751
|
Giraud E, Verméglio A. Bacteriophytochromes in anoxygenic photosynthetic bacteria. PHOTOSYNTHESIS RESEARCH 2008; 97:141-153. [PMID: 18612842 DOI: 10.1007/s11120-008-9323-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 06/16/2008] [Indexed: 05/26/2023]
Abstract
Since the first discovery of a bacteriophytochrome in Rhodospirillum centenum, numerous bacteriophytochromes have been identified and characterized in other anoxygenic photosynthetic bacteria. This review is focused on the biochemical and biophysical properties of bacteriophytochromes with a special emphasis on their roles in the synthesis of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, TA A-82/J, Campus de Baillarguet, 34398, Montpellier Cedex 5, France
| | | |
Collapse
|
752
|
Ulijasz AT, Cornilescu G, von Stetten D, Kaminski S, Mroginski MA, Zhang J, Bhaya D, Hildebrandt P, Vierstra RD. Characterization of two thermostable cyanobacterial phytochromes reveals global movements in the chromophore-binding domain during photoconversion. J Biol Chem 2008; 283:21251-66. [PMID: 18480055 PMCID: PMC3258942 DOI: 10.1074/jbc.m801592200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 04/30/2008] [Indexed: 11/06/2022] Open
Abstract
Photointerconversion between the red light-absorbing (Pr) form and the far-red light-absorbing (Pfr) form is the central feature that allows members of the phytochrome (Phy) superfamily to act as reversible switches in light perception. Whereas the chromophore structure and surrounding binding pocket of Pr have been described, those for Pfr have remained enigmatic for various technical reasons. Here we describe a novel pair of Phys from two thermophilic cyanobacteria, Synechococcus sp. OS-A and OS-B', that overcome several of these limitations. Like other cyanobacterial Phys, SyA-Cph1 and SyB-Cph1 covalently bind the bilin phycocyanobilin via their cGMP phosphodiesterase/adenyl cyclase/FhlA (GAF) domains and then assume the photointerconvertible Pr and Pfr states with absorption maxima at 630 and 704 nm, respectively. However, they are naturally missing the N-terminal Per/Arndt/Sim domain common to others in the Phy superfamily. Importantly, truncations containing only the GAF domain are monomeric, photochromic, and remarkably thermostable. Resonance Raman and NMR spectroscopy show that all four pyrrole ring nitrogens of phycocyanobilin are protonated both as Pr and following red light irradiation, indicating that the GAF domain by itself can complete the Pr to Pfr photocycle. (1)H-(15)N two-dimensional NMR spectra of isotopically labeled preparations of the SyB-Cph1 GAF domain revealed that a number of amino acids change their environment during photoconversion of Pr to Pfr, which can be reversed by subsequent photoconversion back to Pr. Through three-dimensional NMR spectroscopy before and after light photoexcitation, it should now be possible to define the movements of the chromophore and binding pocket during photoconversion. We also generated a series of strongly red fluorescent derivatives of SyB-Cph1, which based on their small size and thermostability may be useful as cell biological reporters.
Collapse
Affiliation(s)
- Andrew T. Ulijasz
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Gabriel Cornilescu
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - David von Stetten
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Steve Kaminski
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Maria Andrea Mroginski
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Junrui Zhang
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Devaki Bhaya
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Peter Hildebrandt
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| | - Richard D. Vierstra
- Department of Genetics and
National Magnetic Resonance Facility,
University of Wisconsin, Madison, Wisconsin 53706, the
Technische Universität, D-10623
Berlin, Germany, and the Department of
Plant Biology, Carnegie Institution of Washington, Stanford, California
94305
| |
Collapse
|
753
|
Abstract
Functions of biologically active molecules are frequently initiated by elementary chemical reactions such as energy and electron transfer, cis-trans isomerizations, and proton transfer. The nature of these reactions generally makes them very fast and efficient, occurring on picosecond and femtosecond timescales. Ultrafast spectroscopy has played an important role in the study of a number of biological processes and has provided unique information about several of nature's responses to light. Here I review the current understanding of light-energy collection and conversion in photosynthesis, the function of carotenoid molecules in photosynthesis, and the primary light-initiated reactions of the photoreceptors rhodopsin, bacteriorhodopsin, photoactive yellow protein, phytochrome, and a new type of blue-light receptor based on flavin chromophores.
Collapse
Affiliation(s)
- Villy Sundström
- Department of Chemical Physics, Lund University, S-221 00 Lund, Sweden.
| |
Collapse
|
754
|
Schaller GE, Kieber JJ, Shiu SH. Two-component signaling elements and histidyl-aspartyl phosphorelays. THE ARABIDOPSIS BOOK 2008; 6:e0112. [PMID: 22303237 PMCID: PMC3243373 DOI: 10.1199/tab.0112] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Two-component systems are an evolutionarily ancient means for signal transduction. These systems are comprised of a number of distinct elements, namely histidine kinases, response regulators, and in the case of multi-step phosphorelays, histidine-containing phosphotransfer proteins (HPts). Arabidopsis makes use of a two-component signaling system to mediate the response to the plant hormone cytokinin. Two-component signaling elements have also been implicated in plant responses to ethylene, abiotic stresses, and red light, and in regulating various aspects of plant growth and development. Here we present an overview of the two-component signaling elements found in Arabidopsis, including functional and phylogenetic information on both bona-fide and divergent elements.
Collapse
Affiliation(s)
- G. Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Joseph J. Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
755
|
Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker protein. Proc Natl Acad Sci U S A 2008; 105:9528-33. [PMID: 18621684 DOI: 10.1073/pnas.0801826105] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyanobacteriochromes are a newly recognized group of photoreceptors that are distinct relatives of phytochromes but are found only in cyanobacteria. A putative cyanobacteriochrome, CcaS, is known to chromatically regulate the expression of the phycobilisome linker gene (cpcG2) in Synechocystis sp. PCC 6803. In this study, we isolated the chromophore-binding domain of CcaS from Synechocystis as well as from phycocyanobilin-producing Escherichia coli. Both preparations showed the same reversible photoconversion between a green-absorbing form (Pg, lambda(max) = 535 nm) and a red-absorbing form (Pr, lambda(max) = 672 nm). Mass spectrometry and denaturation analyses suggested that Pg and Pr bind phycocyanobilin in a double-bond configuration of C15-Z and C15-E, respectively. Autophosphorylation activity of the histidine kinase domain in nearly full-length CcaS was up-regulated by preirradiation with green light. Similarly, phosphotransfer to the cognate response regulator, CcaR, was higher in Pr than in Pg. From these results, we conclude that CcaS phosphorylates CcaR under green light and induces expression of cpcG2, leading to accumulation of CpcG2-phycobilisome as a chromatic acclimation system. CcaS is the first recognized green light receptor in the expanded phytochrome superfamily, which includes phytochromes and cyanobacteriochromes.
Collapse
|
756
|
Rockwell NC, Njuguna SL, Roberts L, Castillo E, Parson VL, Dwojak S, Lagarias JC, Spiller SC. A second conserved GAF domain cysteine is required for the blue/green photoreversibility of cyanobacteriochrome Tlr0924 from Thermosynechococcus elongatus. Biochemistry 2008; 47:7304-16. [PMID: 18549244 PMCID: PMC2574597 DOI: 10.1021/bi800088t] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Phytochromes are widely occurring red/far-red photoreceptors that utilize a linear tetrapyrrole (bilin) chromophore covalently bound within a knotted PAS-GAF domain pair. Cyanobacteria also contain more distant relatives of phytochromes that lack this knot, such as the phytochrome-related cyanobacteriochromes implicated to function as blue/green switchable photoreceptors. In this study, we characterize the cyanobacteriochrome Tlr0924 from the thermophilic cyanobacterium Thermosynechococcus elongatus. Full-length Tlr0924 exhibits blue/green photoconversion across a broad range of temperatures, including physiologically relevant temperatures for this organism. Spectroscopic characterization of Tlr0924 demonstrates that its green-absorbing state is in equilibrium with a labile, spectrally distinct blue-absorbing species. The photochemically generated blue-absorbing state is in equilibrium with another species absorbing at longer wavelengths, giving a total of 4 states. Cys499 is essential for this behavior, because mutagenesis of this residue results in red-absorbing mutant biliproteins. Characterization of the C 499D mutant protein by absorbance and CD spectroscopy supports the conclusion that its bilin chromophore adopts a similar conformation to the red-light-absorbing P r form of phytochrome. We propose a model photocycle in which Z/ E photoisomerization of the 15/16 bond modulates formation of a reversible thioether linkage between Cys499 and C10 of the chromophore, providing the basis for the blue/green switching of cyanobacteriochromes.
Collapse
Affiliation(s)
- Nathan C. Rockwell
- Section of Molecular and Cellular Biology, University of California, Davis CA 95616
| | | | | | | | | | | | - J. Clark Lagarias
- Section of Molecular and Cellular Biology, University of California, Davis CA 95616
| | | |
Collapse
|
757
|
Dammeyer T, Frankenberg-Dinkel N. Function and distribution of bilin biosynthesis enzymes in photosynthetic organisms. Photochem Photobiol Sci 2008; 7:1121-30. [PMID: 18846276 DOI: 10.1039/b807209b] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bilins are open-chain tetrapyrrole molecules essential for light-harvesting and/or sensing in many photosynthetic organisms. While they serve as chromophores in phytochrome-mediated light-sensing in plants, they additionally function in light-harvesting in cyanobacteria, red algae and cryptomonads. Associated to phycobiliproteins a variety of bile pigments is responsible for the specific light-absorbance properties of the organisms enabling efficient photosynthesis under different light conditions. The initial step of bilin biosynthesis is the cleavage of heme by heme oxygenases (HO) to afford the first linear molecule biliverdin. This reaction is ubiquitously found also in non-photosynthetic organisms. Biliverdin is then further reduced by site specific reductases most of them belonging to the interesting family of ferredoxin-dependent bilin reductases (FDBRs)-a new family of radical oxidoreductases. In recent years much progress has been made in the field of heme oxygenases but even more in the widespread family of FDBRs, revealing novel biochemical FDBR activities, new crystal structures and new ecological aspects, including the discovery of bilin biosynthesis genes in wild marine phage populations. The aim of this review is to summarize and discuss the recent progress in this field and to highlight the new and remaining questions.
Collapse
Affiliation(s)
- Thorben Dammeyer
- Physiology of Microorganisms, Ruhr-University Bochum, Universitaetsstr. 150, 44780 Bochum, Germany
| | | |
Collapse
|
758
|
PIF1 directly and indirectly regulates chlorophyll biosynthesis to optimize the greening process in Arabidopsis. Proc Natl Acad Sci U S A 2008; 105:9433-8. [PMID: 18591656 DOI: 10.1073/pnas.0803611105] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Plants depend on light signals to modulate many aspects of their development and optimize their photosynthetic capacity. Phytochromes (phys), a family of photoreceptors, initiate a signal transduction pathway that alters expression of a large number of genes to induce these responses. Recently, phyA and phyB were shown to bind members of a basic helix-loop-helix family of transcription factors called phy-interacting factors (PIFs). PIF1 negatively regulates chlorophyll biosynthesis and seed germination in the dark, and light-induced degradation of PIF1 relieves this negative regulation to promote photomorphogenesis. Here, we report that PIF1 regulates expression of a discrete set of genes in the dark, including protochlorophyllide oxidoreductase (POR), ferrochelatase (FeChII), and heme oxygenase (HO3), which are involved in controlling the chlorophyll biosynthetic pathway. Using ChIP and DNA gel-shift assays, we demonstrate that PIF1 directly binds to a G-box (CACGTG) DNA sequence element present in the PORC promoter. Moreover, in transient assays, PIF1 activates transcription of PORC in a G-box-dependent manner. These data strongly suggest that PIF1 directly and indirectly regulates key genes involved in chlorophyll biosynthesis to optimize the greening process in Arabidopsis.
Collapse
|
759
|
von Stetten D, Günther M, Scheerer P, Murgida D, Mroginski M, Krauß N, Lamparter T, Zhang J, Anstrom D, Vierstra R, Forest K, Hildebrandt P. Resonanz-Raman-spektroskopische Untersuchung der Chromophorheterogenität und Photokonversion in Phytochromkristallen und -lösungen. Angew Chem Int Ed Engl 2008. [DOI: 10.1002/ange.200705716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
760
|
Shen H, Zhu L, Castillon A, Majee M, Downie B, Huq E. Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes. THE PLANT CELL 2008; 20:1586-602. [PMID: 18539749 PMCID: PMC2483374 DOI: 10.1105/tpc.108.060020] [Citation(s) in RCA: 223] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The phytochrome (phy) family of photoreceptors regulates changes in gene expression in response to red/far-red light signals in part by physically interacting with constitutively nucleus-localized phy-interacting basic helix-loop-helix transcription factors (PIFs). Here, we show that PIF1, the member with the highest affinity for phys, is strongly sensitive to the quality and quantity of light. phyA plays a dominant role in regulating the degradation of PIF1 following initial light exposure, while phyB and phyD and possibly other phys also influence PIF1 degradation after prolonged illumination. PIF1 is rapidly phosphorylated and ubiquitinated under red and far-red light before being degraded with a half-life of approximately 1 to 2 min under red light. Although PIF1 interacts with phyB through a conserved active phyB binding motif, it interacts with phyA through a novel active phyA binding motif. phy interaction is necessary but not sufficient for the light-induced phosphorylation and degradation of PIF1. Domain-mapping studies reveal that the phy interaction, light-induced degradation, and transcriptional activation domains are located at the N-terminal 150-amino acid region of PIF1. Unlike PIF3, PIF1 does not interact with the two halves of either phyA or phyB separately. Moreover, overexpression of a light-stable truncated form of PIF1 causes constitutively photomorphogenic phenotypes in the dark. Taken together, these data suggest that removal of the negative regulators (e.g., PIFs) by light-induced proteolytic degradation might be sufficient to promote photomorphogenesis.
Collapse
Affiliation(s)
- Hui Shen
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | | | |
Collapse
|
761
|
Narikawa R, Fukushima Y, Ishizuka T, Itoh S, Ikeuchi M. A novel photoactive GAF domain of cyanobacteriochrome AnPixJ that shows reversible green/red photoconversion. J Mol Biol 2008; 380:844-55. [PMID: 18571200 DOI: 10.1016/j.jmb.2008.05.035] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 05/12/2008] [Accepted: 05/14/2008] [Indexed: 01/08/2023]
Abstract
We report the discovery of a novel cyanobacteriochrome, the green/red photoreceptor AnPixJ (All1069), isolated from the heterocyst-forming cyanobacterium Anabaena (Nostoc) sp. PCC 7120. Cyanobacteriochromes are a recently emerging tetrapyrrole-based photoreceptor superfamily that are distantly related to the conventional red/far-red photoreceptor phytochromes (Phys). The chromophore-binding domains of AnPixJ produced in cyanobacterial and Escherichia coli cells both showed a reversible and full photoconversion between a green-absorbing form (lambda(max)=543 nm) and a red-absorbing form (lambda(max)=648 nm). Denaturation analysis revealed that the green-absorbing form and the red-absorbing form covalently ligated phycocyanobilin with E-configuration and Z-configuration at the C15C16 double bond, respectively. Time-resolved spectral analysis showed the formation of the first intermediate state peaking at 680 nm from the dark-stable red-absorbing form. This step resembles the first photoconversion step from the red-absorbing form to the red-shifted lumi-R intermediate state of the Phys. These results suggest that the Pr of AnPixJ is almost equivalent to that of the Phys and starts a primary photoreaction with Z-to-E isomerization in a mechanism similar to that in the Phys, but is finally photoconverted to the unique green-absorbing form.
Collapse
Affiliation(s)
- Rei Narikawa
- Department of Life Sciences Biology, Graduate School of Art and Sciences, University of Tokyo, Komaba, Meguro, Tokyo 153-0041, Japan
| | | | | | | | | |
Collapse
|
762
|
Photoregulation in prokaryotes. Curr Opin Microbiol 2008; 11:168-78. [PMID: 18400553 DOI: 10.1016/j.mib.2008.02.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2008] [Revised: 02/06/2008] [Accepted: 02/11/2008] [Indexed: 11/20/2022]
Abstract
The spectroscopic identification of sensory rhodopsin I by Bogomolni and Spudich in 1982 provided a molecular link between the light environment and phototaxis in Halobacterium salinarum, and thus laid the foundation for the study of signal transducing photosensors in prokaryotes. In recent years, a number of new prokaryotic photosensory receptors have been discovered across a broad range of taxa, including dozens in chemotrophic species. Among these photoreceptors are new classes of rhodopsins, BLUF-domain proteins, bacteriophytochromes, cryptochromes, and LOV-family photosensors. Genetic and biochemical analyses of these receptors have demonstrated that they can regulate processes ranging from photosynthetic pigment biosynthesis to virulence.
Collapse
|
763
|
Paul LK, Khurana JP. Phytochrome-mediated light signaling in plants: emerging trends. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2008; 14:9-22. [PMID: 23572870 PMCID: PMC3550659 DOI: 10.1007/s12298-008-0002-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phytochromes maximally absorb in the red and far-red region of the solar spectrum and play a key role in regulating plant growth and development. Our understanding of the phytochrome-mediated light perception and signal transduction has improved dramatically during the past decade. However, some recent findings challenge a few of the well-accepted earlier models regarding phytochrome structure and function. Identification of a serine/threonine specific protein phosphatase 2A (FyPP) and a type 5 protein phosphatases (PAPP5), and the phytochrome-mediated phosphorylation of phytochrome interacting factor 3 (PIF3), auxin inducible genes (Aux/IAA) and cryptochromes have opened new vistas in phytochrome biology. Importantly, the significance of proteolysis and chromatin-remodeling pathways in phytochrome signaling is becoming more apparent. The emerging concept of phytochrome as a master regulator in orchestrating downstream signaling components has become more convincing with the advent of global expression profiling of genes. Upcoming data also provide fresh insights into the nuclear localization, speckle formation, nucleo-cytoplasmic partitioning and organ-specificity aspects of phytochromes. This article highlights recent advances in phytochrome biology with emphasis on the elucidation of novel components of light signal transduction.
Collapse
Affiliation(s)
- Laju K. Paul
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Jitendra P. Khurana
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| |
Collapse
|
764
|
Anders Borg O, Durbeej B. Which factors determine the acidity of the phytochromobilin chromophore of plant phytochrome? Phys Chem Chem Phys 2008; 10:2528-37. [PMID: 18446253 DOI: 10.1039/b719190a] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum chemical calculations aimed at identifying the factors controlling the acidity of phytochromobilin, the tetrapyrrole chromophore of the plant photoreceptor phytochrome, are reported. Phytochrome is converted from an inactive (Pr) to an active form (Pfr) through a series of events initiated by a Z --> E photoisomerization of phytochromobilin, forming the Lumi-R intermediate, and much controversy exists as to whether the protonation state of the chromophore (cationic in Pr with all nitrogens protonated) changes during the photoactivation. Here, relative ground (S0) and excited-state (S1) pKa s of all four pyrrole moieties of phytochromobilin in all 64 possible configurations with respect to the three methine bridges are calculated in a protein-like environment, using a recently benchmarked level of theory. Accordingly, the relationships between acidity and chromophore geometry and charge distribution, hydrogen bonding, and light absorption are investigated in some detail, and discussed in terms of possible mechanisms making a proton transfer reaction more probable along the Pr --> Pfr reaction than in the parent cationic Pr state. It is found that charge distribution in the cationic species, intra-molecular hydrogen bonding in the neutral, and hydrogen bonding with two highly conserved aspartate and histidine residues have a significant effect on the acidity, while overall chromophore geometry and electronic state are less important factors. Furthermore, based on the calculations, two processes that may facilitate a proton transfer by substantially lowering the pKa s relative to their Pr values are identified: (i) a thermal Z,anti --> Z,syn isomerization at C5, occurring after formation of Lumi-R; (ii) a perturbation of the hydrogen bonding network which in Pr comprises the nitrogens of pyrroles A, B and C and the two aspartate and histidine residues.
Collapse
Affiliation(s)
- O Anders Borg
- Department of Quantum Chemistry, Uppsala University, Box 518, S-75120, Uppsala, Sweden
| | | |
Collapse
|
765
|
The PHY domain is required for conformational stability and spectral integrity of the bacteriophytochrome from Deinococcus radiodurans. Biochem Biophys Res Commun 2008; 369:1120-4. [PMID: 18331835 DOI: 10.1016/j.bbrc.2008.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Accepted: 03/01/2008] [Indexed: 11/23/2022]
Abstract
Bacteriophytochrome from Deinococcus radiodurans (DrBphP) is a plant phytochrome homolog. To investigate the interaction of chromophore and protein structure, we purified recombinant DrBphP and performed biochemical analyses. Differences of apo- and holo-protein in electrophoretic properties in native gels and their susceptibility to trypsin indicate changes in both the conformation and surface topography of this protein as a result of chromophore assembly. Furthermore, proteolysis to Pr and Pfr conformers displayed distinctive cleavage patterns with a noticeable Pr-specific tryptic fragment. Of interest, a prolonged tryptic digestion showed a more severe impact upon the Pfr form. Most importantly, when we assessed the extent of dark reversion to evaluate the role of the cleaved part, a rapidly accelerated reversion was observed upon cleavage at residues 329-505 corresponding to the PHY domain. Our data thus show that the PHY domain is necessary for the Pfr stabilization and spectral integrity of DrBphP.
Collapse
|
766
|
Barkovits K, Harms A, Benkartek C, Smart JL, Frankenberg-Dinkel N. Expression of the phytochrome operon in Pseudomonas aeruginosa is dependent on the alternative sigma factor RpoS. FEMS Microbiol Lett 2008; 280:160-8. [DOI: 10.1111/j.1574-6968.2007.01058.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
767
|
Abstract
Biliproteins are a widespread group of brilliantly coloured photoreceptors characterized by linear tetrapyrrolic chromophores, bilins, which are covalently bound to the apoproteins via relatively stable thioether bonds. Covalent binding stabilizes the chromoproteins and is mandatory for phycobilisome assembly; and, it is also important in biliprotein applications such as fluorescence labelling. Covalent binding has, on the other hand, also considerably hindered biliprotein research because autocatalytic chromophore additions are rare, and information on enzymatic addition by lyases was limited to a single example, an EF-type lyase attaching phycocyanobilin to cysteine-alpha84 of C-phycocyanin. The discovery of new activities for the latter lyases, and of new types of lyases, have reinvigorated research activities in the subject. So far, work has mainly concentrated on cyanobacterial phycobiliproteins. Methodological advances in the process, however, as well as the finding of often large numbers of homologues, opens new possibilities for research on the subsequent assembly/disassembly of the phycobilisome in cyanobacteria and red algae, on the assembly and organization of the cryptophyte light-harvesting system, on applications in basic research such as protein folding, and on the use of phycobiliproteins for labelling.
Collapse
Affiliation(s)
- H Scheer
- Department Biologie I, Universität München, Menzinger Strasse 67, D-80638 München, Germany
| | | |
Collapse
|
768
|
Amino acid polymorphisms in Arabidopsis phytochrome B cause differential responses to light. Proc Natl Acad Sci U S A 2008; 105:3157-62. [PMID: 18287016 DOI: 10.1073/pnas.0712174105] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Plants have a sophisticated system for sensing and responding to their light environment. The light responses of populations and species native to different habitats show adaptive variation; understanding the mechanisms underlying photomorphogenic variation is therefore of significant interest. In Arabidopsis thaliana, phytochrome B (PHYB) is the dominant photoreceptor for red light and plays a major role in white light. Because PHYB has been proposed as a candidate gene for several quantitative trait loci (QTLs) affecting light response, we have investigated sequence and functional variation in Arabidopsis PHYB. We examined PHYB sequences in 33 A. thaliana individuals and in the close relative Arabidopsis lyrata. From 14 nonsynonymous polymorphisms, we chose 5 for further study based on previous QTL studies. In a larger collection of A. thaliana accessions, one of these five polymorphisms, I143L, was associated with variation in red light response. We used transgenic analysis to test this association and confirmed experimentally that natural PHYB polymorphisms cause differential plant responses to light. Furthermore, our results show that allelic variation of PHYB activity is due to amino acid rather than regulatory changes. Together with earlier studies linking variation in light sensitivity to photoreceptor genes, our work suggests that photoreceptors may be a common target of natural selection.
Collapse
|
769
|
Chen X, Lin WH, Wang Y, Luan S, Xue HW. An inositol polyphosphate 5-phosphatase functions in PHOTOTROPIN1 signaling in Arabidopis by altering cytosolic Ca2+. THE PLANT CELL 2008; 20:353-66. [PMID: 18252844 PMCID: PMC2276452 DOI: 10.1105/tpc.107.052670] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 11/22/2007] [Accepted: 01/21/2008] [Indexed: 05/18/2023]
Abstract
Inositol polyphosphate 5-phosphatase (5PTase) is a key enzyme in the phosphatidylinositol metabolic pathway, which plays critical roles in a number of cellular processes in plants. Our previous work implicated the role of 5PTase13, which encodes a WD40-containing type II 5PTase, in hormone-mediated cotyledon vein development. Here, we show that 5PTase13 is also involved in blue light responses in Arabidopsis thaliana. Compared with that in darkness, the expression of 5PTase13 was suppressed by blue light irradiation, and disruption of the gene resulted in shortened hypocotyls and expanded cotyledons. Genetic analysis showed that 5PTase13 acted independently from CRYPTOCHROME1 and CONSTITUTIVE PHOTOMORPHOGENIC1 but interacted functionally with PHOTOTROPIN1 (PHOT1). The expression level of 5PTase13 was significantly enhanced in phot1 single or phot1 phot2 double mutants under blue light, and suppression of 5PTase13 expression rescued the elongated hypocotyls in the phot1 or phot1 phot2 mutants. Further analysis showed that the blue light-induced elevation of cytosolic Ca2+ was inhibited in the phot1 mutant but enhanced in the 5pt13 mutant, suggesting that 5PTase13 antagonizes PHOT1-mediated effects on calcium signaling under blue light.
Collapse
Affiliation(s)
- Xu Chen
- Shanghai Institutes for Biological Science-University of California Berkeley Center of Molecular Life Sciences, Chinese Academy of Sciences, 20032 Shanghai, China
| | | | | | | | | |
Collapse
|
770
|
Leivar P, Monte E, Al-Sady B, Carle C, Storer A, Alonso JM, Ecker JR, Quail PH. The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. THE PLANT CELL 2008; 20:337-52. [PMID: 18252845 PMCID: PMC2276449 DOI: 10.1105/tpc.107.052142] [Citation(s) in RCA: 302] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 11/19/2007] [Accepted: 01/15/2008] [Indexed: 05/18/2023]
Abstract
We show that a previously uncharacterized Arabidopsis thaliana basic helix-loop-helix (bHLH) phytochrome interacting factor (PIF), designated PIF7, interacts specifically with the far-red light-absorbing Pfr form of phyB through a conserved domain called the active phyB binding motif. Similar to PIF3, upon light exposure, PIF7 rapidly migrates to intranuclear speckles, where it colocalizes with phyB. However, in striking contrast to PIF3, this process is not accompanied by detectable light-induced phosphorylation or degradation of PIF7, suggesting that the consequences of interaction with photoactivated phyB may differ among PIFs. Nevertheless, PIF7 acts similarly to PIF3 in prolonged red light as a weak negative regulator of phyB-mediated seedling deetiolation. Examination of pif3, pif4, and pif7 double mutant combinations shows that their moderate hypersensitivity to extended red light is additive. We provide evidence that the mechanism by which these PIFs operate on the phyB signaling pathway under prolonged red light is through maintaining low phyB protein levels, in an additive or synergistic manner, via a process likely involving the proteasome pathway. These data suggest that the role of these phyB-interacting bHLH factors in modulating seedling deetiolation in prolonged red light may not be as phy-activated signaling intermediates, as proposed previously, but as direct modulators of the abundance of the photoreceptor.
Collapse
Affiliation(s)
- Pablo Leivar
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | | | | | |
Collapse
|
771
|
Inomata K. Studies on the Structure and Function of Phytochromes as Photoreceptors Based on Synthetic Organic Chemistry. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2008. [DOI: 10.1246/bcsj.81.25] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
772
|
Subpicosecond midinfrared spectroscopy of the Pfr reaction of phytochrome Agp1 from Agrobacterium tumefaciens. Biophys J 2008; 94:3189-97. [PMID: 18192363 DOI: 10.1529/biophysj.107.119297] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phytochromes are light-sensing pigments found in plants and bacteria. For the first time, the P(fr) photoreaction of a phytochrome has been subject to ultrafast infrared vibrational spectroscopy. Three time constants of 0.3 ps, 1.3 ps, and 4.0 ps were derived from the kinetics of structurally specific marker bands of the biliverdin chromophore of Agp1-BV from Agrobacterium tumefaciens after excitation at 765 nm. VIS-pump-VIS-probe experiments yield time constants of 0.44 ps and 3.3 ps for the underlying electronic-state dynamics. A reaction scheme is proposed including two kinetic steps on the S(1) excited-state surface and the cooling of a vibrationally hot P(fr) ground state. It is concluded that the upper limit of the E-Z isomerization of the C(15) = C(16) methine bridge is given by the intermediate time constant of 1.3 ps. The reaction scheme is reminiscent of that of the corresponding P(r) reaction of Agp1-BV as published earlier.
Collapse
|
773
|
Wagner JR, Zhang J, von Stetten D, Günther M, Murgida DH, Mroginski MA, Walker JM, Forest KT, Hildebrandt P, Vierstra RD. Mutational analysis of Deinococcus radiodurans bacteriophytochrome reveals key amino acids necessary for the photochromicity and proton exchange cycle of phytochromes. J Biol Chem 2008; 283:12212-26. [PMID: 18192276 DOI: 10.1074/jbc.m709355200] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ability of phytochromes (Phy) to act as photointerconvertible light switches in plants and microorganisms depends on key interactions between the bilin chromophore and the apoprotein that promote bilin attachment and photointerconversion between the spectrally distinct red light-absorbing Pr conformer and far red light-absorbing Pfr conformer. Using structurally guided site-directed mutagenesis combined with several spectroscopic methods, we examined the roles of conserved amino acids within the bilin-binding domain of Deinococcus radiodurans bacteriophytochrome with respect to chromophore ligation and Pr/Pfr photoconversion. Incorporation of biliverdin IXalpha (BV), its structure in the Pr state, and its ability to photoisomerize to the first photocycle intermediate are insensitive to most single mutations, implying that these properties are robust with respect to small structural/electrostatic alterations in the binding pocket. In contrast, photoconversion to Pfr is highly sensitive to the chromophore environment. Many of the variants form spectrally bleached Meta-type intermediates in red light that do not relax to Pfr. Particularly important are Asp-207 and His-260, which are invariant within the Phy superfamily and participate in a unique hydrogen bond matrix involving the A, B, and C pyrrole ring nitrogens of BV and their associated pyrrole water. Resonance Raman spectroscopy demonstrates that substitutions of these residues disrupt the Pr to Pfr protonation cycle of BV with the chromophore locked in a deprotonated Meta-R(c)-like photoconversion intermediate after red light irradiation. Collectively, the data show that a number of contacts contribute to the unique photochromicity of Phy-type photoreceptors. These include residues that fix the bilin in the pocket, coordinate the pyrrole water, and possibly promote the proton exchange cycle during photoconversion.
Collapse
Affiliation(s)
- Jeremiah R Wagner
- Departments of Genetics and Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
774
|
Lorrain S, Allen T, Duek PD, Whitelam GC, Fankhauser C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:312-23. [PMID: 18047474 DOI: 10.1111/j.1365-313x.2007.03341.x] [Citation(s) in RCA: 503] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant growth and development are particularly sensitive to changes in the light environment and especially to vegetational shading. The shade-avoidance response is mainly controlled by the phytochrome photoreceptors. In Arabidopsis, recent studies have identified several related bHLH class transcription factors (PIF, for phytochrome-interacting factors) as important components in phytochrome signaling. In addition to a related bHLH domain, most of the PIFs contain an active phytochrome binding (APB) domain that mediates their interaction with light-activated phytochrome B (phyB). Here we show that PIF4 and PIF5 act early in the phytochrome signaling pathways to promote the shade-avoidance response. PIF4 and PIF5 accumulate to high levels in the dark, are selectively degraded in response to red light, and remain at high levels under shade-mimicking conditions. Degradation of these transcription factors is preceded by phosphorylation, requires the APB domain and is sensitive to inhibitors of the proteasome, suggesting that PIF4 and PIF5 are degraded upon interaction with light-activated phyB. Our data suggest that, in dense vegetation, which is rich in far-red light, shade avoidance is triggered, at least partially, as a consequence of reduced phytochrome-mediated degradation of transcription factors such as PIF4 and PIF5. Consistent with this idea, the constitutive shade-avoidance phenotype of phyB mutants partially reverts in the absence of PIF4 and PIF5.
Collapse
Affiliation(s)
- Séverine Lorrain
- Center for Integrative Genomics, University of Lausanne, Genopode Building, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
775
|
Narikawa R, Kohchi T, Ikeuchi M. Characterization of the photoactive GAF domain of the CikA homolog (SyCikA, Slr1969) of the cyanobacterium Synechocystis sp. PCC 6803. Photochem Photobiol Sci 2008; 7:1253-9. [DOI: 10.1039/b811214b] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
776
|
|
777
|
Bae G, Choi G. Decoding of light signals by plant phytochromes and their interacting proteins. ANNUAL REVIEW OF PLANT BIOLOGY 2008; 59:281-311. [PMID: 18257712 DOI: 10.1146/annurev.arplant.59.032607.092859] [Citation(s) in RCA: 313] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phytochromes are red/far-red light photoreceptors that convert the information contained in external light into biological signals. The decoding process starts with the perception of red light, which occurs through photoisomerization of a chromophore located within the phytochrome, leading to structural changes that include the disruption of intramolecular interactions between the N- and C-terminal domains of the phytochrome. This disruption exposes surfaces required for interactions with other proteins. In contrast, the perception of far-red light reverses the photoisomerization, restores the intramolecular interaction, and closes the interacting surfaces. Light information represented by the concentration of opened interacting surfaces is converted into biological signals through the modulating activity of interacting proteins. This review summarizes plant phytochromes, phytochrome-interacting proteins, and signal transmission from phytochromes to their interacting proteins.
Collapse
Affiliation(s)
- Gabyong Bae
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
| | | |
Collapse
|
778
|
Kneissl J, Shinomura T, Furuya M, Bolle C. A rice phytochrome A in Arabidopsis: The Role of the N-terminus under red and far-red light. MOLECULAR PLANT 2008; 1:84-102. [PMID: 20031917 DOI: 10.1093/mp/ssm010] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The phytochrome (phy)A and phyB photoreceptors mediate three photobiological response modes in plants; whereas phyA can mediate the very-low-fluence response (VLFR), the high-irradiance response (HIR) and, to some extent, the low fluence response (LFR), phyB and other type II phytochromes only mediate the LFR. To investigate to what level a rice phyA can complement for Arabidopsis phyA or phyB function and to evaluate the role of the serine residues in the first 20 amino acids of the N-terminus of phyA, we examined VLFR, LFR, and HIR responses in phyB and phyAphyB mutant plants transformed with rice PHYA cDNA or a mutant rice PHYA cDNA in which the first 10 serine residues were mutated to alanines (phyA SA). Utilizing mutants without endogenous phyB allowed the evaluation of red-light-derived responses sensed by the rice phyA. In summary, the WT rice phyA could complement VLFR and LFR responses such as inhibition of hypocotyl elongation under pulses of FR or continuous R light, induction of flowering and leaf expansion, whereas the phyA SA was more specific for HIR responses (e.g. inhibition of hypocotyl elongation and anthocyanin accumulation under continuous far-red light). As the N-terminal serines can no longer be phosphorylated in the phyA SA mutant, this suggests a role for phosphorylation discriminating between the different phyA-dependent responses. The efficacy of the rice phyA expressed in Arabidopsis was dependent upon the developmental age of the plants analyzed and on the physiological response, suggesting a stage-dependent downstream modulation of phytochrome signaling.
Collapse
Affiliation(s)
- Julia Kneissl
- Ludwig-Maximilians-Universität München, Bereich Botanik, Menzinger Str. 67, 80638 München, Germany
| | | | | | | |
Collapse
|
779
|
Hahn J, Kühne R, Schmieder P. Solution-State15N NMR Spectroscopic Study of α-C-Phycocyanin: Implications for the Structure of the Chromophore-Binding Pocket of the Cyanobacterial Phytochrome Cph1. Chembiochem 2007; 8:2249-55. [DOI: 10.1002/cbic.200700256] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
780
|
Shen H, Luong P, Huq E. The F-box protein MAX2 functions as a positive regulator of photomorphogenesis in Arabidopsis. PLANT PHYSIOLOGY 2007; 145:1471-83. [PMID: 17951458 PMCID: PMC2151697 DOI: 10.1104/pp.107.107227] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 10/08/2007] [Indexed: 05/20/2023]
Abstract
Light is vital for plant growth and development. To respond to ambient light signals, plants are equipped with an array of photoreceptors, including phytochromes that sense red (R)/far-R (FR) regions and cryptochromes and phototropins that respond to the ultraviolet-A/blue (B) region of the light spectrum, respectively. Several positively and negatively acting components in light-signaling pathways have been identified using genetic approaches; however, the pathways are not saturated. Here, we characterize a new mutant named pleiotropic photosignaling (pps), isolated from a genetic screen under continuous R light. pps has longer hypocotyls and slightly smaller cotyledons under continuous R, FR, and B light compared to that of the wild type. pps is also hyposensitive to both R and FR light-induced seed germination. Although photosynthetic marker genes are constitutively expressed in pps in the dark at high levels, the expression of early light-regulated genes is reduced in the pps seedlings compared to wild-type seedlings under R light. PPS encodes MAX2/ORE9 (for MORE AXILLARY BRANCHES2/ORESARA9), an F-box protein involved in inflorescence architecture and senescence. MAX2 is expressed ubiquitously in the seedling stage. However, its expression is restricted to vascular tissues and meristems at adult stages. MAX2 is also localized to the nucleus. As an F-box protein, MAX2 is predicted to be a component of the SCF (for SKP, Cullin, and F-box protein) complex involved in regulated proteolysis. These results suggest that SCF(MAX2) plays critical roles in R, FR, and B light-signaling pathways. In addition, MAX2 might regulate multiple targets at different developmental stages to optimize plant growth and development.
Collapse
Affiliation(s)
- Hui Shen
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas, Austin, Texas 78712, USA
| | | | | |
Collapse
|
781
|
Stelling AL, Ronayne KL, Nappa J, Tonge PJ, Meech SR. Ultrafast structural dynamics in BLUF domains: transient infrared spectroscopy of AppA and its mutants. J Am Chem Soc 2007; 129:15556-64. [PMID: 18031038 DOI: 10.1021/ja074074n] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The structural dynamics following photoexcitation of a photosensing BLUF (blue light sensing using FAD) domain protein have been investigated by ultrafast transient infrared spectroscopy. Specifically, the transcriptional antirepressor AppA from Rhodobacter sphaeroides has been studied in the light and dark adapted forms and in photoactive and inactive mutants W104F and Q63L. A transient absorption has been observed at 1666 cm(-1) which is a marker mode for the photoactive state of the protein. This instantaneously formed transient is tentatively assigned to a vibrational mode of a protein residue modified through its interaction with the excited state of the chromophore. A plausible candidate consistent with the mutant studies is the carbonyl stretch of the Q63 amide side chain. These results suggest that modification of the strength of protein chromophore H-bonded interactions is the primary step in the BLUF domain photocycle. No new species were observed to be formed during the first nanosecond. Measurement of the ultrafast ground state recovery showed that the excited state of light adapted AppA is strongly quenched compared to the dark adapted state. It is proposed that the reorganization which occurs to form the signaling state is favorable to electron-transfer quenching.
Collapse
Affiliation(s)
- Allison L Stelling
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA
| | | | | | | | | |
Collapse
|
782
|
Schumann C, Gross R, Michael N, Lamparter T, Diller R. Sub-picosecond mid-infrared spectroscopy of phytochrome Agp1 from Agrobacterium tumefaciens. Chemphyschem 2007; 8:1657-63. [PMID: 17614346 DOI: 10.1002/cphc.200700210] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The photoinduced primary reaction of the biliverdin binding phytochrome Agp1 (Agp1-BV) from Agrobacterium tumefaciens was investigated by sub-picosecond time-resolved Vis pump-IR probe spectroscopy. Three time constants of tau(1)=0.7+/-0.05 ps, tau(2)=3.3+/-0.2 ps and tau(3)=33.3+/-1.5 ps could be isolated from the dynamics of structurally specific marker bands of the BV chromophore. These results together with those of accompanying sub-picosecond Vis pump-Vis probe spectroscopy allow the extension of the reaction scheme for the primary process by a vibrationally excited electronic ground state. The isomerization at the C15=C16 bond occurs within the lifetime of the excited electronic state. A quantum yield of 0.094 for the primary reaction is determined, suggesting that the quantum yield of formation of the P(fr) far-red-absorbing form is already established in the primary photoreaction of the P(r) (red-absorbing) form.
Collapse
Affiliation(s)
- Christian Schumann
- Technische Universität Kaiserslautern, Fachbereich Physik, 67653 Kaiserslautern, Germany
| | | | | | | | | |
Collapse
|
783
|
Castillon A, Shen H, Huq E. Phytochrome Interacting Factors: central players in phytochrome-mediated light signaling networks. TRENDS IN PLANT SCIENCE 2007; 12:514-521. [PMID: 17933576 DOI: 10.1016/j.tplants.2007.10.001] [Citation(s) in RCA: 292] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 07/23/2007] [Accepted: 10/01/2007] [Indexed: 05/21/2023]
Abstract
To adapt to the surrounding environment, plants constantly monitor and respond to changes in the red and far-red regions of the light spectrum through the phytochrome family of photoreceptors. Extensive efforts using genetic, molecular and photobiological techniques have led to the identification of a group of basic helix-loop-helix transcription factors called the Phytochrome Interacting Factors, PIFs, which directly bind to the photoactivated phytochromes. Members of the PIF family have been shown to control light-regulated gene expression directly and indirectly. PIF1, PIF3, PIF4 and PIF5 are degraded in response to light signals, and physical interaction of PIF3 with phytochromes is necessary for the light-induced phosphorylation and degradation of PIF3. PIFs constitute an excellent model for the investigation of the biochemical mechanisms of signal transfer from photoactivated phytochromes and the light-regulation of gene expression that controls photomorphogenesis in plants.
Collapse
Affiliation(s)
- Alicia Castillon
- Section of Molecular Cell and Developmental Biology and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Hui Shen
- Section of Molecular Cell and Developmental Biology and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Enamul Huq
- Section of Molecular Cell and Developmental Biology and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
784
|
Locked 5Zs-biliverdin blocks the Meta-RAto Meta-RCtransition in the functional cycle of bacteriophytochrome Agp1. FEBS Lett 2007; 581:5425-9. [DOI: 10.1016/j.febslet.2007.10.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 10/05/2007] [Accepted: 10/17/2007] [Indexed: 11/18/2022]
|
785
|
Dietzek B, Brüggemann B, Pascher T, Yartsev A. Pump-shaped dump optimal control reveals the nuclear reaction pathway of isomerization of a photoexcited cyanine dye. J Am Chem Soc 2007; 129:13014-21. [PMID: 17924621 DOI: 10.1021/ja072639+] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using optimal control as a spectroscopic tool we decipher the details of the molecular dynamics of the essential multidimensional excited-state photoisomerization - a fundamental chemical reaction of key importance in biology. Two distinct nuclear motions are identified in addition to the overall bond-twisting motion: Initially, the reaction is dominated by motion perpendicular to the torsion coordinate. At later times, a second optically active vibration drives the system along the reaction path to the bottom of the excited-state potential. The time scales of the wavepacket motion on a different part of the excited-state potential are detailed by pump-shaped dump optimal control. This technique offers new means to control a chemical reaction far from the Franck-Condon point of absorption and to map details of excited-state reaction pathways revealing unique insights into the underlying reaction mechanism.
Collapse
Affiliation(s)
- Benjamin Dietzek
- Department of Chemical Physics, Lund University, P.O. Box 124, SE-22100 Lund, Sweden.
| | | | | | | |
Collapse
|
786
|
Borg OA, Durbeej B. Relative Ground and Excited-State pKa Values of Phytochromobilin in the Photoactivation of Phytochrome: A Computational Study. J Phys Chem B 2007; 111:11554-65. [PMID: 17845025 DOI: 10.1021/jp0727953] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The conversion of the plant photoreceptor phytochrome from an inactive (Pr) to an active form (Pfr) is accomplished by a red-light induced Z --> E photoisomerization of its phytochromobilin chromophore. In recent years, the question whether the photoactivation involves a change in chromophore protonation state has been the subject of many experimental studies. Here, we have used quantum chemical methods to calculate relative ground and excited-state pKa values of the different pyrrole moieties of phytochromobilin in a protein-like environment. Assuming (based on experimental data) a Pr ZaZsZa chromophore and considering isomerizations at C15 and C5, it is found that moieties B and C are the strongest acids both in the ground state and in the bright first singlet excited state, which is rationalized in simple geometric and electronic terms. It is also shown that neither light absorption nor isomerization increases the acidity of phytochromobilin relative to the reference Pr state with all pyrrolenic nitrogens protonated. Hence, provided that the subset of chromophore geometries under investigation is biologically relevant, there appears to be no intrinsic driving force for a proton-transfer event. In a series of benchmark calculations, the performance of ab initio and time-dependent density functional theory methods for excited-state studies of phytochromobilin is evaluated in light of available experimental data.
Collapse
Affiliation(s)
- O Anders Borg
- Department of Quantum Chemistry, Uppsala University, Box 518, S-75120 Uppsala, Sweden
| | | |
Collapse
|
787
|
Rohmer T, Strauss H, Hughes J, de Groot H, Gärtner W, Schmieder P, Matysik J. 15N MAS NMR studies of cph1 phytochrome: Chromophore dynamics and intramolecular signal transduction. J Phys Chem B 2007; 110:20580-5. [PMID: 17034247 DOI: 10.1021/jp062454+] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Solid-state nuclear magnetic resonance (NMR) is applied for the first time to the photoreceptor phytochrome. The two stable states, Pr and Pfr, of the 59-kDa N-terminal module of the cyanobacterial phytochrome Cph1 from Synechocystis sp. PCC 6803 containing a uniformly 15N-labeled phycocyanobilin cofactor are explored by 15N cross-polarization (CP) magic-angle spinning (MAS) NMR. As recently shown by 15N solution-state NMR using chemical shifts [Strauss, H. M.; Hughes, J.; Schmieder, P. Biochemistry 2005, 44, 8244], all four nitrogens are protonated in both states. CP/MAS NMR provides two additional independent lines of evidence for the protonation of the nitrogens. Apparent loss of mobility during photoactivation, indicated by the decrease of line width, demonstrates strong tension of the entire chromophore in the Pfr state, which is in clear contrast to a more relaxed Pr state. The outer rings (A and D) of the chromophore are significantly affected by the phototransformation, as indicated by both change of chemical shift and line width. On the other hand, on the inner rings (B and C) only minor changes of chemical shifts are detected, providing evidence for a conserved environment during phototransformation. In a mechanical model, the phototransformation is understood in terms of rotations between the A-B and C-D methine bridges, allowing for intramolecular signal transduction to the protein surface by a unit composed of the central rings B and C and its tightly linked protein surroundings during the highly energetic Pfr state.
Collapse
Affiliation(s)
- Thierry Rohmer
- Leiden Institute of Chemistry, Gorlaeus Laboratoria, Leiden University, PO Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
788
|
Yang X, Stojković EA, Kuk J, Moffat K. Crystal structure of the chromophore binding domain of an unusual bacteriophytochrome, RpBphP3, reveals residues that modulate photoconversion. Proc Natl Acad Sci U S A 2007; 104:12571-6. [PMID: 17640891 PMCID: PMC1941510 DOI: 10.1073/pnas.0701737104] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Indexed: 11/18/2022] Open
Abstract
Bacteriophytochromes RpBphP2 and RpBphP3 from the photosynthetic bacterium Rhodopseudomonas palustris work in tandem to modulate synthesis of the light-harvesting complex LH4 in response to light. Although RpBphP2 and RpBphP3 share the same domain structure with 52% sequence identity, they demonstrate distinct photoconversion behaviors. RpBphP2 exhibits the "classical" phytochrome behavior of reversible photoconversion between red (Pr) and far-red (Pfr) light-absorbing states, whereas RpBphP3 exhibits novel photoconversion between Pr and a near-red (Pnr) light-absorbing states. We have determined the crystal structure at 2.2-A resolution of the chromophore binding domains of RpBphP3, covalently bound with chromophore biliverdin IXalpha. By combining structural and sequence analyses with site-directed mutagenesis, we identify key residues that directly modulate the photochemical properties of RpBphP3 and RpBphP2. Remarkably, we identify a region spanning residues 207-212 in RpBphP3, in which a single mutation, L207Y, causes this unusual bacteriophytochrome to revert to the classical phenotype that undergoes reversible photoconversion between the Pr and Pfr states. The reverse mutation, Y193L, in the corresponding region in RpBphP2 significantly diminishes the formation of the Pfr state. We propose that residues 207-212 and the spatially adjacent conserved residues, Asp-216 and Tyr-272, interact with the chromophore and form part of the interface between the chromophore binding domains and the PHY domain that modulates photoconversion.
Collapse
Affiliation(s)
- Xiaojing Yang
- *Department of Biochemistry and Molecular Biology and
| | | | - Jane Kuk
- *Department of Biochemistry and Molecular Biology and
| | - Keith Moffat
- *Department of Biochemistry and Molecular Biology and
- Institute for Biophysical Dynamics, University of Chicago, 929 East 57th Street, Chicago, IL 60637
| |
Collapse
|
789
|
Su YS, Lagarias JC. Light-independent phytochrome signaling mediated by dominant GAF domain tyrosine mutants of Arabidopsis phytochromes in transgenic plants. THE PLANT CELL 2007; 19:2124-39. [PMID: 17660358 PMCID: PMC1955707 DOI: 10.1105/tpc.107.051516] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The photoreversibility of plant phytochromes enables continuous surveillance of the ambient light environment. Through expression of profluorescent, photoinsensitive Tyr-to-His mutant alleles of Arabidopsis thaliana phytochrome B (PHYB(Y276H)) and Arabidopsis phytochrome A (PHYA(Y242H)) in transgenic Arabidopsis plants, we demonstrate that photoconversion is not a prerequisite for phytochrome signaling. PHYB(Y276H)-expressing plants exhibit chromophore-dependent constitutive photomorphogenesis, light-independent phyB(Y276H) nuclear localization, constitutive activation of genes normally repressed in darkness, and light-insensitive seed germination. Fluence rate analyses of transgenic plants expressing PHYB(Y276H), PHYA(Y242H), and other Y(GAF) mutant alleles of PHYB demonstrate that a range of altered light-signaling activities are associated with mutation of this residue. We conclude that the universally conserved GAF domain Tyr residue, with which the bilin chromophore is intimately associated, performs a critical role in coupling light perception to signal transduction by plant phytochromes.
Collapse
Affiliation(s)
- Yi-shin Su
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | |
Collapse
|
790
|
Vuillet L, Kojadinovic M, Zappa S, Jaubert M, Adriano JM, Fardoux J, Hannibal L, Pignol D, Verméglio A, Giraud E. Evolution of a bacteriophytochrome from light to redox sensor. EMBO J 2007; 26:3322-31. [PMID: 17581629 PMCID: PMC1933401 DOI: 10.1038/sj.emboj.7601770] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 05/29/2007] [Indexed: 11/08/2022] Open
Abstract
Bacteriophytochromes are red/far-red photoreceptors that bacteria use to mediate sensory responses to their light environment. Here, we show that the photosynthetic bacterium Rhodopseudomonas palustris has two distinct types of bacteriophytochrome-related protein (RpBphP4) depending upon the strain considered. The first type binds the chromophore biliverdin and acts as a light-sensitive kinase, thus behaving as a bona fide bacteriophytochrome. However, in most strains, RpBphP4 does not to bind this chromophore. This loss of light sensing is replaced by a redox-sensing ability coupled to kinase activity. Phylogenetic analysis is consistent with an evolutionary scenario, where a bacteriophytochrome ancestor has adapted from light to redox sensing. Both types of RpBphP4 regulate the synthesis of light harvesting (LH2) complexes according to the light or redox conditions, respectively. They modulate the affinity of a transcription factor binding to the promoter regions of LH2 complex genes by controlling its phosphorylation status. This is the first complete description of a bacteriophytochrome signal transduction pathway involving a two-component system.
Collapse
Affiliation(s)
- Laurie Vuillet
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, Campus de Baillarguet, Montpellier Cedex, France
| | - Mila Kojadinovic
- CEA Cadarache, DSV/IBEB/SBVME/LBC, UMR 6191 CNRS/CEA/Université Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Sébastien Zappa
- CEA Cadarache, DSV/IBEB/SBVME/LBC, UMR 6191 CNRS/CEA/Université Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Marianne Jaubert
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, Campus de Baillarguet, Montpellier Cedex, France
| | - Jean-Marc Adriano
- CEA Cadarache, DSV/IBEB/SBVME/LBC, UMR 6191 CNRS/CEA/Université Aix-Marseille, Saint-Paul-lez-Durance, France
| | - Joël Fardoux
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, Campus de Baillarguet, Montpellier Cedex, France
| | - Laure Hannibal
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, Campus de Baillarguet, Montpellier Cedex, France
| | - David Pignol
- CEA Cadarache, DSV/IBEB/SBVME/LBC, UMR 6191 CNRS/CEA/Université Aix-Marseille, Saint-Paul-lez-Durance, France
| | - André Verméglio
- CEA Cadarache, DSV/IBEB/SBVME/LBC, UMR 6191 CNRS/CEA/Université Aix-Marseille, Saint-Paul-lez-Durance, France
- These authors contributed equally to this work
- SBVME-Laboratoire de Bioénergétique Cellulaire, CEA Cadarache bâtment 156, DSV/IBEB/SBVME/LBC, UMR 6191 CNRS/CEA/Université Aix-Marseille, Saint Paul lez Durance 13108, France. Tel.: +33 44225 4630; Fax: +33 4422 54701; E-mail:
| | - Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, CIRAD, AGRO-M, INRA, UM2, Campus de Baillarguet, Montpellier Cedex, France
- These authors contributed equally to this work
| |
Collapse
|
791
|
Murgida DH, von Stetten D, Hildebrandt P, Schwinté P, Siebert F, Sharda S, Gärtner W, Mroginski MA. The chromophore structures of the Pr States in plant and bacterial phytochromes. Biophys J 2007; 93:2410-7. [PMID: 17545245 PMCID: PMC1965450 DOI: 10.1529/biophysj.107.108092] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The resonance Raman spectra of the Pr state of the N-terminal 65-kDa fragment of plant phytochrome phyA have been measured and analyzed in terms of the configuration and conformation of the tetrapyrroles methine bridges. Spectra were obtained from phyA adducts reconstituted with the natural chromophore phytochromobilin as well as phycocyanobilin and its isotopomers labeled at the terminal methine bridges through (13)C/(12)C and D/H substitution. Upon comparing the resonance Raman spectra of the various phyA adducts, it was possible to identify the bands that originate from normal modes dominated by the stretching coordinates of the terminal methine bridges A-B and C-D. Quantum chemical calculations of the isolated tetrapyrroles reveal that these modes are sensitive indicators for the methine bridge configuration and conformation. For all phyA adducts, the experimental spectra of Pr including this marker band region are well reproduced by the calculated spectra obtained for the ZZZasa configuration. In contrast, there are substantial discrepancies between the experimental spectra and the spectra calculated for the ZZZssa configuration, which has been previously shown to be the chromophore geometry in the Pr state of the bacterial, biliverdin-binding phytochrome from Deinococcus radiodurans (Wagner, J. R., J. S. Brunzelle, K. T. Forest, R. D. Vierstra. 2005. Nature. 438:325-331). The results of this work, therefore, suggest that plant and bacterial (biliverdin-binding) phytochromes exhibit different structures in the parent state although the mechanism of the photoinduced reaction cycle may be quite similar.
Collapse
Affiliation(s)
- Daniel H Murgida
- Technische Universität Berlin, Institut für Chemie, Max-Volmer-Laboratorium für Biophysikalische Chemie, Sekr. PC 14, D-10623 Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
792
|
Nakasone Y, Ono TA, Ishii A, Masuda S, Terazima M. Transient dimerization and conformational change of a BLUF protein: YcgF. J Am Chem Soc 2007; 129:7028-35. [PMID: 17489591 DOI: 10.1021/ja065682q] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The photochemical reaction dynamics of YcgF, a BLUF protein, were investigated by the pulsed laser-induced transient grating (TG) technique. The TG signal showed three reaction time constants: 2.7 micros, 13 micros, and 2 ms. The fastest was tentatively attributed to relaxation of the excited triplet state of the chromophore, flavin adenine dinucleotide (FAD), and the others represented conformational changes of the protein. The TG signal provided clear evidence that the diffusion coefficient (D) of the photoproduct (3.8x10(-11) m2 s-1) was significantly less than that of the reactant (8.3x10(-11) m2 s-1), with a time constant of 2 ms at a protein concentration of 700 microM. Interestingly, the rate constant increased in proportion to the concentration of the protein, indicating that protein dimerization was one of the main reactions occurring after photoexcitation. The significant reduction in D indicates that a conformational change leading to an increase in interactions with water molecules occurs upon formation of the signaling state. The 13 mus dynamics was attributed to the conformational change that induced transient dimerization. This conformational change might be an essential process for the creation of the signaling state. A detailed scheme for the photochemical reaction of YcgF is proposed.
Collapse
Affiliation(s)
- Yusuke Nakasone
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, 606-8502, Japan
| | | | | | | | | |
Collapse
|
793
|
Rockwell NC, Lagarias JC. Flexible mapping of homology onto structure with homolmapper. BMC Bioinformatics 2007; 8:123. [PMID: 17428344 PMCID: PMC1955750 DOI: 10.1186/1471-2105-8-123] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 04/11/2007] [Indexed: 12/19/2022] Open
Abstract
Background Over the past decade, a number of tools have emerged for the examination of homology relationships among protein sequences in a structural context. Most recent software implementations for such analysis are tied to specific molecular viewing programs, which can be problematic for collaborations involving multiple viewing environments. Incorporation into larger packages also adds complications for users interested in adding their own scoring schemes or in analyzing proteins incorporating unusual amino acid residues such as selenocysteine. Results We describe homolmapper, a command-line application for mapping information from a multiple protein sequence alignment onto a protein structure for analysis in the viewing software of the user's choice. Homolmapper is small (under 250 K for the application itself) and is written in Python to ensure portability. It is released for non-commercial use under a modified University of California BSD license. Homolmapper permits facile import of additional scoring schemes and can incorporate arbitrary additional amino acids to allow handling of residues such as selenocysteine or pyrrolysine. Homolmapper also provides tools for defining and analyzing subfamilies relative to a larger alignment, for mutual information analysis, and for rapidly visualizing the locations of mutations and multi-residue motifs. Conclusion Homolmapper is a useful tool for analysis of homology relationships among proteins in a structural context. There is also extensive, example-driven documentation available. More information about homolmapper is available at .
Collapse
Affiliation(s)
- Nathan C Rockwell
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | - J Clark Lagarias
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| |
Collapse
|
794
|
Wagner JR, Zhang J, Brunzelle JS, Vierstra RD, Forest KT. High resolution structure of Deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution. J Biol Chem 2007; 282:12298-309. [PMID: 17322301 DOI: 10.1074/jbc.m611824200] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phytochromes are red/far red light photochromic photoreceptors that direct many photosensory behaviors in the bacterial, fungal, and plant kingdoms. They consist of an N-terminal domain that covalently binds a bilin chromophore and a C-terminal region that transmits the light signal, often through a histidine kinase relay. Using x-ray crystallography, we recently solved the first three-dimensional structure of a phytochrome, using the chromophore-binding domain of Deinococcus radiodurans bacterial phytochrome assembled with its chromophore, biliverdin IXalpha. Now, by engineering the crystallization interface, we have achieved a significantly higher resolution model. This 1.45A resolution structure helps identify an extensive buried surface between crystal symmetry mates that may promote dimerization in vivo. It also reveals that upon ligation of the C3(2) carbon of biliverdin to Cys(24), the chromophore A-ring assumes a chiral center at C2, thus becoming 2(R),3(E)-phytochromobilin, a chemistry more similar to that proposed for the attached chromophores of cyanobacterial and plant phytochromes than previously appreciated. The evolution of bacterial phytochromes to those found in cyanobacteria and higher plants must have involved greater fitness using more reduced bilins, such as phycocyanobilin, combined with a switch of the attachment site from a cysteine near the N terminus to one conserved within the cGMP phosphodiesterase/adenyl cyclase/FhlA domain. From analysis of site-directed mutants in the D. radiodurans phytochrome, we show that this bilin preference was partially driven by the change in binding site, which ultimately may have helped photosynthetic organisms optimize shade detection. Collectively, these three-dimensional structural results better clarify bilin/protein interactions and help explain how higher plant phytochromes evolved from prokaryotic progenitors.
Collapse
Affiliation(s)
- Jeremiah R Wagner
- Departments of Genetics and Bacteriology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
795
|
Tu SL, Rockwell NC, Lagarias JC, Fisher AJ. Insight into the radical mechanism of phycocyanobilin-ferredoxin oxidoreductase (PcyA) revealed by X-ray crystallography and biochemical measurements. Biochemistry 2007; 46:1484-94. [PMID: 17279614 DOI: 10.1021/bi062038f] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The X-ray crystal structure of the substrate-free form of phycocyanobilin (PCB)-ferredoxin oxidoreductase (PcyA; EC 1.3.7.5) from the cyanobacterium Nostoc sp. PCC7120 has been solved at 2.5 A resolution. A comparative analysis of this structure with those recently reported for substrate-bound and substrate-free forms of PcyA from the cyanobacterium Synechocystis sp. PCC6803 (Hagiwara et al. (2006) Proc. Natl. Acad. Sci. U.S.A. 103, 27-32; Hagiwara et al. (2006) FEBS Lett. 580, 3823-3828) provides a compelling picture of substrate-induced changes in the PcyA enzyme and the chemical basis of PcyA's catalytic activity. On the basis of these structures and the biochemical analysis of site-directed mutants of Nostoc PcyA, including mutants reported in recent studies (Tu et al. (2006) J. Biol. Chem. 281, 3127-3136) as well as mutants described in this study, a revised mechanism for the PcyA-mediated four-electron reduction of biliverdin IXalpha to 3E/3Z-phycocyanobilin via enzyme-bound bilin radical intermediates is proposed. The mechanistic insight of these studies, along with homology modeling, have provided new insight into the catalytic mechanisms of other members of the ferredoxin-dependent bilin reductase family that are widespread in oxygenic photosynthetic organisms.
Collapse
Affiliation(s)
- Shih-Long Tu
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | |
Collapse
|
796
|
Jaubert M, Lavergne J, Fardoux J, Hannibal L, Vuillet L, Adriano JM, Bouyer P, Pignol D, Giraud E, Verméglio A. A singular bacteriophytochrome acquired by lateral gene transfer. J Biol Chem 2007; 282:7320-8. [PMID: 17218312 DOI: 10.1074/jbc.m611173200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacteriophytochromes are phytochrome-like proteins that mediate photosensory responses in various bacteria according to their light environment. The genome of the photosynthetic and plant-symbiotic Bradyrhizobium sp. strain ORS278 revealed the presence of a genomic island acquired by lateral transfer harboring a bacteriophytochrome gene, BrBphP3.ORS278, and genes involved in the synthesis of phycocyanobilin and gas vesicles. The corresponding protein BrBphP3.ORS278 is phylogenetically distant from the other (bacterio)phytochromes described thus far and displays a series of unusual properties. It binds phycocyanobilin as a chromophore, a unique feature for a bacteriophytochrome. Moreover, its C-terminal region is short and displays no homology with any known functional domain. Its dark-adapted state absorbs maximally around 610 nm, an unusually short wavelength for (bacterio)phytochromes. This form is designated as Po for orange-absorbing form. Upon illumination, a photo-reversible switch occurs between the Po form and a red (670 nm)-absorbing form (Pr), which rapidly backreacts in the dark. Because of this instability, illumination results in a mixture of the Po and Pr states in proportions that depend on the intensity. These uncommon features suggest that BrBphP3.ORS278 could be fitted to measure light intensity rather than color.
Collapse
Affiliation(s)
- Marianne Jaubert
- Laboratoire des Symbioses Tropicales et Méditerranéennes, Campus de Baillarguet, 34398 Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
797
|
Corrochano LM. Fungal photoreceptors: sensory molecules for fungal development and behaviour. Photochem Photobiol Sci 2007; 6:725-36. [PMID: 17609765 DOI: 10.1039/b702155k] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Light regulates fungal development and behaviour and activates metabolic pathways. In addition, light is one of the many signals that fungi use to perceive and interact with the environment. In the ascomycete Neurospora crassa blue light is perceived by the white collar (WC) complex, a protein complex formed by WC-1 and WC-2. WC-1 is a protein with a flavin-binding domain and a zinc-finger domain, and interacts with WC-2, another zinc-finger domain protein. The WC complex operates as a photoreceptor and a transcription factor for blue-light responses in Neurospora. Proteins similar to WC-1 and WC-2 have been described in other fungi, suggesting a general role for the WC complex as a fungal receptor for blue light. The ascomycete Aspergillus nidulans uses red light perceived by a fungal phytochrome as a signal to regulate sexual and asexual development. In addition, other photoreceptors, rhodopsins and cryptochromes, have been identified in fungi, but their functional relevance has not been elucidated. The investigation of fungal light responses provides an opportunity to understand how fungi perceive the environment and to identify the mechanisms involved in the regulation by light of cellular development and metabolism.
Collapse
Affiliation(s)
- Luis M Corrochano
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes 6, Apartado 1095, E-41080, Sevilla, Spain.
| |
Collapse
|
798
|
Somers DE, Fujiwara S, Kim WY, Suh SS. Posttranslational photomodulation of circadian amplitude. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2007; 72:193-200. [PMID: 18419277 DOI: 10.1101/sqb.2007.72.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The transcription-translation feedback loops that form our current view of how the core mechanism of the clock operates is being challenged, as more and more posttranslational events are seen as essential to a full understanding of oscillator function. But in addition to phosphorylation, other processes may be involved. Here, a novel mechanism of posttranslational photomodulation of circadian amplitude is described that uniquely ties together light perception, protein stabilization, and proteolysis. In the process, the waveform of a core clock component is sharpened or "sculpted," resulting in appropriately high amplitude and proper phasing to obtain normal clock function.
Collapse
Affiliation(s)
- D E Somers
- Department of Plant Cellular and Molecular Biology, Ohio State University Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
799
|
Mathews S. Phytochrome-mediated development in land plants: red light sensing evolves to meet the challenges of changing light environments. Mol Ecol 2006; 15:3483-503. [PMID: 17032252 DOI: 10.1111/j.1365-294x.2006.03051.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Phytochromes are photoreceptors that provide plants with circadian, seasonal, and positional information critical for the control of germination, seedling development, shade avoidance, reproduction, dormancy, and sleep movements. Phytochromes are unique among photoreceptors in their capacity to interconvert between a red-absorbing form (absorption maximum of approximately 660 nm) and a far-red absorbing form (absorption maximum of approximately 730 nm), which occur in a dynamic equilibrium within plant cells, corresponding to the proportions of red and far-red energy in ambient light. Because pigments in stems and leaves absorb wavelengths below about 700 nm, this provides plants with an elegant system for detecting their position relative to other plants, with which the plants compete for light. Certain aspects of phytochrome-mediated development outside of flowering plants are strikingly similar to those that have been characterized in Arabidopsis thaliana and other angiosperms. However, early diverging land plants have fewer distinct phytochrome gene lineages, suggesting that both diversification and subfunctionalization have been important in the evolution of the phytochrome gene family. There is evidence that subfunctionalization proceeded by the partitioning among paralogues of photosensory specificity, physiological response modes, and light-regulated gene expression and protein stability. Parallel events of duplication and functional divergence may have coincided with the evolution of canopy shade and the increasing complexity of the light environment. Within angiosperms, patterns of functional divergence are clade-specific and the roles of phytochromes in A. thaliana change across environments, attesting to the evolutionary flexibility and contemporaneous plasticity of phytochrome signalling in the control of development.
Collapse
Affiliation(s)
- Sarah Mathews
- Arnold Arboretum of Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
800
|
Natori C, Kim JI, Bhoo SH, Han YJ, Hanzawa H, Furuya M, Song PS. Differential interactions of phytochrome A (Pr vs. Pfr) with monoclonal antibodies probed by a surface plasmon resonance technique. Photochem Photobiol Sci 2006; 6:83-9. [PMID: 17200742 DOI: 10.1039/b611077k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phytochromes are red- and far-red light-reversible photoreceptors for photomorphogenesis in plants. Phytochrome A is a dimeric chromopeptide that mediates very low fluence and high irradiance responses. To analyze the surface properties of phytochrome A (phyA), the epitopes of 21 anti-phyA monoclonal antibodies were determined by variously engineered recombinant phyA proteins and the dissociation constants of seven anti-phyA monoclonal antibodies with phyA were measured using a surface plasmon resonance (SPR)-based resonant mirror biosensor (IAsys). Purified oat phyA was immobilized on the sensor surface using a carboxymethyl dextran cuvette in advance, and the interactions of each chosen monoclonal antibody against phyA in either red light absorbing form (Pr) or far-red light absorbing form (Pfr) at different concentrations were monitored. The binding profiles were analyzed using the FAST Fit program of IAsys. The resultant values of dissociation constants clearly demonstrated the differential affinities between the phyA epitopes and the monoclonal antibodies dependent upon Pr vs. Pfr conformations. Monoclonal antibody mAP20 preferentially recognized the epitope at amino acids 653-731 in the Pr form, whereas mAA02, mAP21 and mAR07/mAR08 displayed preferential affinities for the Pfr's surfaces at epitopes 494-601 (the hinge region between the N- and C-terminal domains), 601-653 (hinge in PASI domain), and 772-1128 (C-terminal domain), respectively. The N-terminal extension (1-74) was not recognized by mAP09 and mAP15, suggesting that the N-terminal extreme is not exposed in the native conformation of phyA. On the other hand, the C-terminal domain becomes apparently exposed on Pr-to-Pfr phototransformation, suggesting an inter-domain cross-talk. The use of surface plasmon resonance spectroscopy offers a new approach to study the surface properties of phytochromes associated with the photoreversible structural changes, as well as for the study of protein-protein interactions of phytochromes with their interacting proteins involved in light signaling events in plants.
Collapse
Affiliation(s)
- Chihoko Natori
- Hitachi Advanced Research Laboratory, Hatoyama, Saitama 350-0395, Japan
| | | | | | | | | | | | | |
Collapse
|