751
|
Constitutive expression of fluorescent protein by Aspergillus var. niger and Aspergillus carbonarius to monitor fungal colonization in maize plants. J Microbiol Methods 2013; 94:381-9. [PMID: 23899775 DOI: 10.1016/j.mimet.2013.07.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Revised: 07/17/2013] [Accepted: 07/17/2013] [Indexed: 11/21/2022]
Abstract
Aspergillus niger and Aspergillus carbonarius are two species in the Aspergillus section Nigri (black-spored aspergilli) frequently associated with peanut (Arachis hypogea), maize (Zea mays), and other plants as pathogens. These infections are symptomless and as such are major concerns since some black aspergilli produce important mycotoxins, ochratoxins A, and the fumonisins. To facilitate the study of the black aspergilli-maize interactions with maize during the early stages of infections, we developed a method that used the enhanced yellow fluorescent protein (eYFP) and the monomeric red fluorescent protein (mRFP1) to transform A. niger and A. carbonarius, respectively. The results were constitutive expressions of the fluorescent genes that were stable in the cytoplasms of hyphae and conidia under natural environmental conditions. The hyphal in planta distribution in 21-day-old seedlings of maize were similar wild type and transformants of A. niger and A. carbonarius. The in planta studies indicated that both wild type and transformants internally colonized leaf, stem and root tissues of maize seedlings, without any visible disease symptoms. Yellow and red fluorescent strains were capable of invading epidermal cells of maize roots intercellularly within the first 3 days after inoculation, but intracellular hyphal growth was more evident after 7 days of inoculation. We also tested the capacity of fluorescent transformants to produce ochratoxin A and the results with A. carbonarius showed that this transgenic strain produced similar concentrations of this secondary metabolite. This is the first report on the in planta expression of fluorescent proteins that should be useful to study the internal plant colonization patterns of two ochratoxigenic species in the Aspergillus section Nigri.
Collapse
|
752
|
Protein labeling with fluorogenic probes for no-wash live-cell imaging of proteins. Curr Opin Chem Biol 2013; 17:644-50. [DOI: 10.1016/j.cbpa.2013.05.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 12/11/2022]
|
753
|
Fusion of mApple and Venus fluorescent proteins to the Sindbis virus E2 protein leads to different cell-binding properties. Virus Res 2013; 177:138-46. [PMID: 23916968 DOI: 10.1016/j.virusres.2013.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/12/2013] [Accepted: 07/17/2013] [Indexed: 11/23/2022]
Abstract
Fluorescent proteins (FPs) are widely used in real-time single virus particle studies to visualize, track and quantify the spatial and temporal parameters of viral pathways. However, potential functional differences between the wild type and the FP-tagged virus may specifically affect particular stages in the virus life-cycle. In this work, we genetically modified the E2 spike protein of Sindbis virus (SINV) with two FPs. We inserted mApple, a red FP, or Venus, a yellow FP, at the N-terminus of the E2 protein of SINV to make SINV-Apple and SINV-Venus. Our results indicate that SINV-Apple and SINV-Venus have similar levels of infectivity and are morphologically similar to SINV-wild-type by negative stain transmission electron microscopy. Both mutants are highly fluorescent and have excellent single-particle tracking properties. However, despite these similarities, when measuring cell entry at the single-particle level, we found that SINV-Apple and SINV-Venus are different in their interaction with the cell surface and FPs are not always interchangeable. We went on to determine that the FP changes the net surface charge on the virus particles, the folding of the spike proteins, and the conformation of the spikes on the virus particle surface, ultimately leading to different cell-binding properties between SINV-Apple and SINV-Venus. Our results are consistent with recent findings that FPs may alter the biological and cellular localization properties of bacterial proteins to which they are fused.
Collapse
|
754
|
Live-cell imaging tool optimization to study gene expression levels and dynamics in single cells of Bacillus cereus. Appl Environ Microbiol 2013; 79:5643-51. [PMID: 23851094 DOI: 10.1128/aem.01347-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Single-cell methods are a powerful application in microbial research to study the molecular mechanism underlying phenotypic heterogeneity and cell-to-cell variability. Here, we describe the optimization and application of single-cell time-lapse fluorescence microscopy for the food spoilage bacterium Bacillus cereus specifically. This technique is useful to study cellular development and adaptation, gene expression, protein localization, protein mobility, and cell-to-cell communication over time at the single-cell level. By adjusting existing protocols, we have enabled the visualization of growth and development of single B. cereus cells within a microcolony over time. Additionally, several different fluorescent reporter proteins were tested in order to select the most suitable green fluorescent protein (GFP) and red fluorescent protein (RFP) candidates for visualization of growth stage- and cell compartment-specific gene expression in B. cereus. With a case study concerning cotD expression during sporulation, we demonstrate the applicability of time-lapse fluorescence microscopy. It enables the assessment of gene expression levels, dynamics, and heterogeneity at the single-cell level. We show that cotD is not heterogeneously expressed among cells of a subpopulation. Furthermore, we discourage using plasmid-based reporter fusions for such studies, due to an introduced heterogeneity through copy number differences. This stresses the importance of using single-copy integrated reporter fusions for single-cell studies.
Collapse
|
755
|
Dong H, Cheung SH, Liang Y, Wang B, Ramalingam R, Wang P, Sun H, Cheng SH, Lam YW. “Stainomics”: Identification of mitotracker labeled proteins in mammalian cells. Electrophoresis 2013; 34:1957-64. [DOI: 10.1002/elps.201200557] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Hongjuan Dong
- Department of Biology and Chemistry; City University of Hong Kong; Kowloon; Hong Kong
| | - Sau Ha Cheung
- Department of Surgery; The Chinese University of Hong Kong; Hong Kong
| | - Yimin Liang
- Department of Biology and Chemistry; City University of Hong Kong; Kowloon; Hong Kong
| | - Baojiang Wang
- Department of Biology and Chemistry; City University of Hong Kong; Kowloon; Hong Kong
| | - Rajkumar Ramalingam
- Department of Biology and Chemistry; City University of Hong Kong; Kowloon; Hong Kong
| | - Ping Wang
- Department of Biology and Chemistry; City University of Hong Kong; Kowloon; Hong Kong
| | - Hongyan Sun
- Department of Biology and Chemistry; City University of Hong Kong; Kowloon; Hong Kong
| | - Shuk Han Cheng
- Department of Biology and Chemistry; City University of Hong Kong; Kowloon; Hong Kong
| | - Yun Wah Lam
- Department of Biology and Chemistry; City University of Hong Kong; Kowloon; Hong Kong
| |
Collapse
|
756
|
Gerits A, Vanduffel W. Optogenetics in primates: a shining future? Trends Genet 2013; 29:403-11. [DOI: 10.1016/j.tig.2013.03.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/28/2013] [Accepted: 03/26/2013] [Indexed: 11/28/2022]
|
757
|
Vélez Pérez JA, Guzmán O, Navarro-García F. Steric contribution of macromolecular crowding to the time and activation energy for preprotein translocation across the endoplasmic reticulum membrane. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:012725. [PMID: 23944508 DOI: 10.1103/physreve.88.012725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Indexed: 06/02/2023]
Abstract
Protein translocation from the cytosol to the endoplasmic reticulum (ER) or vice versa, an essential process for cell function, includes the transport of preproteins destined to become secretory, luminal, or integral membrane proteins (translocation) or misfolded proteins returned to the cytoplasm to be degraded (retrotranslocation). An important aspect in this process that has not been fully studied is the molecular crowding at both sides of the ER membrane. By using models of polymers crossing a membrane through a pore, in an environment crowded by either static or dynamic spherical agents, we computed the following transport properties: the free energy, the activation energy, the force, and the transport times for translocation and retrotranslocation. Using experimental protein crowding data for the cytoplasm and ER sides, we showed that dynamic crowding, which resembles biological environments where proteins are translocated or retrotranslocated, increases markedly all the physical properties of translocation and retrotranslocation as compared with translocation in a diluted system. By contrast, transport properties in static crowded systems were similar to those in diluted conditions. In the dynamic regime, the effects of crowding were more notorious in the transport times, leading to a huge difference for large chains. We indicate that this difference is the result of the synergy between the free energy and the diffusivity of the translocating chain. That synergy leads to translocation rates similar to experimental measures in diluted systems, which indicates that the effects of crowding can be measured. Our data also indicate that effects of crowding cannot be neglected when studying translocation because protein dynamic crowding has a relevant steric contribution, which changes the properties of translocation.
Collapse
Affiliation(s)
- José Antonio Vélez Pérez
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, 09340 México, DF, México.
| | | | | |
Collapse
|
758
|
Feng Z, Zhang W, Xu J, Gauron C, Ducos B, Vriz S, Volovitch M, Jullien L, Weiss S, Bensimon D. Optical control and study of biological processes at the single-cell level in a live organism. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:072601. [PMID: 23764902 PMCID: PMC3736146 DOI: 10.1088/0034-4885/76/7/072601] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Living organisms are made of cells that are capable of responding to external signals by modifying their internal state and subsequently their external environment. Revealing and understanding the spatio-temporal dynamics of these complex interaction networks is the subject of a field known as systems biology. To investigate these interactions (a necessary step before understanding or modelling them) one needs to develop means to control or interfere spatially and temporally with these processes and to monitor their response on a fast timescale (< minute) and with single-cell resolution. In 2012, an EMBO workshop on 'single-cell physiology' (organized by some of us) was held in Paris to discuss those issues in the light of recent developments that allow for precise spatio-temporal perturbations and observations. This review will be largely based on the investigations reported there. We will first present a non-exhaustive list of examples of cellular interactions and developmental pathways that could benefit from these new approaches. We will review some of the novel tools that have been developed for the observation of cellular activity and then discuss the recent breakthroughs in optical super-resolution microscopy that allow for optical observations beyond the diffraction limit. We will review the various means to photo-control the activity of biomolecules, which allow for local perturbations of physiological processes. We will end up this review with a report on the current status of optogenetics: the use of photo-sensitive DNA-encoded proteins as sensitive reporters and efficient actuators to perturb and monitor physiological processes.
Collapse
Affiliation(s)
- Zhiping Feng
- Department of Molecular, Cellular and Integrative Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
759
|
A bilirubin-inducible fluorescent protein from eel muscle. Cell 2013; 153:1602-11. [PMID: 23768684 DOI: 10.1016/j.cell.2013.05.038] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 05/14/2013] [Accepted: 05/17/2013] [Indexed: 01/30/2023]
Abstract
The fluorescent protein toolbox has revolutionized experimental biology. Despite this advance, no fluorescent proteins have been identified from vertebrates, nor has chromogenic ligand-inducible activation or clinical utility been demonstrated. Here, we report the cloning and characterization of UnaG, a fluorescent protein from Japanese eel. UnaG belongs to the fatty-acid-binding protein (FABP) family, and expression in eel is restricted to small-diameter muscle fibers. On heterologous expression in cell lines or mouse brain, UnaG produces oxygen-independent green fluorescence. Remarkably, UnaG fluorescence is triggered by an endogenous ligand, bilirubin, a membrane-permeable heme metabolite and clinical health biomarker. The holoUnaG structure at 1.2 Å revealed a biplanar coordination of bilirubin by reversible π-conjugation, and we used this high-affinity and high-specificity interaction to establish a fluorescence-based human bilirubin assay with promising clinical utility. UnaG will be the prototype for a versatile class of ligand-activated fluorescent proteins, with applications in research, medicine, and bioengineering.
Collapse
|
760
|
Abstract
Morphogenesis, the development of the shape of an organism, is a dynamic process on a multitude of scales, from fast subcellular rearrangements and cell movements to slow structural changes at the whole-organism level. Live-imaging approaches based on light microscopy reveal the intricate dynamics of this process and are thus indispensable for investigating the underlying mechanisms. This Review discusses emerging imaging techniques that can record morphogenesis at temporal scales from seconds to days and at spatial scales from hundreds of nanometers to several millimeters. To unlock their full potential, these methods need to be matched with new computational approaches and physical models that help convert highly complex image data sets into biological insights.
Collapse
Affiliation(s)
- Philipp J Keller
- Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, VA 20147, USA.
| |
Collapse
|
761
|
Cutrale F, Salih A, Gratton E. Spectral Phasor approach for fingerprinting of photo-activatable fluorescent proteins Dronpa, Kaede and KikGR. Methods Appl Fluoresc 2013; 1:035001. [PMID: 24040513 DOI: 10.1088/2050-6120/1/3/035001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The phasor global analysis algorithm is common for fluorescence lifetime applications, but has only been recently proposed for spectral analysis. Here the phasor representation and fingerprinting is exploited in its second harmonic to determine the number and spectra of photo-activated states as well as their conversion dynamics. We follow the sequence of photo-activation of proteins over time by rapidly collecting multiple spectral images. The phasor representation of the cumulative images provides easy identification of the spectral signatures of each photo-activatable protein.
Collapse
|
762
|
Cummins TD, Higdon AN, Kramer PA, Chacko BK, Riggs DW, Salabei JK, Dell’Italia LJ, Zhang J, Darley-Usmar VM, Hill BG. Utilization of fluorescent probes for the quantification and identification of subcellular proteomes and biological processes regulated by lipid peroxidation products. Free Radic Biol Med 2013; 59:56-68. [PMID: 22954622 PMCID: PMC3522791 DOI: 10.1016/j.freeradbiomed.2012.08.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/08/2012] [Accepted: 08/09/2012] [Indexed: 01/05/2023]
Abstract
Oxidative modifications to cellular proteins are critical in mediating redox-sensitive processes such as autophagy, the antioxidant response, and apoptosis. The proteins that become modified by reactive species are often compartmentalized to specific organelles or regions of the cell. Here, we detail protocols for identifying the subcellular protein targets of lipid oxidation and for linking protein modifications with biological responses such as autophagy. Fluorophores such as BODIPY-labeled arachidonic acid or BODIPY-conjugated electrophiles can be paired with organelle-specific probes to identify specific biological processes and signaling pathways activated in response to oxidative stress. In particular, we demonstrate "negative" and "positive" labeling methods using BODIPY-tagged reagents for examining oxidative modifications to protein nucleophiles. The protocol describes the use of these probes in slot immunoblotting, quantitative Western blotting, in-gel fluorescence, and confocal microscopy techniques. In particular, the use of the BODIPY fluorophore with organelle- or biological process-specific dyes and chromophores is highlighted. These methods can be used in multiple cell types as well as isolated organelles to interrogate the role of oxidative modifications in regulating biological responses to oxidative stress.
Collapse
Affiliation(s)
- Timothy D. Cummins
- Diabetes and Obesity Center, Institute of Molecular Cardiology, and Department of Medicine, University of Louisville, Louisville, KY 40202
| | - Ashlee N. Higdon
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Philip A. Kramer
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Balu K. Chacko
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Medicine, Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Daniel W. Riggs
- Diabetes and Obesity Center, Institute of Molecular Cardiology, and Department of Medicine, University of Louisville, Louisville, KY 40202
| | - Joshua K. Salabei
- Diabetes and Obesity Center, Institute of Molecular Cardiology, and Department of Medicine, University of Louisville, Louisville, KY 40202
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40202
| | - Louis J. Dell’Italia
- Department of Medicine, Center for Heart Failure Research, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Jianhua Zhang
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Veterans Affairs Medical Center, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Victor M. Darley-Usmar
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Bradford G. Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, and Department of Medicine, University of Louisville, Louisville, KY 40202
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY 40202
- Department of Physiology and Biophysics, University of Louisville, Louisville, KY 40202
| |
Collapse
|
763
|
Pletneva NV, Pletnev VZ, Souslova E, Chudakov DM, Lukyanov S, Martynov VI, Arhipova S, Artemyev I, Wlodawer A, Dauter Z, Pletnev S. Yellow fluorescent protein phiYFPv (Phialidium): structure and structure-based mutagenesis. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:1005-12. [PMID: 23695245 PMCID: PMC3663121 DOI: 10.1107/s0907444913004034] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 02/09/2013] [Indexed: 11/10/2022]
Abstract
The yellow fluorescent protein phiYFPv (λem(max) ≃ 537 nm) with improved folding has been developed from the spectrally identical wild-type phiYFP found in the marine jellyfish Phialidium. The latter fluorescent protein is one of only two known cases of naturally occurring proteins that exhibit emission spectra in the yellow-orange range (535-555 nm). Here, the crystal structure of phiYFPv has been determined at 2.05 Å resolution. The `yellow' chromophore formed from the sequence triad Thr65-Tyr66-Gly67 adopts the bicyclic structure typical of fluorophores emitting in the green spectral range. It was demonstrated that perfect antiparallel π-stacking of chromophore Tyr66 and the proximal Tyr203, as well as Val205, facing the chromophore phenolic ring are chiefly responsible for the observed yellow emission of phiYFPv at 537 nm. Structure-based site-directed mutagenesis has been used to identify the key functional residues in the chromophore environment. The obtained results have been utilized to improve the properties of phiYFPv and its homologous monomeric biomarker tagYFP.
Collapse
Affiliation(s)
- Nadya V. Pletneva
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir Z. Pletnev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Ekaterina Souslova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Dmitry M. Chudakov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Sergey Lukyanov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
- Nizhny Novgorod State Medical Academy, Nizhny Novgorod, Russian Federation
| | - Vladimir I. Martynov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Svetlena Arhipova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Igor Artemyev
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander Wlodawer
- Protein Structure Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Zbigniew Dauter
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL 60439, USA
| | - Sergei Pletnev
- Synchrotron Radiation Research Section, Macromolecular Crystallography Laboratory, National Cancer Institute, Argonne, IL 60439, USA
- Basic Research Program, SAIC-Frederick, 9700 South Cass Avenue, Argonne, IL 60439, USA
| |
Collapse
|
764
|
Fusion of a flavin-based fluorescent protein to hydroxynitrile lyase from Arabidopsis thaliana improves enzyme stability. Appl Environ Microbiol 2013; 79:4727-33. [PMID: 23728815 DOI: 10.1128/aem.00795-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hydroxynitrile lyase from Arabidopsis thaliana (AtHNL) was fused to different fluorescent reporter proteins. Whereas all fusion constructs retained enzymatic activity and fluorescence in vivo and in vitro, significant differences in activity and pH stability were observed. In particular, flavin-based fluorescent reporter (FbFP) fusions showed almost 2 orders of magnitude-increased half-lives in the weakly acidic pH range compared to findings for the wild-type enzyme. Analysis of the quaternary structure of the respective FbFP-AtHNL fusion proteins suggested that this increased stability is apparently caused by oligomerization mediated via the FbFP tag. Moreover, the increased stability of the fusion proteins enabled the efficient synthesis of (R)-mandelonitrile in an aqueous-organic two-phase system at a pH of <5. Remarkably, (R)-mandelonitrile synthesis is not possible using wild-type AtHNL under the same conditions due to the inherent instability of this enzyme below pH 5. The fusion strategy presented here reveals a surprising means for the stabilization of enzymes and stresses the importance of a thorough in vitro characterization of in vivo-employed fluorescent fusion proteins.
Collapse
|
765
|
Characterization of flavin-based fluorescent proteins: an emerging class of fluorescent reporters. PLoS One 2013; 8:e64753. [PMID: 23741385 PMCID: PMC3669411 DOI: 10.1371/journal.pone.0064753] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 04/18/2013] [Indexed: 12/19/2022] Open
Abstract
Fluorescent reporter proteins based on flavin-binding photosensors were recently developed as a new class of genetically encoded probes characterized by small size and oxygen-independent maturation of fluorescence. Flavin-based fluorescent proteins (FbFPs) address two major limitations associated with existing fluorescent reporters derived from the green fluorescent protein (GFP)–namely, the overall large size and oxygen-dependent maturation of fluorescence of GFP. However, FbFPs are at a nascent stage of development and have been utilized in only a handful of biological studies. Importantly, a full understanding of the performance and properties of FbFPs as a practical set of biological probes is lacking. In this work, we extensively characterize three FbFPs isolated from Pseudomonas putida, Bacillus subtilis, and Arabidopsis thaliana, using in vitro studies to assess probe brightness, oligomeric state, maturation time, fraction of fluorescent holoprotein, pH tolerance, redox sensitivity, and thermal stability. Furthermore, we validate FbFPs as stable molecular tags using in vivo studies by constructing a series of FbFP-based transcriptional constructs to probe promoter activity in Escherichia coli. Overall, FbFPs show key advantages as broad-spectrum biological reporters including robust pH tolerance (4–11), thermal stability (up to 60°C), and rapid maturation of fluorescence (<3 min.). In addition, the FbFP derived from Arabidopsis thaliana (iLOV) emerged as a stable and nonperturbative reporter of promoter activity in Escherichia coli. Our results demonstrate that FbFP-based reporters have the potential to address key limitations associated with the use of GFP, such as pH-sensitive fluorescence and slow kinetics of fluorescence maturation (10–40 minutes for half maximal fluorescence recovery). From this view, FbFPs represent a useful new addition to the fluorescent reporter protein palette, and our results constitute an important framework to enable researchers to implement and further engineer improved FbFP-based reporters with enhanced brightness and tighter flavin binding, which will maximize their potential benefits.
Collapse
|
766
|
Baranov MS, Lukyanov KA, Yampolsky IV. Synthesis of the chromophores of fluorescent proteins and their analogs. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2013; 39:255-76. [DOI: 10.1134/s1068162013030047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
767
|
Tiwari DK, Nagai T. Smart fluorescent proteins: Innovation for barrier-free superresolution imaging in living cells. Dev Growth Differ 2013; 55:491-507. [DOI: 10.1111/dgd.12064] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2013] [Revised: 03/06/2013] [Accepted: 03/22/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Dhermendra K. Tiwari
- The Institute of Scientific and Industrial Research; Osaka University; Mihogaoka 8-1; Ibaraki; Osaka; 567-0047; Japan
| | - Takeharu Nagai
- The Institute of Scientific and Industrial Research; Osaka University; Mihogaoka 8-1; Ibaraki; Osaka; 567-0047; Japan
| |
Collapse
|
768
|
Takagi C, Sakamaki K, Morita H, Hara Y, Suzuki M, Kinoshita N, Ueno N. Transgenic Xenopus laevis for live imaging in cell and developmental biology. Dev Growth Differ 2013; 55:422-33. [PMID: 23480392 DOI: 10.1111/dgd.12042] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/08/2013] [Accepted: 01/08/2013] [Indexed: 01/28/2023]
Abstract
The stable transgenesis of genes encoding functional or spatially localized proteins, fused to fluorescent proteins such as green fluorescent protein (GFP) or red fluorescent protein (RFP), is an extremely important research tool in cell and developmental biology. Transgenic organisms constructed with fluorescent labels for cell membranes, subcellular organelles, and functional proteins have been used to investigate cell cycles, lineages, shapes, and polarity, in live animals and in cells or tissues derived from these animals. Genes of interest have been integrated and maintained in generations of transgenic animals, which have become a valuable resource for the cell and developmental biology communities. Although the use of Xenopus laevis as a transgenic model organism has been hampered by its relatively long reproduction time (compared to Drosophila melanogaster and Caenorhabditis elegans), its large embryonic cells and the ease of manipulation in early embryos have made it a historically valuable preparation that continues to have tremendous research potential. Here, we report on the Xenopus laevis transgenic lines our lab has generated and discuss their potential use in biological imaging.
Collapse
Affiliation(s)
- Chiyo Takagi
- National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
769
|
Watkins JL, Kim H, Markwardt ML, Chen L, Fromme R, Rizzo MA, Wachter RM. The 1.6 Å resolution structure of a FRET-optimized Cerulean fluorescent protein. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:767-73. [PMID: 23633585 PMCID: PMC3640468 DOI: 10.1107/s0907444913001546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 01/16/2013] [Indexed: 11/11/2022]
Abstract
Genetically encoded cyan fluorescent proteins (CFPs) bearing a tryptophan-derived chromophore are commonly used as energy-donor probes in Förster resonance energy transfer (FRET) experiments useful in live cell-imaging applications. In recent years, significant effort has been expended on eliminating the structural and excited-state heterogeneity of these proteins, which has been linked to undesirable photophysical properties. Recently, mCerulean3, a descendant of enhanced CFP, was introduced as an optimized FRET donor protein with a superior quantum yield of 0.87. Here, the 1.6 Å resolution X-ray structure of mCerulean3 is reported. The chromophore is shown to adopt a planar trans configuration at low pH values, indicating that the acid-induced isomerization of Cerulean has been eliminated. β-Strand 7 appears to be well ordered in a single conformation, indicating a loss of conformational heterogeneity in the vicinity of the chromophore. Although the side chains of Ile146 and Leu167 appear to exist in two rotamer states, they are found to be well packed against the indole group of the chromophore. The Ser65 reversion mutation allows improved side-chain packing of Leu220. A structural comparison with mTurquoise2 is presented and additional engineering strategies are discussed.
Collapse
Affiliation(s)
- Jennifer L. Watkins
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Hanseong Kim
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Michele L. Markwardt
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201-1559, USA
| | - Liqing Chen
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Raimund Fromme
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| | - Mark A. Rizzo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201-1559, USA
| | - Rebekka M. Wachter
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA
| |
Collapse
|
770
|
Abe T, Fujimori T. Reporter mouse lines for fluorescence imaging. Dev Growth Differ 2013; 55:390-405. [PMID: 23621623 DOI: 10.1111/dgd.12062] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/19/2013] [Accepted: 03/20/2013] [Indexed: 12/16/2022]
Abstract
The use of live imaging approaches to examine and understand the dynamic processes that take place during mouse development has become widespread. Several groups have reported their success in generating different reporter mouse lines that express a variety of fluorescent markers for imaging. However, there is currently no established database of the reporter mouse lines available for live imaging, such as the Cre transgenic lines (Cre-X-Mice). Researchers therefore often have difficulties in determining which reporter mouse line meets their research purposes. In this review, we summarize some of the reporter mouse lines that have been generated for live imaging studies, and discuss their characteristics.
Collapse
Affiliation(s)
- Takaya Abe
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology (CDB), 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan
| | | |
Collapse
|
771
|
Sato Y, Lansford R. Transgenesis and imaging in birds, and available transgenic reporter lines. Dev Growth Differ 2013; 55:406-21. [PMID: 23621574 DOI: 10.1111/dgd.12058] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/10/2013] [Accepted: 03/14/2013] [Indexed: 12/17/2022]
Abstract
Avian embryos are important model organism to study higher vertebrate development. Easy accessibility to developing avian embryos enables a variety of experimental applications to understand specific functions of molecules, tissue-tissue interactions, and cell lineages. The whole-mount ex ovo culture technique for avian embryos permits time-lapse imaging analysis for a better understanding of cell behaviors underlying tissue morphogenesis in physiological conditions. To study mechanisms of blood vessel formation and remodeling in developing embryos by using a time-lapse imaging approach, a transgenic quail model, Tg(tie1:H2B-eYFP), was generated. From a cell behavior perspective, Tg(tie1:H2B-eYFP) quail embryos are a suitable model to shed light on how the structure and pattern of blood vessels are established in higher vertebrates. In this manuscript, we give an overview on the biological and technological background of the transgenic quail model and describe procedures for the ex ovo culture of quail embryos and time-lapse imaging analysis.
Collapse
Affiliation(s)
- Yuki Sato
- Priority Organization for Innovation and Excellence, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811, Japan.
| | | |
Collapse
|
772
|
Ma G. Background-free in vivo time domain optical molecular imaging using colloidal quantum dots. ACS APPLIED MATERIALS & INTERFACES 2013; 5:2835-2844. [PMID: 23448359 DOI: 10.1021/am3028519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The interest in optical molecular imaging of small animals in vivo has been steadily increased in the last two decades as it is being adopted by not only academic laboratories but also the biotechnical and pharmaceutical industries. In this Spotlight paper, the elements for in vivo optical molecular imaging are briefly reviewed, including contrast agents, i.e., various fluorescent reporters, and the most commonly used technologies to detect the reporters. The challenges particularly for in vivo fluorescence imaging are discussed and solutions to overcome the said-challenges are presented. An advanced imaging technique, in vivo fluorescence lifetime imaging, is introduced together with a few application examples. Taking advantage of the long fluorescence lifetime of quantum dots, a method to achieve background-free in vivo fluorescence small animal imaging is demonstrated.
Collapse
Affiliation(s)
- Guobin Ma
- ART Advanced Research Technologies Inc., 2300 Alfred-Nobel Boulevard, Montreal, Quebec, Canada H4S 2A4.
| |
Collapse
|
773
|
Bock AM, Knorr D, Kaufman DS. Development, expansion, and in vivo monitoring of human NK cells from human embryonic stem cells (hESCs) and and induced pluripotent stem cells (iPSCs). J Vis Exp 2013:e50337. [PMID: 23644738 DOI: 10.3791/50337] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We present a method for deriving natural killer (NK) cells from undifferentiated hESCs and iPSCs using a feeder-free approach. This method gives rise to high levels of NK cells after 4 weeks culture and can undergo further 2-log expansion with artificial antigen presenting cells. hESC- and iPSC-derived NK cells developed in this system have a mature phenotype and function. The production of large numbers of genetically modifiable NK cells is applicable for both basic mechanistic as well as anti-tumor studies. Expression of firefly luciferase in hESC-derived NK cells allows a non-invasive approach to follow NK cell engraftment, distribution, and function. We also describe a dual-imaging scheme that allows separate monitoring of two different cell populations to more distinctly characterize their interactions in vivo. This method of derivation, expansion, and dual in vivo imaging provides a reliable approach for producing NK cells and their evaluation which is necessary to improve current NK cell adoptive therapies.
Collapse
Affiliation(s)
- Allison M Bock
- Department of Medicine Hematology, Oncology, and Transplant, University of Minnesota, Minneapolis, USA
| | | | | |
Collapse
|
774
|
Piatkevich KD, Subach FV, Verkhusha VV. Engineering of bacterial phytochromes for near-infrared imaging, sensing, and light-control in mammals. Chem Soc Rev 2013; 42:3441-52. [PMID: 23361376 PMCID: PMC3618476 DOI: 10.1039/c3cs35458j] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Near-infrared light is favourable for imaging in mammalian tissues due to low absorbance of hemoglobin, melanin, and water. Therefore, fluorescent proteins, biosensors and optogenetic constructs for optimal imaging, optical readout and light manipulation in mammals should have fluorescence and action spectra within the near-infrared window. Interestingly, natural Bacterial Phytochrome Photoreceptors (BphPs) utilize the low molecular weight biliverdin, found in most mammalian tissues, as a photoreactive chromophore. Due to their near-infrared absorbance BphPs are preferred templates for designing optical molecular tools for applications in mammals. Moreover, BphPs spectrally complement existing genetically-encoded probes. Several BphPs were already developed into the near-infrared fluorescent variants. Based on the analysis of the photochemistry and structure of BphPs we suggest a variety of possible BphP-based fluorescent proteins, biosensors, and optogenetic tools. Putative design strategies and experimental considerations for such probes are discussed.
Collapse
Affiliation(s)
- Kiryl D. Piatkevich
- Gruss-Lipper Biophotonics Center and Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA. Fax: +1 (718) 430-8996; Tel: +1 (718) 430-8591
| | - Fedor V. Subach
- Gruss-Lipper Biophotonics Center and Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA. Fax: +1 (718) 430-8996; Tel: +1 (718) 430-8591
| | - Vladislav V. Verkhusha
- Gruss-Lipper Biophotonics Center and Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA. Fax: +1 (718) 430-8996; Tel: +1 (718) 430-8591
| |
Collapse
|
775
|
Kennis JTM, van Stokkum IHM, Peterson DS, Pandit A, Wachter RM. Ultrafast proton shuttling in Psammocora cyan fluorescent protein. J Phys Chem B 2013; 117:11134-43. [PMID: 23534404 DOI: 10.1021/jp401114e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cyan, green, yellow, and red fluorescent proteins (FPs) homologous to green fluorescent protein (GFP) are used extensively as model systems to study fundamental processes in photobiology, such as the capture of light energy by protein-embedded chromophores, color tuning by the protein matrix, energy conversion by Förster resonance energy transfer (FRET), and excited-state proton transfer (ESPT) reactions. Recently, a novel cyan fluorescent protein (CFP) termed psamFP488 was isolated from the genus Psammocora of reef building corals. Within the cyan color class, psamFP488 is unusual because it exhibits a significantly extended Stokes shift. Here, we applied ultrafast transient absorption and pump-dump-probe spectroscopy to investigate the mechanistic basis of psamFP488 fluorescence, complemented with fluorescence quantum yield and dynamic light scattering measurements. Transient absorption spectroscopy indicated that, upon excitation at 410 nm, the stimulated cyan emission rises in 170 fs. With pump-dump-probe spectroscopy, we observe a very short-lived (110 fs) ground-state intermediate that we assign to the deprotonated, anionic chromophore. In addition, a minor fraction (14%) decays with 3.5 ps to the ground state. Structural analysis of homologous proteins indicates that Glu-167 is likely positioned in sufficiently close vicinity to the chromophore to act as a proton acceptor. Our findings support a model where unusually fast ESPT from the neutral chromophore to Glu-167 with a time constant of 170 fs and resulting emission from the anionic chromophore forms the basis of the large psamFP488 Stokes shift. When dumped to the ground state, the proton on neutral Glu is very rapidly shuttled back to the anionic chromophore in 110 fs. Proton shuttling in excited and ground states is a factor of 20-4000 faster than in GFP, which probably results from a favorable hydrogen-bonding geometry between the chromophore phenolic oxygen and the glutamate acceptor, possibly involving a short hydrogen bond. At any time in the reaction, the proton is localized on either the chromophore or Glu-167, which implies that most likely no low-barrier hydrogen bond exists between these molecular groups. This work supports the notion that proton transfer in biological systems, be it in an electronic excited or ground state, can be an intrinsically fast process that occurs on a 100 fs time scale. PsamFP488 represents an attractive model system that poses an ultrafast proton transfer regime in discrete steps. It constitutes a valuable model system in addition to wild type GFP, where proton transfer is relatively slow, and the S65T/H148D GFP mutant, where the effects of low-barrier hydrogen bonds dominate.
Collapse
Affiliation(s)
- John T M Kennis
- Department of Physics and Astronomy and LaserLaB, Faculty of Sciences, Vrije Universiteit , De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
776
|
Jásik J, Boggetti B, Baluška F, Volkmann D, Gensch T, Rutten T, Altmann T, Schmelzer E. PIN2 turnover in Arabidopsis root epidermal cells explored by the photoconvertible protein Dendra2. PLoS One 2013; 8:e61403. [PMID: 23637828 PMCID: PMC3630207 DOI: 10.1371/journal.pone.0061403] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/10/2013] [Indexed: 11/18/2022] Open
Abstract
The steady state level of integral membrane proteins is dependent on a strictly controlled delivery and removal. Here we show that Dendra2, a green-to-red photoconvertible fluorescent protein, is a suitable tool to study protein turnover in plants. We characterized the fluorescence properties of Dendra2 expressed either as a free protein or as a tag in Arabidopsis thaliana roots and optimized photoconversion settings to study protein turnover. Dendra2 was fused to the PIN2 protein, an auxin transporter in the root tip, and by time-lapse imaging and assessment of red and green signal intensities in the membrane after photoconversion we quantified directly and simultaneously the rate of PIN2 delivery of the newly synthesized protein into the plasma membrane as well as the disappearance of the protein from the plasma membrane due to degradation. Additionally we have verified several factors which are expected to affect PIN2 protein turnover and therefore potentially regulate root growth.
Collapse
Affiliation(s)
- Ján Jásik
- Max Planck Institute for Plant Breeding Research, Köln, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
777
|
Persson F, Barkefors I, Elf J. Single molecule methods with applications in living cells. Curr Opin Biotechnol 2013; 24:737-44. [PMID: 23578465 DOI: 10.1016/j.copbio.2013.03.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/20/2013] [Accepted: 03/14/2013] [Indexed: 12/12/2022]
Abstract
Our knowledge about dynamic processes in biological cells systems has been obtained roughly on two levels of detail; molecular level experiments with purified components in test tubes and system wide experiments with indirect readouts in living cells. However, with the development of single molecule methods for application in living cells, this partition has started to dissolve. It is now possible to perform detailed biophysical experiments at high temporal resolution and to directly observe processes at the level of molecules in living cells. In this review we present single molecule methods that can easily be implemented by readers interested to venture into this exciting and expanding field. We also review some recent studies where single molecule methods have been used successfully to answer biological questions as well as some of the most common pitfalls associated with these methods.
Collapse
Affiliation(s)
- Fredrik Persson
- Department of Cell- and Molecular Biology, Science for Life Laboratory, Uppsala University, Sweden
| | | | | |
Collapse
|
778
|
Liu X, Li J, Hu C, Zhou Q, Zhang W, Hu M, Zhou J, Wang J. Significant Expansion of the Fluorescent Protein Chromophore through the Genetic Incorporation of a Metal-Chelating Unnatural Amino Acid. Angew Chem Int Ed Engl 2013; 52:4805-9. [DOI: 10.1002/anie.201301307] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Indexed: 02/04/2023]
|
779
|
Liu X, Li J, Hu C, Zhou Q, Zhang W, Hu M, Zhou J, Wang J. Significant Expansion of the Fluorescent Protein Chromophore through the Genetic Incorporation of a Metal-Chelating Unnatural Amino Acid. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301307] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
780
|
Kodama Y, Hu CD. Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives. Biotechniques 2013; 53:285-98. [PMID: 23148879 DOI: 10.2144/000113943] [Citation(s) in RCA: 198] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 09/28/2012] [Indexed: 11/23/2022] Open
Abstract
Over the past decade, bimolecular fluorescence complementation (BiFC) has emerged as a key technique to visualize protein-protein interactions in a variety of model organisms. The BiFC assay is based on reconstitution of an intact fluorescent protein when two complementary non-fluorescent fragments are brought together by a pair of interacting proteins. While the originally reported BiFC method has enabled the study of many protein-protein interactions, increasing demands to visualize protein-protein interactions under various physiological conditions have not only prompted a series of recent BiFC technology improvements, but also stimulated interest in developing completely new approaches. Here we review current BiFC technology, focusing on the development and improvement of BiFC systems, the understanding of split sites in fluorescent proteins, and enhancements in the signal-to-noise ratio. In addition, we provide perspectives on possible future improvements of the technique.
Collapse
Affiliation(s)
- Yutaka Kodama
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi, Japan.
| | | |
Collapse
|
781
|
Han S, Delvigne F, Brognaux A, Charbon GE, Sørensen SJ. Design of growth-dependent biosensors based on destabilized GFP for the detection of physiological behavior ofEscherichia coliin heterogeneous bioreactors. Biotechnol Prog 2013; 29:553-63. [DOI: 10.1002/btpr.1694] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 12/30/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Shanshan Han
- Dept. of Biology, Section of Microbiology; University of Copenhagen; Universitetsparken 15 DK 2100 Denmark
| | - Frank Delvigne
- University of Liège, Gembloux Agro-Bio Tech; Unité de Bio-industries/CWBI; Passage des Déportés 2 5030 Gembloux Belgium
| | - Alison Brognaux
- University of Liège, Gembloux Agro-Bio Tech; Unité de Bio-industries/CWBI; Passage des Déportés 2 5030 Gembloux Belgium
| | - Gitte E. Charbon
- Dept. of Biology, Section of Microbiology; University of Copenhagen; Universitetsparken 15 DK 2100 Denmark
| | - Søren J Sørensen
- Dept. of Biology, Section of Microbiology; University of Copenhagen; Universitetsparken 15 DK 2100 Denmark
| |
Collapse
|
782
|
Rahman MA, Shinjo R, Oomori T, Wörheide G. Analysis of the proteinaceous components of the organic matrix of calcitic sclerites from the soft coral Sinularia sp. PLoS One 2013; 8:e58781. [PMID: 23527022 PMCID: PMC3597568 DOI: 10.1371/journal.pone.0058781] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 02/08/2013] [Indexed: 01/20/2023] Open
Abstract
An organic matrix consisting of a protein-polysaccharide complex is generally accepted as an important medium for the calcification process. While the role this "calcified organic matrix" plays in the calcification process has long been appreciated, the complex mixture of proteins that is induced and assembled during the mineral phase of calcification remains uncharacterized in many organisms. Thus, we investigated organic matrices from the calcitic sclerites of a soft coral, Sinularia sp., and used a proteomic approach to identify the functional matrix proteins that might be involved in the biocalcification process. We purified eight organic matrix proteins and performed in-gel digestion using trypsin. The tryptic peptides were separated by nano-liquid chromatography (nano-LC) and analyzed by tandem mass spectrometry (MS/MS) using a matrix-assisted laser desorption/ionization (MALDI) - time-of-flight-time-of-flight (TOF-TOF) mass spectrometer. Periodic acid Schiff staining of an SDS-PAGE gel indicated that four proteins were glycosylated. We identified several proteins, including a form of actin, from which we identified a total of 183 potential peptides. Our findings suggest that many of those peptides may contribute to biocalcification in soft corals.
Collapse
Affiliation(s)
- M Azizur Rahman
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology, Ludwig-Maximilians-Universität München, München, Germany.
| | | | | | | |
Collapse
|
783
|
Su T, Pan S, Luo Q, Zhang Z. Monitoring of dual bio-molecular events using FRET biosensors based on mTagBFP/sfGFP and mVenus/mKOκ fluorescent protein pairs. Biosens Bioelectron 2013; 46:97-101. [PMID: 23517824 DOI: 10.1016/j.bios.2013.02.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 02/06/2013] [Accepted: 02/11/2013] [Indexed: 11/25/2022]
Abstract
Fluorescent protein (FP)-based Förster resonance energy transfer (FRET) biosensors are powerful tools for dynamically measuring cellular molecular events because they offer high spatial and temporal resolution in living cells. Despite the broad use of FP-based FRET biosensors in cell biology, imaging of multiple molecular events (multi-parameter molecular imaging) in single cells using current FRET pairs remains difficult because it usually requires a control group for additional data calibration. Hence, spectrally compatible FRET pairs that do not require complex image calibration are the key to widespread applications of FP-based FRET biosensors in multi-parameter molecular imaging. Here, we report a new combination of spectrally distinguishable FRET pairs for dual-parameter molecular imaging: mTagBFP/sfGFP (blue and green FP, B/G) and mVenus/mKOκ (yellow and orange FP, Y/O). We demonstrate that additional image correction is not necessary for these dual FRET pairs. Using these dual FRET pairs, we achieve simultaneous imaging of Src and Ca(2+) signaling in single living cells stimulated with epithelial growth factor (EGF). By converting traditional FRET biosensors into B/G and Y/O-based biosensors, additional applications are available to elucidate the dynamic relationships of multiple molecular events within a single living cell.
Collapse
Affiliation(s)
- Ting Su
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | |
Collapse
|
784
|
Otterstrom J, van Oijen AM. Visualization of membrane fusion, one particle at a time. Biochemistry 2013; 52:1654-68. [PMID: 23421412 DOI: 10.1021/bi301573w] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Protein-mediated fusion between phospholipid bilayers is a fundamental and necessary mechanism for many cellular processes. The short-lived nature of the intermediate states visited during fusion makes it challenging to capture precise kinetic information using classical, ensemble-averaging biophysical techniques. Recently, a number of single-particle fluorescence microscopy-based assays that allow researchers to obtain highly quantitative data about the fusion process by observing individual fusion events in real time have been developed. These assays depend upon changes in the acquired fluorescence signal to provide a direct readout for transitions between the various fusion intermediates. The resulting data yield meaningful and detailed kinetic information about the transitory states en route to productive membrane fusion. In this review, we highlight recent in vitro and in vivo studies of membrane fusion at the single-particle level in the contexts of viral membrane fusion and SNARE-mediated synaptic vesicle fusion. These studies afford insight into mechanisms of coordination between fusion-mediating proteins as well as coordination of the overall fusion process with other cellular processes. The development of single-particle approaches to investigate membrane fusion and their successful application to a number of model systems have resulted in a new experimental paradigm and open up considerable opportunities to extend these methods to other biological processes that involve membrane fusion.
Collapse
Affiliation(s)
- Jason Otterstrom
- Harvard Biophysics Program, Harvard Medical School , 240 Longwood Avenue, Boston, Massachusetts 02115, United States
| | | |
Collapse
|
785
|
Small-molecule fluorophores and fluorescent probes for bioimaging. Pflugers Arch 2013; 465:347-59. [DOI: 10.1007/s00424-013-1234-z] [Citation(s) in RCA: 180] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 01/31/2013] [Accepted: 01/31/2013] [Indexed: 12/14/2022]
|
786
|
Abstract
In commemoration of the 20th anniversary of the molecular cloning of the gene for the green fluorescent protein from the jellyfish Aequorea victoria, I would like to reflect on the development of new fluorescence imaging technology in the last two decades. As this technology has become increasingly diversified, it has become more and more of a challenge to come up with a comprehensive and exhaustive review of it. Here I will focus on optogenetics and large-scale, three-dimensional reconstruction. Those two technological innovations have been achieved in the neuroscience community owing to the combined efforts of molecular biologists and light microscopists. In addition, modern fluorescence imaging has indeed improved our understanding of the spatiotemporal regulation of fundamental biological functions at cellular level. As an example, I will introduce some findings we made regarding the movement of biomolecules across the nuclear membrane. The above-mentioned imaging approaches are possible today but were impossible two decades ago.
Collapse
Affiliation(s)
- Atsushi Miyawaki
- Brain Science Institute, RIKEN and Life Function and Dynamics, ERATO, JST, 2-1 Hirosawa, Wako-city, Saitama, Japan.
| |
Collapse
|
787
|
Dedecker P, De Schryver FC, Hofkens J. Fluorescent Proteins: Shine on, You Crazy Diamond. J Am Chem Soc 2013; 135:2387-402. [DOI: 10.1021/ja309768d] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Peter Dedecker
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Frans C. De Schryver
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Johan Hofkens
- Department of Chemistry, University of Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| |
Collapse
|
788
|
Gaikwad SM, Gunjal L, Junutula AR, Astanehe A, Gambhir SS, Ray P. Non-invasive imaging of phosphoinositide-3-kinase-catalytic-subunit-alpha (PIK3CA) promoter modulation in small animal models. PLoS One 2013; 8:e55971. [PMID: 23393606 PMCID: PMC3564913 DOI: 10.1371/journal.pone.0055971] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 01/04/2013] [Indexed: 01/08/2023] Open
Abstract
Activation of the PI3K/Akt pathway, a critical step for survival in cancer cells is often associated with decreased sensitivity to several chemotherapeutic drugs. PIK3CA gene amplification is observed in 16–24% of epithelial ovarian cancer (EOC) patients in conjunction with p53 mutations. A 900 bp long PIK3CA promoter is shown to be negatively regulated by p53 in ovarian surface epithelial cells but the consequence of chemotherapeutic drug treatments on this promoter in ovarian cancer cells is largely unknown. We aim to study the modulation of this promoter by cisplatin using an improved fusion reporter in ovarian cancer cells and tumor xenografts by non-invasive imaging approach. A PIK3CA sensor was developed using a bi-fusion reporter from a newly constructed library of bi- and tri-fusion vectors comprising of two mutant far red fluorescent proteins (mcherry/mch and tdTomato/tdt), a mutant firefly luciferase (fluc2), and a PET reporter protein (ttk). In vivo imaging of mice implanted with 293T cells transiently expressing these bi- and tri-fusion reporters along with respective controls revealed comparable activity of each reporter in the fusion background and fluc2-tdt as the most sensitive one. Repression of the PIK3CA sensor by drugs was inversely proportional to cellular p53 level in a germline (PA1) and in an EOC (A2780) cell line but not in a p53 deficient EOC (SKOV3) cell line. Bioluminescence imaging of tumor xenografts stably expressing the PIK3CA sensor in PA1 and A2780 cells exhibited attenuating activity without any change in SKOV3 tumors expressing the PIK3CA sensor after cisplatin treatment. Sequential mutation at p53 binding sites showed gradual increase in promoter activity and decreased effects of the drugs. These newly developed PIK3CA-fluc2-tdt and the mutant reporter sensors thus would be extremely useful for screening new drugs and for functional assessment of PIK3CA expression from intact cells to living subjects.
Collapse
Affiliation(s)
- Snehal M. Gaikwad
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Lata Gunjal
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
| | - Anitha R. Junutula
- Molecular Imaging Program at Stanford (MIPS), Departments of Radiology and Bioengineering, Department of Materials Science and Engineering, Bio-X Program, School of Medicine, Stanford University, Palo Alto, California
| | - Arezoo Astanehe
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sanjiv Sam Gambhir
- Molecular Imaging Program at Stanford (MIPS), Departments of Radiology and Bioengineering, Department of Materials Science and Engineering, Bio-X Program, School of Medicine, Stanford University, Palo Alto, California
| | - Pritha Ray
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, Maharashtra, India
- * E-mail:
| |
Collapse
|
789
|
Jahn M, Seifert J, von Bergen M, Schmid A, Bühler B, Müller S. Subpopulation-proteomics in prokaryotic populations. Curr Opin Biotechnol 2013; 24:79-87. [DOI: 10.1016/j.copbio.2012.10.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/15/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
|
790
|
Gedeon T, Bokes P. Delayed protein synthesis reduces the correlation between mRNA and protein fluctuations. Biophys J 2013; 103:377-385. [PMID: 22947853 DOI: 10.1016/j.bpj.2012.06.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 06/14/2012] [Accepted: 06/18/2012] [Indexed: 10/28/2022] Open
Abstract
Recent experimental results indicate that, in single Escherichia coli cells, the fluctuations in mRNA level are uncorrelated with those of protein. However, a basic two-stage model for prokaryotic gene expression suggests that there ought to be a degree of correlation between the two. Therefore, it is important to investigate realistic modifications of the basic model that have the potential to reduce the theoretical level of the correlation. In this work, we focus on translational and reporter maturation delay, reporting that its introduction into the two-stage model reduces the cross correlation between instantaneous mRNA and protein levels. Our results indicate that the experimentally observed sample correlation coefficient between mRNA and protein levels may increase if the protein measurements are shifted back in time by the value of the delay.
Collapse
Affiliation(s)
- Tomáš Gedeon
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana.
| | - Pavol Bokes
- Department of Applied Mathematics and Statistics, Comenius University, Bratislava, Slovakia
| |
Collapse
|
791
|
Zhang Y, Yang J. Design Strategies for Fluorescent Biodegradable Polymeric Biomaterials. J Mater Chem B 2013; 1:132-148. [PMID: 23710326 PMCID: PMC3660738 DOI: 10.1039/c2tb00071g] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The marriage of biodegradable polymer and fluorescent imaging has resulted in an important area of polymeric biomaterials: biodegradable fluorescent polymers. Researchers have put significant efforts on developing versatile fluorescent biomaterials due to their promising in biological/biomedical labeling, tracking, monitoring, imaging, and diagnostic applications, especially in drug delivery, tissue engineering, and cancer imaging applications. Biodegradable fluorescent polymers can function not only as implant biomaterials but also as imaging probes. Currently, there are two major classes of biodegradable polymers used as fluorescent materials. The first class is the combination of non-fluorescent biodegradable polymers and fluorescent agents such as organic dyes and quantum dots. Another class of polymers shows intrinsic photoluminescence as polymers by themselves carrying integral fluorescent chemical structures in or pendent to their polymer backbone, such as Green Fluorescent protein (GFP), and the recently developed biodegradable photoluminescent polymer (BPLP). Thus there is no need to conjugate or encapsulate additional fluorescent materials for the latter. In the present review, we will review the fluorescent biodegradable polymers with emphases on material fluorescence mechanism, design criteria for fluorescence, and their cutting-edge applications in biomedical engineering. We expect that this review will provide insightful discussion on the fluorescent biomaterial design and lead to innovations for the development of the next generation of fluorescent biomaterials and fluorescence-based biomedical technology.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76010
- Joint Biomedical Engineering Program, The University of Texas Southwestern Medical Center and The University of Texas at Arlington, Dallas, TX 75390
| | - Jian Yang
- Department of Bioengineering, Materials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
792
|
A time-dependent DFT/molecular dynamics study of the proton-wire responsible for the red fluorescence in the LSSmKate2 protein. Theor Chem Acc 2013. [DOI: 10.1007/s00214-012-1327-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
793
|
Zherdeva VV, Savitsky AP. Using lanthanide-based resonance energy transfer for in vitro and in vivo studies of biological processes. BIOCHEMISTRY (MOSCOW) 2013; 77:1553-74. [DOI: 10.1134/s0006297912130111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
794
|
Müller-Taubenberger A, Ishikawa-Ankerhold HC. Fluorescent reporters and methods to analyze fluorescent signals. Methods Mol Biol 2013; 983:93-112. [PMID: 23494303 DOI: 10.1007/978-1-62703-302-2_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The use of fluorescent reporters and the development of new imaging technologies have revolutionized studies in cell biology. During recent years the number of fluorescent proteins offering the ability to visualize the distribution of proteins, organelles, and cells has increased tremendously. In parallel, the imaging tools available were refined rapidly enabling now the use of a huge spectrum of specialized methods to explore the cellular and subcellular localization and dynamics of fluorescently tagged markers. This chapter presents an overview of fluorescent reporters and methods available, and describes a selection of those that are routinely applicable in imaging studies using Dictyostelium discoideum.
Collapse
|
795
|
Scholz D, Förtsch J, Böckler S, Klecker T, Westermann B. Analyzing membrane dynamics with live cell fluorescence microscopy with a focus on yeast mitochondria. Methods Mol Biol 2013; 1033:275-283. [PMID: 23996183 DOI: 10.1007/978-1-62703-487-6_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
With the availability of increasing numbers of fluorescent protein variants and state-of-the-art imaging techniques, live cell microscopy has become a standard procedure in modern cell biology. Fluorescent markers are used to visualize the dynamic processes that take place in living cells, including the behavior of membrane-bound organelles. Here, we provide two examples of how we analyze the membrane dynamics of mitochondria in living yeast cells using wide field and confocal microscopy: (1) Long-term observation of mitochondrial shape changes using mitochondria-targeted fluorescent proteins and (2) monitoring the behavior of individual mitochondria using a mitochondria-targeted version of a photoconvertible fluorescent protein.
Collapse
Affiliation(s)
- Dirk Scholz
- Institut für Zellbiologie, Universität Bayreuth, Bayreuth, Germany
| | | | | | | | | |
Collapse
|
796
|
Bachir AI, Kubow KE, Horwitz AR. Fluorescence fluctuation approaches to the study of adhesion and signaling. Methods Enzymol 2013; 519:167-201. [PMID: 23280111 DOI: 10.1016/b978-0-12-405539-1.00006-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Cell-matrix adhesions are large, multimolecular complexes through which cells sense and respond to their environment. They also mediate migration by serving as traction points and signaling centers and allow the cell to modify the surroucnding tissue. Due to their fundamental role in cell behavior, adhesions are germane to nearly all major human health pathologies. However, adhesions are extremely complex and dynamic structures that include over 100 known interacting proteins and operate over multiple space (nm-μm) and time (ms-min) regimes. Fluorescence fluctuation techniques are well suited for studying adhesions. These methods are sensitive over a large spatiotemporal range and provide a wealth of information including molecular transport dynamics, interactions, and stoichiometry from a single time series. Earlier chapters in this volume have provided the theoretical background, instrumentation, and analysis algorithms for these techniques. In this chapter, we discuss their implementation in living cells to study adhesions in migrating cells. Although each technique and application has its own unique instrumentation and analysis requirements, we provide general guidelines for sample preparation, selection of imaging instrumentation, and optimization of data acquisition and analysis parameters. Finally, we review several recent studies that implement these techniques in the study of adhesions.
Collapse
Affiliation(s)
- Alexia I Bachir
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia, USA.
| | | | | |
Collapse
|
797
|
Stepanenko OV, Stepanenko OV, Kuznetsova IM, Verkhusha VV, Turoverov KK. Beta-barrel scaffold of fluorescent proteins: folding, stability and role in chromophore formation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 302:221-78. [PMID: 23351712 DOI: 10.1016/b978-0-12-407699-0.00004-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on the current view of the interaction between the β-barrel scaffold of fluorescent proteins and their unique chromophore located in the internal helix. The chromophore originates from the polypeptide chain and its properties are influenced by the surrounding protein matrix of the β-barrel. On the other hand, it appears that a chromophore tightens the β-barrel scaffold and plays a crucial role in its stability. Furthermore, the presence of a mature chromophore causes hysteresis of protein unfolding and refolding. We survey studies measuring protein unfolding and refolding using traditional methods as well as new approaches, such as mechanical unfolding and reassembly of truncated fluorescent proteins. We also analyze models of fluorescent protein unfolding and refolding obtained through different approaches, and compare the results of protein folding in vitro to co-translational folding of a newly synthesized polypeptide chain.
Collapse
Affiliation(s)
- Olesya V Stepanenko
- Institute of Cytology of Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | | | |
Collapse
|
798
|
Erard M, Fredj A, Pasquier H, Beltolngar DB, Bousmah Y, Derrien V, Vincent P, Merola F. Minimum set of mutations needed to optimize cyan fluorescent proteins for live cell imaging. ACTA ACUST UNITED AC 2013. [DOI: 10.1039/c2mb25303h] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
799
|
Niu W, Guo J. Expanding the chemistry of fluorescent protein biosensors through genetic incorporation of unnatural amino acids. MOLECULAR BIOSYSTEMS 2013; 9:2961-70. [DOI: 10.1039/c3mb70204a] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
800
|
Williams DA, Monif M, Richardson KL. Compartmentalizing genetically encoded calcium sensors. Methods Mol Biol 2013; 937:307-26. [PMID: 23007595 DOI: 10.1007/978-1-62703-086-1_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Within single cells there is a complex myriad of signaling which controls physiological process many of which are modulated, or signaled directly, by intracellular calcium ions. Understanding the exquisitely sensitive, and spatially restricted, changes in calcium has been of interest to the researcher for a number of years. Recent advances in this field have been driven by the development of genetically encoded calcium probes for detecting calcium changes within the cells specifically targeting organelles such as mitochondria, endoplasmic reticulum, and the nucleus. In this chapter the authors outline some of the available fluorescent probes, with particular emphasis on an endoplasmic reticulum targeted calcium biosensor in cell signaling studies with astrocytes, detailing experimental protocols and the interpretation of data from such probes.
Collapse
Affiliation(s)
- David A Williams
- Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia.
| | | | | |
Collapse
|