751
|
Impola U, Larjo A, Salmenniemi U, Putkonen M, Itälä-Remes M, Partanen J. Graft Immune Cell Composition Associates with Clinical Outcome of Allogeneic Hematopoietic Stem Cell Transplantation in Patients with AML. Front Immunol 2016; 7:523. [PMID: 27917176 PMCID: PMC5117118 DOI: 10.3389/fimmu.2016.00523] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/09/2016] [Indexed: 12/17/2022] Open
Abstract
Complications of allogeneic hematopoietic stem cell transplantation (HSCT) have been attributed to immune cells transferred into the patient with the graft. However, a detailed immune cell composition of the graft is usually not evaluated. In the present study, we determined the level of variation in the composition of immune cells between clinical HSCT grafts and whether this variation is associated with clinical outcome. Sizes of major immune cell populations in 50 clinical grafts from a single HSCT Centre were analyzed using flow cytometry. A statistical comparison between cell levels and clinical outcomes of HSCT was performed. Overall survival, acute graft-versus-host disease (aGVHD), chronic graft-versus-host disease (cGVHD), and relapse were used as the primary endpoints. Individual HSCT grafts showed considerable variation in their numbers of immune cell populations, including CD123+ dendritic cells and CD34+ cells, which may play a role in GVHD. Acute myeloid leukemia (AML) patients who developed aGVHD were transplanted with higher levels of effector CD3+ T, CD19+ B, and CD123+ dendritic cells than AML patients without aGVHD, whereas grafts with a high CD34+ content protected against aGVHD. AML patients with cGVHD had received grafts with a lower level of monocytes and a higher level of CD34+ cells than those without cGVHD. There is considerable variation in the levels of immune cell populations between HSCT grafts, and this variation is associated with outcomes of HSCT in AML patients. A detailed analysis of the immune cell content of the graft can be used in risk assessment of HSCT.
Collapse
Affiliation(s)
- Ulla Impola
- Finnish Red Cross Blood Service, Research and Development , Helsinki , Finland
| | - Antti Larjo
- Finnish Red Cross Blood Service, Research and Development , Helsinki , Finland
| | | | | | | | - Jukka Partanen
- Finnish Red Cross Blood Service, Research and Development , Helsinki , Finland
| |
Collapse
|
752
|
Abstract
In this issue of Cancer Cell, Ceribelli et al. use functional genomic and chemical screening to reveal the existence of a TCF4/BRD4-dependent oncogenic regulatory network in blastic plasmacytoid dendritic cell neoplasm (BPDCN) and demonstrate that BPDCN cells are highly sensitive to therapeutic targeting of this novel dependency.
Collapse
Affiliation(s)
- Maria Kleppe
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box 20, New York, NY 10065, USA.
| |
Collapse
|
753
|
Panda SK, Kolbeck R, Sanjuan MA. Plasmacytoid dendritic cells in autoimmunity. Curr Opin Immunol 2016; 44:20-25. [PMID: 27855321 DOI: 10.1016/j.coi.2016.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 10/28/2016] [Indexed: 11/30/2022]
Abstract
Plasmacytoid dendritic cells (pDC) is a unique cell population that produces large amounts of type I interferon upon recognition of nucleic acids placing them at the crossroad of both innate and adaptive immunity. Their ability to produce interferon makes them central to anti-viral responses. They are also responsive to circulating autoantibodies bound to nuclear antigens and in that scenario the release of interferons initiate self-directed immune responses. There are now a growing number of autoimmune disorders where unabated activation of pDC is suspected to be pathogenic. Here, we discuss the different mechanisms responsible for breaking tolerance to self-nucleic acids by pDC, including the novel role of IgE autoantibodies in systemic lupus erythematosus. We also summarized the recent progress on therapies undergoing clinical testing that target either pDC or type I interferons.
Collapse
Affiliation(s)
- Santosh K Panda
- Dept of Respiratory, Inflammation & Autoimmunity, MedImmune LLC, Gaithersburg, MD, USA
| | - Roland Kolbeck
- Dept of Respiratory, Inflammation & Autoimmunity, MedImmune LLC, Gaithersburg, MD, USA
| | - Miguel A Sanjuan
- Dept of Respiratory, Inflammation & Autoimmunity, MedImmune LLC, Gaithersburg, MD, USA.
| |
Collapse
|
754
|
Pham EA, Perumpail RB, Fram BJ, Glenn JS, Ahmed A, Gish RG. Future Therapy for Hepatitis B Virus: Role of Immunomodulators. CURRENT HEPATOLOGY REPORTS 2016; 15:237-244. [PMID: 27917363 PMCID: PMC5112294 DOI: 10.1007/s11901-016-0315-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although currently available therapies for chronic hepatitis B virus infection can suppress viremia and provide long-term benefits for patients, they do not lead to a functional cure for most patients. Advances in our understanding of the virus-host interaction and the recent remarkable success of immunotherapy in cancer offer new and promising strategies for developing immune modulators that may become important components of a total therapeutic approach to hepatitis B, some of which are now in clinical development. Among the immunomodulatory agents currently being investigated to combat chronic HBV are toll-like receptor agonists, immune checkpoint inhibitors, therapeutic vaccines, and engineered T cells. The efficacy of some immune modulatory therapies is compromised by high viral antigen levels. Cutting edge strategies, including RNA interference and CRISPR/Cas9, are now being studied that may ultimately be shown to have the capacity to lower viral antigen levels sufficiently to substantially increase the efficacy of these agents. The current advances in therapies for chronic hepatitis B are leading us toward the possibility of a functional cure.
Collapse
Affiliation(s)
- Edward A. Pham
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA USA
| | - Ryan B. Perumpail
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA USA
| | - Benjamin J. Fram
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA USA
| | - Jeffrey S. Glenn
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA USA
- Veterans Administration Medical Center, Palo Alto, CA USA
| | - Aijaz Ahmed
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA USA
| | - Robert G. Gish
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA USA
- Hepatitis B Foundation, Doylestown, PA USA
| |
Collapse
|
755
|
Decreased Expression of TMEM173 Predicts Poor Prognosis in Patients with Hepatocellular Carcinoma. PLoS One 2016; 11:e0165681. [PMID: 27814372 PMCID: PMC5096716 DOI: 10.1371/journal.pone.0165681] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 10/14/2016] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal cancer types, and chronic infection with Hepatitis B Virus (HBV) is identified as the strongest risk factor for HCC. Transmembrane Protein 173 (TMEM173) is a pattern recognition receptor which functions as a major regulator of the innate immune response to viral and bacterial infections. However, the prognostic value of TMEM173 in HCC remains elusive. Thus, we aimed to evaluate the potential prognostic significance of TMEM173 expression in HCC patients following curative resection. Immunohistochemistry was used to detect TMEM173 expression in 96 HCC patients. We found that TMEM173 protein expression was remarkably decreased in tumor tissues compared to non-tumor tissues, and that TMEM173 staining intensity was inversely correlated with tumor size, tumor invasion TNM stage and overall survival (OS) in HCC patients. Multivariate analysis supported TMEM173 as an independent prognostic factor, and identified that combining TMEM173 expression with TNM stage showed better prognostic efficiency for OS in HCC patients. In summary, TMEM173 was discovered having an independent prognostic value and may serve as a potential immunotherapeutic target for HCC.
Collapse
|
756
|
Micheletti A, Finotti G, Calzetti F, Lonardi S, Zoratti E, Bugatti M, Stefini S, Vermi W, Cassatella MA. slanDCs/M-DC8+ cells constitute a distinct subset of dendritic cells in human tonsils [corrected]. Oncotarget 2016; 7:161-75. [PMID: 26695549 PMCID: PMC4807990 DOI: 10.18632/oncotarget.6660] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/22/2015] [Indexed: 12/17/2022] Open
Abstract
Human blood dendritic cells (DCs) include three main distinct subsets, namely the CD1c+ and CD141+ myeloid DCs (mDCs) and the CD303+ plasmacytoid DCs (pDCs). More recently, a population of slan/M-DC8+ cells, also known as “slanDCs”, has been described in blood and detected even in inflamed secondary lymphoid organs and non-lymphoid tissues. Nevertheless, hallmarks of slan/M-DC8+ cells in tissues are poorly defined. Herein, we report a detailed characterization of the phenotype and function of slan/M-DC8+ cells present in human tonsils. We found that tonsil slan/M-DC8+ cells represent a unique DC cell population, distinct from their circulating counterpart and also from all other tonsil DC and monocyte/macrophage subsets. Phenotypically, slan/M-DC8+ cells in tonsils display a CD11c+HLA-DR+CD14+CD11bdim/negCD16dim/negCX3CR1dim/neg marker repertoire, while functionally they exhibit an efficient antigen presentation capacity and a constitutive secretion of TNFα. Notably, such DC phenotype and functions are substantially reproduced by culturing blood slan/M-DC8+ cells in tonsil-derived conditioned medium (TDCM), further supporting the hypothesis of a full DC-like differentiation program occurring within the tonsil microenvironment. Taken together, our data suggest that blood slan/M-DC8+ cells are immediate precursors of a previously unrecognizedcompetent DC subset in tonsils, and pave the way for further characterization of slan/M-DC8+ cells in other tissues.
Collapse
Affiliation(s)
- Alessandra Micheletti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Giulia Finotti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Federica Calzetti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Silvia Lonardi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Elisa Zoratti
- Applied Research on Cancer-Network (ARC-NET), University of Verona, Verona, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy
| | - Stefania Stefini
- Unit of Pediatric Otorhinolaryngology, Spedali Civili di Brescia, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Pathology, University of Brescia, Brescia, Italy.,Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Marco A Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| |
Collapse
|
757
|
Abstract
All cells possess signaling pathways designed to trigger antiviral responses, notably characterized by type I interferon (IFN) production, upon recognition of invading viruses. Especially, host sensors recognize viral nucleic acids. Nonetheless, virtually all viruses have evolved potent strategies that preclude host responses within the infected cells. The plasmacytoid dendritic cell (pDC) is an immune cell type known as a robust type I IFN producer in response to viral infection. Evidence suggests that such functionality of the pDCs participates in viral clearance. Nonetheless, their contribution, which is likely complex and varies depending on the pathogen, is still enigmatic for many viruses. pDCs are not permissive to most viral infections, and consistently, recent examples suggest that pDCs respond to immunostimulatory viral RNA transferred via noninfectious and/or noncanonical viral/cellular carriers. Therefore, the pDC response likely bypasses innate signaling blockages induced by virus within infected cells. Importantly, the requirement for cell-cell contact is increasingly recognized as a hallmark of the pDC-mediated antiviral state, triggered by evolutionarily divergent RNA viruses.
Collapse
|
758
|
Ospelnikova TP, Noseikina EM, Gaiderova LA, Ershov FI. THERAPEUTIC POTENTIAL OF ALPHA-INTERFERON PREPARATIONS DURING SOCIALLY-SIGNIFICANT HUMAN DISEASES OF VIRAL ETIOLOGY. JOURNAL OF MICROBIOLOGY, EPIDEMIOLOGY AND IMMUNOBIOLOGY 2016. [DOI: 10.36233/0372-9311-2016-5-109-121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Interferons (IFN) belong to key cytokine? of innate and adaptive immune response and play an important role in anti-viral and anti-tumor protection. At the same time, they possess a pronounced immune-modulating, anti-proliferative and anti-fibrotic effect. A general comparative characteristic of human IFN type I (a/(3), IFN type II (y) and IFN type III (X) and nosological directionality of contemporary drugs created on their base is examined in the review. Epidemiologic parameters for main socially-significant human diseases of viral etiology are presented: influenza and other ARVis, herpes infection, chronic viral hepatitis В, C and D. Main attention is given to analysis of effectiveness of therapeutic application of preparations based on IFNa during the indicated infections, a specter of main IFNa induced side effects is listed. Recent achievements on the path of creation of principally new drugs based on IFN, that have lower toxicity and higher clinical effectiveness, as well as perspectives of application of preparations based on recombinant IFN for therapy of potentially dangerous diseases are examined.
Collapse
|
759
|
Gardner A, Ruffell B. Dendritic Cells and Cancer Immunity. Trends Immunol 2016; 37:855-865. [PMID: 27793569 DOI: 10.1016/j.it.2016.09.006] [Citation(s) in RCA: 588] [Impact Index Per Article: 73.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/23/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) are central regulators of the adaptive immune response, and as such are necessary for T-cell-mediated cancer immunity. In particular, antitumoral responses depend on a specialized subset of conventional DCs that transport tumor antigens to draining lymph nodes and cross-present antigen to activate cytotoxic T lymphocytes. DC maturation is necessary to provide costimulatory signals to T cells, but while DC maturation occurs within tumors, it is often insufficient to induce potent immunity, particularly in light of suppressive mechanisms within tumors. Bypassing suppressive pathways or directly activating DCs can unleash a T-cell response, and although clinical efficacy has proven elusive, therapeutic targeting of DCs continues to hold translational potential in combinatorial approaches.
Collapse
Affiliation(s)
- Alycia Gardner
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Cancer Biology PhD Program, University of South Florida, Tampa, FL, USA
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA; Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA.
| |
Collapse
|
760
|
Yan LH, Chen ZN, Li L, Chen J, Mo XW, Qin YZ, Wei WE, Qin HQ, Lin Y, Chen JS. E2F-1 promotes DAPK2-induced anti-tumor immunity of gastric cancer cells by targeting miR-34a. Tumour Biol 2016; 37:10.1007/s13277-016-5446-7. [PMID: 27704360 DOI: 10.1007/s13277-016-5446-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/23/2016] [Indexed: 12/20/2022] Open
Abstract
Activation of the transcription factor E2F-1 gene is a negative event in dendritic cell (DC) maturation process. Down-regulation of E2F1 causes immaturity of DC thereby stopping antigen production which in turn leads to inhibition of immune responses. E2F-1-free stimulates the NF-kB signaling pathway, leading to activation of monocytes and several other transcription factor genes. In the study, we report that down-regulation of E2F-1 in DCs promote anti-tumor immune response in gastric cancer (GC) cells through a novel mechanism. DCs were isolated from peripheral blood mononuclear cells. E2F-1 small interfering RNA (E2F-1-shRNA) induced down-regulation of E2F-1 mRNA and protein expression in DCs. Furthermore, we identified the E2F-1-shRNA targeted the CD80, CD83, CD86, and MHC II molecules, promoted their expression, and induced T lymphocytes proliferation activity and up-regulation of IFN-Ī³ production and GC cell killing effect, which significantly correlated with the cytotoxic T lymphocytes activated by E2F-1-shRNA DCs. The higher expression of miR-34a was found which was significantly correlated with the DC enhancing anti-tumor immunity against gastric cancer cell, and miR-34a potently targeted DAPK2 and Sp1, both of which were involved in the deactivation of E2F-1. Moreover, in E2F-1-DC-down-regulation in mice, GC transplantation tumors displayed down-regulation of Sp1, DAPK2, Caspase3, and Caspase7 and progressed to anti-tumor immunity. Collectively, our data uncover an E2F-1-mediated mechanism for the control of DC anti-tumor immunity via miR-34a-dependent down-regulation of E2F-1 expression and suggest its contribution to GC immunotherapy.
Collapse
Affiliation(s)
- Lin-Hai Yan
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China.
| | - Zhi-Ning Chen
- Department of Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Li Li
- Department of Pharmacy, The People Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Jia Chen
- Department of Medical Image Center, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Xian-Wei Mo
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Yu-Zhou Qin
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Wen-E Wei
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Hai-Quan Qin
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Yuan Lin
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Jian-Si Chen
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| |
Collapse
|
761
|
Finotti G, Tamassia N, Cassatella MA. Synergistic production of TNFα and IFNα by human pDCs incubated with IFNλ3 and IL-3. Cytokine 2016; 86:124-131. [PMID: 27513213 DOI: 10.1016/j.cyto.2016.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/03/2016] [Accepted: 08/03/2016] [Indexed: 12/14/2022]
Abstract
In this study, we investigated whether IFNλ3 and IL-3 reciprocally influence their capacity to activate various functions of human plasmacytoid dendritic cells (pDCs). In fact, we preliminarily observed that IFNλ3 upregulates the expression of the IL-3Rα (CD123), while IL-3 augments the expression of IFNλR1 in pDCs. As a result, we found that combination of IFNλ3 and IL-3 induces a strong potentiation in the production of TNFα, IFNα, as well as in the expression of Interferon-Stimulated Gene (ISG) mRNAs by pDCs, as compared to either IFNλ3 or IL-3 alone. In such regard, we found that endogenous IFNα autocrinally promotes the expression of ISG mRNAs in IL-3-, but not in IFNλ3 plus IL-3-, treated pDCs. Moreover, we uncovered that the production of IFNα by IFNλ3 plus IL-3-treated pDCs is mostly dependent on endogenously produced TNFα. Altogether, our data demonstrate that IFNλ3 and IL-3 collaborate to promote, at maximal levels, discrete functional responses of human pDCs.
Collapse
Affiliation(s)
- Giulia Finotti
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Nicola Tamassia
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy
| | - Marco A Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy.
| |
Collapse
|
762
|
Type I Interferons and NK Cells Restrict Gammaherpesvirus Lymph Node Infection. J Virol 2016; 90:9046-57. [PMID: 27466430 DOI: 10.1128/jvi.01108-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Gammaherpesviruses establish persistent, systemic infections and cause cancers. Murid herpesvirus 4 (MuHV-4) provides a unique window into the early events of host colonization. It spreads via lymph nodes. While dendritic cells (DC) pass MuHV-4 to lymph node B cells, subcapsular sinus macrophages (SSM), which capture virions from the afferent lymph, restrict its spread. Understanding how this restriction works offers potential clues to a more comprehensive defense. Type I interferon (IFN-I) blocked SSM lytic infection and reduced lytic cycle-independent viral reporter gene expression. Plasmacytoid DC were not required, but neither were SSM the only source of IFN-I, as IFN-I blockade increased infection in both intact and SSM-depleted mice. NK cells restricted lytic SSM infection independently of IFN-I, and SSM-derived virions spread to the spleen only when both IFN-I responses and NK cells were lacking. Thus, multiple innate defenses allowed SSM to adsorb virions from the afferent lymph with relative impunity. Enhancing IFN-I and NK cell recruitment could potentially also restrict DC infection and thus improve infection control. IMPORTANCE Human gammaherpesviruses cause cancers by infecting B cells. However, vaccines designed to block virus binding to B cells have not stopped infection. Using a related gammaherpesvirus of mice, we have shown that B cells are infected not via cell-free virus but via infected myeloid cells. This suggests a different strategy to stop B cell infection: stop virus production by myeloid cells. Not all myeloid infection is productive. We show that subcapsular sinus macrophages, which do not pass infection to B cells, restrict gammaherpesvirus production by recruiting type I interferons and natural killer cells. Therefore, a vaccine that speeds the recruitment of these defenses might stop B cell infection.
Collapse
|
763
|
Coutant F, Miossec P. Altered dendritic cell functions in autoimmune diseases: distinct and overlapping profiles. Nat Rev Rheumatol 2016; 12:703-715. [DOI: 10.1038/nrrheum.2016.147] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
764
|
Lamb C, Arbuthnot P. Activating the innate immune response to counter chronic hepatitis B virus infection. Expert Opin Biol Ther 2016; 16:1517-1527. [PMID: 27603796 DOI: 10.1080/14712598.2016.1233962] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Chronic infection with hepatitis B virus (HBV) is endemic to several populous parts of the world, where resulting complicating cirrhosis and hepatocellular carcinoma occur commonly. Licensed drugs to treat the infection have limited curative efficacy, and development of therapies that eliminate all replication intermediates of HBV is a priority. Areas covered: The recent demonstration that the activation of the innate immune response may eradicate HBV from infected hepatocytes has a promising therapeutic application. Small molecule stimulators of Toll-like receptors (TLRs) inhibit replication of woodchuck hepatitis virus in woodchucks and HBV in chimpanzees and mice. Early stage clinical trials using GS-9620, a TLR7 agonist, indicate that this candidate antiviral is well tolerated in humans. Using an alternative approach, triggering the innate immune response with agonists of lymphotoxin-β receptor caused efficient APOBEC-mediated deamination and degradation of viral covalently closed circular DNA. Expert opinion: Eliminating HBV cccDNA from infected individuals would constitute a cure, and has become the focus of intensive research that employs various therapeutic approaches, including gene therapy. Immunomodulation through innate immune activation shows promise for the treatment of chronic infection of HBV (CHB) and, used in combination with other therapeutics, may contribute to the global control of infections and ultimately to the eradication of HBV.
Collapse
Affiliation(s)
- Camilla Lamb
- a Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences , University of the Witwatersrand , Johannesburg , South Africa
| | - Patrick Arbuthnot
- a Wits/SAMRC Antiviral Gene Therapy Research Unit, School of Pathology, Faculty of Health Sciences , University of the Witwatersrand , Johannesburg , South Africa
| |
Collapse
|
765
|
Schönrich G, Raftery MJ. Neutrophil Extracellular Traps Go Viral. Front Immunol 2016; 7:366. [PMID: 27698656 PMCID: PMC5027205 DOI: 10.3389/fimmu.2016.00366] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are the most numerous immune cells. Their importance as the first line of defense against bacterial and fungal pathogens is well described. In contrast, the role of neutrophils in controlling viral infections is less clear. Bacterial and fungal pathogens can stimulate neutrophils extracellular traps (NETs) in a process called NETosis. Although NETosis has previously been described as a special form of programmed cell death, there are forms of NET production that do not end with the demise of neutrophils. As an end result of NETosis, genomic DNA complexed with microbicidal proteins is expelled from neutrophils. These structures can kill pathogens or at least prevent their local spread within host tissue. On the other hand, disproportionate NET formation can cause local or systemic damage. Only recently, it was recognized that viruses can also induce NETosis. In this review, we discuss the mechanisms by which NETs are produced in the context of viral infection and how this may contribute to both antiviral immunity and immunopathology. Finally, we shed light on viral immune evasion mechanisms targeting NETs.
Collapse
Affiliation(s)
- Günther Schönrich
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin , Berlin , Germany
| | - Martin J Raftery
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité - Universitätsmedizin Berlin , Berlin , Germany
| |
Collapse
|
766
|
Expression profile of novel cell surface molecules on different subsets of human peripheral blood antigen-presenting cells. Clin Transl Immunology 2016; 5:e100. [PMID: 27766148 PMCID: PMC5050278 DOI: 10.1038/cti.2016.54] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 08/01/2016] [Accepted: 08/02/2016] [Indexed: 02/02/2023] Open
Abstract
Although major steps have been recently made in understanding the role of the distinct subsets of dendritic cells (DC)/antigen-presenting cells (APC), further studies are required to unravel their precise role, including in-depth immunophenotypic characterisation of these cells. Here, we used eight-colour flow cytometry to investigate the reactivity of a panel of 72 monoclonal antibodies (including those clustered in seven new Cluster of Differentiation, CD) on different subsets of APC in peripheral blood (PB) samples from five healthy adults. These experiments were performed in the context of the Tenth International Workshop on Human Leukocyte Differentiation Antigens (HLDA10). Plasmacytoid DC was the only cell population that expressed CD85g and CD195, whereas they lacked all of the other molecules investigated. In contrast, myeloid DC mostly expressed inhibitory C-type lectin receptors (CLRs) and other inhibitory-associated molecules, whereas monocytes expressed both inhibitory and activating CLRs, together with other phagocytosis-associated receptors. Within monocytes, progressively lower levels of expression were generally observed from classical monocytes (cMo) to SLAN- and SLAN+ non-classical monocytes (ncMo) for most of the molecules expressed, except for the CD368 endocytic receptor. This molecule was found to be positive only in cMo, and the CD369 and CD371 modulating/signalling receptors. In addition, the CD101 inhibitory molecule was found to be expressed at higher levels in SLAN+ vs SLAN- ncMo. In summary, the pattern of expression of the different signalling molecules and receptors analysed in this work varies among the distinct subsets of PB APCs, with similar profiles for molecules within each functional group. These findings suggest unique pattern-recognition and signalling capabilities for distinct subpopulations of APCs, and therefore, diverse functional roles.
Collapse
|
767
|
Sukhbaatar N, Hengstschläger M, Weichhart T. mTOR-Mediated Regulation of Dendritic Cell Differentiation and Function. Trends Immunol 2016; 37:778-789. [PMID: 27614799 DOI: 10.1016/j.it.2016.08.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/10/2016] [Accepted: 08/15/2016] [Indexed: 01/09/2023]
Abstract
Dendritic cells (DCs) are essential antigen-presenting cells that sample the extra- and intracellular milieu to process antigens for the instruction of T cell responses. The mammalian target of rapamycin (mTOR) network senses environmental cues and is important for numerous cellular processes. This review discusses how DCs use mTOR complexes (mTORC1 and 2) to adapt their cellular metabolism, transcriptional responses, and translation machinery to control DC development, antigen processing, cytokine production, and T cell stimulation. We present a spatiotemporal model suggesting that the mTOR network integrates pattern recognition and growth factor receptor activation with nutritional information from the cell and surrounding tissue to support T cell stimulation and tolerance. mTOR develops into a central player that regulates DC differentiation and immune functions.
Collapse
Affiliation(s)
- Nyamdelger Sukhbaatar
- Medical University of Vienna, Institute of Medical Genetics, Währingerstrasse 10, 1090 Vienna, Austria
| | - Markus Hengstschläger
- Medical University of Vienna, Institute of Medical Genetics, Währingerstrasse 10, 1090 Vienna, Austria
| | - Thomas Weichhart
- Medical University of Vienna, Institute of Medical Genetics, Währingerstrasse 10, 1090 Vienna, Austria.
| |
Collapse
|
768
|
van Beek JJP, Gorris MAJ, Sköld AE, Hatipoglu I, Van Acker HH, Smits EL, de Vries IJM, Bakdash G. Human blood myeloid and plasmacytoid dendritic cells cross activate each other and synergize in inducing NK cell cytotoxicity. Oncoimmunology 2016; 5:e1227902. [PMID: 27853652 PMCID: PMC5087293 DOI: 10.1080/2162402x.2016.1227902] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/08/2016] [Accepted: 08/18/2016] [Indexed: 01/24/2023] Open
Abstract
Human blood dendritic cells (DCs) hold great potential for use in anticancer immunotherapies. CD1c+ myeloid DCs and plasmacytoid DCs (pDCs) have been successfully utilized in clinical vaccination trials against melanoma. We hypothesize that combining both DC subsets in a single vaccine can further improve vaccine efficacy. Here, we have determined the potential synergy between the two subsets in vitro on the level of maturation, cytokine expression, and effector cell induction. Toll-like receptor (TLR) stimulation of CD1c+ DCs induced cross-activation of immature pDCs and vice versa. When both subsets were stimulated together using TLR agonists, CD86 expression on pDCs was increased and higher levels of interferon (IFN)-α were produced by DC co-cultures. Although the two subsets did not display any synergistic effect on naive CD4+ and CD8+ T cell polarization, CD1c+ DCs and pDCs were able to complement each other's induction of other immune effector cells. The mere presence of pDCs in DC co-cultures promoted plasma cell differentiation from activated autologous B cells. Similarly, CD1c+ DCs, alone or in co-cultures, induced high levels of IFN-γ from allogeneic peripheral blood lymphocytes or activated autologous natural killer (NK) cells. Both CD1c+ DCs and pDCs could enhance NK cell cytotoxicity, and interestingly DC co-cultures further enhanced NK cell-mediated killing of an NK-resistant tumor cell line. These results indicate that co-application of human blood DC subsets could render DC-based anticancer vaccines more efficacious.
Collapse
Affiliation(s)
- Jasper J P van Beek
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen, the Netherlands
| | - Mark A J Gorris
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen, the Netherlands
| | - Annette E Sköld
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Department of Oncology-Pathology, Karolinska University Hospital Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ibrahim Hatipoglu
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen, the Netherlands
| | - Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences , Antwerp, Belgium
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, the Netherlands; Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ghaith Bakdash
- Department of Tumor Immunology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences , Nijmegen, the Netherlands
| |
Collapse
|
769
|
Berry CM. Understanding Interferon Subtype Therapy for Viral Infections: Harnessing the Power of the Innate Immune System. Cytokine Growth Factor Rev 2016; 31:83-90. [PMID: 27544015 DOI: 10.1016/j.cytogfr.2016.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 12/25/2022]
Abstract
Type I and III interferons (IFNs) of the innate immune system belong to a polygenic family, however the individual subtype mediators of the antiviral response in viral infections have been hindered by a lack of reagents. Evaluation studies using different IFN subtypes have distinguished distinct protein properties with different efficacies towards different viruses, opening promising avenues for immunotherapy. This review largely focuses on the application of IFN-α/β and IFN-λ therapies for viral infections, influenza, herpes, HIV and hepatitis. Such IFN subtype therapies may help to cure patients with virus infections where no vaccine exists. The ability of cell types to secrete a number of IFN subtypes from a multi-gene family may be an intuitive counterattack on viruses that evade IFN subtype responses. Hence, clinical use of virus-targeted IFN subtypes may restore antiviral immunity in viral infections. Accumulating evidence suggests that individual IFN subtypes have differential efficacies in selectively activating immune cell subsets to enhance antiviral immune responses leading to production of sustained B and T cell memory. Cytokine therapy can augment innate immunity leading to clearance of acute virus infections but such treatments may have limited effects on chronic virus infections that establish lifelong latency. Therefore, exploiting individual IFN subtypes to select those with the ability to sculpt protective responses as well as reinstating those targeted by viral evasion mechanisms may inform development of improved antiviral therapy.
Collapse
Affiliation(s)
- Cassandra M Berry
- School of Veterinary and Life Sciences, Molecular and Biomedical Sciences, Murdoch University, South Street, Murdoch, Perth, Western Australia, Australia.
| |
Collapse
|
770
|
Rackov G, Hernández-Jiménez E, Shokri R, Carmona-Rodríguez L, Mañes S, Álvarez-Mon M, López-Collazo E, Martínez-A C, Balomenos D. p21 mediates macrophage reprogramming through regulation of p50-p50 NF-κB and IFN-β. J Clin Invest 2016; 126:3089-103. [PMID: 27427981 DOI: 10.1172/jci83404] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 05/24/2016] [Indexed: 01/01/2023] Open
Abstract
M1 and M2 macrophage phenotypes, which mediate proinflammatory and antiinflammatory functions, respectively, represent the extremes of immunoregulatory plasticity in the macrophage population. This plasticity can also result in intermediate macrophage states that support a balance between these opposing functions. In sepsis, M1 macrophages can compensate for hyperinflammation by acquiring an M2-like immunosuppressed status that increases the risk of secondary infection and death. The M1 to M2 macrophage reprogramming that develops during LPS tolerance resembles the pathological antiinflammatory response to sepsis. Here, we determined that p21 regulates macrophage reprogramming by shifting the balance between active p65-p50 and inhibitory p50-p50 NF-κB pathways. p21 deficiency reduced the DNA-binding affinity of the p50-p50 homodimer in LPS-primed and -rechallenged macrophages, impairing their ability to attenuate IFN-β production and acquire an M2-like hyporesponsive status. High p21 levels in sepsis patients correlated with low IFN-β expression, and p21 knockdown in human monocytes corroborated its role in IFN-β regulation. The data demonstrate that p21 adjusts the equilibrium between p65-p50 and p50-p50 NF-κB pathways to mediate macrophage plasticity in LPS tolerance. Identifying p21-related pathways involved in monocyte reprogramming may lead to potential targets for sepsis treatment.
Collapse
|
771
|
Schmitt H, Sell S, Koch J, Seefried M, Sonnewald S, Daniel C, Winkler TH, Nitschke L. Siglec-H protects from virus-triggered severe systemic autoimmunity. J Exp Med 2016; 213:1627-44. [PMID: 27377589 PMCID: PMC4986536 DOI: 10.1084/jem.20160189] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/13/2016] [Indexed: 12/23/2022] Open
Abstract
Siglec-H is a key negative regulator of the type I interferon pathway, reducing the incidence of autoimmunity after viral infection. It is controversial whether virus infections can contribute to the development of autoimmune diseases. Type I interferons (IFNs) are critical antiviral cytokines during virus infections and have also been implicated in the pathogenesis of systemic lupus erythematosus. Type I IFN is mainly produced by plasmacytoid dendritic cells (pDCs). The secretion of type I IFN of pDCs is modulated by Siglec-H, a DAP12-associated receptor on pDCs. In this study, we show that Siglec-H–deficient pDCs produce more of the type I IFN, IFN-α, in vitro and that Siglec-H knockout (KO) mice produce more IFN-α after murine cytomegalovirus (mCMV) infection in vivo. This did not impact control of viral replication. Remarkably, several weeks after a single mCMV infection, Siglec-H KO mice developed a severe form of systemic lupus–like autoimmune disease with strong kidney nephritis. In contrast, uninfected aging Siglec-H KO mice developed a mild form of systemic autoimmunity. The induction of systemic autoimmune disease after virus infection in Siglec-H KO mice was accompanied by a type I IFN signature and fully dependent on type I IFN signaling. These results show that Siglec-H normally serves as a modulator of type I IFN responses after infection with a persistent virus and thereby prevents induction of autoimmune disease.
Collapse
Affiliation(s)
- Heike Schmitt
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sabrina Sell
- Nikolaus-Fiebiger-Zentrum, Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Julia Koch
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Martina Seefried
- Nikolaus-Fiebiger-Zentrum, Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Sophia Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Thomas H Winkler
- Nikolaus-Fiebiger-Zentrum, Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
772
|
Abstract
Recent clinical trials have demonstrated the ability to durably control cancer in some patients by manipulating T lymphocytes. These immunotherapies are revolutionizing cancer treatment but benefit only a minority of patients. It is thus a crucial time for clinicians, cancer scientists and immunologists to determine the next steps in shifting cancer treatment towards better cancer control. This Review describes recent advances in our understanding of tumour-associated myeloid cells. These cells remain less studied than T lymphocytes but have attracted particular attention because their presence in tumours is often linked to altered patient survival. Also, experimental studies indicate that myeloid cells modulate key cancer-associated activities, including immune evasion, and affect virtually all types of cancer therapy. Consequently, targeting myeloid cells could overcome limitations of current treatment options.
Collapse
Affiliation(s)
- Camilla Engblom
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts 02114, USA
- Graduate Program in Immunology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Christina Pfirschke
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Mikael J Pittet
- Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
773
|
Prandini A, Salvi V, Colombo F, Moratto D, Lorenzi L, Vermi W, De Francesco MA, Notarangelo LD, Porta F, Plebani A, Facchetti F, Sozzani S, Badolato R. Impairment of dendritic cell functions in patients with adaptor protein-3 complex deficiency. Blood 2016; 127:3382-6. [PMID: 27207797 DOI: 10.1182/blood-2015-06-650689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 05/09/2016] [Indexed: 01/02/2023] Open
Abstract
Hermansky-Pudlak syndrome type 2 (HPS2) is a primary immunodeficiency due to adaptor protein-3 (AP-3) complex deficiency. HPS2 patients present neutropenia, partial albinism, and impaired lysosomal vesicles formation in hematopoietic cells. Given the role of dendritic cells (DCs) in the immune response, we studied monocyte-derived DCs (moDCs) and plasmacytoid DCs (pDCs) in two HPS2 siblings. Mature HPS2 moDCs showed impaired expression of CD83 and DC-lysosome-associated membrane protein (LAMP), low levels of MIP1-β/CCL4, MIG/CXCL9, and severe defect of interleukin-12 (IL-12) secretion. DCs in lymph-node biopsies from the same patients showed a diffuse cytoplasm reactivity in a large fraction of DC-LAMP(+) cells, instead of the classical dot-like stain. In addition, analysis of pDC-related functions of blood-circulating mononuclear cells revealed reduced interferon-α secretion in response to herpes simplex virus-1 (HSV-1), whereas granzyme-B induction upon IL-3/IL-10 stimulation was normal. Finally, T-cell costimulatory activity, as measured by mixed lymphocyte reaction assay, was lower in patients, suggesting that function and maturation of DCs is abnormal in patients with HPS2.
Collapse
Affiliation(s)
- Alberto Prandini
- Department of Clinical and Experimental Sciences, Institute of Molecular Medicine "Angelo Nocivelli,"
| | - Valentina Salvi
- Department of Molecular and Translational Medicine, Section of Experimental Oncology and Immunology
| | - Francesca Colombo
- Department of Clinical and Experimental Sciences, Institute of Molecular Medicine "Angelo Nocivelli,"
| | - Daniele Moratto
- Department of Clinical and Experimental Sciences, Institute of Molecular Medicine "Angelo Nocivelli,"
| | - Luisa Lorenzi
- Department of Molecular and Translational Medicine, Section of Experimental Oncology and Immunology, Section of Pathology, and
| | - William Vermi
- Department of Molecular and Translational Medicine, Section of Experimental Oncology and Immunology, Section of Pathology, and
| | | | - Lucia Dora Notarangelo
- U.O. Oncoematologia Pediatrica e Trapianto di Midollo Osseo c/o Spedali Civili, Brescia, Italy; and
| | - Fulvio Porta
- U.O. Oncoematologia Pediatrica e Trapianto di Midollo Osseo c/o Spedali Civili, Brescia, Italy; and
| | - Alessandro Plebani
- Department of Clinical and Experimental Sciences, Institute of Molecular Medicine "Angelo Nocivelli,"
| | - Fabio Facchetti
- Department of Molecular and Translational Medicine, Section of Experimental Oncology and Immunology
| | - Silvano Sozzani
- Department of Molecular and Translational Medicine, Section of Experimental Oncology and Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Raffaele Badolato
- Department of Clinical and Experimental Sciences, Institute of Molecular Medicine "Angelo Nocivelli,"
| |
Collapse
|
774
|
Ka MB, Mezouar S, Ben Amara A, Raoult D, Ghigo E, Olive D, Mege JL. Coxiella burnetii Induces Inflammatory Interferon-Like Signature in Plasmacytoid Dendritic Cells: A New Feature of Immune Response in Q Fever. Front Cell Infect Microbiol 2016; 6:70. [PMID: 27446817 PMCID: PMC4921463 DOI: 10.3389/fcimb.2016.00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/11/2016] [Indexed: 12/24/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) play a major role in antiviral immunity via the production of type I interferons (IFNs). There is some evidence that pDCs interact with bacteria but it is not yet clear whether they are protective or contribute to bacterial pathogenicity. We wished to investigate whether Coxiella burnetii, the agent of Q fever, interacts with pDCs. The stimulation of pDCs with C. burnetii increased the expression of activation and migratory markers (CD86 and CCR7) as determined by flow cytometry and modulated gene expression program as revealed by a microarray approach. Indeed, genes encoding for pro-inflammatory cytokines, chemokines, and type I INF were up-regulated. The up-regulation of type I IFN was correlated with an increase in IFN-α release by C. burnetii-stimulated pDCs. We also investigated pDCs in patients with Q fever endocarditis. Using flow cytometry and a specific gating strategy, we found that the number of circulating pDCs was significantly lower in patients with Q fever endocarditis as compared to healthy donors. In addition, the remaining circulating pDCs expressed activation and migratory markers. As a whole, our study identified non-previously reported activation of pDCs by C. burnetii and their modulation during Q fever.
Collapse
Affiliation(s)
- Mignane B Ka
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, UMR 63, Centre National de la Recherche Scientifique 7278, INSERM U1095, IRD 198, Aix-Marseille UniversitéMarseille, France; INSERM UMR 1068, Centre de Recherche en Cancérologie de MarseilleMarseille, France
| | - Soraya Mezouar
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, UMR 63, Centre National de la Recherche Scientifique 7278, INSERM U1095, IRD 198, Aix-Marseille Université Marseille, France
| | - Amira Ben Amara
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, UMR 63, Centre National de la Recherche Scientifique 7278, INSERM U1095, IRD 198, Aix-Marseille Université Marseille, France
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, UMR 63, Centre National de la Recherche Scientifique 7278, INSERM U1095, IRD 198, Aix-Marseille Université Marseille, France
| | - Eric Ghigo
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, UMR 63, Centre National de la Recherche Scientifique 7278, INSERM U1095, IRD 198, Aix-Marseille Université Marseille, France
| | - Daniel Olive
- INSERM UMR 1068, Centre de Recherche en Cancérologie de Marseille Marseille, France
| | - Jean-Louis Mege
- Unité de Recherche sur les Maladies Infectieuses Tropicales et Emergentes, UMR 63, Centre National de la Recherche Scientifique 7278, INSERM U1095, IRD 198, Aix-Marseille Université Marseille, France
| |
Collapse
|
775
|
Bedoui S, Heath WR, Mueller SN. CD
4
+
T‐cell help amplifies innate signals for primary
CD
8
+
T‐cell immunity. Immunol Rev 2016; 272:52-64. [DOI: 10.1111/imr.12426] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Sammy Bedoui
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Parkville Vic. Australia
| | - William R. Heath
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Parkville Vic. Australia
- The Australian Research Council Centre of Excellence in Advanced Molecular Imaging The University of Melbourne Parkville Vic. Australia
| | - Scott N. Mueller
- Department of Microbiology and Immunology The University of Melbourne Peter Doherty Institute for Infection and Immunity Parkville Vic. Australia
- The Australian Research Council Centre of Excellence in Advanced Molecular Imaging The University of Melbourne Parkville Vic. Australia
| |
Collapse
|
776
|
Aouar B, Kovarova D, Letard S, Font-Haro A, Florentin J, Weber J, Durantel D, Chaperot L, Plumas J, Trejbalova K, Hejnar J, Nunès JA, Olive D, Dubreuil P, Hirsch I, Stranska R. Dual Role of the Tyrosine Kinase Syk in Regulation of Toll-Like Receptor Signaling in Plasmacytoid Dendritic Cells. PLoS One 2016; 11:e0156063. [PMID: 27258042 PMCID: PMC4892542 DOI: 10.1371/journal.pone.0156063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/09/2016] [Indexed: 12/30/2022] Open
Abstract
Crosslinking of regulatory immunoreceptors (RR), such as BDCA-2 (CD303) or ILT7 (CD85g), of plasmacytoid dendritic cells (pDCs) efficiently suppresses production of type-I interferon (IFN)-α/β and other cytokines in response to Toll-like receptor (TLR) 7/9 ligands. This cytokine-inhibitory pathway is mediated by spleen tyrosine kinase (Syk) associated with the ITAM-containing adapter of RR. Here we demonstrate by pharmacological targeting of Syk that in addition to the negative regulation of TLR7/9 signaling via RR, Syk also positively regulates the TLR7/9 pathway in human pDCs. Novel highly specific Syk inhibitor AB8779 suppressed IFN-α, TNF-α and IL-6 production induced by TLR7/9 agonists in primary pDCs and in the pDC cell line GEN2.2. Triggering of TLR9 or RR signaling induced a differential kinetics of phosphorylation at Y352 and Y525/526 of Syk and a differential sensitivity to AB8779. Consistent with the different roles of Syk in TLR7/9 and RR signaling, a concentration of AB8779 insufficient to block TLR7/9 signaling still released the block of IFN-α production triggered via the RR pathway, including that induced by hepatitis B and C viruses. Thus, pharmacological targeting of Syk partially restored the main pDC function—IFN-α production. Opposing roles of Syk in TLR7/9 and RR pathways may regulate the innate immune response to weaken inflammation reaction.
Collapse
Affiliation(s)
- Besma Aouar
- Centre de Recherche en Cancérologie de Marseille, Inserm U1068, Marseille, France
- CNRS, UMR7258, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Aix-Marseille Université, UM105, Marseille, France
| | - Denisa Kovarova
- Centre de Recherche en Cancérologie de Marseille, Inserm U1068, Marseille, France
- CNRS, UMR7258, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Aix-Marseille Université, UM105, Marseille, France
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Sebastien Letard
- Centre de Recherche en Cancérologie de Marseille, Inserm U1068, Marseille, France
- CNRS, UMR7258, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Aix-Marseille Université, UM105, Marseille, France
- AB Science, Paris, France
| | - Albert Font-Haro
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jonathan Florentin
- Centre de Recherche en Cancérologie de Marseille, Inserm U1068, Marseille, France
- CNRS, UMR7258, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Aix-Marseille Université, UM105, Marseille, France
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - David Durantel
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Lyon, France
| | - Laurence Chaperot
- UJF, INSERM U823, University Grenoble Alpes, EFS Rhone-Alpes, Grenoble, France
| | - Joel Plumas
- UJF, INSERM U823, University Grenoble Alpes, EFS Rhone-Alpes, Grenoble, France
| | - Katerina Trejbalova
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Hejnar
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jacques A. Nunès
- Centre de Recherche en Cancérologie de Marseille, Inserm U1068, Marseille, France
- CNRS, UMR7258, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Aix-Marseille Université, UM105, Marseille, France
| | - Daniel Olive
- Centre de Recherche en Cancérologie de Marseille, Inserm U1068, Marseille, France
- CNRS, UMR7258, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Aix-Marseille Université, UM105, Marseille, France
| | - Patrice Dubreuil
- Centre de Recherche en Cancérologie de Marseille, Inserm U1068, Marseille, France
- CNRS, UMR7258, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Aix-Marseille Université, UM105, Marseille, France
| | - Ivan Hirsch
- Centre de Recherche en Cancérologie de Marseille, Inserm U1068, Marseille, France
- CNRS, UMR7258, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Aix-Marseille Université, UM105, Marseille, France
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- * E-mail: (RS); (IH)
| | - Ruzena Stranska
- Centre de Recherche en Cancérologie de Marseille, Inserm U1068, Marseille, France
- CNRS, UMR7258, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- Aix-Marseille Université, UM105, Marseille, France
- * E-mail: (RS); (IH)
| |
Collapse
|
777
|
Abstract
Dendritic cells (DCs) lie at the heart of the innate immune system, specialised at recognising danger signals in many forms including foreign material, infection or tissue damage and initiating powerful adaptive immune and inflammatory responses. In barrier sites such as the lung, the instrumental role that DCs play at the interface between the environment and the host places them in a pivotal position in determining the severity of inflammatory disease. The past few years has seen a significant increase in our fundamental understanding of the subsets of DCs involved in pulmonary immunity, as well as the mechanisms by which they are activated and which they may use to coordinate downstream inflammation and pathology. In this review, we will summarise current understanding of the multi-faceted role that DCs play in the induction, maintenance and regulation of lung immunopathology, with an emphasis on allergic pulmonary disease.
Collapse
|
778
|
Demetris AJ, Bellamy COC, Gandhi CR, Prost S, Nakanuma Y, Stolz DB. Functional Immune Anatomy of the Liver-As an Allograft. Am J Transplant 2016; 16:1653-80. [PMID: 26848550 DOI: 10.1111/ajt.13749] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 01/25/2023]
Abstract
The liver is an immunoregulatory organ in which a tolerogenic microenvironment mitigates the relative "strength" of local immune responses. Paradoxically, necro-inflammatory diseases create the need for most liver transplants. Treatment of hepatitis B virus, hepatitis C virus, and acute T cell-mediated rejection have redirected focus on long-term allograft structural integrity. Understanding of insults should enable decades of morbidity-free survival after liver replacement because of these tolerogenic properties. Studies of long-term survivors show low-grade chronic inflammatory, fibrotic, and microvascular lesions, likely related to some combination of environment insults (i.e. abnormal physiology), donor-specific antibodies, and T cell-mediated immunity. The resultant conundrum is familiar in transplantation: adequate immunosuppression produces chronic toxicities, while lightened immunosuppression leads to sensitization, immunological injury, and structural deterioration. The "balance" is more favorable for liver than other solid organ allografts. This occurs because of unique hepatic immune physiology and provides unintended benefits for allografts by modulating various afferent and efferent limbs of allogenic immune responses. This review is intended to provide a better understanding of liver immune microanatomy and physiology and thereby (a) the potential structural consequences of low-level, including allo-antibody-mediated injury; and (b) how liver allografts modulate immune reactions. Special attention is given to the microvasculature and hepatic mononuclear phagocytic system.
Collapse
Affiliation(s)
- A J Demetris
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - C O C Bellamy
- Department of Pathology, University of Edinburgh, Edinburgh, Scotland, UK
| | - C R Gandhi
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center and Department of Surgery, University of Cincinnati, Cincinnati, OH
| | - S Prost
- Department of Pathology, University of Edinburgh, Edinburgh, Scotland, UK
| | - Y Nakanuma
- Department of Diagnostic Pathology, Shizuoka Cancer Center, Shizuoka, Japan
| | - D B Stolz
- Center for Biologic Imaging, Cell Biology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
779
|
Bode C, Fox M, Tewary P, Steinhagen A, Ellerkmann RK, Klinman D, Baumgarten G, Hornung V, Steinhagen F. Human plasmacytoid dentritic cells elicit a Type I Interferon response by sensing DNA via the cGAS-STING signaling pathway. Eur J Immunol 2016; 46:1615-21. [PMID: 27125983 DOI: 10.1002/eji.201546113] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 04/04/2016] [Accepted: 04/22/2016] [Indexed: 12/31/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are a major source of type I interferon (IFN) and are important for host defense by sensing microbial DNA via TLR9. pDCs also play a critical role in the pathogenesis of IFN-driven autoimmune diseases. Yet, this autoimmune reaction is caused by the recognition of self-DNA and has been linked to TLR9-independent pathways. Increasing evidence suggests that the cytosolic DNA receptor cyclic GMP-AMP (cGAMP) synthase (cGAS) is a critical component in the detection of pathogens and contributes to autoimmune diseases. It has been shown that binding of DNA to cGAS results in the synthesis of cGAMP and the subsequent activation of the stimulator of interferon genes (STING) adaptor to induce IFNs. Our results show that the cGAS-STING pathway is expressed and activated in human pDCs by cytosolic DNA leading to a robust type I IFN response. Direct activation of STING by cyclic dinucleotides including cGAMP also activated pDCs and knockdown of STING abolished this IFN response. These results suggest that pDCs sense cytosolic DNA and cyclic dinucleotides via the cGAS-STING pathway and that targeting this pathway could be of therapeutic interest.
Collapse
Affiliation(s)
- Christian Bode
- Department of Anesthesiology and Critical Care Medicine, University of Bonn, Bonn, Germany
| | - Mario Fox
- Department of Anesthesiology and Critical Care Medicine, University of Bonn, Bonn, Germany
| | - Poonam Tewary
- Laboratory of Experimental Immunology, Cancer Inflammation Program, Leidos Biomedical Research Inc, FNLCR, Frederick, MD, USA
| | - Almut Steinhagen
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Richard K Ellerkmann
- Department of Anesthesiology and Critical Care Medicine, University of Bonn, Bonn, Germany
| | - Dennis Klinman
- Cancer and Inflammation Program, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Georg Baumgarten
- Department of Anesthesiology and Critical Care Medicine, University of Bonn, Bonn, Germany
| | - Veit Hornung
- Institute of Molecular Medicine, University of Bonn, Bonn, Germany
| | - Folkert Steinhagen
- Department of Anesthesiology and Critical Care Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
780
|
Yabe-Wada T, Matsuba S, Takeda K, Sato T, Suyama M, Ohkawa Y, Takai T, Shi H, Philpott CC, Nakamura A. TLR signals posttranscriptionally regulate the cytokine trafficking mediator sortilin. Sci Rep 2016; 6:26566. [PMID: 27220277 PMCID: PMC4879639 DOI: 10.1038/srep26566] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/04/2016] [Indexed: 01/14/2023] Open
Abstract
Regulating the transcription, translation and secretion of cytokines is crucial for controlling the appropriate balance of inflammation. Here we report that the sorting receptor sortilin plays a key role in cytokine production. We observed interactions of sortilin with multiple cytokines including IFN-α, and sortilin depletion in plasmacytoid dendritic cells (pDCs) led to a reduction of IFN-α secretion, suggesting a pivotal role of sortilin in the exocytic trafficking of IFN-α in pDCs. Moreover, sortilin mRNA was degraded posttranscriptionally upon stimulation with various TLR ligands. Poly-rC-binding protein 1 (PCBP1) recognized the C-rich element (CRE) in the 3′ UTR of sortilin mRNA, and depletion of PCBP1 enhanced the degradation of sortilin transcripts, suggesting that PCBP1 can act as a trans-acting factor to stabilize sortilin transcripts. The nucleotide-binding ability of PCBP1 was impaired by zinc ions and alterations of intracellular zinc affect sortilin expression. PCBP1 may therefore control the stability of sortilin transcripts by sensing intracellular zinc levels. Collectively, our findings provide insights into the posttranslational regulation of cytokine production through the posttranscriptional control of sortilin expression by TLR signals.
Collapse
Affiliation(s)
- Toshiki Yabe-Wada
- Department of Immunology, Kanazawa Medical University, Kahoku Uchinada, Ishikawa, 920-0293, JAPAN.,Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shintaro Matsuba
- Department of Immunology, Kanazawa Medical University, Kahoku Uchinada, Ishikawa, 920-0293, JAPAN
| | - Kazuya Takeda
- Department of Immunology, Kanazawa Medical University, Kahoku Uchinada, Ishikawa, 920-0293, JAPAN
| | - Tetsuya Sato
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasuyuki Ohkawa
- Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka 812-8582, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo, Sendai 980-8575, Japan
| | - Haifeng Shi
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Caroline C Philpott
- Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Akira Nakamura
- Department of Immunology, Kanazawa Medical University, Kahoku Uchinada, Ishikawa, 920-0293, JAPAN
| |
Collapse
|
781
|
Hackstein H, Tschipakow I, Bein G, Nold P, Brendel C, Baal N. Contact-dependent abrogation of bone marrow-derived plasmacytoid dendritic cell differentiation by murine mesenchymal stem cells. Biochem Biophys Res Commun 2016; 476:15-20. [PMID: 27233615 DOI: 10.1016/j.bbrc.2016.05.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 05/21/2016] [Indexed: 01/14/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) are rare central regulators of antiviral immunity and unsurpassed producers of interferon-α (IFN-α). Despite their crucial role as a link between innate and adaptive immunity, little is known about the modulation of pDC differentiation by other bone marrow (BM) cells. In this study, we investigated the modulation of pDC differentiation in Flt-3 ligand (Flt3L)-supplemented BM cultures, using highly purified mesenchymal stem cells (MSCs) that were FACS-isolated from murine BM based on surface marker expression and used after in vitro expansion. Initial analysis revealed an almost complete inhibition of BM-derived pDC expansion in the presence of >2% MSC. This inhibition was cell contact-dependent and soluble factor-independent, as indicated by trans-well experiments. The abrogation of functional pDC development by MSCs was confirmed after TLR9 stimulation, revealing a complete, contact-dependent suppression of the IFN-a producing capacity of pDCs in Flt3L MSC BM co-cultures. MSC selectively inhibited pDC development in contrast to myeloid DC development, as indicated by the significantly increased numbers of myeloid DC in Flt3L-supplemented BM cultures. The absence of significant MSC-mediated inhibitory effects on myeloid DC differentiation was confirmed by additional experiments in GM-CSF/IL-4-supplemented BM cultures. In summary, we describe a novel contact-dependent immunomodulatory mechanism of MSC that targets the BM-derived expansion of functional pDCs.
Collapse
Affiliation(s)
- Holger Hackstein
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Germany.
| | - Inna Tschipakow
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Germany
| | - Gregor Bein
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Germany
| | - Philipp Nold
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen und Marburg, Germany
| | - Cornelia Brendel
- Department of Hematology, Oncology and Immunology, Philipps University Marburg, University Hospital Giessen und Marburg, Germany
| | - Nelli Baal
- Institute for Clinical Immunology and Transfusion Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), University Hospital Giessen und Marburg, Justus-Liebig-University Giessen, Germany
| |
Collapse
|
782
|
Scott CL, Soen B, Martens L, Skrypek N, Saelens W, Taminau J, Blancke G, Van Isterdael G, Huylebroeck D, Haigh J, Saeys Y, Guilliams M, Lambrecht BN, Berx G. The transcription factor Zeb2 regulates development of conventional and plasmacytoid DCs by repressing Id2. J Exp Med 2016; 213:897-911. [PMID: 27185854 PMCID: PMC4886362 DOI: 10.1084/jem.20151715] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/15/2016] [Indexed: 12/21/2022] Open
Abstract
Lambrecht et al. show that the transcription factor Zeb2 regulates commitment toward both the pDC and cDC2 lineages by repressing Id2. Plasmacytoid dendritic cells (DCs [pDCs]) develop from pre-pDCs, whereas two lineages of conventional DCs (cDCs; cDC1s and cDC2s) develop from lineage-committed pre-cDCs. Several transcription factors (TFs) have been implicated in regulating the development of pDCs (E2-2 and Id2) and cDC1s (Irf8, Id2, and Batf3); however, those required for the early commitment of pre-cDCs toward the cDC2 lineage are unknown. Here, we identify the TF zinc finger E box–binding homeobox 2 (Zeb2) to play a crucial role in regulating DC development. Zeb2 was expressed from the pre-pDC and pre-cDC stage onward and highly expressed in mature pDCs and cDC2s. Mice conditionally lacking Zeb2 in CD11c+ cells had a cell-intrinsic reduction in pDCs and cDC2s, coupled with an increase in cDC1s. Conversely, mice in which CD11c+ cells overexpressed Zeb2 displayed a reduction in cDC1s. This was accompanied by altered expression of Id2, which was up-regulated in cDC2s and pDCs from conditional knockout mice. Zeb2 chromatin immunoprecipitation analysis revealed Id2 to be a direct target of Zeb2. Thus, we conclude that Zeb2 regulates commitment to both the cDC2 and pDC lineages through repression of Id2.
Collapse
Affiliation(s)
- Charlotte L Scott
- Laboratory of Immunoregulation and Mucosal Immunology, Inflammation Research Center, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium Department of Respiratory Medicine, Ghent University, 9000 Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Bieke Soen
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Liesbet Martens
- Data Mining and Modeling for Biomedicine, Inflammation Research Center, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium Department of Respiratory Medicine, Ghent University, 9000 Ghent, Belgium
| | - Nicolas Skrypek
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Wouter Saelens
- Data Mining and Modeling for Biomedicine, Inflammation Research Center, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium Department of Respiratory Medicine, Ghent University, 9000 Ghent, Belgium
| | - Joachim Taminau
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Gillian Blancke
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Gert Van Isterdael
- Laboratory of Immunoregulation and Mucosal Immunology, Inflammation Research Center, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium Department of Respiratory Medicine, Ghent University, 9000 Ghent, Belgium
| | - Danny Huylebroeck
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, Katholieke Universiteit Leuven, 3000 Leuven, Belgium Department of Cell Biology, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Jody Haigh
- Mammalian Functional Genetics Laboratory, Division of Blood Cancers, Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria 3800, Australia
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, Inflammation Research Center, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium Department of Respiratory Medicine, Ghent University, 9000 Ghent, Belgium
| | - Martin Guilliams
- Laboratory of Immunoregulation and Mucosal Immunology, Inflammation Research Center, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, Inflammation Research Center, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium Department of Respiratory Medicine, Ghent University, 9000 Ghent, Belgium Department of Pulmonary Medicine, Erasmus University Medical Center, 3015 GE Rotterdam, Netherlands
| | - Geert Berx
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, Vlaams Instituut voor Biotechnologie, 9052 Ghent, Belgium Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
783
|
Saadeh D, Kurban M, Abbas O. Plasmacytoid dendritic cell role in cutaneous malignancies. J Dermatol Sci 2016; 83:3-9. [PMID: 27236509 DOI: 10.1016/j.jdermsci.2016.05.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/06/2016] [Accepted: 05/12/2016] [Indexed: 02/08/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) correspond to a specialized dendritic cell population that exhibit plasma cell morphology, express CD4, CD123, HLA-DR, blood-derived dendritic cell antigen-2 (BDCA-2), and Toll-like receptor (TLR)7 and TLR9 within endosomal compartments. Through their production of type I interferons (IFNs) and other pro-inflammatory cytokines, pDCs provide anti-viral resistance and link the innate and adaptive immunity by controlling the function of myeloid DCs, lymphocytes, and natural killer (NK) cells. While lacking from normal skin, pDCs are usually recruited to the skin in several cutaneous pathologies where they appear to be involved in the pathogenesis of several infectious, inflammatory/autoimmune, and neoplastic entities. Among the latter group, pDCs have the potential to induce anti-tumour immunity; however, the complex interaction of pDCs with tumor cells and their micro-environment appears to contribute to immunologic tolerance. In this review, we aim at highlighting the role played by pDCs in cutaneous malignancies with special emphasis on the underlying mechanisms.
Collapse
Affiliation(s)
- Dana Saadeh
- Dermatology Department, American University of Beirut Medical Center, Lebanon
| | - Mazen Kurban
- Dermatology Department, American University of Beirut Medical Center, Lebanon
| | - Ossama Abbas
- Dermatology Department, American University of Beirut Medical Center, Lebanon.
| |
Collapse
|
784
|
Thomas K, Eisele J, Rodriguez-Leal FA, Hainke U, Ziemssen T. Acute effects of alemtuzumab infusion in patients with active relapsing-remitting MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2016; 3:e228. [PMID: 27213173 PMCID: PMC4853056 DOI: 10.1212/nxi.0000000000000228] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/24/2016] [Indexed: 02/04/2023]
Abstract
Objective: Alemtuzumab exerts its clinical efficacy by its specific pattern of depletion and repopulation of different immune cells. Beyond long-term immunologic and clinical data, little is known about acute changes in immunologic and routine laboratory parameters and their clinical relevance during the initial alemtuzumab infusion. Methods: Fifteen patients with highly active MS were recruited. In addition to parameters including heart rate, blood pressure, body temperature, and monitoring of adverse events, complete blood cell count, liver enzymes, kidney function, acute-phase proteins, serum cytokine profile, complement activation, peripheral immune cell distribution, and their potential of cytokine release were investigated prior to and after methylprednisolone and after alemtuzumab on each day of alemtuzumab infusion. Results: After the first alemtuzumab infusion, both the total leukocyte and granulocyte counts markedly increased, whereas lymphocyte counts dramatically decreased. In addition to lymphocyte depletion, cell subtypes important for innate immunity also decreased within the first week after alemtuzumab infusion. Although patients reported feeling well, C-reactive protein and procalcitonin peaked at serum levels consistent with septic conditions. Increases in liver enzymes were detected, although kidney function remained stable. Proinflammatory serum cytokine levels clearly rose after the first alemtuzumab infusion. Alemtuzumab led to impaired cytokine release ex vivo in nondepleted cells. Normal clinical parameters and mild adverse events were presented. Conclusions: Dramatic immunologic effects were observed. Standardized infusion procedure and pretreatment management attenuated infusion-related reactions. Alemtuzumab-mediated effects led to artificially altered parameters in standard blood testing. We recommend clinical decision-making based on primarily clinical symptoms within the first alemtuzumab treatment week.
Collapse
Affiliation(s)
- Katja Thomas
- Center of Clinical Neuroscience, University Hospital, Dresden, Germany
| | - Judith Eisele
- Center of Clinical Neuroscience, University Hospital, Dresden, Germany
| | | | - Undine Hainke
- Center of Clinical Neuroscience, University Hospital, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, University Hospital, Dresden, Germany
| |
Collapse
|
785
|
Cause and consequences of the activated type I interferon system in SLE. J Mol Med (Berl) 2016; 94:1103-1110. [PMID: 27094810 PMCID: PMC5052287 DOI: 10.1007/s00109-016-1421-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/31/2016] [Accepted: 04/11/2016] [Indexed: 12/14/2022]
Abstract
Patients with systemic lupus erythematosus (SLE) have an increased expression of type I interferon (IFN)-regulated genes (an IFN signature), which is caused by an ongoing production of type I IFNs by plasmacytoid dendritic cells (pDCs). The reasons behind the continuous IFN production in SLE are the presence of self-derived IFN inducers and a lack of negative feed-back signals that downregulate the IFN response. In addition, several cells in the immune system promote the IFN production by pDCs and gene variants in the type I IFN signaling pathway contribute to the IFN signature. The type I IFNs act as an immune adjuvant and stimulate T cells, B cells, and monocytes, which all play an important role in the loss of tolerance and persistent autoimmune reaction in SLE. Consequently, new treatments aiming to inhibit the activated type I IFN system in SLE are now being developed and investigated in clinical trials.
Collapse
|
786
|
Marsh T, Wong I, Sceneay J, Barakat A, Qin Y, Sjödin A, Alspach E, Nilsson B, Stewart SA, McAllister SS. Hematopoietic Age at Onset of Triple-Negative Breast Cancer Dictates Disease Aggressiveness and Progression. Cancer Res 2016; 76:2932-43. [PMID: 27197230 DOI: 10.1158/0008-5472.can-15-3332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/18/2016] [Indexed: 11/16/2022]
Abstract
Triple-negative breast cancer (TNBC) is considered an early onset subtype of breast cancer that carries with it a poorer prognosis in young rather than older women for reasons that remain poorly understood. Hematopoiesis in the bone marrow becomes altered with age and may therefore affect the composition of tumor-infiltrating hematopoietic cells and subsequent tumor progression. In this study, we investigated how age- and tumor-dependent changes to bone marrow-derived hematopoietic cells impact TNBC progression. Using multiple mouse models of TNBC tumorigenesis and metastasis, we found that a specific population of bone marrow cells (BMC) upregulated CSF-1R and secreted the growth factor granulin to support stromal activation and robust tumor growth in young mice. However, the same cell population in old mice expressed low levels of CSF1R and granulin and failed to promote tumor outgrowth, suggesting that age influences the tumorigenic capacity of BMCs in response to tumor-associated signals. Importantly, BMCs from young mice were sufficient to activate a tumor-supportive microenvironment and induce tumor progression in old mice. These results indicate that hematopoietic age is an important determinant of TNBC aggressiveness and provide rationale for investigating age-stratified therapies designed to prevent the protumorigenic effects of activated BMCs. Cancer Res; 76(10); 2932-43. ©2016 AACR.
Collapse
Affiliation(s)
- Timothy Marsh
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Irene Wong
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Jaclyn Sceneay
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Amey Barakat
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Yuanbo Qin
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Andreas Sjödin
- Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Elise Alspach
- Department of Cell Biology and Physiology; Department of Medicine; and ICCE Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Björn Nilsson
- Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden. Broad Institute of Harvard and MIT, Cambridge, Massachusetts
| | - Sheila A Stewart
- Department of Cell Biology and Physiology; Department of Medicine; and ICCE Institute, Washington University School of Medicine, St. Louis, Missouri
| | - Sandra S McAllister
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts. Broad Institute of Harvard and MIT, Cambridge, Massachusetts. Harvard Stem Cell Institute, Cambridge, Massachusetts.
| |
Collapse
|
787
|
Abstract
Mammalian arenaviruses are zoonotic viruses that cause asymptomatic, persistent infections in their rodent hosts but can lead to severe and lethal hemorrhagic fever with bleeding and multiorgan failure in human patients. Lassa virus (LASV), for example, is endemic in several West African countries, where it is responsible for an estimated 500,000 infections and 5,000 deaths annually. There are currently no FDA-licensed therapeutics or vaccines available to combat arenavirus infection. A hallmark of arenavirus infection (e.g., LASV) is general immunosuppression that contributes to high viremia. Here, we discuss the early host immune responses to arenavirus infection and the recently discovered molecular mechanisms that enable pathogenic viruses to suppress host immune recognition and to contribute to the high degree of virulence. We also directly compare the innate immune evasion mechanisms between arenaviruses and other hemorrhagic fever-causing viruses, such as Ebola, Marburg, Dengue, and hantaviruses. A better understanding of the immunosuppression and immune evasion strategies of these deadly viruses may guide the development of novel preventative and therapeutic options.
Collapse
Affiliation(s)
- Bjoern Meyer
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Saint Paul, Minnesota, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Saint Paul, Minnesota, USA
| |
Collapse
|
788
|
Direct Delivery of Antigens to Dendritic Cells via Antibodies Specific for Endocytic Receptors as a Promising Strategy for Future Therapies. Vaccines (Basel) 2016; 4:vaccines4020008. [PMID: 27043640 PMCID: PMC4931625 DOI: 10.3390/vaccines4020008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) are the most potent professional antigen presenting cells and are therefore indispensable for the control of immunity. The technique of antibody mediated antigen targeting to DC subsets has been the basis of intense research for more than a decade. Many murine studies have utilized this approach of antigen delivery to various kinds of endocytic receptors of DCs both in vitro and in vivo. Today, it is widely accepted that different DC subsets are important for the induction of select immune responses. Nevertheless, many questions still remain to be answered, such as the actual influence of the targeted receptor on the initiation of the immune response to the delivered antigen. Further efforts to better understand the induction of antigen-specific immune responses will support the transfer of this knowledge into novel treatment strategies for human diseases. In this review, we will discuss the state-of-the-art aspects of the basic principles of antibody mediated antigen targeting approaches. A table will also provide a broad overview of the latest studies using antigen targeting including addressed DC subset, targeted receptors, outcome, and applied coupling techniques.
Collapse
|
789
|
Targeting dendritic cells: a promising strategy to improve vaccine effectiveness. Clin Transl Immunology 2016; 5:e66. [PMID: 27217957 PMCID: PMC4815026 DOI: 10.1038/cti.2016.6] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 12/13/2022] Open
Abstract
Dendritic cell (DC) targeting is a novel strategy to enhance vaccination efficacy. This approach is based on the in situ delivery of antigen via antibodies that are specific for endocytic receptors expressed at the surface of DCs. Here we review the complexity of the DC subsets and the antigen presentation pathways that need to be considered in the settings of DC targeting. We also summarize current knowledge about antigen delivery to DCs via DEC-205, Clec9A and Clec12A, receptor targets that strongly enhance cellular and humoral immune responses. Finally, we discuss the intracellular trafficking criteria of the targeted receptors that may impact their effectiveness as DC targets.
Collapse
|
790
|
Menon M, Blair PA, Isenberg DA, Mauri C. A Regulatory Feedback between Plasmacytoid Dendritic Cells and Regulatory B Cells Is Aberrant in Systemic Lupus Erythematosus. Immunity 2016; 44:683-697. [PMID: 26968426 PMCID: PMC4803914 DOI: 10.1016/j.immuni.2016.02.012] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 10/26/2015] [Accepted: 12/14/2015] [Indexed: 01/05/2023]
Abstract
Signals controlling the generation of regulatory B (Breg) cells remain ill-defined. Here we report an “auto”-regulatory feedback mechanism between plasmacytoid dendritic cells (pDCs) and Breg cells. In healthy individuals, pDCs drive the differentiation of CD19+CD24hiCD38hi (immature) B cells into IL-10-producing CD24+CD38hi Breg cells and plasmablasts, via the release of IFN-α and CD40 engagement. CD24+CD38hi Breg cells conversely restrained IFN-α production by pDCs via IL-10 release. In systemic lupus erythematosus (SLE), this cross-talk was compromised; pDCs promoted plasmablast differentiation but failed to induce Breg cells. This defect was recapitulated in healthy B cells upon exposure to a high concentration of IFN-α. Defective pDC-mediated expansion of CD24+CD38hi Breg cell numbers in SLE was associated with altered STAT1 and STAT3 activation. Both altered pDC-CD24+CD38hi Breg cell interactions and STAT1-STAT3 activation were normalized in SLE patients responding to rituximab. We propose that alteration in pDC-CD24+CD38hi Breg cell interaction contributes to the pathogenesis of SLE. pDCs induce the differentiation of Breg cells in an IFN-α-dependent manner Breg cells limit pDC-derived IFN-α in an IL-10-dependent mechanism pDCs are hyperactivated in SLE and fail to induce Breg cells Patients responding to rituximab display a normalized pDC-Breg cell interaction
Collapse
Affiliation(s)
- Madhvi Menon
- Centre for Rheumatology, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - Paul A Blair
- Centre for Rheumatology, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - David A Isenberg
- Centre for Rheumatology, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - Claudia Mauri
- Centre for Rheumatology, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK.
| |
Collapse
|
791
|
Plasmacytoid dendritic cells and memory T cells infiltrate true sequestrations stronger than subligamentous sequestrations: evidence from flow cytometric analysis of disc infiltrates. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2016; 25:1417-1427. [PMID: 26906170 DOI: 10.1007/s00586-015-4325-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 11/10/2015] [Accepted: 11/10/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE Herniated nucleus pulposus has been considered to induce an adaptive immune response. Antigen recognition by antigen-presenting-cells (APCs) represents an important step within manifestation of an adaptive immune response. Macrophages have been assumed to function as APC, while importance of plasmacytoid dendritic cells for initiation of an immune response directed towards herniated nucleus pulposus has never been examined. The aim of the present study was to assess importance of plasmacytoid dendritic cells for initiation of immune response directed towards herniated discs. METHODS Fifteen patients with true sequestrations and three patients with subligamentous sequestrations underwent surgery after their neurological examinations. Disc material was harvested, weighted and digested for 90 min. Separated single cells were counted, stained for plasmacytoid dendritic cells (CD123(+)CD4(+)), macrophages (CD14(+)CD11c(+)) and memory T cells (CD4(+)CD45RO(+)) and analysed by flow cytometry. Both patient groups were compared in cell proportions. Furthermore, patients with true sequestrations (TRUE patients) were subdivided into subgroups based on severity of muscle weakness and results in straight leg raising (SLR) test. Subgroups were compared in cell proportions. RESULTS Plasmacytoid dendritic cells and memory T cells infiltrated true sequestrations stronger than the subligamentous sequestration and plasmacytoid dendritic cells predominated over macrophages in true sequestrations. Highest proportions of plasmacytoid dendritic cells were detected in infiltrates of patients having true sequestrations, severe muscle weakness and negative result in SLR test. CONCLUSIONS The findings of the present study indicate that plasmacytoid dendritic cells are involved in initiation of an immune response directed towards herniated nucleus pulposus, while macrophages may reinforce the manifested immune response and mediate disc resorption.
Collapse
|
792
|
Abstract
Atherosclerosis is a complex chronic disease. The accumulation of myeloid cells in the arterial intima, including macrophages and dendritic cells (DCs), is a feature of early stages of disease. For decades, it has been known that monocyte recruitment to the intima contributes to the burden of lesion macrophages. Yet, this paradigm may require reevaluation in light of recent advances in understanding of tissue macrophage ontogeny, their capacity for self-renewal, as well as observations that macrophages proliferate throughout atherogenesis and that self-renewal is critical for maintenance of macrophages in advanced lesions. The rate of atherosclerotic lesion formation is profoundly influenced by innate and adaptive immunity, which can be regulated locally within atherosclerotic lesions, as well as in secondary lymphoid organs, the bone marrow and the blood. DCs are important modulators of immunity. Advances in the past decade have cemented our understanding of DC subsets, functions, hematopoietic origin, gene expression patterns, transcription factors critical for differentiation, and provided new tools for study of DC biology. The functions of macrophages and DCs overlap to some extent, thus it is important to reassess the contributions of each of these myeloid cells taking into account strict criteria of cell identification, ontogeny, and determine whether their key roles are within atherosclerotic lesions or secondary lymphoid organs. This review will highlight key aspect of macrophage and DC biology, summarize how these cells participate in different stages of atherogenesis and comment on complexities, controversies, and gaps in knowledge in the field.
Collapse
Affiliation(s)
- Myron I. Cybulsky
- From the Division of Advanced Diagnostics, Toronto General Research Institute, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada (M.I.C., C.S.R.); Departments of Laboratory Medicine and Pathobiology (M.I.C., C.S.R.) and Immunology (C.S.R.), University of Toronto, Toronto, Ontario, Canada; and Laboratory of Cellular Physiology and Immunology, Institut de Researches Cliniques de Montréal, Montréal, Québec, Canada (C.C.)
| | - Cheolho Cheong
- From the Division of Advanced Diagnostics, Toronto General Research Institute, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada (M.I.C., C.S.R.); Departments of Laboratory Medicine and Pathobiology (M.I.C., C.S.R.) and Immunology (C.S.R.), University of Toronto, Toronto, Ontario, Canada; and Laboratory of Cellular Physiology and Immunology, Institut de Researches Cliniques de Montréal, Montréal, Québec, Canada (C.C.)
| | - Clinton S. Robbins
- From the Division of Advanced Diagnostics, Toronto General Research Institute, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada (M.I.C., C.S.R.); Departments of Laboratory Medicine and Pathobiology (M.I.C., C.S.R.) and Immunology (C.S.R.), University of Toronto, Toronto, Ontario, Canada; and Laboratory of Cellular Physiology and Immunology, Institut de Researches Cliniques de Montréal, Montréal, Québec, Canada (C.C.)
| |
Collapse
|
793
|
Self-reactive IgE exacerbates interferon responses associated with autoimmunity. Nat Immunol 2015; 17:196-203. [PMID: 26692173 PMCID: PMC4718782 DOI: 10.1038/ni.3326] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/19/2015] [Indexed: 12/13/2022]
Abstract
Canonically, immunoglobulin E (IgE) mediates allergic immune responses by triggering mast cells and basophils to release histamine and type 2 helper cytokines. Here we found that in human systemic lupus erythematosus (SLE), IgE antibodies specific for double-stranded DNA (dsDNA) activated plasmacytoid dendritic cells (pDCs), a type of cell of the immune system linked to viral defense, which led to the secretion of substantial amounts of interferon-α (IFN-α). The concentration of dsDNA-specific IgE found in patient serum correlated with disease severity and greatly potentiated pDC function by triggering phagocytosis via the high-affinity FcɛRI receptor for IgE, followed by Toll-like receptor 9 (TLR9)-mediated sensing of DNA in phagosomes. Our findings expand the known pathogenic mechanisms of IgE-mediated inflammation beyond those found in allergy and demonstrate that IgE can trigger interferon responses capable of exacerbating self-destructive autoimmune responses.
Collapse
|
794
|
Plasmacytoid dendritic cells in allogeneic hematopoietic cell transplantation: benefit or burden? Bone Marrow Transplant 2015; 51:333-43. [PMID: 26642333 DOI: 10.1038/bmt.2015.301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/25/2015] [Accepted: 10/27/2015] [Indexed: 11/09/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) bridge innate and adaptive immune responses and have important roles in hematopoietic engraftment, GvHD and graft-versus-leukemia responses following allogeneic hematopoietic cell transplantation (HCT). In addition, pDCs mediate antiviral immunity, particularly as they are the body's primary cellular source of type I interferon. Given their pleiotropic roles, pDCs have emerged as cells that critically impact transplant outcomes, including overall survival. In this article, we will review the pre-clinical and clinical literature, supporting the crucial roles that pDCs assume as key immune effector cells during HCT.
Collapse
|
795
|
Ludewig P, Gallizioli M, Urra X, Behr S, Brait VH, Gelderblom M, Magnus T, Planas AM. Dendritic cells in brain diseases. Biochim Biophys Acta Mol Basis Dis 2015; 1862:352-67. [PMID: 26569432 DOI: 10.1016/j.bbadis.2015.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Peter Ludewig
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mattia Gallizioli
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Xabier Urra
- Functional Unit of Cerebrovascular Diseases, Hospital Clínic, Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Sarah Behr
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa H Brait
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Mathias Gelderblom
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna M Planas
- Department of Brain Ischemia and Neurodegeneration, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain; August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
796
|
Doherty DG. Immunity, tolerance and autoimmunity in the liver: A comprehensive review. J Autoimmun 2015; 66:60-75. [PMID: 26358406 DOI: 10.1016/j.jaut.2015.08.020] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 12/14/2022]
Abstract
The hepatic immune system is constantly exposed to a massive load of harmless dietary and commensal antigens, to which it must remain tolerant. Immune tolerance in the liver is mediated by a number of specialized antigen-presenting cells, including dendritic cells, Kupffer cells, liver sinusoidal endothelial cells and hepatic stellate cells. These cells are capable of presenting antigens to T cells leading to T cell apoptosis, anergy, or differentiation into regulatory T cells. However, the hepatic immune system must also be able to respond to pathogens and tumours and therefore must be equipped with mechanisms to override immune tolerance. The liver is a site of accumulation of a number of innate lymphocyte populations, including natural killer cells, CD56(+) T cells, natural killer T cells, γδ T cells, and mucosal-associated invariant T cells. Innate lymphocytes recognize conserved metabolites derived from microorganisms and host cells and respond by killing target cells or promoting the differentiation and/or activation of other cells of the immune system. Innate lymphocytes can promote the maturation of antigen-presenting cells from their precursors and thereby contribute to the generation of immunogenic T cell responses. These cells may be responsible for overriding hepatic immune tolerance to autoantigens, resulting in the induction and maintenance of autoreactive T cells that mediate liver injury causing autoimmune liver disease. Some innate lymphocyte populations can also directly mediate liver injury by killing hepatocytes or bile duct cells in murine models of hepatitis, whilst other populations may protect against liver disease. It is likely that innate lymphocyte populations can promote or protect against autoimmune liver disease in humans and that these cells can be targeted therapeutically. Here I review the cellular mechanisms by which hepatic antigen-presenting cells and innate lymphocytes control the balance between immunity, tolerance and autoimmunity in the liver.
Collapse
Affiliation(s)
- Derek G Doherty
- Division of Immunology, School of Medicine, Trinity College Dublin, Ireland.
| |
Collapse
|
797
|
van den Hoogen LL, van Roon JAG, Radstake TRDJ, Fritsch-Stork RDE, Derksen RHWM. Delineating the deranged immune system in the antiphospholipid syndrome. Autoimmun Rev 2015; 15:50-60. [PMID: 26318678 DOI: 10.1016/j.autrev.2015.08.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/24/2015] [Indexed: 12/16/2022]
Abstract
The antiphospholipid syndrome (APS) is a systemic autoimmune disease that is characterized serologically by the presence of antiphospholipid antibodies (aPL) and clinically by vascular thrombosis and obstetric complications. The protein β2 glycoprotein I (β2GPI) is identified as the most important autoantigen in this syndrome. Activation of endothelial cells, thrombocytes and placental tissue by anti-β2GPI antibodies relates to the clinical manifestations of APS. This review describes genetic and environmental factors in relation to APS and summarizes the current knowledge on abnormalities in components of both the innate and adaptive immune system in APS. The role of dendritic cells, T-cells, B-cells, monocytes, neutrophils and NK-cells as well as the complement system in APS are discussed. Several gaps in our knowledge on the pathophysiology of APS are identified and a plea is made for future extensive immune cell profiling by a systems medicine approach in order to better unravel the pathogenesis of APS, to gain more insight in the role of the immune system in APS as well as having the potential to reveal biomarkers or novel therapeutic targets.
Collapse
Affiliation(s)
- Lucas L van den Hoogen
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| | - Joël A G van Roon
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Timothy R D J Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ruth D E Fritsch-Stork
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Ronald H W M Derksen
- Department of Rheumatology and Clinical Immunology, University Medical Centre Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
798
|
Ma J, Yu H, Yin X, Cheng M, Shi Q, Yin Z, Nie X, Shouli W, Zhang L. E2-2, a novel immunohistochemical marker for both human and monkey plasmacytoid dendritic cells. BIOPHYSICS REPORTS 2015; 1:139-147. [PMID: 27340692 PMCID: PMC4871903 DOI: 10.1007/s41048-016-0023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/18/2015] [Indexed: 11/29/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) play important roles in initiating and regulating immune responses. pDC infiltration has been documented in multiple pathological lesions including infections, tumors, and autoimmune diseases, and the severity of pDC infiltration correlates with disease progression. However, a specific antibody for identifying pDCs by immunohistochemical staining on paraffin-embedded tissue sections is still lacking. Here, we developed a novel antibody targeted E2-2, a transcription factor preferentially expressed in pDCs. The antibody stains the nuclei of pDCs specifically in immunohistochemical analysis of various tissues from both human and rhesus monkey. This novel antibody will serve as a beneficial tool for pDC-related basic research and clinical investigation.
Collapse
Affiliation(s)
- Jianping Ma
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100080 China
| | - Haisheng Yu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100080 China
| | - Xiangyun Yin
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100080 China
| | - Menglan Cheng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100080 China
| | - Quanxing Shi
- Department of Cardiology, 306th Hospital of PLA, Beijing, 100101 China
| | - Zhao Yin
- Department of Cardiology, 306th Hospital of PLA, Beijing, 100101 China
| | - Xiaohua Nie
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Wang Shouli
- Department of Cardiology, 306th Hospital of PLA, Beijing, 100101 China
| | - Liguo Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
799
|
Feiks A, Nowotny C, Gruber W. [Characteristics of peripheral rheograms following thermal provocation in normal and pathologic pregnancy]. Geburtshilfe Frauenheilkd 1988; 48:647-50. [PMID: 3181714 DOI: 10.1055/s-2008-1026557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Using the impedance plethysmographic method of rheography it is possible to ascertain the tone of the peripheral resistance vessels directly by simple means. Previous studies have shown that there is a close relationship between peripheral vasodilatation at rest and normal course of pregnancy. In the present study, rheographic changes were studied in patients with normal pregnancy (n = 27, Group 1), diabetes mellitus (n = 18, Group 2), "pregnancy-induced hypertension" (n = 10, Group 3), and chronic placental insufficiency (n = 16, Group 4) during and following a low-temperature stimulus. After exposure to icy water, the Group 1 subjects showed a 40% reduction in rheographic amplitude, Groups 2 and 3 a 25% reduction, while Group 4 patients showed no signs of vasoconstriction going beyond the resting state (p less than 0.001). The four groups also differed considerably as regards vessel wall behavior in the recovery phase. The study confirms that the amplitude of the peripheral rheogram is a good indicator for detecting high-risk pregnancies. The amplitude pattern under thermal stimulation also provides further information on the dynamic behavior of the resistance vessels in normal and pathologic pregnancies.
Collapse
Affiliation(s)
- A Feiks
- II. Univ.-Frauenklinik Wien, Osterreich
| | | | | |
Collapse
|