751
|
Gerhardt S, Mohajeri MH. Changes of Colonic Bacterial Composition in Parkinson's Disease and Other Neurodegenerative Diseases. Nutrients 2018; 10:E708. [PMID: 29857583 PMCID: PMC6024871 DOI: 10.3390/nu10060708] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/12/2022] Open
Abstract
In recent years evidence has emerged that neurodegenerative diseases (NDs) are strongly associated with the microbiome composition in the gut. Parkinson's disease (PD) is the most intensively studied neurodegenerative disease in this context. In this review, we performed a systematic evaluation of the published literature comparing changes in colonic microbiome in PD to the ones observed in other NDs including Alzheimer's disease (AD), multiple system atrophy (MSA), multiple sclerosis (MS), neuromyelitis optica (NMO) and amyotrophic lateral sclerosis (ALS). To enhance the comparability of different studies, only human case-control studies were included. Several studies showed an increase of Lactobacillus, Bifidobacterium, Verrucomicrobiaceae and Akkermansia in PD. A decrease of Faecalibacterium spp., Coprococcus spp., Blautia spp., Prevotella spp. and Prevotellaceae was observed in PD. On a low taxonomic resolution, like the phylum level, the changes are not disease-specific and are inconsistent. However, on a higher taxonomic resolution like genus or species level, a minor overlap was observed between PD and MSA, both alpha synucleinopathies. We show that standardization of sample collection and analysis is necessary for ensuring the reproducibility and comparability of data. We also provide evidence that assessing the microbiota composition at high taxonomic resolution reveals changes in relative abundance that may be specific to or characteristic of one disease or disease group, and might evolve discriminative power. The interactions between bacterial species and strains and the co-abundances must be investigated before assumptions about the effects of specific bacteria on the host can be made with certainty.
Collapse
Affiliation(s)
- Sara Gerhardt
- Departement of human medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - M Hasan Mohajeri
- Departement of human medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
752
|
Haase S, Haghikia A, Wilck N, Müller DN, Linker RA. Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology 2018; 154:230-238. [PMID: 29637999 PMCID: PMC5980218 DOI: 10.1111/imm.12933] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/28/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Abstract
A vast number of studies have demonstrated a remarkable role for the gut microbiota and their metabolites in the pathogenesis of inflammatory diseases, including multiple sclerosis (MS). Recent studies in experimental autoimmune encephalomyelitis, an animal model of MS, have revealed that modifying certain intestinal bacterial populations may influence immune cell priming in the periphery, resulting in dysregulation of immune responses and neuroinflammatory processes in the central nervous system (CNS). Conversely, some commensal bacteria and their antigenic products can protect against inflammation within the CNS. Specific components of the gut microbiome have been implicated in the production of pro-inflammatory cytokines and subsequent generation of Th17 cells. Similarly, commensal bacteria and their metabolites can also promote the generation of regulatory T-cells (Treg), contributing to immune suppression. Short-chain fatty acids may induce Treg either by G-protein-coupled receptors or inhibition of histone deacetylases. Tryptophan metabolites may suppress inflammatory responses by acting on the aryl hydrocarbon receptor in T-cells or astrocytes. Interestingly, secretion of these metabolites can be impaired by excess consumption of dietary components, such as long-chain fatty acids or salt, indicating that the diet represents an environmental factor affecting the complex crosstalk between the gut microbiota and the immune system. This review discusses new aspects of host-microbiota interaction and the immune system with a special focus on MS as a prototype T-cell-mediated autoimmune disease of the CNS.
Collapse
Affiliation(s)
- Stefanie Haase
- Department of NeurologyFriedrich‐Alexander UniversityErlangenGermany
| | - Aiden Haghikia
- Department of NeurologyRuhr‐University BochumBochumGermany
| | - Nicola Wilck
- Experimental and Clinical Research Center, a Joint Cooperation of Max‐Delbrück Center for Molecular MedicineCharité‐Universitätsmedizin BerlinBerlinGermany
| | - Dominik N. Müller
- Experimental and Clinical Research Center, a Joint Cooperation of Max‐Delbrück Center for Molecular MedicineCharité‐Universitätsmedizin BerlinBerlinGermany
- DZHK (German Centre for Cardiovascular Research) partner siteBerlinGermany
- Berlin Institute of Health (BIH)BerlinGermany
| | - Ralf A. Linker
- Department of NeurologyFriedrich‐Alexander UniversityErlangenGermany
| |
Collapse
|
753
|
Abstract
The microbiome can be defined as the sum of the microbial and host's genome. Recent information regarding this complex organ suggests that in animal models of multiple sclerosis (MS), the composition of the gut microbiome can be altered, giving rise to both the effector and regulatory phases of central nervous system (CNS) demyelination. Experimental findings during the past decade in animal models of MS have provided clear evidence for the significant role of gut microbes in both the effector and regulatory phase of this condition. There is mounting evidence in preliminary human studies suggesting that a dysbiotic MS gut microbiome could affect disease progression. We propose considering the gut microbiome as a key organ for the regulation of tolerance mechanisms and speculate that the gut microbiome is the major environmental risk factor for CNS demyelinating disease. Accordingly, we hypothesize that intervention of the gut microbiome could result in safer novel therapeutic strategies to treat MS.
Collapse
Affiliation(s)
| | - Trevor O Kirby
- Department of Biology, Eastern Washington University, Cheney, Washington 99004
| | - Lloyd H Kasper
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Lebanon, New Hampshire 03756
| |
Collapse
|
754
|
Alonso R, Pisa D, Fernández-Fernández AM, Carrasco L. Infection of Fungi and Bacteria in Brain Tissue From Elderly Persons and Patients With Alzheimer's Disease. Front Aging Neurosci 2018; 10:159. [PMID: 29881346 PMCID: PMC5976758 DOI: 10.3389/fnagi.2018.00159] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/08/2018] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in elderly people. The etiology of this disease remains a matter of intensive research in many laboratories. We have advanced the idea that disseminated fungal infection contributes to the etiology of AD. Thus, we have demonstrated that fungal proteins and DNA are present in nervous tissue from AD patients. More recently, we have reported that bacterial infections can accompany these mycoses, suggesting that polymicrobial infections exist in AD brains. In the present study, we have examined fungal and bacterial infection in brain tissue from AD patients and control subjects by immunohistochemistry. In addition, we have documented the fungal and bacterial species in brain regions from AD patients and control subjects by next-generation sequencing (NGS). Our results from the analysis of ten AD patients reveal a variety of fungal and bacterial species, although some were more prominent than others. The fungal genera more prevalent in AD patients were Alternaria, Botrytis, Candida, and Malassezia. We also compared these genera with those found in elderly and younger subjects. One of the most prominent genera in control subjects was Fusarium. Principal component analysis clearly indicated that fungi from frontal cortex samples of AD brains clustered together and differed from those of equivalent control subjects. Regarding bacterial infection, the phylum Proteobacteria was the most prominent in both AD patients and controls, followed by Firmicutes, Actinobacteria, and Bacteroides. At the family level, Burkholderiaceae and Staphylococcaceae exhibited higher percentages in AD brains than in control brains. These findings could be of interest to guide targeted antimicrobial therapy for AD patients. Moreover, the variety of microbial species in each patient may constitute a basis for a better understanding of the evolution and severity of clinical symptoms in each patient.
Collapse
Affiliation(s)
| | | | | | - Luis Carrasco
- Centro de Biología Molecular “Severo Ochoa”, Consejo Superior de Investigaciones Científicas y Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
755
|
|
756
|
Bellocchi C, Fernández-Ochoa Á, Montanelli G, Vigone B, Santaniello A, Milani C, Quirantes-Piné R, Borrás-Linares I, Ventura M, Segura-Carrettero A, Alarcón-Riquelme ME, Beretta L. Microbial and metabolic multi-omic correlations in systemic sclerosis patients. Ann N Y Acad Sci 2018; 1421:97-109. [DOI: 10.1111/nyas.13736] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/14/2018] [Accepted: 03/24/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Chiara Bellocchi
- Scleroderma Unit, Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca’ Granda; Ospedale Maggiore Policlinico di Milano; Milan Italy
| | | | - Gaia Montanelli
- Scleroderma Unit, Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca’ Granda; Ospedale Maggiore Policlinico di Milano; Milan Italy
| | - Barbara Vigone
- Scleroderma Unit, Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca’ Granda; Ospedale Maggiore Policlinico di Milano; Milan Italy
| | - Alessandro Santaniello
- Scleroderma Unit, Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca’ Granda; Ospedale Maggiore Policlinico di Milano; Milan Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Life Sciences; University of Parma; Parma Italy
| | | | | | - Marco Ventura
- Laboratory of Probiogenomics, Department of Life Sciences; University of Parma; Parma Italy
| | | | - Marta Eugenia Alarcón-Riquelme
- Centre for Genomics and Oncological Research (GENYO); Pfizer-University of Granada-Andalusian Regional Government; Granada Spain
- Institute for Environmental Medicine; Karolinska Institutet; Stockholm Sweden
| | - Lorenzo Beretta
- Scleroderma Unit, Referral Center for Systemic Autoimmune Diseases, Fondazione IRCCS Ca’ Granda; Ospedale Maggiore Policlinico di Milano; Milan Italy
| |
Collapse
|
757
|
Fitzgerald KC, Vizthum D, Henry-Barron B, Schweitzer A, Cassard SD, Kossoff E, Hartman AL, Kapogiannis D, Sullivan P, Baer DJ, Mattson MP, Appel LJ, Mowry EM. Effect of intermittent vs. daily calorie restriction on changes in weight and patient-reported outcomes in people with multiple sclerosis. Mult Scler Relat Disord 2018; 23:33-39. [PMID: 29753994 DOI: 10.1016/j.msard.2018.05.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 11/20/2022]
Abstract
An intermittent fasting or calorie restriction diet has favorable effects in the mouse forms of multiple sclerosis (MS) and may provide additional anti-inflammatory and neuroprotective advantages beyond benefits obtained from weight loss alone. We conducted a pilot randomized controlled feeding study in 36 people with MS to assess safety and feasibility of different types of calorie restriction (CR) diets and assess their effects on weight and patient reported outcomes in people with MS. Patients were randomized to receive 1 of 3 diets for 8 weeks: daily CR diet (22% daily reduction in energy needs), intermittent CR diet (75% reduction in energy needs, 2 days/week; 0% reduction, 5 days/week), or a weight-stable diet (0% reduction in energy needs, 7 days/week). Of the 36 patients enrolled, 31 (86%) completed the trial; no significant adverse events occurred. Participants randomized to CR diets lost a median 3.4 kg (interquartile range [IQR]: -2.4, -4.0). Changes in weight did not differ significantly by type of CR diet, although participants randomized to daily CR tended to have greater weight loss (daily CR: -3.6 kg [IQR: -3.0, -4.1] vs. intermittent CR: -3.0 kg [IQR: -1.95, -4.1]; P = 0.15). Adherence to study diets differed significantly between intermittent CR vs. daily CR, with lesser adherence observed for intermittent CR (P = 0.002). Randomization to either CR diet was associated with significant improvements in emotional well-being/depression scores relative to control, with an average 8-week increase of 1.69 points (95% CI: 0.72, 2.66). CR diets are a safe/feasible way to achieve weight loss in people with MS and may be associated with improved emotional health.
Collapse
Affiliation(s)
- Kathryn C Fitzgerald
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| | - Diane Vizthum
- Research Nutrition, Institute for Clinical and Translational Research, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Bobbie Henry-Barron
- Research Nutrition, Institute for Clinical and Translational Research, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Amy Schweitzer
- Research Nutrition, Institute for Clinical and Translational Research, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Sandra D Cassard
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Eric Kossoff
- Departments of Neurology and Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Adam L Hartman
- Departments of Neurology and Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Dimitrios Kapogiannis
- Department of Cellular and Molecular Neuroscience, National Institute on Aging, Baltimore, MD, United States
| | - Patrick Sullivan
- Beltsville Human Nutrition Research Center, United States Department of Agriculture, Beltsville, MD, United States
| | - David J Baer
- Beltsville Human Nutrition Research Center, United States Department of Agriculture, Beltsville, MD, United States
| | - Mark P Mattson
- Department of Cellular and Molecular Neuroscience, National Institute on Aging, Baltimore, MD, United States
| | - Lawrence J Appel
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ellen M Mowry
- Division of Neuroimmunology and Neurological Infections, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
758
|
Li B, Selmi C, Tang R, Gershwin ME, Ma X. The microbiome and autoimmunity: a paradigm from the gut-liver axis. Cell Mol Immunol 2018; 15:595-609. [PMID: 29706647 PMCID: PMC6079090 DOI: 10.1038/cmi.2018.7] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 02/07/2023] Open
Abstract
Microbial cells significantly outnumber human cells in the body, and the microbial flora at mucosal sites are shaped by environmental factors and, less intuitively, act on host immune responses, as demonstrated by experimental data in germ-free and gnotobiotic studies. Our understanding of this link stems from the established connection between infectious bacteria and immune tolerance breakdown, as observed in rheumatic fever triggered by Streptococci via molecular mimicry, epitope spread and bystander effects. The availability of high-throughput techniques has significantly advanced our capacity to sequence the microbiome and demonstrated variable degrees of dysbiosis in numerous autoimmune diseases, including rheumatoid arthritis, type 1 diabetes, multiple sclerosis and autoimmune liver disease. It remains unknown whether the observed differences are related to the disease pathogenesis or follow the therapeutic and inflammatory changes and are thus mere epiphenomena. In fact, there are only limited data on the molecular mechanisms linking the microbiota to autoimmunity, and microbial therapeutics is being investigated to prevent or halt autoimmune diseases. As a putative mechanism, it is of particular interest that the apoptosis of intestinal epithelial cells in response to microbial stimuli enables the presentation of self-antigens, giving rise to the differentiation of autoreactive Th17 cells and other T helper cells. This comprehensive review will illustrate the data demonstrating the crosstalk between intestinal microbiome and host innate and adaptive immunity, with an emphasis on how dysbiosis may influence systemic autoimmunity. In particular, a gut–liver axis involving the intestinal microbiome and hepatic autoimmunity is elucidated as a paradigm, considering its anatomic and physiological connections.
Collapse
Affiliation(s)
- Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 200001, Shanghai, China
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy.,BIOMETRA Department, University of Milan, Milan, Italy
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 200001, Shanghai, China
| | - M E Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 200001, Shanghai, China.
| |
Collapse
|
759
|
Libbey JE, Sanchez JM, Doty DJ, Sim JT, Cusick MF, Cox JE, Fischer KF, Round JL, Fujinami R. Variations in diet cause alterations in microbiota and metabolites that follow changes in disease severity in a multiple sclerosis model. Benef Microbes 2018; 9:495-513. [PMID: 29380645 PMCID: PMC5918152 DOI: 10.3920/bm2017.0116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Multiple sclerosis (MS) is a metabolically demanding disease involving immune-mediated destruction of myelin in the central nervous system. We previously demonstrated a significant alteration in disease course in the experimental autoimmune encephalomyelitis (EAE) preclinical model of MS due to diet. Based on the established crosstalk between metabolism and gut microbiota, we took an unbiased sampling of microbiota, in the stool, and metabolites, in the serum and stool, from mice (Mus musculus) on the two different diets, the Teklad global soy protein-free extruded rodent diet (irradiated diet) and the Teklad sterilisable rodent diet (autoclaved diet). Within the microbiota, the genus Lactobacillus was found to be inversely correlated with EAE severity. Therapeutic treatment with Lactobacillus paracasei resulted in a significant reduction in the incidence of disease, clinical scores and the amount of weight loss in EAE mice. Within the metabolites, we identified shifts in glycolysis and the tricarboxylic acid cycle that may explain the differences in disease severity between the different diets in EAE. This work begins to elucidate the relationship between diet, microbiota and metabolism in the EAE preclinical model of MS and identifies targets for further study with the goal to more specifically probe the complex metabolic interaction at play in EAE that may have translational relevance to MS patients.
Collapse
Affiliation(s)
- J. E. Libbey
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - J. M. Sanchez
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - D. J. Doty
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - J. T. Sim
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - M. F. Cusick
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
- Baylor College of Medicine, Division of Abdominal Transplantation, Neurosensory Center, Houston, TX 77030, USA
| | - J. E. Cox
- Department of Biochemistry and Metabolomics Core, University of Utah, 15 North Medical Drive East, A306 EEJMRB, Salt Lake City, UT 84112, USA
| | - K. F. Fischer
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
- uBiota LLC, 825 N 300 W STE: NE-200, Salt Lake City, UT 84103, USA
| | - J. L. Round
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| | - R.S. Fujinami
- Department of Pathology, University of Utah School of Medicine, 15 North Medical Drive East, 2600 EEJMRB, Salt Lake City, UT 84112, USA
| |
Collapse
|
760
|
Human Gut-Derived Commensal Bacteria Suppress CNS Inflammatory and Demyelinating Disease. Cell Rep 2018; 20:1269-1277. [PMID: 28793252 DOI: 10.1016/j.celrep.2017.07.031] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 05/05/2017] [Accepted: 07/13/2017] [Indexed: 12/30/2022] Open
Abstract
The human gut is colonized by a large number of microorganisms (∼1013 bacteria) that support various physiologic functions. A perturbation in the healthy gut microbiome might lead to the development of inflammatory diseases, such as multiple sclerosis (MS). Therefore, gut commensals might provide promising therapeutic options for treating MS and other diseases. We report the identification of human gut-derived commensal bacteria, Prevotella histicola, which can suppress experimental autoimmune encephalomyelitis (EAE) in a human leukocyte antigen (HLA) class II transgenic mouse model. P. histicola suppresses disease through the modulation of systemic immune responses. P. histicola challenge led to a decrease in pro-inflammatory Th1 and Th17 cells and an increase in the frequencies of CD4+FoxP3+ regulatory T cells, tolerogenic dendritic cells, and suppressive macrophages. Our study provides evidence that the administration of gut commensals may regulate a systemic immune response and may, therefore, have a possible role in treatment strategies for MS.
Collapse
|
761
|
Wagley S, Bokori-Brown M, Morcrette H, Malaspina A, D'Arcy C, Gnanapavan S, Lewis N, Popoff MR, Raciborska D, Nicholas R, Turner B, Titball RW. Evidence of Clostridium perfringens epsilon toxin associated with multiple sclerosis. Mult Scler 2018; 25:653-660. [PMID: 29681209 PMCID: PMC6439943 DOI: 10.1177/1352458518767327] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background: It was recently reported that, using Western blotting, some multiple sclerosis (MS) patients in the United States had antibodies against epsilon toxin (Etx) from Clostridium perfringens, suggesting that the toxin may play a role in the disease. Objective: We investigated for serum antibodies against Etx in UK patients with clinically definite multiple sclerosis (CDMS) or presenting with clinically isolated syndrome (CIS) or optic neuritis (ON) and in age- and gender-matched controls. Methods: We tested sera from CDMS, CIS or ON patients or controls by Western blotting. We also tested CDMS sera for reactivity with linear overlapping peptides spanning the amino acid sequence (Pepscan) of Etx. Results: Using Western blotting, 24% of sera in the combined CDMS, CIS and ON groups (n = 125) reacted with Etx. In the control group (n = 125), 10% of the samples reacted. Using Pepscan, 33% of sera tested reacted with at least one peptide, whereas in the control group only 16% of sera reacted. Out of 61 samples, 21 (43%) were positive to one or other testing methodology. Three samples were positive by Western blotting and Pepscan. Conclusion: Our results broadly support the previous findings and the role of Etx in the aetiology of MS warrants further investigation.
Collapse
Affiliation(s)
- Sariqa Wagley
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Monika Bokori-Brown
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Helen Morcrette
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | - Caroline D'Arcy
- West London Neuroscience Centre, Charing Cross Hospital, London, UK
| | | | | | - Michel R Popoff
- Bactéries Anaérobies et Toxines, Institut Pasteur, Paris, France
| | | | - Richard Nicholas
- Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - Ben Turner
- Clinical Research Centre, Barts Health NHS Trust, London, UK
| | - Richard W Titball
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
762
|
Ichinohe T, Miyama T, Kawase T, Honjo Y, Kitaura K, Sato H, Shin-I T, Suzuki R. Next-Generation Immune Repertoire Sequencing as a Clue to Elucidate the Landscape of Immune Modulation by Host-Gut Microbiome Interactions. Front Immunol 2018; 9:668. [PMID: 29666626 PMCID: PMC5891584 DOI: 10.3389/fimmu.2018.00668] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 03/19/2018] [Indexed: 12/23/2022] Open
Abstract
The human immune system is a fine network consisted of the innumerable numbers of functional cells that balance the immunity and tolerance against various endogenous and environmental challenges. Although advances in modern immunology have revealed a role of many unique immune cell subsets, technologies that enable us to capture the whole landscape of immune responses against specific antigens have been not available to date. Acquired immunity against various microorganisms including host microbiome is principally founded on T cell and B cell populations, each of which expresses antigen-specific receptors that define a unique clonotype. Over the past several years, high-throughput next-generation sequencing has been developed as a powerful tool to profile T- and B-cell receptor repertoires in a given individual at the single-cell level. Sophisticated immuno-bioinformatic analyses by use of this innovative methodology have been already implemented in clinical development of antibody engineering, vaccine design, and cellular immunotherapy. In this article, we aim to discuss the possible application of high-throughput immune receptor sequencing in the field of nutritional and intestinal immunology. Although there are still unsolved caveats, this emerging technology combined with single-cell transcriptomics/proteomics provides a critical tool to unveil the previously unrecognized principle of host–microbiome immune homeostasis. Accumulation of such knowledge will lead to the development of effective ways for personalized immune modulation through deeper understanding of the mechanisms by which the intestinal environment affects our immune ecosystem.
Collapse
Affiliation(s)
- Tatsuo Ichinohe
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan
| | - Takahiko Miyama
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan
| | - Takakazu Kawase
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan
| | - Yasuko Honjo
- Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, Hiroshima, Japan
| | | | | | | | - Ryuji Suzuki
- Repertoire Genesis Incorporation, Ibaraki, Japan.,Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, National Hospital Organization Sagamihara Hospital, Sagamihara, Japan
| |
Collapse
|
763
|
Gut Microbiota in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: Current Applications and Future Perspectives. Mediators Inflamm 2018; 2018:8168717. [PMID: 29805314 PMCID: PMC5902007 DOI: 10.1155/2018/8168717] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/22/2018] [Accepted: 03/04/2018] [Indexed: 12/19/2022] Open
Abstract
The gut environment and gut microbiome dysbiosis have been demonstrated to significantly influence a range of disorders in humans, including obesity, diabetes, rheumatoid arthritis, and multiple sclerosis (MS). MS is an autoimmune disease affecting the central nervous system (CNS). The etiology of MS is not clear, and it should involve both genetic and extrinsic factors. The extrinsic factors responsible for predisposition to MS remain elusive. Recent studies on MS and its animal model, experimental autoimmune encephalomyelitis (EAE), have found that gastrointestinal microbiota may play an important role in the pathogenesis of MS/EAE. Thus, gut microbiome adjustment may be a future direction of treatment in MS. In this review, we discuss the characteristics of the gut microbiota, the connection between the brain and the gut, and the changes in gut microbiota in MS/EAE, and we explore the possibility of applying microbiota therapies in patients with MS.
Collapse
|
764
|
Abstract
An abundant and diverse set of commensal microbial communities covers the body's surfaces, collectively so-called microbiome. It has a functional impact on various immune processes and modulates many health-related processes, including autoimmunity. An active site of microorganism-host interplay is the intestinal mucosa. Growing evidence has helped us to learn how a specific microbiota composition and its functionality determine the intestinal barrier function and, furthermore, modulate pro-inflammatory and anti-inflammatory immune mechanisms in remote organs. In addition, the microbial composition of the skin is important for the functionality of the skin barrier and autoimmune skin diseases. Here, we review the importance of the microbiome for the local and systemic immune system and how a disturbed microbiome-host interaction can affect the development and progression of autoimmune diseases. Understanding these associations will help to unravel new diagnostic and therapeutic approaches for those diseases.
Collapse
|
765
|
Opazo MC, Ortega-Rocha EM, Coronado-Arrázola I, Bonifaz LC, Boudin H, Neunlist M, Bueno SM, Kalergis AM, Riedel CA. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases. Front Microbiol 2018; 9:432. [PMID: 29593681 PMCID: PMC5857604 DOI: 10.3389/fmicb.2018.00432] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 02/26/2018] [Indexed: 12/16/2022] Open
Abstract
The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases.
Collapse
Affiliation(s)
- Maria C Opazo
- Laboratorio de Biología Celular y Farmacología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile.,Facultad de Medicina, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
| | - Elizabeth M Ortega-Rocha
- Laboratorio de Inmunobiología, Facultad de Medicina, Departamento de Biología Celular y Tisular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Irenice Coronado-Arrázola
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Laura C Bonifaz
- Unidad de Investigación Médica en Inmunoquímica Hospital de Especialidades Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Helene Boudin
- Institut National de la Santé et de la Recherche Médicale U1235, Institut des Maladies de l'Appareil Digestif, Université de Nantes, Nantes, France
| | - Michel Neunlist
- Institut National de la Santé et de la Recherche Médicale U1235, Institut des Maladies de l'Appareil Digestif, Université de Nantes, Nantes, France
| | - Susan M Bueno
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad, Metropolitana, Chile
| | - Claudia A Riedel
- Laboratorio de Biología Celular y Farmacología, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile.,Facultad de Medicina, Millennium Institute on Immunology and Immunotherapy, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
766
|
Petta I, Fraussen J, Somers V, Kleinewietfeld M. Interrelation of Diet, Gut Microbiome, and Autoantibody Production. Front Immunol 2018; 9:439. [PMID: 29559977 PMCID: PMC5845559 DOI: 10.3389/fimmu.2018.00439] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/19/2018] [Indexed: 12/12/2022] Open
Abstract
B cells possess a predominant role in adaptive immune responses via antibody-dependent and -independent functions. The microbiome of the gastrointestinal tract is currently being intensively investigated due to its profound impact on various immune responses, including B cell maturation, activation, and IgA antibody responses. Recent findings have demonstrated the interplay between dietary components, gut microbiome, and autoantibody production. "Western" dietary patterns, such as high fat and high salt diets, can induce alterations in the gut microbiome that in turn affects IgA responses and the production of autoantibodies. This could contribute to multiple pathologies including autoimmune and inflammatory diseases. Here, we summarize current knowledge on the influence of various dietary components on B cell function and (auto)antibody production in relation to the gut microbiota, with a particular focus on the gut-brain axis in the pathogenesis of multiple sclerosis.
Collapse
Affiliation(s)
- Ioanna Petta
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research, Hasselt University, Diepenbeek, Belgium.,Biomedical Research Institute, Hasselt University, and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt, Belgium
| | - Judith Fraussen
- Biomedical Research Institute, Hasselt University, and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt, Belgium
| | - Veerle Somers
- Biomedical Research Institute, Hasselt University, and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt, Belgium
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research, Hasselt University, Diepenbeek, Belgium.,Biomedical Research Institute, Hasselt University, and School of Life Sciences, Transnationale Universiteit Limburg, Hasselt, Belgium
| |
Collapse
|
767
|
Katz Sand I, Baranzini SE. The microbiome and MS: The influence of the microbiota on MS risk and progression-Session chair summary. Mult Scler 2018; 24:587-589. [PMID: 29498302 DOI: 10.1177/1352458518761167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ilana Katz Sand
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergio E Baranzini
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
768
|
Hirano A, Umeno J, Okamoto Y, Shibata H, Ogura Y, Moriyama T, Torisu T, Fujioka S, Fuyuno Y, Kawarabayasi Y, Matsumoto T, Kitazono T, Esaki M. Comparison of the microbial community structure between inflamed and non-inflamed sites in patients with ulcerative colitis. J Gastroenterol Hepatol 2018; 33:1590-1597. [PMID: 29462845 DOI: 10.1111/jgh.14129] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIM The gut microbiota is suggested to play an important role in the pathogenesis of ulcerative colitis (UC). However, interindividual and spatial variations hamper the identification of UC-related changes. We thus investigated paired mucosa-associated microbiota obtained from both inflamed and non-inflamed sites of UC patients and corresponding sites of non-inflammatory bowel disease (IBD) controls. METHODS Mucosal biopsies of both inflamed and non-inflamed sites were obtained from 14 patients with active UC of the left-sided or proctitis type. Paired mucosal biopsies of the corresponding sites were obtained from 14 non-IBD controls. The microbial community structure was investigated using 16S ribosomal RNA gene sequences, followed by data analysis using qiime and LEfSe softwares. RESULTS Microbial alpha diversity in both inflamed and non-inflamed sites was significantly lower in UC patients compared with non-IBD controls. There were more microbes of the genus Cloacibacterium and the Tissierellaceae family, and there were less microbes of the genus Neisseria at the inflamed site when compared with the non-inflamed site in UC patients. Decreased abundance of the genera Prevotella, Eubacterium, Neisseria, Leptotrichia, Bilophila, Desulfovibrio, and Butyricimonas was evident at the inflamed site of UC patients compared with the corresponding site of non-IBD controls. Among these taxa, the genera Prevotella and Butyricimonas were also less abundant at the non-inflamed site of UC patients compared with the corresponding site in non-IBD controls. CONCLUSIONS Mucosal microbial dysbiosis occurs at both inflamed and non-inflamed sites in UC patients. The taxa showing altered abundance in UC patients might mediate colonic inflammation.
Collapse
Affiliation(s)
- Atsushi Hirano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuharu Okamoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroki Shibata
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoshitoshi Ogura
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomohiko Moriyama
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takehiro Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shin Fujioka
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuta Fuyuno
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Kawarabayasi
- National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Takayuki Matsumoto
- Division of Gastroenterology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Motohiro Esaki
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
769
|
Abstract
The role traditionally assigned to astrocytes in the pathogenesis of multiple sclerosis (MS) lesions has been the formation of the glial scar once inflammation has subsided. Astrocytes are now recognized to be early and highly active players during lesion formation and key for providing peripheral immune cells access to the central nervous system. Here, we review the role of astrocytes in the formation and evolution of MS lesions, including the recently described functional polarization of astrocytes, discuss prototypical pathways for astrocyte activation, and summarize mechanisms by which MS treatments affect astrocyte function.
Collapse
Affiliation(s)
- Gerald Ponath
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - Calvin Park
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| | - David Pitt
- Department of Neurology, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
770
|
Lee H, Lee Y, Kim J, An J, Lee S, Kong H, Song Y, Lee CK, Kim K. Modulation of the gut microbiota by metformin improves metabolic profiles in aged obese mice. Gut Microbes 2018; 9:155-165. [PMID: 29157127 PMCID: PMC5989809 DOI: 10.1080/19490976.2017.1405209] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The gut microbiota is a contributing factor in obesity-related metabolic disorders. The effect of metformin on the gut microbiota has been reported; however, the relationship between the gut microbiota and the mechanism of action of metformin in elderly individuals is unclear. In this study, the effect of metformin on the gut microbiota was investigated in aged obese mice. The abundance of the genera Akkermansia, Bacteroides, Butyricimonas, and Parabacteroides was significantly increased by metformin in mice fed a high-fat diet. Metformin treatment decreased the expression of IL-1β and IL-6 in epididymal fat, which was correlated with the abundance of various bacterial genera. In addition, both fecal microbiota transplantation from metformin-treated mice and extracellular vesicles of Akkermansia muciniphila improved the body weight and lipid profiles of the mice. Our findings suggest that modulation of the gut microbiota by metformin results in metabolic improvements in aged mice, and that these effects are associated with inflammatory immune responses.
Collapse
Affiliation(s)
- Heetae Lee
- College of Pharmacy, Sahmyook University, Seoul, Korea
| | - Youngjoo Lee
- College of Pharmacy, Sahmyook University, Seoul, Korea
| | - Jiyeon Kim
- College of Pharmacy, Sahmyook University, Seoul, Korea
| | - Jinho An
- College of Pharmacy, Sahmyook University, Seoul, Korea
| | - Sungwon Lee
- College of Pharmacy, Sahmyook University, Seoul, Korea
| | - Hyunseok Kong
- College of Pharmacy, Sahmyook University, Seoul, Korea
| | | | - Chong-Kil Lee
- College of Pharmacy, Chungbuk National University, Cheongju, Korea
| | - Kyungjae Kim
- College of Pharmacy, Sahmyook University, Seoul, Korea,CONTACT Kyungjae Kim College of Pharmacy, Sahmyook University, 815 Hwarang-ro, Nowon-gu, Seoul 01795, Korea
| |
Collapse
|
771
|
Mowry EM, Glenn JD. The Dynamics of the Gut Microbiome in Multiple Sclerosis in Relation to Disease. Neurol Clin 2018; 36:185-196. [DOI: 10.1016/j.ncl.2017.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
772
|
Baecher-Allan C, Kaskow BJ, Weiner HL. Multiple Sclerosis: Mechanisms and Immunotherapy. Neuron 2018; 97:742-768. [DOI: 10.1016/j.neuron.2018.01.021] [Citation(s) in RCA: 432] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/25/2017] [Accepted: 01/09/2018] [Indexed: 12/17/2022]
|
773
|
Matveeva O, Bogie JFJ, Hendriks JJA, Linker RA, Haghikia A, Kleinewietfeld M. Western lifestyle and immunopathology of multiple sclerosis. Ann N Y Acad Sci 2018; 1417:71-86. [PMID: 29377214 PMCID: PMC5947729 DOI: 10.1111/nyas.13583] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/16/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022]
Abstract
There is increasing evidence for a sudden and unprecedented rise in the incidence of multiple sclerosis (MS) in Westernized countries over the past decades, emphasizing the role of environmental factors. Among many candidates, rapid changes in dietary habits seem to play a role in the pathogenesis of MS. Here, we summarize and discuss the available evidence for the role of dietary nutrients, such as table salt, fatty acids, and flavonoids, in the development and pathogenesis of MS. We also discuss new and emerging risk factors accompanying Western lifestyle, such as shift work, sleep, and circadian disruption.
Collapse
Affiliation(s)
- Olga Matveeva
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jeroen F J Bogie
- Department of Neuroimmunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Jerome J A Hendriks
- Department of Neuroimmunology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Ralf A Linker
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University (FAU) Erlangen-Nuremberg, Erlangen, Germany
| | - Aiden Haghikia
- Department of Neurology, Ruhr-University Bochum, Bochum, Germany
| | - Markus Kleinewietfeld
- VIB Laboratory of Translational Immunomodulation, Center for Inflammation Research, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
774
|
Qiao Y, Wu M, Feng Y, Zhou Z, Chen L, Chen F. Alterations of oral microbiota distinguish children with autism spectrum disorders from healthy controls. Sci Rep 2018; 8:1597. [PMID: 29371629 PMCID: PMC5785483 DOI: 10.1038/s41598-018-19982-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 01/10/2018] [Indexed: 02/06/2023] Open
Abstract
Altered gut microbiota is associated with autism spectrum disorders (ASD), a group of complex, fast growing but difficult-to-diagnose neurodevelopmental disorders worldwide. However, the role of the oral microbiota in ASD remains unexplored. Via high-throughput sequencing of 111 oral samples in 32 children with ASD and 27 healthy controls, we demonstrated that the salivary and dental microbiota of ASD patients were highly distinct from those of healthy individuals. Lower bacterial diversity was observed in ASD children compared to controls, especially in dental samples. Also, principal coordinate analysis revealed divergences between ASD patients and controls. Moreover, pathogens such as Haemophilus in saliva and Streptococcus in plaques showed significantly higher abundance in ASD patients, whereas commensals such as Prevotella, Selenomonas, Actinomyces, Porphyromonas, and Fusobacterium were reduced. Specifically, an overt depletion of Prevotellaceae co-occurrence network in ASD patients was obtained in dental plaques. The distinguishable bacteria were also correlated with clinical indices, reflecting disease severity and the oral health status (i.e. dental caries). Finally, diagnostic models based on key microbes were constructed, with 96.3% accuracy in saliva. Taken together, this study characterized the habitat-specific profile of the oral microbiota in ASD patients, which might help develop novel strategies for the diagnosis of ASD.
Collapse
Affiliation(s)
- Yanan Qiao
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Mingtao Wu
- Department of Endodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Yanhuizhi Feng
- Department of Periodontics School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Zhichong Zhou
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Lei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China
| | - Fengshan Chen
- Department of Orthodontics, School and Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, 200072, China.
| |
Collapse
|
775
|
Bove RM. Why monkeys do not get multiple sclerosis (spontaneously): An evolutionary approach. EVOLUTION MEDICINE AND PUBLIC HEALTH 2018; 2018:43-59. [PMID: 29492266 PMCID: PMC5824939 DOI: 10.1093/emph/eoy002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
The goal of this review is to apply an evolutionary lens to understanding the origins of multiple sclerosis (MS), integrating three broad observations. First, only humans are known to develop MS spontaneously. Second, humans have evolved large brains, with characteristically large amounts of metabolically costly myelin. This myelin is generated over long periods of neurologic development—and peak MS onset coincides with the end of myelination. Third, over the past century there has been a disproportionate increase in the rate of MS in young women of childbearing age, paralleling increasing westernization and urbanization, indicating sexually specific susceptibility in response to changing exposures. From these three observations about MS, a life history approach leads us to hypothesize that MS arises in humans from disruption of the normal homeostatic mechanisms of myelin production and maintenance, during our uniquely long myelination period. This review will highlight under-explored areas of homeostasis in brain development, that are likely to shed new light on the origins of MS and to raise further questions about the interactions between our ancestral genes and modern environments.
Collapse
Affiliation(s)
- Riley M Bove
- Department of Neurology, UCSF, San Francisco, CA, USA
| |
Collapse
|
776
|
Rinaldi E, Consonni A, Guidesi E, Elli M, Mantegazza R, Baggi F. Gut microbiota and probiotics: novel immune system modulators in myasthenia gravis? Ann N Y Acad Sci 2018; 1413:49-58. [PMID: 29341125 DOI: 10.1111/nyas.13567] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022]
Abstract
Gut microorganisms (microbiota) live in symbiosis with the host and influence human nutrition, metabolism, physiology, and immune development and function. The microbiota prevents pathogen infection to the host, and in turn the host provides a niche for survival. The alteration of gut bacteria composition (dysbiosis) could contribute to the development of immune-mediated diseases by influencing the immune system activation and driving the pro- and anti-inflammatory responses in order to promote or counteract immune reactions. Probiotics are nonpathogenic microorganisms able to interact with the gut microbiota and provide health benefits; their use has recently been exploited to dampen immunological response in several experimental models of autoimmune diseases. Here, we focus on the relationships among commensal bacteria, probiotics, and the gut, describing the main interactions occurring with the immune system and recent data supporting the clinical efficacy of probiotic administration in rheumatoid arthritis, multiple sclerosis, and myasthenia gravis (MG) animal models. The encouraging results suggest that selected strains of probiotics should be evaluated in clinical trials as adjuvant therapy to restore the disrupted tolerance in myasthenia gravis.
Collapse
Affiliation(s)
- Elena Rinaldi
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute "Carlo Besta," Milan, Italy
| | - Alessandra Consonni
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute "Carlo Besta," Milan, Italy
| | - Elena Guidesi
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, Piacenza, Italy
| | - Marina Elli
- AAT-Advanced Analytical Technologies, Fiorenzuola d'Arda, Piacenza, Italy
| | - Renato Mantegazza
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute "Carlo Besta," Milan, Italy
| | - Fulvio Baggi
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute "Carlo Besta," Milan, Italy
| |
Collapse
|
777
|
Carvalho GCBC, Moura CS, Roquetto AR, Barrera-Arellano D, Yamada AT, Santos AD, Saad MJA, Amaya-Farfan J. Impact ofTrans-Fats on Heat-Shock Protein Expression and the Gut Microbiota Profile of Mice. J Food Sci 2018; 83:489-498. [DOI: 10.1111/1750-3841.13997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/24/2017] [Accepted: 10/30/2017] [Indexed: 01/19/2023]
Affiliation(s)
| | - Carolina Soares Moura
- Food and Nutrition Dept., Protein Resources Laboratory, School of Food Engineering; Univ. of Campinas; Campinas SP Brazil 13083-862
| | - Aline Rissetti Roquetto
- Food and Nutrition Dept., Protein Resources Laboratory, School of Food Engineering; Univ. of Campinas; Campinas SP Brazil 13083-862
| | - Daniel Barrera-Arellano
- Food Technology Dept., Oils and Fats Laboratory, School of Food Engineering; Univ. of Campinas; Campinas SP Brazil 13083-970
| | - Aureo Tatsumi Yamada
- Biochemistry and Tissue Biology Dept., Inst. of Biology; Univ. of Campinas; Campinas SP Brazil 13083-970
| | - Andrey dos Santos
- Internal Medicine Dept., School of Medical Sciences; Univ. of Campinas; Campinas SP Brazil 13083-887
| | - Mário José Abdalla Saad
- Internal Medicine Dept., School of Medical Sciences; Univ. of Campinas; Campinas SP Brazil 13083-887
| | - Jaime Amaya-Farfan
- Food and Nutrition Dept., Protein Resources Laboratory, School of Food Engineering; Univ. of Campinas; Campinas SP Brazil 13083-862
| |
Collapse
|
778
|
Tankou SK, Regev K, Healy BC, Cox LM, Tjon E, Kivisakk P, Vanande IP, Cook S, Gandhi R, Glanz B, Stankiewicz J, Weiner HL. Investigation of probiotics in multiple sclerosis. Mult Scler 2018; 24:58-63. [DOI: 10.1177/1352458517737390] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
None of the disease-modifying therapies (DMTs) currently being used for the management of multiple sclerosis (MS) are 100% effective. In addition, side effects associated with the use of these DMTs have limited the practice of combination therapy. Hence, there is a need for safe immunomodulatory agents to fine-tune the management of MS. The gut microbiome plays an important role in autoimmunity, and several studies have reported alterations in the gut microbiome of MS patients. Studies in animal model of MS have identified members of the gut commensal microflora that exacerbate or ameliorate neuroinflammation. Probiotics represent an oral, non-toxic immunomodulatory agent that could be used in combination with current MS therapy. We designed a pilot study to investigate the effect of VSL3 on the gut microbiome and peripheral immune system function in healthy controls and MS patients. VSL3 administration was associated with increased abundance of many taxa with enriched taxa predominated by Lactobacillus, Streptococcus, and Bifidobacterium species. At the immune level, VSL3 administration induced an anti-inflammatory peripheral immune response characterized by decreased frequency of intermediate monocytes (CD14highCD16low), decreased mean fluorescence intensity (MFI) of CD80 on classical monocytes as well as decreased human leukocyte antigen–antigen D related (HLA-DR) MFI on dendritic cells.
Collapse
Affiliation(s)
- Stephanie K Tankou
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women’s Hospital and Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Keren Regev
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women’s Hospital and Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Brian C Healy
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women’s Hospital and Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women’s Hospital and Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Emily Tjon
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women’s Hospital and Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Pia Kivisakk
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women’s Hospital and Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Isabelle P Vanande
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women’s Hospital and Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Sandra Cook
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women’s Hospital and Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Roopali Gandhi
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women’s Hospital and Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Bonnie Glanz
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women’s Hospital and Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - James Stankiewicz
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women’s Hospital and Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Evergrande Center for Immunologic Diseases, Partners Multiple Sclerosis Center, Brigham and Women’s Hospital and Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
779
|
Abstract
The human microbiota is composed of diverse forms of microorganisms that live on or in us and plays a crucial role in the health and development. Commensal species that reside in the intestine particularly influence host physiology at local and systemic levels. Multiple sclerosis (MS) is a debilitating autoimmune disorder of the central nervous system for which there is currently no cure. While the cause of MS is unknown, there is a growing body of evidence suggesting that the microbiota can play both pathogenic and protective roles in disease progression. In this review, we provide a brief overview, based on both animal and clinical studies, of the current understanding by which the microbiota may influence MS and discuss opportunities for therapeutic intervention that may alleviate the symptoms associated with this debilitating neuroimmunological disease.
Collapse
Affiliation(s)
- Sebastien Trott
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre, McGill University, Montreal, QC, Canada
| | - Irah L King
- Department of Microbiology and Immunology, Microbiome and Disease Tolerance Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
780
|
Abstract
Half of our cells and only 1 in 100 of our genes are human; the rest comprise microbes, termed the human microbiota. Over 90% of these microbes live in the large intestine. Aside from aiding food digestion, these diverse microbes can also synthesize essential vitamins or amino acids, educate and modulate the immune system response, and influence susceptibility or resistance to infections. Their potential to influence neurological conditions such as multiple sclerosis (MS) is intriguing. The overarching goal of this Americas Committee for Treatment and Research in Multiple Sclerosis (ACTRIMS) presentation was to provide a high-level insight into gut microbiota’s potential role in pediatric MS. Two specific questions were also addressed based on published work: (1) Does the gut microbiota differ between children with and without MS? and (2) Is the gut microbiota associated with future relapse risk?
Collapse
Affiliation(s)
- Helen Tremlett
- Djavad Mowafaghian Centre for Brain Health and Division of Neurology, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
781
|
Kimura K, Hohjoh H, Fukuoka M, Sato W, Oki S, Tomi C, Yamaguchi H, Kondo T, Takahashi R, Yamamura T. Circulating exosomes suppress the induction of regulatory T cells via let-7i in multiple sclerosis. Nat Commun 2018; 9:17. [PMID: 29295981 PMCID: PMC5750223 DOI: 10.1038/s41467-017-02406-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 11/17/2017] [Accepted: 11/29/2017] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a T cell-mediated autoimmune disease of the central nervous system. Foxp3+ regulatory T (Treg) cells are reduced in frequency and dysfunctional in patients with MS, but the underlying mechanisms of this deficiency are unclear. Here, we show that induction of human IFN-γ−IL-17A−Foxp3+CD4+ T cells is inhibited in the presence of circulating exosomes from patients with MS. The exosomal miRNA profile of patients with MS differs from that of healthy controls, and let-7i, which is markedly increased in patients with MS, suppresses induction of Treg cells by targeting insulin like growth factor 1 receptor (IGF1R) and transforming growth factor beta receptor 1 (TGFBR1). Consistently, the expression of IGF1R and TGFBR1 on circulating naive CD4+ T cells is reduced in patients with MS. Thus, our study shows that exosomal let-7i regulates MS pathogenesis by blocking the IGF1R/TGFBR1 pathway. MiRNAs are small RNA molecules that can regulate gene expression. Here the authors show that expression of several exosomal miRNAs are altered in patients with multiple sclerosis, and that let-7i modulates regulatory T cell homeostasis to contribute to pathogenesis.
Collapse
Affiliation(s)
- Kimitoshi Kimura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, Yoshida-konoe-cho, Sakyo, Kyoto, 606-8501, Japan
| | - Hirohiko Hohjoh
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
| | - Masashi Fukuoka
- Department of Molecular Pharmacology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
| | - Wakiro Sato
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan.,Multiple Sclerosis Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8551, Japan
| | - Shinji Oki
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
| | - Chiharu Tomi
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
| | - Hiromi Yamaguchi
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
| | - Takayuki Kondo
- Department of Neurology, Kyoto University Graduate School of Medicine, Yoshida-konoe-cho, Sakyo, Kyoto, 606-8501, Japan.,Department of Neurology, Kansai Medical University Medical Center, 10-15 Fumizono, Moriguchi, Osaka, 570-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Yoshida-konoe-cho, Sakyo, Kyoto, 606-8501, Japan
| | - Takashi Yamamura
- Department of Immunology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan. .,Multiple Sclerosis Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8551, Japan.
| |
Collapse
|
782
|
Brenner D, Hiergeist A, Adis C, Mayer B, Gessner A, Ludolph AC, Weishaupt JH. The fecal microbiome of ALS patients. Neurobiol Aging 2018; 61:132-137. [DOI: 10.1016/j.neurobiolaging.2017.09.023] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022]
|
783
|
Pröbstel AK, Baranzini SE. The Role of the Gut Microbiome in Multiple Sclerosis Risk and Progression: Towards Characterization of the "MS Microbiome". Neurotherapeutics 2018; 15:126-134. [PMID: 29147991 PMCID: PMC5794700 DOI: 10.1007/s13311-017-0587-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is the prototypic complex disease, in which both genes and the environment contribute to its pathogenesis. To date, > 200 independent loci across the genome have been associated with MS risk. However, these only explain a fraction of the total phenotypic variance, suggesting the possible presence of additional genetic factors, and, most likely, also environmental factors. New DNA sequencing technologies have enabled the sequencing of all kinds of microorganisms, including those living in and around humans (i.e., microbiomes). The study of bacterial populations inhabiting the gut is of particular interest in autoimmune diseases owing to their key role in shaping immune responses. In this review, we address the potential crosstalk between B cells and the gut microbiota, a relevant scenario in light of recently approved anti-B-cell therapies for MS. In addition, we review recent efforts to characterize the gut microbiome in patients with MS and discuss potential challenges and future opportunities. Finally, we describe the international MS microbiome study, a multicenter effort to study a large population of patients with MS and their healthy household partners to define the core MS microbiome, how it is shaped by disease-modifying therapies, and to explore potential therapeutic interventions.
Collapse
Affiliation(s)
- Anne-Katrin Pröbstel
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Sergio E Baranzini
- Department of Neurology and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, CA, USA.
- Graduate Program in Bioinformatics, University of California, San Francisco, CA, USA.
| |
Collapse
|
784
|
Stanisavljević S, Dinić M, Jevtić B, Đedović N, Momčilović M, Đokić J, Golić N, Mostarica Stojković M, Miljković Đ. Gut Microbiota Confers Resistance of Albino Oxford Rats to the Induction of Experimental Autoimmune Encephalomyelitis. Front Immunol 2018; 9:942. [PMID: 29770137 PMCID: PMC5942155 DOI: 10.3389/fimmu.2018.00942] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 04/16/2018] [Indexed: 12/16/2022] Open
Abstract
Albino Oxford (AO) rats are extremely resistant to induction of experimental autoimmune encephalomyelitis (EAE). EAE is an animal model of multiple sclerosis, a chronic inflammatory disease of the central nervous system (CNS), with established autoimmune pathogenesis. The autoimmune response against the antigens of the CNS is initiated in the peripheral lymphoid tissues after immunization of AO rats with CNS antigens. Subsequently, limited infiltration of the CNS occurs, yet without clinical sequels. It has recently become increasingly appreciated that gut-associated lymphoid tissues (GALT) and gut microbiota play an important role in regulation and propagation of encephalitogenic immune response. Therefore, modulation of AO gut microbiota by antibiotics was performed in this study. The treatment altered composition of gut microbiota in AO rats and led to a reduction in the proportion of regulatory T cells in Peyer's patches, mesenteric lymph nodes, and in lymph nodes draining the site of immunization. Upregulation of interferon-γ and interleukin (IL)-17 production was observed in the draining lymph nodes. The treatment led to clinically manifested EAE in AO rats with more numerous infiltrates and higher production of IL-17 observed in the CNS. Importantly, transfer of AO gut microbiota into EAE-prone Dark Agouti rats ameliorated the disease. These results clearly imply that gut microbiota is an important factor in AO rat resistance to EAE and that gut microbiota transfer is an efficacious way to treat CNS autoimmunity. These findings also support the idea that gut microbiota modulation has a potential as a future treatment of multiple sclerosis.
Collapse
Affiliation(s)
- Suzana Stanisavljević
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Miroslav Dinić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Bojan Jevtić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Neda Đedović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Miljana Momčilović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
| | - Jelena Đokić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Nataša Golić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, University of Belgrade, Belgrade, Serbia
- *Correspondence: Đorde Miljković,
| |
Collapse
|
785
|
Abstract
Vertebrates harbor both symbiotic and pathogenic bacteria on the body and various mucosal surfaces. Of these surfaces, the intestine has the most diverse composition. This composition is dependent upon various environmental and genetic factors, with diet exerting the maximum influence. Significant roles of the intestinal bacteria are to stimulate the development of a competent mucosal immune system and to maintain tolerance within the intestine. One manner in which this is achieved is by the establishment of epithelial integrity by microbiota found in healthy individuals (healthy microbiota); however, in the case of a disrupted intestinal microbiome (dysbiosis), which can be caused by various conditions, the epithelial integrity is compromised. This decreased epithelial integrity can then lead to luminal products crossing the barrier, generating a systemic proinflammatory response. In addition to epithelial integrity, healthy intestinal commensals metabolize indigestible dietary substrates and produce short-chain fatty acids, which are bacterial metabolites that are essential for colonic health and regulating the function of the intestinal immune system. Intestinal commensals are also capable of producing neuroactive molecules and neurotransmitters that can affect the function of the vagus nerve. The observations that intestinal dysbiosis is associated with different diseases of the nervous system, suggests that cross-talk occurs amongst the gut, the nervous system, and the immune system.
Collapse
Affiliation(s)
- Eric Marietta
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| | - Irina Horwath
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Veena Taneja
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
- Division of Rheumatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
786
|
Freedman SN, Shahi SK, Mangalam AK. The "Gut Feeling": Breaking Down the Role of Gut Microbiome in Multiple Sclerosis. Neurotherapeutics 2018; 15:109-125. [PMID: 29204955 PMCID: PMC5794701 DOI: 10.1007/s13311-017-0588-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system with unknown etiology. Recently, the gut microbiota has emerged as a potential factor in the development of MS, with a number of studies having shown that patients with MS exhibit gut dysbiosis. The gut microbiota helps the host remain healthy by regulating various functions, including food metabolism, energy homeostasis, maintenance of the intestinal barrier, inhibition of colonization by pathogenic organisms, and shaping of both mucosal and systemic immune responses. Alteration of the gut microbiota, and subsequent changes in its metabolic network that perturb this homeostasis, may lead to intestinal and systemic disorders such as MS. Here we discuss the findings of recent MS microbiome studies and potential mechanisms through which gut microbiota can predispose to, or protect against, MS. These findings highlight the need of an improved understanding of the interactions between the microbiota and host for developing therapies based on gut commensals with which to treat MS.
Collapse
Affiliation(s)
- Samantha N Freedman
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Shailesh K Shahi
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ashutosh K Mangalam
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA.
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
787
|
Abstract
Pediatric multiple sclerosis (MS) is a chronic, life-long neurological condition associated with inflammation and degeneration in the brain and spinal cord. Fortunately, < 5% of people with MS have their onset in childhood years. However, studying these very-early-onset cases of MS offers key advantages. In particular, with fewer years lived, children have had a limited range of exposures, potentially enhancing our ability to identify what might cause MS. Further, as the actual timing of the biological MS onset is unknown, the possibility to study these children much closer to the real onset of disease is far greater than in the typical adult with MS. Whether MS (in children or adults) can be prevented is unknown and the available drugs are only modestly effective in modifying the disease course and are not without risk. Emerging evidence is providing insight into the gut microbiota's potential role in triggering and shaping neurological conditions such as MS. The limited number of studies in humans with MS and absence of prior work in pediatric MS motivated the following 3 fundamental questions, addressed in 2 cross-sectional and 1 longitudinal investigation in children with and without MS: 1) Does the gut microbiota composition differ between children with and without MS? 2) Is there an association between the gut microbiota and host immune markers in children with and without MS? 3) Is the gut microbiota associated with the future risk of a MS relapse?
Collapse
Affiliation(s)
- Helen Tremlett
- Medicine (Neurology) and the Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| | | |
Collapse
|
788
|
Spencer JI, Bell JS, DeLuca GC. Vascular pathology in multiple sclerosis: reframing pathogenesis around the blood-brain barrier. J Neurol Neurosurg Psychiatry 2018; 89:42-52. [PMID: 28860328 DOI: 10.1136/jnnp-2017-316011] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022]
Abstract
Blood-brain barrier (BBB) disruption has long been recognised as an important early feature of multiple sclerosis (MS) pathology. Traditionally, this has been seen as a by-product of the myelin-specific immune response. Here, we consider whether vascular changes instead play a central role in disease pathogenesis, rather than representing a secondary effect of neuroinflammation or neurodegeneration. Importantly, this is not necessarily mutually exclusive from current hypotheses. Vascular pathology in a genetically predisposed individual, influenced by environmental factors such as pathogens, hypovitaminosis D and smoking, may be a critical initiator of a series of events including hypoxia, protein deposition and immune cell egress that allows the development of a CNS-specific immune response and the classical pathological and clinical hallmarks of disease. We review the changes that occur in BBB function and cerebral perfusion in patients with MS and highlight genetic and environmental risk factors that, in addition to modulating immune function, may also converge to act on the vasculature. Further context is provided by contrasting these changes with other neurological diseases in which there is also BBB malfunction, and highlighting current disease-modifying therapies that may also have an effect on the BBB. Indeed, in reframing current evidence in this model, the vasculature could become an important therapeutic target in MS.
Collapse
Affiliation(s)
- Jonathan I Spencer
- University of Oxford Medical School, Level 2 Academic Centre, John Radcliffe Hospital, Oxford, UK
| | - Jack S Bell
- University of Oxford Medical School, Level 2 Academic Centre, John Radcliffe Hospital, Oxford, UK
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, Level 1 West Wing, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
789
|
Abstract
Neuromyelitis optica (NMO) is a rare, disabling, sometimes fatal central nervous system inflammatory demyelinating disease that is associated with antibodies ("NMO IgG") that target the water channel protein aquaporin-4 (AQP4) expressed on astrocytes. There is considerable interest in identifying environmental triggers that may elicit production of NMO IgG by AQP4-reactive B cells. Although NMO is considered principally a humoral autoimmune disease, antibodies of NMO IgG are IgG1, a T-cell-dependent immunoglobulin subclass, indicating that AQP4-reactive T cells have a pivotal role in NMO pathogenesis. When AQP4-specific proliferative T cells were first identified in patients with NMO it was discovered that T cells recognizing the dominant AQP4 T-cell epitope exhibited a T helper 17 (Th17) phenotype and displayed cross-reactivity to a homologous peptide sequence within a protein of Clostridium perfringens, a commensal bacterium found in human gut flora. The initial analysis of gut microbiota in NMO demonstrated that, in comparison to healthy controls (HC) and patients with multiple sclerosis, the microbiome of NMO is distinct. Remarkably, C. perfringens was the second most significantly enriched taxon in NMO, and among bacteria identified at the species level, C. perfringens was the one most highly associated with NMO. Those discoveries, along with evidence that certain Clostridia in the gut can regulate the balance between regulatory T cells and Th17 cells, indicate that gut microbiota, and possibly C. perfringens itself, could participate in NMO pathogenesis. Collectively, the evidence linking microbiota to humoral and cellular immunity in NMO underscores the importance for further investigating this relationship.
Collapse
Affiliation(s)
- Scott S Zamvil
- Department of Neurology, University of California, San Francisco, CA, USA.
- Program in Immunology, University of California, San Francisco, CA, USA.
| | - Collin M Spencer
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Sergio E Baranzini
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Bruce A C Cree
- Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
790
|
Montassier E, Berthelot L, Soulillou JP. Are the decrease in circulating anti-α1,3-Gal IgG and the lower content of galactosyl transferase A1 in the microbiota of patients with multiple sclerosis a novel environmental risk factor for the disease? Mol Immunol 2018; 93:162-165. [DOI: 10.1016/j.molimm.2017.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/22/2017] [Accepted: 09/27/2017] [Indexed: 01/10/2023]
|
791
|
Abstract
Though seemingly distinct and autonomous, emerging evidence suggests there is a bidirectional interaction between the intestinal microbiota and the brain. This crosstalk may play a substantial role in neurologic diseases, including anxiety, depression, autism, multiple sclerosis, Parkinson's disease, and, potentially, Alzheimer's disease. Long hypothesized by Metchnikoff and others well over 100 years ago, investigations into the mind-microbe axis is now seeing a rapid resurgence of research. If specific pathways and mechanisms of interaction are understood, it could have broad therapeutic potential, as the microbiome is environmentally acquired and can be modified to promote health. This review will discuss immune, endocrine, and neural system pathways that interconnect the gut microbiota to central nervous system and discuss how these findings might be applied to neurologic disease.
Collapse
Affiliation(s)
- Laura M Cox
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02446, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Brigham & Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA, 02446, USA.
| |
Collapse
|
792
|
Shallis RM, Terry CM, Lim SH. Changes in intestinal microbiota and their effects on allogeneic stem cell transplantation. Am J Hematol 2018; 93:122-128. [PMID: 28842931 DOI: 10.1002/ajh.24896] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/31/2017] [Accepted: 08/22/2017] [Indexed: 12/30/2022]
Abstract
The human intestinal microbiota is essential for microbial homeostasis, regulation of metabolism, and intestinal immune tolerance. Rapidly evolving understanding of the importance of the microbiota implicates changes in the composition and function of intestinal microbial communities in an assortment of systemic conditions. Complications following allogeneic stem cell transplant now join the ever-expanding list of pathologic states regulated by intestinal microbiota. Dysbiosis, or disruption of the normal ecology of this microbiome, has been directly implicated in the pathogenesis of entities such as Clostridium difficile infections, graft-versus-host disease (GVHD), and most recently disease relapse, all of which are major causes of morbidity and mortality in patients undergoing allogeneic stem cell transplant. In this review, we elucidate the key origins of microbiotic alterations and discuss how dysbiosis influences complications following allogeneic stem cell transplant. Our emerging understanding of the importance of a balanced and diverse intestinal microbiota is prompting investigation into the appropriate treatment of dysbiosis, reliable and early detection of such, and ultimately its prevention in patients to improve the outcome following allogeneic hematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Rory M. Shallis
- Division of Hematology and Oncology; Rhode Island Hospital/Brown University Warren Alpert School of Medicine; Providence Rhode Island
| | - Christopher M. Terry
- Division of Hematology and Oncology; Rhode Island Hospital/Brown University Warren Alpert School of Medicine; Providence Rhode Island
| | - Seah H. Lim
- Division of Hematology and Oncology; Rhode Island Hospital/Brown University Warren Alpert School of Medicine; Providence Rhode Island
| |
Collapse
|
793
|
Abstract
The term "microbiome" refers to microorganisms (microbiota) and their genomes (metagenome) coexisting with their hosts. Some researchers coined the term "second genome" to underscore the importance of the microbiota and its collective metagenome on their host's health and/or disease. It is now undeniable that the commensal fungal microorganisms, alongside the other components of the microbiota, play a central role in association with the human host. In recognition, projects were launched nationally and internationally to unify efforts to characterize the microbiome and elucidate the functional role of the microbiota and the mechanism(s) by which these organisms and their metabolites (metabolome) may affect health and disease states. In this article, we will highlight the role of the fungal community as an indispensable component of the microbiome.
Collapse
|
794
|
Yang C, Qu Y, Fujita Y, Ren Q, Ma M, Dong C, Hashimoto K. Possible role of the gut microbiota-brain axis in the antidepressant effects of (R)-ketamine in a social defeat stress model. Transl Psychiatry 2017; 7:1294. [PMID: 29249803 PMCID: PMC5802627 DOI: 10.1038/s41398-017-0031-4] [Citation(s) in RCA: 162] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/09/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence suggests that the gut microbiota-brain axis plays a role in the pathogenesis of depression, thereby contributing to the antidepressant actions of certain compounds. (R)-ketamine has a greater potency and longer-lasting antidepressant effects than (S)-ketamine. Here, we investigated whether the gut microbiota plays a role in the antidepressant effects of these two ketamine enantiomers. The role of the gut microbiota in the antidepressant effects of ketamine enantiomers in a chronic social defeat stress (CSDS) model of depression was examined using 16S ribosomal RNA gene sequencing of fecal samples. At the phylum level, CSDS-susceptible mice showed alterations in the levels of Tenericutes and Actinobacteria; however, neither ketamine enantiomers influenced these alterations. At the class level, both ketamine enantiomers significantly attenuated the increase in the levels of Deltaproteobacteria in the susceptible mice after CSDS. Furthermore, (R)-ketamine, but not (S)-ketamine, significantly attenuated the reduction in the levels of Mollicutes in the susceptible mice. At the genus level, both ketamine enantiomers significantly attenuated the decrease in the levels of Butyricimonas in the susceptible mice. Notably, (R)-ketamine was more potent than (S)-ketamine at reducing the levels of Butyricimonas in the susceptible mice. In conclusion, this study suggests that the antidepressant effects of two enantiomers of ketamine in CSDS model may be partly mediated by the restoration of the gut microbiota. Furthermore, the specific effect of (R)-ketamine on the levels of Mollicutes and Butyricimonas may explain its robust antidepressant action.
Collapse
Affiliation(s)
- Chun Yang
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan ,0000 0004 0368 7223grid.33199.31Present Address: Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Youge Qu
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Yuko Fujita
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Qian Ren
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Min Ma
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Chao Dong
- grid.411500.1Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan.
| |
Collapse
|
795
|
Boziki M, Polyzos SA, Deretzi G, Kazakos E, Katsinelos P, Doulberis M, Kotronis G, Giartza-Taxidou E, Laskaridis L, Tzivras D, Vardaka E, Kountouras C, Grigoriadis N, Thomann R, Kountouras J. A potential impact of Helicobacter pylori-related galectin-3 in neurodegeneration. Neurochem Int 2017; 113:137-151. [PMID: 29246761 DOI: 10.1016/j.neuint.2017.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/03/2017] [Accepted: 12/11/2017] [Indexed: 02/07/2023]
Abstract
Neurodegeneration represents a component of the central nervous system (CNS) diseases pathogenesis, either as a disability primary source in the frame of prototype neurodegenerative disorders, or as a secondary effect, following inflammation, hypoxia or neurotoxicity. Galectins are members of the lectin superfamily, a group of endogenous glycan-binding proteins, able to interact with glycosylated receptors expressed by several immune cell types. Glycan-lectin interactions play critical roles in the living systems by involving and mediating a variety of biologically important normal and pathological processes, including cell-cell signaling shaping cell communication, proliferation and migration, immune responses and fertilization, host-pathogen interactions and diseases such as neurodegenerative disorders and tumors. This review focuses in the role of Galectin-3 in shaping responses of the immune system against microbial agents, and concretely, Helicobacter pylori (Hp), thereby potentiating effect of the microbe in areas distant from the ordinary site of colonization, like the CNS. We hereby postulate that gastrointestinal Hp alterations in terms of immune cell functional phenotype, cytokine and chemokine secretion, may trigger systemic responses, thereby conferring implications for remote processes susceptible in immunity disequilibrium, namely, the CNS inflammation and/or neurodegeneration.
Collapse
Affiliation(s)
- Marina Boziki
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece; Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stergios A Polyzos
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Georgia Deretzi
- Department of Neurology, Multiple Sclerosis Unit, Papageorgiou Hospital, Thessaloniki, Greece
| | - Evangelos Kazakos
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Panagiotis Katsinelos
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Michael Doulberis
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece; Department of Internal Medicine, Bürgerspital Solothurn, Solothurn, Switzerland
| | - Georgios Kotronis
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Evaggelia Giartza-Taxidou
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Leonidas Laskaridis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitri Tzivras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Elisabeth Vardaka
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Constantinos Kountouras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece
| | - Nikolaos Grigoriadis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Robert Thomann
- Department of Internal Medicine, Bürgerspital Solothurn, Solothurn, Switzerland
| | - Jannis Kountouras
- Department of Medicine, Second Medical Clinic, Aristotle University of Thessaloniki, Ippokration Hospital, Thessaloniki, Greece.
| |
Collapse
|
796
|
Fitzgerald KC, Tyry T, Salter A, Cofield SS, Cutter G, Fox R, Marrie RA. Diet quality is associated with disability and symptom severity in multiple sclerosis. Neurology 2017; 90:e1-e11. [PMID: 29212827 DOI: 10.1212/wnl.0000000000004768] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/07/2017] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To assess the association between diet quality and intake of specific foods with disability and symptom severity in people with multiple sclerosis (MS). METHODS In 2015, participants in the North American Research Committee on MS (NARCOMS) Registry completed a dietary screener questionnaire that estimates intake of fruits, vegetables and legumes, whole grains, added sugars, and red/processed meats. We constructed an overall diet quality score for each individual based on these food groups; higher scores denoted a healthier diet. We assessed the association between diet quality and disability status as measured using Patient-Determined Disease Steps (PDDS) and symptom severity using proportional odds models, adjusting for age, sex, income, body mass index, smoking status, and disease duration. We assessed whether a composite healthy lifestyle measure, a healthier diet, healthy weight (body mass index <25), routine physical activity, and abstinence from smoking was associated with symptom severity. RESULTS Of the 7,639 (68%) responders, 6,989 reported physician-diagnosed MS and provided dietary information. Participants with diet quality scores in the highest quintile had lower levels of disability (PDDS; proportional odds ratio [OR] for Q5 vs Q1 0.80; 95% confidence interval [CI] 0.69-0.93) and lower depression scores (proportional OR for Q5 vs Q1 0.82; 95% CI 0.70-0.97). Individuals reporting a composite healthy lifestyle had lower odds of reporting severe fatigue (0.69; 95% CI 0.59-0.81), depression (0.53; 95% CI 0.43-0.66), pain (0.56; 95% CI 0.48-0.67), or cognitive impairment (0.67; 95% CI 0.55-0.79). CONCLUSIONS Our large cross-sectional survey suggests a healthy diet and a composite healthy lifestyle are associated with lesser disability and symptom burden in MS.
Collapse
Affiliation(s)
- Kathryn C Fitzgerald
- From the Department of Neurology (K.C.F.), Johns Hopkins School of Medicine, Baltimore, MD; Dignity Health (T.T.), St. Joseph's Hospital and Medical Center, Phoenix, AZ; Division of Biostatistics (A.S.), Washington University in St. Louis School of Medicine, MO; Department of Biostatistics (S.S.C., G.C.), School of Public Health, University of Alabama at Birmingham; Mellen Center (R.F.), Cleveland Clinic Foundation, OH; and Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - Tuula Tyry
- From the Department of Neurology (K.C.F.), Johns Hopkins School of Medicine, Baltimore, MD; Dignity Health (T.T.), St. Joseph's Hospital and Medical Center, Phoenix, AZ; Division of Biostatistics (A.S.), Washington University in St. Louis School of Medicine, MO; Department of Biostatistics (S.S.C., G.C.), School of Public Health, University of Alabama at Birmingham; Mellen Center (R.F.), Cleveland Clinic Foundation, OH; and Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Amber Salter
- From the Department of Neurology (K.C.F.), Johns Hopkins School of Medicine, Baltimore, MD; Dignity Health (T.T.), St. Joseph's Hospital and Medical Center, Phoenix, AZ; Division of Biostatistics (A.S.), Washington University in St. Louis School of Medicine, MO; Department of Biostatistics (S.S.C., G.C.), School of Public Health, University of Alabama at Birmingham; Mellen Center (R.F.), Cleveland Clinic Foundation, OH; and Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Stacey S Cofield
- From the Department of Neurology (K.C.F.), Johns Hopkins School of Medicine, Baltimore, MD; Dignity Health (T.T.), St. Joseph's Hospital and Medical Center, Phoenix, AZ; Division of Biostatistics (A.S.), Washington University in St. Louis School of Medicine, MO; Department of Biostatistics (S.S.C., G.C.), School of Public Health, University of Alabama at Birmingham; Mellen Center (R.F.), Cleveland Clinic Foundation, OH; and Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Gary Cutter
- From the Department of Neurology (K.C.F.), Johns Hopkins School of Medicine, Baltimore, MD; Dignity Health (T.T.), St. Joseph's Hospital and Medical Center, Phoenix, AZ; Division of Biostatistics (A.S.), Washington University in St. Louis School of Medicine, MO; Department of Biostatistics (S.S.C., G.C.), School of Public Health, University of Alabama at Birmingham; Mellen Center (R.F.), Cleveland Clinic Foundation, OH; and Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Robert Fox
- From the Department of Neurology (K.C.F.), Johns Hopkins School of Medicine, Baltimore, MD; Dignity Health (T.T.), St. Joseph's Hospital and Medical Center, Phoenix, AZ; Division of Biostatistics (A.S.), Washington University in St. Louis School of Medicine, MO; Department of Biostatistics (S.S.C., G.C.), School of Public Health, University of Alabama at Birmingham; Mellen Center (R.F.), Cleveland Clinic Foundation, OH; and Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Ruth Ann Marrie
- From the Department of Neurology (K.C.F.), Johns Hopkins School of Medicine, Baltimore, MD; Dignity Health (T.T.), St. Joseph's Hospital and Medical Center, Phoenix, AZ; Division of Biostatistics (A.S.), Washington University in St. Louis School of Medicine, MO; Department of Biostatistics (S.S.C., G.C.), School of Public Health, University of Alabama at Birmingham; Mellen Center (R.F.), Cleveland Clinic Foundation, OH; and Departments of Internal Medicine and Community Health Sciences (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
797
|
Wilck N, Matus MG, Kearney SM, Olesen SW, Forslund K, Bartolomaeus H, Haase S, Mähler A, Balogh A, Markó L, Vvedenskaya O, Kleiner FH, Tsvetkov D, Klug L, Costea PI, Sunagawa S, Maier L, Rakova N, Schatz V, Neubert P, Frätzer C, Krannich A, Gollasch M, Grohme DA, Côrte-Real BF, Gerlach RG, Basic M, Typas A, Wu C, Titze JM, Jantsch J, Boschmann M, Dechend R, Kleinewietfeld M, Kempa S, Bork P, Linker RA, Alm EJ, Müller DN. Salt-responsive gut commensal modulates T H17 axis and disease. Nature 2017; 551:585-589. [PMID: 29143823 PMCID: PMC6070150 DOI: 10.1038/nature24628] [Citation(s) in RCA: 813] [Impact Index Per Article: 116.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/10/2017] [Indexed: 12/12/2022]
Abstract
A Western lifestyle with high salt consumption can lead to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper 17 (TH17) cells, which can also contribute to hypertension. Induction of TH17 cells depends on gut microbiota; however, the effect of salt on the gut microbiome is unknown. Here we show that high salt intake affects the gut microbiome in mice, particularly by depleting Lactobacillus murinus. Consequently, treatment of mice with L. murinus prevented salt-induced aggravation of actively induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension by modulating TH17 cells. In line with these findings, a moderate high-salt challenge in a pilot study in humans reduced intestinal survival of Lactobacillus spp., increased TH17 cells and increased blood pressure. Our results connect high salt intake to the gut-immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions.
Collapse
Affiliation(s)
- Nicola Wilck
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Mariana G Matus
- Center for Microbiome Informatics and Therapeutics, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Sean M Kearney
- Center for Microbiome Informatics and Therapeutics, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Scott W Olesen
- Center for Microbiome Informatics and Therapeutics, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Kristoffer Forslund
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
| | - Stefanie Haase
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Anja Mähler
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - András Balogh
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Lajos Markó
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Olga Vvedenskaya
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Integrative Proteomics and Metabolomics Platform, Berlin Institute for Medical Systems Biology BIMSB, 13125 Berlin, Germany
- Berlin School of Integrative Oncology, Charité University Medicine Berlin, Berlin, Germany
| | - Friedrich H Kleiner
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Dmitry Tsvetkov
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Lars Klug
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Paul I Costea
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Shinichi Sunagawa
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
- Institute of Microbiology, ETH Zurich, 8092 Zurich, Switzerland
| | - Lisa Maier
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Natalia Rakova
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Valentin Schatz
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Patrick Neubert
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | | | | | - Maik Gollasch
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
| | - Diana A Grohme
- Translational Immunology, Department of Clinical Pathobiochemistry, Medical Faculty Carl Gustav Carus, Technical University of Dresden, 01307 Dresden, Germany
| | - Beatriz F Côrte-Real
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University, Campus Diepenbeek, 3590 Diepenbeek, Belgium
| | - Roman G Gerlach
- Project Group 5, Robert Koch Institute, 38855 Wernigerode, Germany
| | - Marijana Basic
- Hannover Medical School, Institute for Laboratory Animal Science and Central Animal Facility, 30625 Hannover, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory, Genome Biology Unit, 69117 Heidelberg, Germany
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | - Jens M Titze
- Division of Clinical Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jonathan Jantsch
- Institute of Clinical Microbiology and Hygiene, University Hospital of Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Michael Boschmann
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Markus Kleinewietfeld
- Translational Immunology, Department of Clinical Pathobiochemistry, Medical Faculty Carl Gustav Carus, Technical University of Dresden, 01307 Dresden, Germany
- VIB Laboratory of Translational Immunomodulation, VIB Center for Inflammation Research (IRC), Hasselt University, Campus Diepenbeek, 3590 Diepenbeek, Belgium
- Center for Regenerative Therapies Dresden (CRTD), 01307 Dresden, Germany
| | - Stefan Kempa
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Integrative Proteomics and Metabolomics Platform, Berlin Institute for Medical Systems Biology BIMSB, 13125 Berlin, Germany
| | - Peer Bork
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, 69120 Heidelberg, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Ralf A Linker
- Department of Neurology, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany
| | - Eric J Alm
- Center for Microbiome Informatics and Therapeutics, and Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Dominik N Müller
- Experimental and Clinical Research Center, a joint cooperation of Max-Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, 13125 Berlin, Germany
- Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
798
|
The nasopharyngeal microbiome. Emerg Top Life Sci 2017; 1:297-312. [PMID: 33525776 DOI: 10.1042/etls20170041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 02/07/2023]
Abstract
Human microbiomes have received increasing attention over the last 10 years, leading to a pervasiveness of hypotheses relating dysbiosis to health and disease. The respiratory tract has received much less attention in this respect than that of, for example, the human gut. Nevertheless, progress has been made in elucidating the immunological, ecological and environmental drivers that govern these microbial consortia and the potential consequences of aberrant microbiomes. In this review, we consider the microbiome of the nasopharynx, a specific niche of the upper respiratory tract. The nasopharynx is an important site, anatomically with respect to its gateway position between upper and lower airways, and for pathogenic bacterial colonisation. The dynamics of the latter are important for long-term respiratory morbidity, acute infections of both invasive and non-invasive disease and associations with chronic airway disease exacerbations. Here, we review the development of the nasopharyngeal (NP) microbiome over the life course, examining it from the early establishment of resilient profiles in neonates through to perturbations associated with pneumonia risk in the elderly. We focus specifically on the commensal, opportunistically pathogenic members of the NP microbiome that includes Streptococcus pneumoniae, Staphylococcus aureus, Haemophilus influenzae and Moraxella catarrhalis. In addition, we consider the role of relatively harmless genera such as Dolosigranulum and Corynebacterium. Understanding that the NP microbiome plays such a key, beneficial role in maintaining equilibrium of commensal species, prevention of pathogen outgrowth and host immunity enables future research to be directed appropriately.
Collapse
|
799
|
Calvo-Barreiro L, Eixarch H, Montalban X, Espejo C. Combined therapies to treat complex diseases: The role of the gut microbiota in multiple sclerosis. Autoimmun Rev 2017; 17:165-174. [PMID: 29191793 DOI: 10.1016/j.autrev.2017.11.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The commensal microbiota has emerged as an environmental risk factor for multiple sclerosis (MS). Studies in experimental autoimmune encephalomyelitis (EAE) models have shown that the commensal microbiota is an essential player in triggering autoimmune demyelination. Likewise, the commensal microbiota modulates the host immune system, alters the integrity and function of biological barriers and has a direct effect on several types of central nervous system (CNS)-resident cells. Moreover, a characteristic gut dysbiosis has been recognized as a consistent feature during the clinical course of MS, and the MS-related microbiota is gradually being elucidated. This review highlights animal studies in which commensal microbiota modulation was tested in EAE, as well as the mechanisms of action and influence of the commensal microbiota not only in the local milieu but also in the innate and adaptive immune system and the CNS. Regarding human research, this review focuses on studies that show how the commensal microbiota might act as a pathogenic environmental risk factor by directing immune responses towards characteristic pathogenic profiles of MS. We speculate how specific microbiome signatures could be obtained and used as potential pathogenic events and biomarkers for the clinical course of MS. Finally, we review recently published and ongoing clinical trials in MS patients regarding the immunomodulatory properties exerted by some microorganisms. Because MS is a complex disease with a large variety of associated environmental risk factors, we suggest that current treatments combined with strategies that modulate the commensal microbiota would constitute a broader immunotherapeutic approach and improve the clinical outcome for MS patients.
Collapse
Affiliation(s)
- Laura Calvo-Barreiro
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain.
| | - Herena Eixarch
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain.
| | - Xavier Montalban
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain.
| | - Carmen Espejo
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, 08035 Barcelona, Spain; Universitat Autònoma de Barcelona, 08193, Bellaterra, Cerdanyola del Vallès, Spain.
| |
Collapse
|
800
|
Vitamin D and Neurological Diseases: An Endocrine View. Int J Mol Sci 2017; 18:ijms18112482. [PMID: 29160835 PMCID: PMC5713448 DOI: 10.3390/ijms18112482] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
Vitamin D system comprises hormone precursors, active metabolites, carriers, enzymes, and receptors involved in genomic and non-genomic effects. In addition to classical bone-related effects, this system has also been shown to activate multiple molecular mediators and elicit many physiological functions. In vitro and in vivo studies have, in fact, increasingly focused on the "non-calcemic" actions of vitamin D, which are associated with the maintenance of glucose homeostasis, cardiovascular morbidity, autoimmunity, inflammation, and cancer. In parallel, growing evidence has recognized that a multimodal association links vitamin D system to brain development, functions and diseases. With vitamin D deficiency reaching epidemic proportions worldwide, there is now concern that optimal levels of vitamin D in the bloodstream are also necessary to preserve the neurological development and protect the adult brain. The aim of this review is to highlight the relationship between vitamin D and neurological diseases.
Collapse
|