels of VEGF-C, VEGF-D, VEGFR-2 and VEGFR-3 in the supernatants were determined by ELISA. The nude mice were injected subcutaneously with Ad-null or Ad-SIRT6 transfected cell line A549. The tumor volume was observed at 6, 12, 18, 24 and 30 d after inoculation, and the tumor mass was weighed at 30 d. Also, microvessel density (MVD) and the number of positive HIF1α and VEGF cells were detected by immunohistochemistry. The VEGF and HIF1α levels in tumor tissue were detected by ELISA and qPCR respectively. RESULTS qPCR showed that the levels of HIF-1α mRNA, VEGF-C, VEGF-D, VEGFR-2 and VEGFR-3 in the supernatant were decreased, the level of PHD2 was increased (P<0.05), and the levels of HIF-2α mRNA, PHD1 and PHD3 did not change much (P>0.05) in the Ad-SIRT6 group as compared with those in the control group and Ad-null group. The tumor growth rate was decreased, and the tumor volume at 12-30 d after inoculation was less in the Ad-SIRT6 group than in the control group and Ad-null group (P<0.05); the tumor mass was also lower than that of control and Ad-null groups (P<0.05). Immunohistochemistry showed that MVD and the number of HIF-1α and VEGF positive cells were less in the Ad-SIRT6 group than in control and Ad-null groups (P<0.05); and HIF-1α and VEGF levels in tumor tissue were decreased in the Ad-SIRT6 group compared to the control and Ad-null groups (P<0.05). There were no significant differences in the above measurements between the control group and Ad-null group (P>0.05). CONCLUSION SIRT6 overexpression can inhibit HIF1α and VEGF expression, promoting PHD2 expression, which can inhibit angiogenesis and xenograft growth and may play a role in reducing HIF1α and VEGF expression.
Collapse
Affiliation(s)
- Jiying Wang
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of MedicineChina
| | - Zhaoying Sheng
- Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of MedicineChina
| | - Yong Cai
- Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of MedicineChina
| |
Collapse
|
770
|
Ashton TM, McKenna WG, Kunz-Schughart LA, Higgins GS. Oxidative Phosphorylation as an Emerging Target in Cancer Therapy. Clin Cancer Res 2018; 24:2482-2490. [PMID: 29420223 DOI: 10.1158/1078-0432.ccr-17-3070] [Citation(s) in RCA: 669] [Impact Index Per Article: 95.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/07/2018] [Accepted: 01/30/2018] [Indexed: 11/16/2022]
Abstract
Cancer cells have upregulated glycolysis compared with normal cells, which has led many to the assumption that oxidative phosphorylation (OXPHOS) is downregulated in all cancers. However, recent studies have shown that OXPHOS can be also upregulated in certain cancers, including leukemias, lymphomas, pancreatic ductal adenocarcinoma, high OXPHOS subtype melanoma, and endometrial carcinoma, and that this can occur even in the face of active glycolysis. OXPHOS inhibitors could therefore be used to target cancer subtypes in which OXPHOS is upregulated and to alleviate therapeutically adverse tumor hypoxia. Several drugs including metformin, atovaquone, and arsenic trioxide are used clinically for non-oncologic indications, but emerging data demonstrate their potential use as OXPHOS inhibitors. We highlight novel applications of OXPHOS inhibitors with a suitable therapeutic index to target cancer cell metabolism. Clin Cancer Res; 24(11); 2482-90. ©2018 AACR.
Collapse
Affiliation(s)
- Thomas M Ashton
- CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, Oxford, United Kingdom
| | - W Gillies McKenna
- CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, Oxford, United Kingdom
| | - Leoni A Kunz-Schughart
- CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, Oxford, United Kingdom.
- OncoRay, National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, and Helmholtz-Zentrum Dresden-Rossendorf, Germany
- National Center for Tumor Diseases (NCT), partner site Dresden, Germany
| | - Geoff S Higgins
- CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, Oxford, United Kingdom.
| |
Collapse
|
771
|
Yang Z, Dai Y, Yin C, Fan Q, Zhang W, Song J, Yu G, Tang W, Fan W, Yung BC, Li J, Li X, Li X, Tang Y, Huang W, Song J, Chen X. Activatable Semiconducting Theranostics: Simultaneous Generation and Ratiometric Photoacoustic Imaging of Reactive Oxygen Species In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1707509. [PMID: 29707841 DOI: 10.1002/adma.201707509] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/06/2018] [Indexed: 06/08/2023]
Abstract
Enhancing the generation of reactive oxygen species (ROS) is an effective anticancer strategy. However, it is a great challenge to control the production and to image ROS in vivo, both of which are vital for improving the efficacy and accuracy of cancer therapy. Herein, an activatable semiconducting theranostic nanoparticle (NP) platform is developed that can simultaneously enhance ROS generation while self-monitoring its levels through ratiometric photoacoustic (PA) imaging. The NP platform can further guide in vivo therapeutic effect in tumors. The theranostic NP platform is composed of: (i) cisplatin prodrug and ferric ion catalyst for ROS generation, a part of combination cancer therapy; and (ii) a ratiometric PA imaging nanoprobe consisting of inert semiconducting perylene-diimide (PDI) and ROS activatable near-infrared dye (IR790s), used in ratiometric PA imaging of ROS during cancer treatment. Ratiometric PA signals are measured at two near-infrared excitation wavelengths: 680 and 790 nm for PDI and IR790s, respectively. The measurements show highly accurate visualization of • OH generation in vivo. This novel ROS responsive organic theranostic NP allows not only synergistic cancer chemotherapy but also real-time monitoring of the therapeutic effect through ratiometric PA imaging.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Yunlu Dai
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Chao Yin
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wansu Zhang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Justin Song
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Wei Tang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Bryant C Yung
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Jie Li
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xiang Li
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Xiangchun Li
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Yufu Tang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
772
|
Pan J, Lee Y, Cheng G, Zielonka J, Zhang Q, Bajzikova M, Xiong D, Tsaih SW, Hardy M, Flister M, Olsen CM, Wang Y, Vang O, Neuzil J, Myers CR, Kalyanaraman B, You M. Mitochondria-Targeted Honokiol Confers a Striking Inhibitory Effect on Lung Cancer via Inhibiting Complex I Activity. iScience 2018; 3:192-207. [PMID: 30428319 PMCID: PMC6137433 DOI: 10.1016/j.isci.2018.04.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/13/2018] [Accepted: 04/16/2018] [Indexed: 12/09/2022] Open
Abstract
We synthesized a mitochondria-targeted honokiol (Mito-HNK) that facilitates its mitochondrial accumulation; this dramatically increases its potency and efficacy against highly metastatic lung cancer lines in vitro, and in orthotopic lung tumor xenografts and brain metastases in vivo. Mito-HNK is >100-fold more potent than HNK in inhibiting cell proliferation, inhibiting mitochondrial complex ?, stimulating reactive oxygen species generation, oxidizing mitochondrial peroxiredoxin-3, and suppressing the phosphorylation of mitoSTAT3. Within lung cancer brain metastases in mice, Mito-HNK induced the mediators of cell death and decreased the pathways that support invasion and proliferation. In contrast, in the non-malignant stroma, Mito-HNK suppressed pathways that support metastatic lesions, including those involved in inflammation and angiogenesis. Mito-HNK showed no toxicity and targets the metabolic vulnerabilities of primary and metastatic lung cancers. Its pronounced anti-invasive and anti-metastatic effects in the brain are particularly intriguing given the paucity of treatment options for such patients either alone or in combination with standard chemotherapeutics.
Collapse
Affiliation(s)
- Jing Pan
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Yongik Lee
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Gang Cheng
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Jacek Zielonka
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Qi Zhang
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | | - Donghai Xiong
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Shirng-Wern Tsaih
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Micael Hardy
- Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Aix Marseille University, CNRS, ICR UMR 7273, 13013 Marseille, France
| | - Michael Flister
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Czech Academy of Sciences, Prague, Czech Republic
| | - Christopher M Olsen
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Neuroscience Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Yian Wang
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Ole Vang
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Jiri Neuzil
- Czech Academy of Sciences, Prague, Czech Republic; Griffith University, Queensland, Australia
| | - Charles R Myers
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Science and Environment, Roskilde University, Roskilde, Denmark
| | - Balaraman Kalyanaraman
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Free Radical Research Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Ming You
- Cancer Center, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA; Department of Pharmacology & Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA.
| |
Collapse
|
773
|
Yang J, Cao Q, Zhang H, Hao L, Zhou D, Gan Z, Li Z, Tong YX, Ji LN, Mao ZW. Targeted reversal and phosphorescence lifetime imaging of cancer cell metabolism via a theranostic rhenium(I)-DCA conjugate. Biomaterials 2018; 176:94-105. [PMID: 29870900 DOI: 10.1016/j.biomaterials.2018.05.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/24/2018] [Accepted: 05/24/2018] [Indexed: 01/18/2023]
Abstract
Cancer cell metabolism is quite different from normal cells. Targeting cancer metabolism and untuning the tumor metabolic machine has emerged as a promising strategy for cancer therapy. We have developed a multi-functional Re-dca conjugate (Re-dca 2) by conjugating the metabolic modulator dichloroacetate (DCA) to mitochondria-targeted rhenium(I) complex, allowing its efficient penetration into cancer cells and selective accumulation in mitochondria, thus achieving the cancer cell metabolism reversal from glycolysis to glucose oxidation at pharmacologically relevant DCA doses. Mechanism studies confirm the inhibition effect of Re-dca 2 on the activity of pyruvate dehydrogenase kinase (PDK) and capture the metabolic reversal window in Re-dca 2 treated NCI-1229 cells at the early stage of drug treatment, resulting in selective killing of malignant cells cocultured with normal cells, significant inhibition of cancer cell metastasis and invasion, as well as excellent anti-angiogenesis activities in zebrafish embryos. By comparison, DCA-free Re(I) analogue is also investigated under the same conditions. Although this analogue also exhibits cytotoxicity due to the Re(I) core, metabolic reversal is not induced by this analogue and its anti-metastasis activity is much lower than Re-dca 2, indicating the synergistic effect of Re(I) core and DCA moiety on cancer therapy. In vivo anti-cancer investigations also indicate that the mitochondria-targeted Re-dca 2 can effectively inhibit the tumor growth without affecting the body weight of nude mice, and the therapeutic effect is much better than the DCA-free Re(I) analogue 2a. Simultaneously, the O2-sensitive phosphorescent lifetimes of Re-dca 2 can be utilized for PLIM imaging of intracellular oxygen consumption, thus reflecting the Re-dca 2 induced glycolysis-to-glucose oxidation reversal at the early drug treatment stage. The excellent phosphorescence of Re-dca 2 can also be utilized for real-time tracking of mitochondrial morphological changes during treatment. In a word, rational design of phosphorescent metallodrug and metabolic modulator conjugates for synergistic treatment is a promising strategy for simultaneous untuning and tracking tumor metabolic machine, thus providing new clues for cancer therapy and mechanisms.
Collapse
Affiliation(s)
- Jing Yang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Hang Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liang Hao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Danxia Zhou
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Zhenji Gan
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center of Nanjing University, Nanjing 210061, China
| | - Zhiwei Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ye-Xiang Tong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Liang-Nian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China; Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
774
|
Vangapandu HV, Alston B, Morse J, Ayres ML, Wierda WG, Keating MJ, Marszalek JR, Gandhi V. Biological and metabolic effects of IACS-010759, an OxPhos inhibitor, on chronic lymphocytic leukemia cells. Oncotarget 2018; 9:24980-24991. [PMID: 29861847 PMCID: PMC5982765 DOI: 10.18632/oncotarget.25166] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/09/2018] [Indexed: 12/24/2022] Open
Abstract
Blood cells from patients with chronic lymphocytic leukemia (CLL) are replicationally quiescent but transcriptionally, translationally, and metabolically active. Recently, we demonstrated that oxidative phosphorylation (OxPhos) is a predominant pathway in CLL for energy production and is further augmented in the presence of the stromal microenvironment. Importantly, CLL cells from patients with poor prognostic markers showed increased OxPhos. From these data, we theorized that OxPhos can be targeted to treat CLL. IACS-010759, currently in clinical development, is a small-molecule, orally bioavailable OxPhos inhibitor that targets mitochondrial complex I. Treatment of primary CLL cells with IACS-010759 greatly inhibited OxPhos but caused only minor cell death at 24 and 48 h. In the presence of stroma, the drug successfully inhibited OxPhos and diminished intracellular ribonucleotide pools. However, glycolysis and glucose uptake were induced as compensatory mechanisms. To mitigate the upregulated glycolytic flux, we used 2-deoxy-D-glucose in combination with IACS-010759. This combination reduced both OxPhos and glycolysis and induced cell death. Consistent with these data, low-glucose culture conditions sensitized CLL cells to IACS-010759. Collectively, these data suggest that CLL cells adapt to use a different metabolic pathway when OxPhos is inhibited and that targeting both OxPhos and glycolysis pathways is necessary for biological effect.
Collapse
Affiliation(s)
- Hima V. Vangapandu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brandon Alston
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joshua Morse
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Mary L. Ayres
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - William G. Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Michael J. Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joseph R. Marszalek
- Institute of Applied Cancer Science and the Center for Co-Clinical Trials, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Varsha Gandhi
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
775
|
Development of novel amino-quinoline-5,8-dione derivatives as NAD(P)H:quinone oxidoreductase 1 (NQO1) inhibitors with potent antiproliferative activities. Eur J Med Chem 2018; 154:199-209. [PMID: 29803003 DOI: 10.1016/j.ejmech.2018.05.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 01/09/2023]
Abstract
Fourteen novel amino-quinoline-5,8-dione derivatives (6a-h and 7a-h) were designed and synthesized by coupling different alkyl- or aryl-amino fragments at the C6- or C7-position of quinoline-5,8-dione. All target compounds showed antiproliferative potency in the low micromolar range in both drug sensitive HeLaS3 and multidrug resistant KB-vin cell lines. Compounds 6h, 6d, 7a, and 7d exhibited more potent antiproliferative effects than the other compounds. Especially, compounds 6d and 7d displayed NQO1-dependent cytotoxicity and competitive NQO1 inhibitory effects in both drug sensitive HeLaS3 and multidrug resistant KB-vin cell lines. Furthermore, compounds 6h, 6d, 7a, and 7d induced a dose-dependent lethal mitochondrial dysfunction in both drug sensitive HeLaS3 and multidrug resistant KB-vin cells by increasing intracellular reactive oxygen species (ROS) levels. Notably, compound 7d selectively inhibited cancer cells, but not non-tumor liver cell proliferation in vitro, and significantly triggered HeLaS3 cell apoptosis by regulating apoptotic proteins of Bcl-2, Bax, and cleaved caspase-3 in a dose-dependent manner. Our findings suggest that these novel C6- or C7-substituted amino-quinoline-5,8-dione derivatives, such as 7d, could be further developed in the future as potent and selective antitumor agents to potentially circumvent multi-drug resistance (MDR).
Collapse
|
776
|
Marydasan B, Madhuri B, Cherukommu S, Jose J, Viji M, Karunakaran SC, Chandrashekar TK, Rao KS, Rao CM, Ramaiah D. In Vitro and In Vivo Demonstration of Human-Ovarian-Cancer Necrosis through a Water-Soluble and Near-Infrared-Absorbing Chlorin. J Med Chem 2018; 61:5009-5019. [DOI: 10.1021/acs.jmedchem.8b00460] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Betsy Marydasan
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, India
| | - Bollapalli Madhuri
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500 007, India
| | - Shirisha Cherukommu
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500 007, India
| | - Jedy Jose
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500 007, India
| | - Mambattakkara Viji
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, India
| | - Suneesh C. Karunakaran
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, India
| | | | - Kunchala Sridhar Rao
- Indo-American Cancer Research Foundation (IACRF), Basavatarakam Indo-American Cancer Hospital and Research Institute, Hyderabad 500034, India
| | - Ch. Mohan Rao
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Hyderabad 500 007, India
| | - Danaboyina Ramaiah
- CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785 006, India
| |
Collapse
|
777
|
Yu J, Zhang Y, Zhou D, Wu J, Luo R. Higher expression of A-kinase anchoring-protein 1 predicts poor prognosis in human hepatocellular carcinoma. Oncol Lett 2018; 16:131-136. [PMID: 29928393 PMCID: PMC6006472 DOI: 10.3892/ol.2018.8685] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
A-kinase anchoring protein 1 (AKAP1) plays important regulatory roles in the regulation of mitochondrial function, oxidative metabolism, and cell survival. However, the expression pattern and prognostic value of AKAP1 in hepatocellular carcinoma (HCC) remains unclear. AKAP1 expression levels in tumor and matched non-tumor tissues were evaluated using reverse transcription-quantitative polymerase chain reaction and immunohistochemical staining. Kaplan-Meier and Cox regression analyses were used to analyze the survival rates. We found that AKAP1 protein expression was increased in HCC tissues, and high AKAP1 expression was associated with tumor size (P=0.024), Tumor-Node-Metastasis stage (P=0.0296) and portal vein thrombosis (P=0.00498). Kaplan-Meier survival analyses further revealed that high AKAP1 expression was associated with poor overall (P=0.004) and disease-free survival (DFS) (P=0.002) rates in patients with HCC. Multivariate survival analysis revealed that AKAP1 served as an independent poor prognostic factor for DFS rates. The findings of the present study indicated that AKAP1 expression may contribute to HCC progression. High AKAP1 expression could serve as a valuable prognostic biomarker in predicting the survival of patients with HCC following radical resection.
Collapse
Affiliation(s)
- Jian Yu
- Department of Endocrinology, CHC International Hospital, Cixi, Zhejiang 315315, P.R. China
| | - Yu Zhang
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441000, P.R. China
| | - Dongxun Zhou
- Department of Endoscopy, Eastern Hepato-biliary Surgery Hospital, Shanghai 200438, P.R. China
| | - Jun Wu
- Department of Endoscopy, Eastern Hepato-biliary Surgery Hospital, Shanghai 200438, P.R. China
| | - Rong Luo
- Department of Endocrinology, CHC International Hospital, Cixi, Zhejiang 315315, P.R. China
| |
Collapse
|
778
|
The Oncojanus Paradigm of Respiratory Complex I. Genes (Basel) 2018; 9:genes9050243. [PMID: 29735924 PMCID: PMC5977183 DOI: 10.3390/genes9050243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/09/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial respiratory function is now recognized as a pivotal player in all the aspects of cancer biology, from tumorigenesis to aggressiveness and chemotherapy resistance. Among the enzymes that compose the respiratory chain, by contributing to energy production, redox equilibrium and oxidative stress, complex I assumes a central role. Complex I defects may arise from mutations in mitochondrial or nuclear DNA, in both structural genes or assembly factors, from alteration of the expression levels of its subunits, or from drug exposure. Since cancer cells have a high-energy demand and require macromolecules for proliferation, it is not surprising that severe complex I defects, caused either by mutations or treatment with specific inhibitors, prevent tumor progression, while contributing to resistance to certain chemotherapeutic agents. On the other hand, enhanced oxidative stress due to mild complex I dysfunction drives an opposite phenotype, as it stimulates cancer cell proliferation and invasiveness. We here review the current knowledge on the contribution of respiratory complex I to cancer biology, highlighting the double-edged role of this metabolic enzyme in tumor progression, metastasis formation, and response to chemotherapy.
Collapse
|
779
|
PGC1α promotes cholangiocarcinoma metastasis by upregulating PDHA1 and MPC1 expression to reverse the Warburg effect. Cell Death Dis 2018; 9:466. [PMID: 29700317 PMCID: PMC5919932 DOI: 10.1038/s41419-018-0494-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/15/2022]
Abstract
PGC1α acts as a central regulator of mitochondrial metabolism, whose role in cancer progression has been highlighted but remains largely undefined. Especially, it is completely unknown about the effect of PGC1α on cholangiocarcinoma (CCA). Here we showed that PGC1α overexpression had no impact on CCA growth despite the decreased expression of PGC1α in CCA compared with adjacent normal tissue. Instead, PGC1α overexpression-promoted CCA metastasis both in vitro and in vivo. Mechanistically, for the first time, we illuminated that PGC1α reversed the Warburg effect by upregulating the expression of pyruvate dehydrogenase E1 alpha 1 subunit and mitochondrial pyruvate carrier 1 to increase pyruvate flux into the mitochondria for oxidation, whereas simultaneously promoting mitochondrial biogenesis and fusion to mediate the metabolic switch to oxidative phosphorylation. On the one hand, enhanced mitochondrial oxidation metabolism correlated with elevated reactive oxygen species (ROS) production; on the other hand, increased PGC1α expression upregulated the expression levels of mRNA for several ROS-detoxifying enzymes. To this end, the ROS levels, which were elevated but below a critical threshold, did not inhibit CCA cells proliferation. And the moderately increased ROS facilitated metastatic dissemination of CCA cells, which can be abrogated by antioxidants. Our study suggests the potential utility of developing the PGC1α-targeted therapies or blocking PGC1α signaling axis for inhibiting CCA metastasis.
Collapse
|
780
|
Veiga SR, Ge X, Mercer CA, Hernández-Álvarez MI, Thomas HE, Hernandez-Losa J, Ramón Y Cajal S, Zorzano A, Thomas G, Kozma SC. Phenformin-Induced Mitochondrial Dysfunction Sensitizes Hepatocellular Carcinoma for Dual Inhibition of mTOR. Clin Cancer Res 2018; 24:3767-3780. [PMID: 29691292 DOI: 10.1158/1078-0432.ccr-18-0177] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 04/05/2018] [Accepted: 04/19/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Hepatocellular carcinoma (HCC) ranks second in cancer mortality and has limited therapeutic options. We recently described the synergistic effect of allosteric and ATP-site competitive inhibitors against the mTOR for the treatment of HCC. However, such inhibitors induce hyperglycemia and increase mitochondrial efficiency. Here we determined whether the mitochondrial complex I inhibitor phenformin could reverse both side effects, impose an energetic stress on cancer cells, and suppress the growth of HCC.Experimental Design: Human HCC cell lines were used in vitro to access the signaling and energetic impact of mTOR inhibitors and phenformin, either alone or in combination. Next, the therapeutic utility of these drugs alone or in combination was investigated preclinically in human orthotopic tumors implanted in mice, by analyzing their impact on the tumor burden and overall survival.Results: We found phenformin caused mitochondrial dysfunction and fragmentation, inducing a compensatory shift to glycolysis. In contrast, dual inhibition of mTOR impaired cell growth and glycolysis, while increasing mitochondrial fusion and efficiency. In a mouse model of human HCC, dual inhibition of mTOR, together with phenformin, was highly efficacious in controlling tumor burden. However, more strikingly, pretreatment with phenformin sensitized tumors to dual inhibition of mTOR, leading to a dramatic improvement in survival.Conclusions: Treatment of HCC cells in vitro with the biguanide phenformin causes a metabolic shift to glycolysis, mitochondrial dysfunction and fragmentation, and dramatically sensitizes orthotopic liver tumors to dual inhibition of mTOR. We therefore propose this therapeutic approach should be tested clinically in HCC. Clin Cancer Res; 24(15); 3767-80. ©2018 AACR.
Collapse
Affiliation(s)
- Sónia R Veiga
- Laboratory of Cancer Metabolism, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Xuemei Ge
- Laboratory of Cancer Metabolism, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Carol A Mercer
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - María I Hernández-Álvarez
- Complex Metabolic Diseases and Mitochondria Group, Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Hala Elnakat Thomas
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - Javier Hernandez-Losa
- Department of Anatomy/Pathology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Santiago Ramón Y Cajal
- Department of Anatomy/Pathology, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Zorzano
- Complex Metabolic Diseases and Mitochondria Group, Institute for Research in Biomedicine (IRB), Barcelona, Spain.,Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - George Thomas
- Laboratory of Cancer Metabolism, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain.,Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio.,Physiological Sciences Department, Faculty of Medicine and Health Science, University of Barcelona, Barcelona, Spain
| | - Sara C Kozma
- Laboratory of Cancer Metabolism, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain. .,Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| |
Collapse
|
781
|
Atovaquone enhances doxorubicin’s efficacy via inhibiting mitochondrial respiration and STAT3 in aggressive thyroid cancer. J Bioenerg Biomembr 2018; 50:263-270. [DOI: 10.1007/s10863-018-9755-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 04/05/2018] [Indexed: 12/20/2022]
|
782
|
Tang L, Wei F, Wu Y, He Y, Shi L, Xiong F, Gong Z, Guo C, Li X, Deng H, Cao K, Zhou M, Xiang B, Li X, Li Y, Li G, Xiong W, Zeng Z. Role of metabolism in cancer cell radioresistance and radiosensitization methods. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:87. [PMID: 29688867 PMCID: PMC5914062 DOI: 10.1186/s13046-018-0758-7] [Citation(s) in RCA: 279] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Radioresistance is a major factor leading to the failure of radiotherapy and poor prognosis in tumor patients. Following the application of radiotherapy, the activity of various metabolic pathways considerably changes, which may result in the development of resistance to radiation. MAIN BODY Here, we discussed the relationships between radioresistance and mitochondrial and glucose metabolic pathways, aiming to elucidate the interplay between the tumor cell metabolism and radiotherapy resistance. In this review, we additionally summarized the potential therapeutic targets in the metabolic pathways. SHORT CONCLUSION The aim of this review was to provide a theoretical basis and relevant references, which may lead to the improvement of the sensitivity of radiotherapy and prolong the survival of cancer patients.
Collapse
Affiliation(s)
- Le Tang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Wei
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yingfen Wu
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yi He
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lei Shi
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiayu Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Deng
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ke Cao
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Zhaoyang Zeng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
783
|
Zhou Y, Cheung YK, Ma C, Zhao S, Gao D, Lo PC, Fong WP, Wong KS, Ng DKP. Endoplasmic Reticulum-Localized Two-Photon-Absorbing Boron Dipyrromethenes as Advanced Photosensitizers for Photodynamic Therapy. J Med Chem 2018; 61:3952-3961. [DOI: 10.1021/acs.jmedchem.7b01907] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Yimin Zhou
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Ying-Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Chao Ma
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shirui Zhao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Di Gao
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Wing-Ping Fong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Kam Sing Wong
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dennis K. P. Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| |
Collapse
|
784
|
Jeon SM, Hay N. Expanding the concepts of cancer metabolism. Exp Mol Med 2018; 50:1-3. [PMID: 29657329 PMCID: PMC5938029 DOI: 10.1038/s12276-018-0070-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 02/03/2023] Open
Affiliation(s)
- Sang-Min Jeon
- College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea.
| | - Nissim Hay
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
785
|
Fuentes NR, Kim E, Fan YY, Chapkin RS. Omega-3 fatty acids, membrane remodeling and cancer prevention. Mol Aspects Med 2018; 64:79-91. [PMID: 29627343 DOI: 10.1016/j.mam.2018.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/27/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022]
Abstract
Proteins are often credited as the macromolecule responsible for performing critical cellular functions, however lipids have recently garnered more attention as our understanding of their role in cell function and human health becomes more apparent. Although cellular membranes are the lipid environment in which many proteins function, it is now apparent that protein and lipid assemblies can be organized to form distinct micro- or nanodomains that facilitate signaling events. Indeed, it is now appreciated that cellular function is partly regulated by the specific spatiotemporal lipid composition of the membrane, down to the nanosecond and nanometer scale. Furthermore, membrane composition is altered during human disease processes such as cancer and obesity. For example, an increased rate of lipid/cholesterol synthesis in cancerous tissues has long been recognized as an important aspect of the rewired metabolism of transformed cells. However, the contribution of lipids/cholesterol to cellular function in disease models is not yet fully understood. Furthermore, an important consideration in regard to human health is that diet is a major modulator of cell membrane composition. This can occur directly through incorporation of membrane substrates, such as fatty acids, e.g., n-3 polyunsaturated fatty acids (n-3 PUFA) and cholesterol. In this review, we describe scenarios in which changes in membrane composition impact human health. Particular focus is placed on the importance of intrinsic lipid/cholesterol biosynthesis and metabolism and extrinsic dietary modification in cancer and its effect on plasma membrane properties.
Collapse
Affiliation(s)
- Natividad R Fuentes
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA
| | - Eunjoo Kim
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Molecular and Cellular Medicine, Texas A&M University, USA
| | - Yang-Yi Fan
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA; Center for Translational Environmental Health Research, Texas A&M University, USA.
| |
Collapse
|
786
|
Huang KB, Wang FY, Tang XM, Feng HW, Chen ZF, Liu YC, Liu YN, Liang H. Organometallic Gold(III) Complexes Similar to Tetrahydroisoquinoline Induce ER-Stress-Mediated Apoptosis and Pro-Death Autophagy in A549 Cancer Cells. J Med Chem 2018; 61:3478-3490. [PMID: 29606001 DOI: 10.1021/acs.jmedchem.7b01694] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Agents inducing both apoptosis and autophagic death can be effective chemotherapeutic drugs. In our present work, we synthesized two organometallic gold(III) complexes harboring C^N ligands that structurally resemble tetrahydroisoquinoline (THIQ): Cyc-Au-1 (AuL1Cl2, L1 = 3,4-dimethoxyphenethylamine) and Cyc-Au-2 (AuL2Cl2, L2 = methylenedioxyphenethylamine). In screening their in vitro activity, we found both gold complexes exhibited lower toxicity, lower resistance factors, and better anticancer activity than those of cisplatin. The organometallic gold(III) complexes accumulate in mitochondria and induce elevated ROS and an ER stress response through mitochondrial dysfunction. These effects ultimately result in simultaneous apoptosis and autophagy. Importantly, compared to cisplatin, Cyc-Au-2 exhibits lower toxicity and better anticancer activity in a murine tumor model. To the best of our knowledge, Cyc-Au-2 is the first organometallic Au(III) compound that induces apoptosis and autophagic death. On the basis of our results, we believe Cyc-Au-2 to be a promising anticancer agent or lead compound for further anticancer drug development.
Collapse
Affiliation(s)
- Ke-Bin Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy , Guangxi Normal University , Guilin , Guangxi 541004 , P.R. China
| | - Feng-Yang Wang
- College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , P.R. China
| | - Xiao-Ming Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy , Guangxi Normal University , Guilin , Guangxi 541004 , P.R. China
| | - Hai-Wen Feng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy , Guangxi Normal University , Guilin , Guangxi 541004 , P.R. China
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy , Guangxi Normal University , Guilin , Guangxi 541004 , P.R. China
| | - Yan-Cheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy , Guangxi Normal University , Guilin , Guangxi 541004 , P.R. China
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , P.R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy , Guangxi Normal University , Guilin , Guangxi 541004 , P.R. China.,College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , P.R. China
| |
Collapse
|
787
|
Rui L, Xue Y, Wang Y, Gao Y, Zhang W. A mitochondria-targeting supramolecular photosensitizer based on pillar[5]arene for photodynamic therapy. Chem Commun (Camb) 2018; 53:3126-3129. [PMID: 28245021 DOI: 10.1039/c7cc00950j] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A mitochondria-targeting supramolecular photosensitizer system TPP-QAS/WP5/DTAB was constructed based on a host-guest inclusion complex. The supramolecular system could efficiently release and activate TPP-QASs in an acidic environment, which have been demonstrated to preferentially accumulate in mitochondria. Singlet oxygen (1O2) could be in situ generated in mitochondria under light irradiation, further enhancing the PDT efficacy.
Collapse
Affiliation(s)
- Leilei Rui
- Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Yudong Xue
- Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yun Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Weian Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
788
|
Abstract
Mitochondria-specific delivery methods offer a valuable tool for studying mitochondria-related diseases and provide breakthroughs in therapeutic development. Although several small-molecule and peptide-based transporters have been developed, peptoids, proteolysis-resistant peptidomimetics, are a promising alternative to current approaches. We designed a series of amphipathic peptoids and evaluated their cellular uptake and mitochondrial localization. Two peptoids with cyclohexyl residues demonstrated highly efficient cell penetration and mitochondrial localization without significant adverse effects on the cells and mitochondria. These mitochondria-targeting peptoids could facilitate the selective and robust targeted delivery of bioactive compounds, such as drugs, antioxidants, and photosensitizers, with minimal off-target effects.
Collapse
Affiliation(s)
| | - Jong-Ah Hong
- Department of Global Medical Science , Sungshin University , Kangbuk-gu, Seoul 01133 , Republic of Korea
| | | | | | | | | | - Jiyoun Lee
- Department of Global Medical Science , Sungshin University , Kangbuk-gu, Seoul 01133 , Republic of Korea
| |
Collapse
|
789
|
Zhu P, Liu Y, Zhang F, Bai X, Chen Z, Shangguan F, Zhang B, Zhang L, Chen Q, Xie D, Lan L, Xue X, Liang XJ, Lu B, Wei T, Qin Y. Human Elongation Factor 4 Regulates Cancer Bioenergetics by Acting as a Mitochondrial Translation Switch. Cancer Res 2018; 78:2813-2824. [PMID: 29572227 DOI: 10.1158/0008-5472.can-17-2059] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 01/01/2018] [Accepted: 03/20/2018] [Indexed: 11/16/2022]
Abstract
Mitochondria regulate cellular bioenergetics and redox states and influence multiple signaling pathways required for tumorigenesis. In this study, we determined that the mitochondrial translation elongation factor 4 (EF4) is a critical component of tumor progression. EF4 was ubiquitous in human tissues with localization to the mitochondria (mtEF4) and performed quality control on respiratory chain biogenesis. Knockout of mtEF4 induced respiratory chain complex defects and apoptosis, while its overexpression stimulated cancer development. In multiple cancers, expression of mtEF4 was increased in patient tumor tissues. These findings reveal that mtEF4 expression may promote tumorigenesis via an imbalance in the regulation of mitochondrial activities and subsequent variation of cellular redox. Thus, dysregulated mitochondrial translation may play a vital role in the etiology and development of diverse human cancers.Significance: Dysregulated mitochondrial translation drives tumor development and progression. Cancer Res; 78(11); 2813-24. ©2018 AACR.
Collapse
Affiliation(s)
- Ping Zhu
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yongzhang Liu
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fenglin Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Xiufeng Bai
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zilei Chen
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China.,Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fugen Shangguan
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China.,Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Bo Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Lingyun Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Qianqian Chen
- University of Chinese Academy of Sciences, Beijing, China.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Deyao Xie
- Departments of Cardiothoracic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Linhua Lan
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiangdong Xue
- Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Zhongguancun, Beijing, China
| | - Xing-Jie Liang
- Laboratory of Controllable Nanopharmaceuticals, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Zhongguancun, Beijing, China
| | - Bin Lu
- Attardi Institute of Mitochondrial Biomedicine, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Taotao Wei
- University of Chinese Academy of Sciences, Beijing, China. .,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Yan Qin
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China. .,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
790
|
Tan Z, Xiao L, Tang M, Bai F, Li J, Li L, Shi F, Li N, Li Y, Du Q, Lu J, Weng X, Yi W, Zhang H, Fan J, Zhou J, Gao Q, Onuchic JN, Bode AM, Luo X, Cao Y. Targeting CPT1A-mediated fatty acid oxidation sensitizes nasopharyngeal carcinoma to radiation therapy. Am J Cancer Res 2018; 8:2329-2347. [PMID: 29721083 PMCID: PMC5928893 DOI: 10.7150/thno.21451] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 02/28/2018] [Indexed: 12/17/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) has a particularly high prevalence in southern China, southeastern Asia and northern Africa. Radiation resistance remains a serious obstacle to successful treatment in NPC. This study aimed to explore the metabolic feature of radiation-resistant NPC cells and identify new molecular-targeted agents to improve the therapeutic effects of radiotherapy in NPC. Methods: Radiation-responsive and radiation-resistant NPC cells were used as the model system in vitro and in vivo. Metabolomics approach was used to illustrate the global metabolic changes. 13C isotopomer tracing experiment and Seahorse XF analysis were undertaken to determine the activity of fatty acid oxidation (FAO). qRT-PCR was performed to evaluate the expression of essential FAO genes including CPT1A. NPC tumor tissue microarray was used to investigate the prognostic role of CPT1A. Either RNA interference or pharmacological blockade by Etomoxir were used to inhibit CPT1A. Radiation resistance was evaluated by colony formation assay. Mitochondrial membrane potential, apoptosis and neutral lipid content were measured by flow cytometry analysis using JC-1, Annexin V and LipidTOX Red probe respectively. Molecular markers of mitochondrial apoptosis were detected by western blot. Xenografts were treated with Etomoxir, radiation, or a combination of Etomoxir and radiation. Mitochondrial apoptosis and lipid droplets content of tumor tissues were detected by cleaved caspase 9 and Oil Red O staining respectively. Liquid chromatography coupled with tandem mass spectrometry approach was used to identify CPT1A-binding proteins. The interaction of CPT1A and Rab14 were detected by immunoprecipitation, immunofluorescence and in situ proximity ligation analysis. Fragment docking and direct coupling combined computational protein-protein interaction prediction method were used to predict the binding interface. Fatty acid trafficking was measured by pulse-chase assay using BODIPY C16 and MitoTracker Red probe. Results: FAO was active in radiation-resistant NPC cells, and the rate-limiting enzyme of FAO, carnitine palmitoyl transferase 1 A (CPT1A), was consistently up-regulated in these cells. The protein level of CPT1A was significantly associated with poor overall survival of NPC patients following radiotherapy. Inhibition of CPT1A re-sensitized NPC cells to radiation therapy by activating mitochondrial apoptosis both in vitro and in vivo. In addition, we identified Rab14 as a novel CPT1A binding protein. The CPT1A-Rab14 interaction facilitated fatty acid trafficking from lipid droplets to mitochondria, which decreased radiation-induced lipid accumulation and maximized ATP production. Knockdown of Rab14 attenuated CPT1A-mediated fatty acid trafficking and radiation resistance. Conclusion: An active FAO is a vital signature of NPC radiation resistance. Targeting CPT1A could be a beneficial regimen to improve the therapeutic effects of radiotherapy in NPC patients. Importantly, the CPT1A-Rab14 interaction plays roles in CPT1A-mediated radiation resistance by facilitating fatty acid trafficking. This interaction could be an attractive interface for the discovery of novel CPT1A inhibitors.
Collapse
|
791
|
Khiewkamrop P, Phunsomboon P, Richert L, Pekthong D, Srisawang P. Epistructured catechins, EGCG and EC facilitate apoptosis induction through targeting de novo lipogenesis pathway in HepG2 cells. Cancer Cell Int 2018; 18:46. [PMID: 29588626 PMCID: PMC5863485 DOI: 10.1186/s12935-018-0539-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/13/2018] [Indexed: 02/06/2023] Open
Abstract
Background Abnormally high expression of the mammalian de novo lipogenesis (DNL) pathway in various cancer cells promotes cell over-proliferation and resistance to apoptosis. Inhibition of key enzymes in the DNL pathway, namely, ATP citrate lyase, acetyl-CoA carboxylase, and fatty acid synthase (FASN) can increase apoptosis without cytotoxicity to non-cancerous cells, leading to the search for and presentation of novel selective and powerful targets for cancer therapy. Previous studies reported that epistructured catechins, epigallocatechin gallate (EGCG) and epicatechin (EC) exhibit different mechanisms regarding a strong inducer of apoptosis in various cancer cell lines. Thus, the current study investigated the growth inhibitory effect of EGCG and EC, on the enzyme expression and activity of the DNL pathway, which leads to the prominent activity of carnitine palmitoyl transferase-1 (CPT-1) mediating apoptosis in HepG2 cells. Methods The cytotoxicity on HepG2 cells of EGCG and EC was determined by MTT assay. Cell death caused by apoptosis, the dissipation of mitochondrial membrane potential (MMP), and cell cycle arrest were then detected by flow cytometry. We further investigated the decrease of fatty acid levels associated with DNL retardation, followed by evaluation of DNL protein expression. Then, the negative inhibitory effect of depleted fatty acid synthesis on malonyl-CoA synthesis followed by regulating of CPT-1 activity was investigated. Thereafter, we inspected the enhanced reactive oxygen species (ROS) generation, which is recognized as one of the causes of apoptosis in HepG2 cells. Results We found that EGCG and EC decreased cancer cell viability by increasing apoptosis as well as causing cell cycle arrest in HepG2 cells. Apoptosis was associated with MMP dissipation. Herein, EGCG and EC inhibited the expression of FASN enzymes contributing to decreasing fatty acid levels. Notably, this decrease consequently showed a suppressing effect on the CPT-1 activity. We suggest that epistructured catechin-induced apoptosis targets CPT-1 activity suppression mediated through diminishing the DNL pathway in HepG2 cells. In addition, increased ROS production was found after treatment with EGCG and EC, indicating oxidative stress mechanism-induced apoptosis. The strong apoptotic effect of EGCG and EC was specifically absent in primary human hepatocytes. Conclusion Our supportive evidence confirms potential alternative cancer treatments by EGCG and EC that selectively target the DNL pathway.
Collapse
Affiliation(s)
- Phuriwat Khiewkamrop
- 1Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000 Thailand
| | - Pattamaphron Phunsomboon
- 2Clinical Research Unit Floor 5 His Majesty's 7th Cycle Birthday Anniversary 2, Faculty of Medicine, Naresuan University, Phitsanulok, 65000 Thailand
| | - Lysiane Richert
- KaLy-Cell, 20A rue du Général Leclerc, 67115 Plobsheim, France.,Laboratoire de Toxicologie Cellulaire, Université de Bourgogne Franche-Comté, EA 4267, Besançon, France
| | - Dumrongsak Pekthong
- 5Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, 65000 Thailand
| | - Piyarat Srisawang
- 1Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000 Thailand
| |
Collapse
|
792
|
Oliva CR, Zhang W, Langford C, Suto MJ, Griguer CE. Repositioning chlorpromazine for treating chemoresistant glioma through the inhibition of cytochrome c oxidase bearing the COX4-1 regulatory subunit. Oncotarget 2018; 8:37568-37583. [PMID: 28455961 PMCID: PMC5514931 DOI: 10.18632/oncotarget.17247] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/07/2017] [Indexed: 12/12/2022] Open
Abstract
Patients with glioblastoma have one of the lowest overall survival rates among patients with cancer. Standard of care for patients with glioblastoma includes temozolomide and radiation therapy, yet 30% of patients do not respond to these treatments and nearly all glioblastoma tumors become resistant. Chlorpromazine is a United States Food and Drug Administration-approved phenothiazine widely used as a psychotropic in clinical practice. Recently, experimental evidence revealed the anti-proliferative activity of chlorpromazine against colon and brain tumors. Here, we used chemoresistant patient-derived glioma stem cells and chemoresistant human glioma cell lines to investigate the effects of chlorpromazine against chemoresistant glioma. Chlorpromazine selectively and significantly inhibited proliferation in chemoresistant glioma cells and glioma stem cells. Mechanistically, chlorpromazine inhibited cytochrome c oxidase (CcO, complex IV) activity from chemoresistant but not chemosensitive cells, without affecting other mitochondrial complexes. Notably, our previous studies revealed that the switch to chemoresistance in glioma cells is accompanied by a switch from the expression of CcO subunit 4 isoform 2 (COX4-2) to COX4-1. In this study, chlorpromazine induced cell cycle arrest selectively in glioma cells expressing COX4-1, and computer-simulated docking studies indicated that chlorpromazine binds more tightly to CcO expressing COX4-1 than to CcO expressing COX4-2. In orthotopic mouse brain tumor models, chlorpromazine treatment significantly increased the median overall survival of mice harboring chemoresistant tumors. These data indicate that chlorpromazine selectively inhibits the growth and proliferation of chemoresistant glioma cells expressing COX4-1. The feasibility of repositioning chlorpromazine for selectively treating chemoresistant glioma tumors should be further explored.
Collapse
Affiliation(s)
- Claudia R Oliva
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, 35294 Alabama, USA
| | - Wei Zhang
- Southern Research, Birmingham, 35294 Alabama, USA
| | - Cathy Langford
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, 35294 Alabama, USA
| | - Mark J Suto
- Southern Research, Birmingham, 35294 Alabama, USA
| | - Corinne E Griguer
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, 35294 Alabama, USA.,Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, 35294 Alabama, USA
| |
Collapse
|
793
|
D'Andrea A, Gritti I, Nicoli P, Giorgio M, Doni M, Conti A, Bianchi V, Casoli L, Sabò A, Mironov A, Beznoussenko GV, Amati B. The mitochondrial translation machinery as a therapeutic target in Myc-driven lymphomas. Oncotarget 2018; 7:72415-72430. [PMID: 27635472 PMCID: PMC5341918 DOI: 10.18632/oncotarget.11719] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/25/2016] [Indexed: 12/12/2022] Open
Abstract
The oncogenic transcription factor Myc is required for the progression and maintenance of diverse tumors. This has led to the concept that Myc itself, Myc-activated gene products, or associated biological processes might constitute prime targets for cancer therapy. Here, we present an in vivo reverse-genetic screen targeting a set of 241 Myc-activated mRNAs in mouse B-cell lymphomas, unraveling a critical role for the mitochondrial ribosomal protein (MRP) Ptcd3 in tumor maintenance. Other MRP-coding genes were also up regulated in Myc-induced lymphoma, pointing to a coordinate activation of the mitochondrial translation machinery. Inhibition of mitochondrial translation with the antibiotic Tigecycline was synthetic-lethal with Myc activation, impaired respiratory activity and tumor cell survival in vitro, and significantly extended lifespan in lymphoma-bearing mice. We have thus identified a novel Myc-induced metabolic dependency that can be targeted by common antibiotics, opening new therapeutic perspectives in Myc-overexpressing tumors.
Collapse
Affiliation(s)
- Aleco D'Andrea
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Ilaria Gritti
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.,Present address: IRCCS San Raffaele, Functional Genomics of Cancer Unit, Division of Experimental Oncology, Milan, Italy
| | - Paola Nicoli
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Marco Giorgio
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Mirko Doni
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Annalisa Conti
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Valerio Bianchi
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy.,Present address: Hubrecht Institute-KNAW & University Medical Center Utrecht, Uppsalalaan, Utrecht, The Netherlands
| | - Lucia Casoli
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Arianna Sabò
- Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| | - Alexandre Mironov
- The Institute of Molecular Oncology of the Italian Foundation for Cancer Research, Milan, Italy
| | - Galina V Beznoussenko
- The Institute of Molecular Oncology of the Italian Foundation for Cancer Research, Milan, Italy
| | - Bruno Amati
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy.,Center for Genomic Science of IIT@SEMM, Fondazione Istituto Italiano di Tecnologia, Milan, Italy
| |
Collapse
|
794
|
Weng MS, Chang JH, Hung WY, Yang YC, Chien MH. The interplay of reactive oxygen species and the epidermal growth factor receptor in tumor progression and drug resistance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:61. [PMID: 29548337 PMCID: PMC5857086 DOI: 10.1186/s13046-018-0728-0] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/07/2018] [Indexed: 02/07/2023]
Abstract
Background The epidermal growth factor receptor (EGFR) plays important roles in cell survival, growth, differentiation, and tumorigenesis. Dysregulation of the EGFR is a common mechanism in cancer progression especially in non-small cell lung cancer (NSCLC). Main body Suppression of the EGFR-mediated signaling pathway is used in cancer treatment. Furthermore, reactive oxygen species (ROS)-induced oxidative stress from mitochondrial dysfunction or NADPH oxidase (NOX) overactivation and ectopic expression of antioxidative enzymes were also indicated to be involved in EGFR-mediated tumor progression (proliferation, differentiation, migration, and invasion) and drug resistance (EGFR tyrosine kinase inhibitor (TKI)). The products of NOX, superoxide and hydrogen peroxide, are considered to be major types of ROS. ROS are not only toxic materials to cells but also signaling regulators of tumor progression. Oxidation of both the EGFR and downstream phosphatases by ROS enhances EGFR-mediated signaling and promotes tumor progression. This review primarily focuses on the recent literature with respect to the roles of the EGFR and ROS and correlations between ROS and the EGFR in tumor progression and EGFR TKI resistance. Short conclusion The evidence discussed in this article can serve as a basis for basic and clinical research to understand how to modulate ROS levels to control the development and drug resistance of cancers.
Collapse
Affiliation(s)
- Meng-Shih Weng
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Jer-Hwa Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Pulmonary Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Yueh Hung
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan
| | - Yi-Chieh Yang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, 250 Wu-Hsing Street, Taipei, 11031, Taiwan. .,Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
795
|
Martinez AF, McCachren SS, Lee M, Murphy HA, Zhu C, Crouch BT, Martin HL, Erkanli A, Rajaram N, Ashcraft KA, Fontanella AN, Dewhirst MW, Ramanujam N. Metaboloptics: Visualization of the tumor functional landscape via metabolic and vascular imaging. Sci Rep 2018. [PMID: 29520098 PMCID: PMC5843602 DOI: 10.1038/s41598-018-22480-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many cancers adeptly modulate metabolism to thrive in fluctuating oxygen conditions; however, current tools fail to image metabolic and vascular endpoints at spatial resolutions needed to visualize these adaptations in vivo. We demonstrate a high-resolution intravital microscopy technique to quantify glucose uptake, mitochondrial membrane potential (MMP), and SO2 to characterize the in vivo phentoypes of three distinct murine breast cancer lines. Tetramethyl rhodamine, ethyl ester (TMRE) was thoroughly validated to report on MMP in normal and tumor-bearing mice. Imaging MMP or glucose uptake together with vascular endpoints revealed that metastatic 4T1 tumors maintained increased glucose uptake across all SO2 (“Warburg effect”), and also showed increased MMP relative to normal tissue. Non-metastatic 67NR and 4T07 tumor lines both displayed increased MMP, but comparable glucose uptake, relative to normal tissue. The 4T1 peritumoral areas also showed a significant glycolytic shift relative to the tumor regions. During a hypoxic stress test, 4T1 tumors showed significant increases in MMP with corresponding significant drops in SO2, indicative of intensified mitochondrial metabolism. Conversely, 4T07 and 67NR tumors shifted toward glycolysis during hypoxia. Our findings underscore the importance of imaging metabolic endpoints within the context of a living microenvironment to gain insight into a tumor’s adaptive behavior.
Collapse
Affiliation(s)
- Amy F Martinez
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| | | | - Marianne Lee
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Helen A Murphy
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Caigang Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Brian T Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Hannah L Martin
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Alaattin Erkanli
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | - Nirmala Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
796
|
Mitochondria-Endoplasmic Reticulum Contact Sites Function as Immunometabolic Hubs that Orchestrate the Rapid Recall Response of Memory CD8 + T Cells. Immunity 2018. [PMID: 29523440 DOI: 10.1016/j.immuni.2018.02.012] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glycolysis is linked to the rapid response of memory CD8+ T cells, but the molecular and subcellular structural elements enabling enhanced glucose metabolism in nascent activated memory CD8+ T cells are unknown. We found that rapid activation of protein kinase B (PKB or AKT) by mammalian target of rapamycin complex 2 (mTORC2) led to inhibition of glycogen synthase kinase 3β (GSK3β) at mitochondria-endoplasmic reticulum (ER) junctions. This enabled recruitment of hexokinase I (HK-I) to the voltage-dependent anion channel (VDAC) on mitochondria. Binding of HK-I to VDAC promoted respiration by facilitating metabolite flux into mitochondria. Glucose tracing pinpointed pyruvate oxidation in mitochondria, which was the metabolic requirement for rapid generation of interferon-γ (IFN-γ) in memory T cells. Subcellular organization of mTORC2-AKT-GSK3β at mitochondria-ER contact sites, promoting HK-I recruitment to VDAC, thus underpins the metabolic reprogramming needed for memory CD8+ T cells to rapidly acquire effector function.
Collapse
|
797
|
Abstract
Cancer metabolism is emerging as a chemotherapeutic target. Enhanced glycolysis and suppression of mitochondrial metabolism characterize the Warburg phenotype in cancer cells. The flux of respiratory substrates, ADP, and Pi into mitochondria and the release of mitochondrial ATP to the cytosol occur through voltage-dependent anion channels (VDACs) located in the mitochondrial outer membrane. Catabolism of respiratory substrates in the Krebs cycle generates NADH and FADH2 that enter the electron transport chain (ETC) to generate a proton motive force that maintains mitochondrial membrane potential (ΔΨ) and is utilized to generate ATP. The ETC is also the major cellular source of mitochondrial reactive oxygen species (ROS). αβ-Tubulin heterodimers decrease VDAC conductance in lipid bilayers. High constitutive levels of cytosolic free tubulin in intact cancer cells close VDAC decreasing mitochondrial ΔΨ and mitochondrial metabolism. The VDAC-tubulin interaction regulates VDAC opening and globally controls mitochondrial metabolism, ROS formation, and the intracellular flow of energy. Erastin, a VDAC-binding molecule lethal to some cancer cell types, and erastin-like compounds identified in a high-throughput screening antagonize the inhibitory effect of tubulin on VDAC. Reversal of tubulin inhibition of VDAC increases VDAC conductance and the flux of metabolites into and out of mitochondria. VDAC opening promotes a higher mitochondrial ΔΨ and a global increase in mitochondrial metabolism leading to high cytosolic ATP/ADP ratios that inhibit glycolysis. VDAC opening also increases ROS production causing oxidative stress that, in turn, leads to mitochondrial dysfunction, bioenergetic failure, and cell death. In summary, antagonism of the VDAC-tubulin interaction promotes cell death by a "double-hit model" characterized by reversion of the proproliferative Warburg phenotype (anti-Warburg) and promotion of oxidative stress.
Collapse
Affiliation(s)
- Diana Fang
- Medical University of South Carolina, Charleston, SC, United States
| | - Eduardo N Maldonado
- Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
798
|
Kwon S, Lee Y, Jung Y, Kim JH, Baek B, Lim B, Lee J, Kim I, Lee J. Mitochondria-targeting indolizino[3,2-c]quinolines as novel class of photosensitizers for photodynamic anticancer activity. Eur J Med Chem 2018; 148:116-127. [DOI: 10.1016/j.ejmech.2018.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 01/18/2023]
|
799
|
Patil S, Kuman MM, Palvai S, Sengupta P, Basu S. Impairing Powerhouse in Colon Cancer Cells by Hydrazide-Hydrazone-Based Small Molecule. ACS OMEGA 2018; 3:1470-1481. [PMID: 30023806 PMCID: PMC6044916 DOI: 10.1021/acsomega.7b01512] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/10/2018] [Indexed: 05/31/2023]
Abstract
Mitochondrion has emerged as one of the unconventional targets in next-generation cancer therapy. Hence, small molecules targeting mitochondria in cancer cells have immense potential in the next-generation anticancer therapeutics. In this report, we have synthesized a library of hydrazide-hydrazone-based small molecules and identified a novel compound that induces mitochondrial outer membrane permeabilization by inhibiting antiapoptotic B-cell CLL/lymphoma 2 (Bcl-2) family proteins followed by sequestration of proapoptotic cytochrome c. The new small molecule triggered programmed cell death (early and late apoptosis) through cell cycle arrest in the G2/M phase and caspase-9/3 cleavage in HCT-116 colon cancer cells, confirmed by an array of fluorescence confocal microscopy, cell sorting, and immunoblotting analysis. Furthermore, cell viability studies have verified that the small molecule rendered toxicity to a panel of colon cancer cells (HCT-116, DLD-1, and SW-620), keeping healthy L929 fibroblast cells unharmed. The novel small molecule has the potential to form a new understudied class of mitochondria targeting anticancer agent.
Collapse
Affiliation(s)
- Sohan Patil
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Meenu Mahesh Kuman
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sandeep Palvai
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Poulomi Sengupta
- Physical
Chemistry Division, CSIR-National Chemical
Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Sudipta Basu
- Department
of Chemistry, Indian Institute of Science
Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
800
|
Targeting Mitochondrial Bioenergetics as a Therapeutic Strategy for Chronic Lymphocytic Leukemia. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2426712. [PMID: 29682155 PMCID: PMC5851432 DOI: 10.1155/2018/2426712] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Abstract
Altered cellular metabolism is considered a hallmark of cancer and is fast becoming an avenue for therapeutic intervention. Mitochondria have recently been viewed as an important cellular compartment that fuels the metabolic demands of cancer cells. Mitochondria are the major source of ATP and metabolites necessary to fulfill the bioenergetics and biosynthetic demands of cancer cells. Furthermore, mitochondria are central to cell death and the main source for generation of reactive oxygen species (ROS). Overall, the growing evidence now suggests that mitochondrial bioenergetics, biogenesis, ROS production, and adaptation to intrinsic oxidative stress are elevated in chronic lymphocytic leukemia (CLL). Hence, recent studies have shown that mitochondrial metabolism could be targeted for cancer therapy. This review focuses the recent advancements in targeting mitochondrial metabolism for the treatment of CLL.
Collapse
|