801
|
Pediatric measles vaccine expressing a dengue antigen induces durable serotype-specific neutralizing antibodies to dengue virus. PLoS Negl Trop Dis 2007; 1:e96. [PMID: 18160988 PMCID: PMC2154386 DOI: 10.1371/journal.pntd.0000096] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2007] [Accepted: 08/29/2007] [Indexed: 11/19/2022] Open
Abstract
Dengue disease is an increasing global health problem that threatens one-third of the world's population. Despite decades of efforts, no licensed vaccine against dengue is available. With the aim to develop an affordable vaccine that could be used in young populations living in tropical areas, we evaluated a new strategy based on the expression of a minimal dengue antigen by a vector derived from pediatric live-attenuated Schwarz measles vaccine (MV). As a proof-of-concept, we inserted into the MV vector a sequence encoding a minimal combined dengue antigen composed of the envelope domain III (EDIII) fused to the ectodomain of the membrane protein (ectoM) from DV serotype-1. Immunization of mice susceptible to MV resulted in a long-term production of DV1 serotype-specific neutralizing antibodies. The presence of ectoM was critical to the immunogenicity of inserted EDIII. The adjuvant capacity of ectoM correlated with its ability to promote the maturation of dendritic cells and the secretion of proinflammatory and antiviral cytokines and chemokines involved in adaptive immunity. The protective efficacy of this vaccine should be studied in non-human primates. A combined measles–dengue vaccine might provide a one-shot approach to immunize children against both diseases where they co-exist. Dengue is a tropical emerging disease that threatens one-third of the world's population, mainly children under the age of 15. The development of an affordable pediatric vaccine that could provide long-term protection against all four dengue serotypes remains a global public health priority. To address this challenge, we evaluated a strategy based on the expression of a minimal dengue antigen by live attenuated measles vaccine (MV), one of the most safe, stable, and effective human vaccines. As a proof-of-concept, we constructed a MV vector expressing a secreted dengue antigen composed of the domain III of the envelope glycoprotein (EDIII), which contains major serotype-specific neutralizing epitopes, fused to the ectodomain of the membrane protein (ectoM) from DV-1, as an adjuvant. This vector induced in mice durable serotype-specific virus-neutralizing antibodies against DV1. The remarkable adjuvant capacity of ectoM to EDIII immunogenicity was correlated to its capacity to mature dendritic cells, known to initiate immune response, and to activate the secretion of a panel of cytokines and chemokines determinant for the establishment of specific adaptive immunity. Such strategy might offer pediatric vaccines to immunize children simultaneously against measles and dengue in areas of the world where the diseases co-exist.
Collapse
|
802
|
Chen RF, Yang KD, Wang L, Liu JW, Chiu CC, Cheng JT. Different clinical and laboratory manifestations between dengue haemorrhagic fever and dengue fever with bleeding tendency. Trans R Soc Trop Med Hyg 2007; 101:1106-13. [PMID: 17764712 DOI: 10.1016/j.trstmh.2007.06.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Revised: 06/29/2007] [Accepted: 06/29/2007] [Indexed: 02/04/2023] Open
Abstract
The incidence of dengue fever (DF) is estimated to have increased 30-fold in the past 50 years. The incidence of dengue haemorrhagic fever (DHF), a life-threatening complication of DF, is also increasing. The need for better classification of the severity of dengue infections has been proposed in order to clarify different entities of dengue infections. We defined a class of patients with DF with bleeding tendency (DF w/B) to differentiate further the varying pathogenesis among DF, DF w/B and DHF. In a hospital-based study in Taiwan, we compared clinical features, biochemistry and immune mediators among patients with DHF, DF w/B and DF. Results showed that DF w/B patients, similar to DHF patients, had a higher rate of secondary dengue infection (P<0.001) as well as higher IL-10 (P=0.023) and lower IFNgamma (P=0.009) levels than DF patients. In contrast, DHF patients had significantly higher soluble vascular cell adhesion molecule 1 levels than DF w/B patients (P=0.038) and DF patients (P<0.001). This study provides new insight into the different immune mechanisms of DF, DF w/B and DHF. DF involves a Th1 reaction and DF w/B involves an altered Th2 reaction, whereas DHF involves an altered Th2 reaction and augmented vascular insult.
Collapse
Affiliation(s)
- Rong-Fu Chen
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | | | | | | | | | | |
Collapse
|
803
|
Remoue F, Alix E, Cornelie S, Sokhna C, Cisse B, Doucoure S, Mouchet F, Boulanger D, Simondon F. IgE and IgG4 antibody responses to Aedes saliva in African children. Acta Trop 2007; 104:108-15. [PMID: 17825239 DOI: 10.1016/j.actatropica.2007.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 06/01/2007] [Accepted: 07/27/2007] [Indexed: 10/23/2022]
Abstract
Aedes mosquitoes are the major vectors of (re)-emerging infections including arboviruses (dengue, Chikungunya, yellow fever) in developing countries. Moreover, the emergence of Aedes-borne diseases in the developed world is currently a source of concern. Evaluation of human immune responses to Aedes bites could be a useful immuno-epidemiological tool for evaluating exposure to Aedes-borne diseases and thus predicting the risk of such emerging diseases. Specific IgE and IgG4 antibody (Ab) responses to Aedes aegypti saliva were evaluated in young Senegalese children living in an area of exposure to the Aedes vector. Specific IgE and IgG4 responses increased during rainy season of high exposure to Aedes bites. In addition, the evolution of anti-saliva isotype levels during the rainy season presented spatial heterogeneity between the studied villages. These preliminaries results support the potential approach of using anti-saliva Ab responses for evaluating exposure to Aedes vectors and risks of emerging arbovirus infections.
Collapse
Affiliation(s)
- Franck Remoue
- Institut de Recherche pour le Développement (IRD) - UR024, Epidémiologie et Prévention Unit, Montpellier, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
804
|
Abstract
Encephalitis means inflammation of the brain matter. Despite being a rare condition, encephalitis is of public health importance worldwide because it has high morbidity and mortality. Yet, many details about its epidemiology have yet to be elucidated. This review attempts to summarise what is known about the epidemiology of the infective causes of encephalitis and is based on a literature search of the Medline archives. Infection is the most common cause identified, with viruses being the most important known aetiological agents. Incidence varies between studies but is generally between 3.5 and 7.4 per 100,000 patient-years. Encephalitis affects peoples of all ages; however, incidence is higher in the paediatric population. Although both sexes are affected, most studies have shown a slight predominance in males. Encephalitis occurs worldwide; some aetiologies have a global distribution (herpesviruses) while others are geographically restricted (arboviruses). Although definite epidemiological trends are evident, it is difficult to make generalisations as few population-based studies exist, most cases are not reported to health authorities, and many possible pathogens are implicated but in most cases a cause is never found. A better understanding of the epidemiology of this devastating disease will pave the way for better prevention and control strategies.
Collapse
Affiliation(s)
- Julia Granerod
- Health Protection Agency, Centre for Infections, London, UK.
| | | |
Collapse
|
805
|
Primary human splenic macrophages, but not T or B cells, are the principal target cells for dengue virus infection in vitro. J Virol 2007; 81:13325-34. [PMID: 17928355 DOI: 10.1128/jvi.01568-07] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Understanding the pathogenesis of dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) requires the precise identification of dengue virus (DV)-permissive target cells. In a previous study using unfractionated human peripheral blood mononuclear cells, we found that monocytes, but not B or T cells, were the principal DV-permissive cells in the absence of DV-immune pooled human sera (PHS) and the major mediators of antibody-dependent enhancement in the presence of PHS. To further identify DV-permissive target cells in other tissues and organs, we isolated human splenic mononuclear cells (MNCs), inoculated them with DV type 2 (strain 16681) in the presence or absence of PHS, and assessed their infection either directly using flow cytometry and reverse transcription-PCR (RT-PCR) assays or indirectly by plaque assay. We found that in the absence of PHS, a small proportion of splenic macrophages appeared to be positive for DV antigens in comparison to staining controls by the flow cytometric assay (0.77% +/- 1.00% versus 0.18% +/- 0.12%; P = 0.07) and that viral RNA was detectable by the RT-PCR assay in MNCs exposed to DV. Additionally, supernatants from cultures of DV-exposed MNCs contained infectious virions that were readily detectable by plaque assay. The magnitude of infection was significantly enhanced in splenic macrophages in the presence of highly diluted PHS (5.41% +/- 3.53% versus 0.77% +/- 1.00%; P = 0.001). In contrast, primary T and B cells were not infected in either the presence or absence of PHS. These results provide evidence, for the first time, that human primary splenic macrophages, rather than B or T cells, are the principal DV-permissive cells in the spleen and that they may be uniquely important in the initial steps of immune enhancement that leads to DHF/DSS in some DV-infected individuals.
Collapse
|
806
|
Kent LB, Walden KKO, Robertson HM. The Gr Family of Candidate Gustatory and Olfactory Receptors in the Yellow-Fever Mosquito Aedes aegypti. Chem Senses 2007; 33:79-93. [DOI: 10.1093/chemse/bjm067] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
807
|
El-Bacha T, Midlej V, Pereira da Silva AP, Silva da Costa L, Benchimol M, Galina A, Da Poian AT. Mitochondrial and bioenergetic dysfunction in human hepatic cells infected with dengue 2 virus. Biochim Biophys Acta Mol Basis Dis 2007; 1772:1158-66. [DOI: 10.1016/j.bbadis.2007.08.003] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2007] [Revised: 08/26/2007] [Accepted: 08/27/2007] [Indexed: 12/31/2022]
|
808
|
Arakawa M, Yamashiro T, Uechi GI, Tadano M, Nishizono A. Construction of human Fab (gamma1/kappa) library and identification of human monoclonal Fab possessing neutralizing potency against Japanese encephalitis virus. Microbiol Immunol 2007; 51:617-25. [PMID: 17579273 DOI: 10.1111/j.1348-0421.2007.tb03948.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A combinatorial human Fab library was constructed using RNAs from peripheral blood lymphocytes obtained from Japanese encephalitis virus hyper-immune volunteers on pComb3H phagemid vector. The size of the constructed Fab library was 3.3x10(8) Escherichia coli transformants. The library was panned 3 times on the purified Japanese encephalitis virus (JEV) virion, and phage clones displaying JEV antigen-specific Fab were enriched. The enriched phage pool was then screened for clones producing Fab molecule with JEV neutralizing activity by the focus reduction-neutralizing test. Among 188 randomly selected clones, 9 Fab preparations revealed neutralizing activities against JEV strain Nakayama. An E. coli transformed with TJE12B02 clone, which produced human monoclonal Fab with the highest neutralizing activity was cultured in a large scale, and the Fab molecule was purified using affinity chromatography. The purified FabTJE12B02 showed the 50% focus reduction endpoint at the concentration of 50.2 microg/ml (ca. 1,000 nM) when JEV strain Nakayama was used. The FabTJE12B02 recognized E protein of JEV strain Nakayama, and the dissociation equilibrium constant (Kd) of the FabTJE12B02 against purified JEV antigen was calculated as 1.21x10(-8) M. Sequence analysis demonstrated that TJE12B02 used a VH sequence homologous to the VH3 family showing 88.8% homology to germline VH3-23, and used a Vkappa sequence homologous to the VkappaII subgroup showing 92.8% homology to germline A17.
Collapse
Affiliation(s)
- Mitsue Arakawa
- Department of Infectious Diseases, Faculty of Medicine, Oita University, Japan
| | | | | | | | | |
Collapse
|
809
|
Caramello P, Canta F, Balbiano R, Lipani F, Ariaudo S, De Agostini M, Calleri G, Boglione L, Di Caro A. A case of imported JE acquired during short travel in Vietnam. Are current recommendations about vaccination broader? J Travel Med 2007; 14:346-8. [PMID: 17883468 DOI: 10.1111/j.1708-8305.2007.00140.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pietro Caramello
- Unit A of Infectious and Tropical Diseases, Amedeo di Savoia Hospital, Torino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
810
|
Whitehead SS, Blaney JE, Durbin AP, Murphy BR. Prospects for a dengue virus vaccine. Nat Rev Microbiol 2007; 5:518-28. [PMID: 17558424 DOI: 10.1038/nrmicro1690] [Citation(s) in RCA: 429] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The number of cases of severe dengue disease continues to grow in endemic areas of southeast Asia, Central and South America, and other subtropical regions. Children bear the greatest burden of disease, and the development of an effective vaccine remains a global public health priority. A tetravalent vaccine is urgently needed and must be effective against all four dengue virus serotypes, be cost-effective and provide long-term protection. In this Review we discuss the unique immunological concerns in dengue virus vaccine development and the current prospects for the development of an acceptable vaccine, a goal that is likely to be reached in the near future.
Collapse
Affiliation(s)
- Stephen S Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
811
|
Kuruvilla JG, Troyer RM, Devi S, Akkina R. Dengue virus infection and immune response in humanized RAG2(-/-)gamma(c)(-/-) (RAG-hu) mice. Virology 2007; 369:143-52. [PMID: 17707071 DOI: 10.1016/j.virol.2007.06.005] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 05/31/2007] [Accepted: 06/06/2007] [Indexed: 11/17/2022]
Abstract
Dengue viral (DENV) pathogenesis and vaccine studies are hampered by the lack of an ideal animal model mimicking human disease and eliciting an adaptive human immune response. Although currently available animal models have been very useful in dissecting some key aspects of disease pathogenesis, a major limitation with these is the lack of a human immune response. In this study, we sought to overcome this difficulty by utilizing a novel mouse model that permits multi-lineage human hematopoiesis and immune response following transplantation with human hematopoietic stem cells. To generate immunocompetent humanized mice, neonatal RAG2(-/-)gamma(c)(-/-) mice were xenografted with human CD34+ hematopoietic stem cells, resulting in de novo development of major functional cells of the human adaptive immune system. To evaluate susceptibility to dengue viral infection, humanized mice were challenged with DEN-2 serotype. Viremia lasting up to 3 weeks was detected in infected mice with viral titers reaching up to 10(6.3) RNA copies/ml. Fever characteristic of dengue was also noted in infected mice. Presence of human anti-dengue antibodies was evaluated using an antibody capture ELISA. Anti-dengue IgM was first detected by 2 weeks post-infection followed by IgG at 6 weeks. Sera from some of the infected mice were also found to be capable of dengue virus neutralization. Infected mouse sera showed reactivity with the viral envelope and capsid proteins in immunoprecipitation assay. These results demonstrate for the first time that humanized mice are capable of dengue viral primary human immune responses thus paving the way for new dengue immunopathogenesis and vaccine studies.
Collapse
Affiliation(s)
- Jes G Kuruvilla
- Department of Microbiology, Immunology and Pathology, 1619 Campus Delivery, Colorado State University, Fort Collins, CO 80523-1619, USA
| | | | | | | |
Collapse
|
812
|
Abstract
MOTIVATION Properly annotated sequence data for flaviviruses, which cause diseases, such as tick-borne encephalitis (TBE), dengue fever (DF), West Nile (WN) and yellow fever (YF), can aid in the design of antiviral drugs and vaccines to prevent their spread. Flavitrack was designed to help identify conserved sequence motifs, interpret mutational and structural data and track evolution of phenotypic properties. SUMMARY Flavitrack contains over 590 complete flavivirus genome/protein sequences and information on known mutations and literature references. Each sequence has been manually annotated according to its date and place of isolation, phenotype and lethality. Internal tools are provided to rapidly determine relationships between viruses in Flavitrack and sequences provided by the user.
Collapse
Affiliation(s)
- Milind Misra
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-0857, USA.
| | | |
Collapse
|
813
|
Pugachev KV, Schwaiger J, Brown N, Zhang ZX, Catalan J, Mitchell FS, Ocran SW, Rumyantsev AA, Khromykh AA, Monath TP, Guirakhoo F. Construction and biological characterization of artificial recombinants between a wild type flavivirus (Kunjin) and a live chimeric flavivirus vaccine (ChimeriVax-JE). Vaccine 2007; 25:6661-71. [PMID: 17693000 DOI: 10.1016/j.vaccine.2007.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Revised: 06/01/2007] [Accepted: 07/12/2007] [Indexed: 11/17/2022]
Abstract
Although the theoretical concern of genetic recombination has been raised related to the use of live attenuated flavivirus vaccines [Seligman, Gould, Lancet 2004;363:2073-5], it has little foundation [e.g., Monath TP, Kanesa-Thasan N, Guirakhoo F, Pugachev K, Almond J, Lang J, et al. Vaccine 2005;23:2956-8]. To investigate biological effects of recombination between a chimeric yellow fever (YF) 17D/Japanese encephalitis (JE) vaccine virus (ChimeriVax-JE) and a wild-type flavivirus Kunjin (KUN-cDNA), the prM-E envelope protein genes were swapped between the two viruses, resulting in new YF 17D/KUN(prM-E) and KUN/JE(prM-E) chimeras. The prM-E genes are easily exchangeable between flavivirues, and thus the exchange was expected to yield the most replication-competent chimeras, while other rationally designed recombinants would be more likely to be crippled or non-viable. The new chimeras proved highly attenuated in comparison with the KUN-cDNA parent, as judged by plaque size and growth kinetics in cell culture, low viremia in hamsters, and reduced neurovirulence/neuroinvasiveness in mice. These data provide strong experimental evidence that the potential of recombinants, should they ever emerge, to cause disease or spread (compete in nature with wild-type flaviviruses) would be indeed extremely low.
Collapse
|
814
|
White LJ, Parsons MM, Whitmore AC, Williams BM, de Silva A, Johnston RE. An immunogenic and protective alphavirus replicon particle-based dengue vaccine overcomes maternal antibody interference in weanling mice. J Virol 2007; 81:10329-39. [PMID: 17652394 PMCID: PMC2045445 DOI: 10.1128/jvi.00512-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A candidate pediatric dengue virus (DENV) vaccine based on nonpropagating Venezuelan equine encephalitis virus replicon particles (VRP) was tested for immunogenicity and protective efficacy in weanling mice in the presence and absence of potentially interfering maternal antibodies. A gene cassette encoding envelope proteins prM and E from mouse-adapted DENV type 2 (DENV2) strain NGC was cloned into a VEE replicon vector and packaged into VRP, which programmed proper in vitro expression and processing of DENV2 envelope proteins upon infection of Vero cells. Primary immunization of 3-week-old weanling BALB/c mice in the footpad with DENV2 VRP resulted in high levels of DENV-specific serum immunoglobulin G antibodies and significant titers of neutralizing antibodies in all vaccinates. A booster immunization 12 weeks after the prime immunization resulted in increased neutralizing antibodies that were sustained for at least 30 weeks. Immunization at a range of doses of DENV2 VRP protected mice from an otherwise-lethal intracranial DENV2 challenge. To model vaccination in the presence of maternal antibodies, weanling pups born to DENV2-immune or DENV2-naïve dams were immunized with either DENV2 VRP or live DENV2 given peripherally. The DENV2 VRP vaccine induced neutralizing-antibody responses in young mice regardless of the maternal immune status. In contrast, live-DENV2 vaccination performed poorly in the presence of preexisting anti-DENV2 antibodies. This study demonstrates the feasibility of a VRP vaccine approach as an early-life DENV vaccine in populations with high levels of circulating DENV antibodies and suggests the utility of VRP-based vaccines in other instances where maternal antibodies make early vaccination problematic.
Collapse
Affiliation(s)
- Laura J White
- Carolina Vaccine Institute, Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, CB 7292, 99 Manning Drive, 9029 Burnett-Womack, Chapel Hill, NC 27599-7292, USA.
| | | | | | | | | | | |
Collapse
|
815
|
Hellgren O, Waldenström J, Peréz-Tris J, Szöll E, Si O, Hasselquist D, Krizanauskiene A, Ottosson U, Bensch S. Detecting shifts of transmission areas in avian blood parasites: a phylogenetic approach. Mol Ecol 2007; 16:1281-90. [PMID: 17391413 DOI: 10.1111/j.1365-294x.2007.03227.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigated the degree of geographical shifts of transmission areas of vector-borne avian blood parasites (Plasmodium, Haemoproteus and Leucocytozoon) over ecological and evolutionary timescales. Of 259 different parasite lineages obtained from 5886 screened birds sampled in Europe and Africa, only two lineages were confirmed to have current transmission in resident bird species in both geographical areas. We used a phylogenetic approach to show that parasites belonging to the genera Haemoproteus and Leucocytozoon rarely change transmission area and that these parasites are restricted to one resident bird fauna over a long evolutionary time span and are not freely spread between the continents with the help of migratory birds. Lineages of the genus Plasmodium seem more freely spread between the continents. We suggest that such a reduced transmission barrier of Plasmodium parasites is caused by their higher tendency to infect migratory bird species, which might facilitate shifting of transmission area. Although vector-borne parasites of these genera apparently can shift between a tropical and a temperate transmission area and these areas are linked with an immense amount of annual bird migration, our data suggest that novel introductions of these parasites into resident bird faunas are rather rare evolutionary events.
Collapse
Affiliation(s)
- Olof Hellgren
- Department of Animal Ecology, Ecology Building, Lund University, SE-22362 Lund, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
816
|
Nagao Y, Svasti P, Tawatsin A, Thavara U. Geographical structure of dengue transmission and its determinants in Thailand. Epidemiol Infect 2007; 136:843-51. [PMID: 17624231 PMCID: PMC2870862 DOI: 10.1017/s0950268807008990] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expansion of dengue has been attributed to urbanization. To test this concept, we examined dengue transmission intensities in Thailand. We used the inverse of mean age of dengue haemorrhagic fever (DHF) cases as a surrogate of dengue transmission intensity (or force of infection). The transmission intensity in Bangkok decreased rapidly since the mid-1990s, to levels that are currently lower than in other regions. Regression analysis revealed that transmission intensity is highest in the Northeastern rural region, mainly due to scarcity of private water wells. Private wells reduce the need for household water containers, the major breeding sites for vectors. Cumulatively, these results show that urbanization is not necessarily associated with intense dengue transmission in Thailand. Paradoxically, the DHF incidence in Bangkok has surpassed other regions despite declines in transmission intensity. This finding implies the existence of endemic stability (i.e. low incidence of a clinical illness in spite of high transmission intensity).
Collapse
Affiliation(s)
- Y Nagao
- Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | | | | | | |
Collapse
|
817
|
A curious coincidence: mosquito biodiversity and the limits of the Japanese encephalitis virus in Australasia. BMC Evol Biol 2007; 7:100. [PMID: 17598922 PMCID: PMC1939988 DOI: 10.1186/1471-2148-7-100] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Accepted: 06/29/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mosquito Culex annulirostris Skuse (Diptera: Culicidae) is the major vector of endemic arboviruses in Australia and is also responsible for the establishment of the Japanese encephalitis virus (JEV) in southern Papua New Guinea (PNG) as well as its incursions into northern Australia. Papua New Guinea and mainland Australia are separated by a small stretch of water, the Torres Strait, and its islands. While there has been regular JEV activity on these islands, JEV has not established on mainland Australia despite an abundance of Cx. annulirostris and porcine amplifying hosts. Despite the public health significance of this mosquito and the fact that its adults show overlapping morphology with close relative Cx. palpalis Taylor, its evolution and genetic structure remain undetermined. We address a hypothesis that there is significant genetic diversity in Cx. annulirostris and that the identification of this diversity will shed light on the paradox that JEV can cycle on an island 70 km from mainland Australia while not establishing in Australia itself. RESULTS We sequenced 538 bp of the mitochondrial DNA cytochrome oxidase I gene from 273 individuals collected from 43 localities in Australia and the southwest Pacific region to describe the phylogeography of Cx. annulirostris and its sister species Cx. palpalis. Maximum Likelihood and Bayesian analyses reveal supporting evidence for multiple divergent lineages that display geographic restriction. Culex palpalis contained three divergent lineages geographically restricted to southern Australia, northern Australia and Papua New Guinea (PNG). Culex annulirostris contained five geographically restricted divergent lineages, with one lineage restricted to the Solomon Islands and two identified mainly within Australia while two other lineages showed distributions in PNG and the Torres Strait Islands with a southern limit at the top of Australia's Cape York Peninsula. CONCLUSION The existence of divergent mitochondrial lineages within Cx. annulirostris and Cx. palpalis helps explain the difficulty of using adult morphology to identify Cx. annulirostris and its ecological diversity. Notably, the southern limit of the PNG lineages of Cx. annulirostris coincides exactly with the current southern limit of JEV activity in Australasia suggesting that variation in these COI lineages may be the key to why JEV has not yet established yet on mainland Australia.
Collapse
|
818
|
Kitai Y, Shoda M, Kondo T, Konishi E. Epitope-blocking enzyme-linked immunosorbent assay to differentiate west nile virus from Japanese encephalitis virus infections in equine sera. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1024-31. [PMID: 17596430 PMCID: PMC2044481 DOI: 10.1128/cvi.00051-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
West Nile virus (WNV) is now widely distributed worldwide, except in most areas of Asia where Japanese encephalitis virus (JEV) is distributed. Considering the movement and migration of reservoir birds, there is concern that WNV may be introduced in Asian countries. Although manuals and guidelines for serological tests have been created in Japan in preparedness for the introduction of WNV, differential diagnosis between WNV and JEV may be complicated by antigenic cross-reactivities between these flaviviruses. Here, we generated a monoclonal antibody specific for the nonstructural protein 1 (NS1) of WNV and established an epitope-blocking enzyme-linked immunosorbent assay that can differentiate WNV from JEV infections in horse sera. Under conditions well suited for our assay system, samples collected from 95 horses in Japan (regarded as negative for WNV antibodies), including those collected from horses naturally infected with JEV, showed a mean inhibition value of 8.2% and a standard deviation (SD) of 6.5%. However, inhibition values obtained with serum used as a positive control (obtained after 28 days from a horse experimentally infected with WNV) in nine separate experiments showed a mean of 54.4% and an SD of 7.1%. We tentatively determined 27.6% (mean + 3 x SD obtained with 95 negative samples) as the cutoff value to differentiate positive from negative samples. Under this criterion, two horses experimentally infected with WNV were diagnosed as positive at 12 and 14 days, respectively, after infection.
Collapse
Affiliation(s)
- Yoko Kitai
- Department of Health Sciences, Kobe University School of Medicine, 7-10-2 Tomogaoka, Suma-ku, Kobe 654-0142, Japan
| | | | | | | |
Collapse
|
819
|
Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, Loftus B, Xi Z, Megy K, Grabherr M, Ren Q, Zdobnov EM, Lobo NF, Campbell KS, Brown SE, Bonaldo MF, Zhu J, Sinkins SP, Hogenkamp DG, Amedeo P, Arensburger P, Atkinson PW, Bidwell S, Biedler J, Birney E, Bruggner RV, Costas J, Coy MR, Crabtree J, Crawford M, Debruyn B, Decaprio D, Eiglmeier K, Eisenstadt E, El-Dorry H, Gelbart WM, Gomes SL, Hammond M, Hannick LI, Hogan JR, Holmes MH, Jaffe D, Johnston JS, Kennedy RC, Koo H, Kravitz S, Kriventseva EV, Kulp D, Labutti K, Lee E, Li S, Lovin DD, Mao C, Mauceli E, Menck CFM, Miller JR, Montgomery P, Mori A, Nascimento AL, Naveira HF, Nusbaum C, O'leary S, Orvis J, Pertea M, Quesneville H, Reidenbach KR, Rogers YH, Roth CW, Schneider JR, Schatz M, Shumway M, Stanke M, Stinson EO, Tubio JMC, Vanzee JP, Verjovski-Almeida S, Werner D, White O, Wyder S, Zeng Q, Zhao Q, Zhao Y, Hill CA, Raikhel AS, Soares MB, Knudson DL, Lee NH, Galagan J, Salzberg SL, Paulsen IT, Dimopoulos G, Collins FH, Birren B, Fraser-Liggett CM, Severson DW. Genome sequence of Aedes aegypti, a major arbovirus vector. Science 2007; 316:1718-23. [PMID: 17510324 PMCID: PMC2868357 DOI: 10.1126/science.1138878] [Citation(s) in RCA: 820] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at approximately 1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of approximately 4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of approximately 2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.
Collapse
Affiliation(s)
- Vishvanath Nene
- Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
820
|
Scholte EJ, Takken W, Knols BGJ. Infection of adult Aedes aegypti and Ae. albopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae. Acta Trop 2007; 102:151-8. [PMID: 17544354 DOI: 10.1016/j.actatropica.2007.04.011] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 04/17/2007] [Accepted: 04/19/2007] [Indexed: 11/16/2022]
Abstract
This study describes a laboratory investigation on the use of the insect-pathogenic fungus Metarhizium anisopliae against adult Aedes aegypti and Ae. albopictus mosquitoes. At a dosage of 1.6 x 10(10)conidia/m(2), applied on material that served as a mosquito resting site, an average of 87.1+/-2.65% of Ae. aegypti and 89.3+/-2.2% of Ae. albopictus became infected with the fungus. The life span of fungus-contaminated mosquitoes of both species was significantly reduced compared to uninfected mosquitoes. LT(50)-values of fungus-contaminated mosquitoes ranged between 3.1+/-0.2 days (male Ae. aegypti) and 4.1+/-0.3 days (female Ae. aegypti). LT(50)-values of uncontaminated mosquitoes ranged from 17.7+/-0.4 days (female Ae. albopictus) to 19.7+/-0.6 days (male Ae. albopictus). These results indicate that both mosquito species are highly susceptible to infection with this entomopathogen. Requirements for developing and incorporating this biological control method into current strategies to control major diseases vectored by these species, such as dengue fever, are discussed.
Collapse
Affiliation(s)
- Ernst-Jan Scholte
- Laboratory of Entomology, Wageningen University and Research Centre, PO Box 8031, 6700 EH Wageningen, The Netherlands
| | | | | |
Collapse
|
821
|
Chambers TJ, Droll DA, Jiang X, Wold WSM, Nickells JA. JE Nakayama/JE SA14-14-2 virus structural region intertypic viruses: biological properties in the mouse model of neuroinvasive disease. Virology 2007; 366:51-61. [PMID: 17521693 PMCID: PMC2266982 DOI: 10.1016/j.virol.2007.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Revised: 02/04/2007] [Accepted: 04/07/2007] [Indexed: 11/19/2022]
Abstract
A molecular clone of Japanese encephalitis (JE) virus Nakayama strain was used to create intertypic viruses containing either the 5'-C-prM-E or the prM-E region of the attenuated JE SA14-14-2 virus in the JE Nakayama background. These two intertypic JE viruses, JE-X/5'CprME(S) and JE-X/prME(S), respectively, generally resembled the parental JE virus in cell culture properties. Similar to virus derived from the JE Nakayama molecular clone (JE-XJN), JE-X/prME(S) was highly neuroinvasive and neurovirulent for young adult mice, whereas JE-X/5'CprME(S) was attenuated for neuroinvasiveness and only partially attenuated for neurovirulence. Immunization of young mice with JE-X/5'CprME(S) virus elicited neutralizing antibodies against JE Nakayama virus and conferred protection against encephalitis following challenge with JE Nakayama virus. The sequence of the JE-X/5'CprME(S) virus differed from that of JE-X/prME(S) virus at two nucleotides in the 5' UTR, 3 amino acid positions in the capsid protein, 4 positions in the prM protein and 1 in the envelope protein. For JE-X/prME(S) virus, the 4 differences in prM and the single substitution in the envelope represented reversions to the sequence of JE Nakayama virus. Overall, this study reveals that molecular determinants associated with the prM-E region of the attenuated JE SA14-14-2 virus are insufficient by themselves to confer an attenuation phenotype upon JE Nakayama virus. This suggests a role for determinants in the 5' UTR and/or the capsid protein of the JE SA 14-14-2 virus genome in influencing the virulence properties of the JE Nakayama virus in the mouse model.
Collapse
Affiliation(s)
- Thomas J Chambers
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, 1402 South Grand Ave. St. Louis, MO 63104, USA.
| | | | | | | | | |
Collapse
|
822
|
Herrmann S, Leshem B, Lobel L, Bin H, Mendelson E, Ben-Nathan D, Dussart P, Porgador A, Rager-Zisman B, Marks RS. T7 phage display of Ep15 peptide for the detection of WNV IgG. J Virol Methods 2007; 141:133-40. [PMID: 17215048 DOI: 10.1016/j.jviromet.2006.11.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 11/20/2006] [Accepted: 11/27/2006] [Indexed: 11/21/2022]
Abstract
West Nile virus (WNV) is one of the major emerging infectious diseases in North America. WNV belongs to the genus Flavivirus, and its rapid and extensive global spread has highlighted the necessity for accurate and specific assays for diagnosis of WNV infection. This study presents the first phage displayed peptide based ELISA for detection of WNV immunoglobulin G (IgG). The Ep15 epitope, derived from the WNV E protein DIII, was cloned into a T7 phage display system that was then used as recombinant antigen in a chemiluminescent ELISA format. The phage concentration was optimized at 5 x 10(10)PFU/ml and was used directly after polyethylene glycol concentration. The assay shows a limit of detection at a serum titer of 1:51,200 and a dynamic range from 1:100 to 1:2000. A screen of a panel of 66 human sera samples, and comparison with a commercial kit, revealed a sensitivity of 67% and a specificity of 100%. Considering the ease of antigen preparation, its stability and the optimum display properties of the T7 bacteriophage, it is apparent that this approach can be useful for the preparation of highly sensitive and specific anti-WNV immunoglobulin diagnostic kits.
Collapse
Affiliation(s)
- Sebastien Herrmann
- Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
823
|
Crill WD, Trainor NB, Chang GJJ. A detailed mutagenesis study of flavivirus cross-reactive epitopes using West Nile virus-like particles. J Gen Virol 2007; 88:1169-1174. [PMID: 17374760 DOI: 10.1099/vir.0.82640-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human flavivirus infections elicit virus species-specific and cross-reactive immune responses. The flavivirus envelope (E) glycoprotein is the primary antigen inducing protective immunity; however, the presence of cross-reactive antibodies in human sera creates problems for serodiagnosis. Using a West Nile virus-like particle system, we performed mutagenesis across all three E protein functional domains to identify epitope determinants for a panel of monoclonal antibodies (mAbs) raised against different flaviviruses and exhibiting diverse patterns of cross-reactivity. Residues within the highly conserved fusion peptide were the only epitope determinants identified and were important not only for broadly cross-reactive mAbs recognizing all of the medically important flavivirus serocomplexes, but also for less-broad, complex-reactive mAbs. Moreover, different substitutions at specific fusion peptide residues produced highly variable effects on antibody reactivity and virus-like particle secretion. These results support and extend the conclusion that the fusion peptide region constitutes an immunodominant epitope stimulating antibodies with diverse patterns of cross-reactivity.
Collapse
Affiliation(s)
- Wayne D Crill
- Arbovirus Diseases Branch, Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, US Department of Health and Human Service, PO Box 2087, Fort Collins, CO 80522, USA
| | - Nicole B Trainor
- Arbovirus Diseases Branch, Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, US Department of Health and Human Service, PO Box 2087, Fort Collins, CO 80522, USA
| | - Gwong-Jen J Chang
- Arbovirus Diseases Branch, Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, US Department of Health and Human Service, PO Box 2087, Fort Collins, CO 80522, USA
| |
Collapse
|
824
|
Vasco DA, Wearing HJ, Rohani P. Tracking the dynamics of pathogen interactions: Modeling ecological and immune-mediated processes in a two-pathogen single-host system. J Theor Biol 2007; 245:9-25. [PMID: 17078973 DOI: 10.1016/j.jtbi.2006.08.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2005] [Revised: 07/17/2006] [Accepted: 08/21/2006] [Indexed: 12/01/2022]
Abstract
Traditionally, epidemiological studies have focused on understanding the dynamics of a single pathogen, assuming no interactions with other pathogens. Recently, a large body of work has begun to explore the effects of immune-mediated interactions, arising from cross-immunity and antibody-dependent enhancement, between related pathogen strains. In addition, ecological processes such as a temporary period of convalescence and pathogen-induced mortality have led to the concept of ecological interference between unrelated diseases. There remains, however, the need for a systematic study of both immunological and ecological processes within a single framework. In this paper, we develop a general two-pathogen single-host model of pathogen interactions that simultaneously incorporates these mechanisms. We are then able to mechanistically explore how immunoecological processes mediate interactions between diseases for a pool of susceptible individuals. We show that the precise nature of the interaction can induce either competitive or cooperative associations between pathogens. Understanding the dynamic implications of multi-pathogen associations has potentially important public health consequences. Such a framework may be especially helpful in disentangling the effects of partially cross-immunizing infections that affect populations with a pre-disposition towards immunosuppression such as children and the elderly.
Collapse
Affiliation(s)
- Daniel A Vasco
- Institute of Ecology, University of Georgia, Athens, GA 30602, USA.
| | | | | |
Collapse
|
825
|
Blaney JE, Sathe NS, Hanson CT, Firestone CY, Murphy BR, Whitehead SS. Vaccine candidates for dengue virus type 1 (DEN1) generated by replacement of the structural genes of rDEN4 and rDEN4Delta30 with those of DEN1. Virol J 2007; 4:23. [PMID: 17328799 PMCID: PMC1819370 DOI: 10.1186/1743-422x-4-23] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Accepted: 02/28/2007] [Indexed: 11/25/2022] Open
Abstract
Background Antigenic chimeric viruses have previously been generated in which the structural genes of recombinant dengue virus type 4 (rDEN4) have been replaced with those derived from DEN2 or DEN3. Two vaccine candidates were identified, rDEN2/4Δ30(ME) and rDEN3/4Δ30(ME), which contain the membrane (M) precursor and envelope (E) genes of DEN2 and DEN3, respectively, and a 30 nucleotide deletion (Δ30) in the 3' untranslated region of the DEN4 backbone. Based on the promising preclinical phenotypes of these viruses and the safety and immunogenicity of rDEN2/4Δ30(ME) in humans, we now describe the generation of a panel of four antigenic chimeric DEN4 viruses using either the capsid (C), M, and E (CME) or ME structural genes of DEN1 Puerto Rico/94 strain. Results Four antigenic chimeric viruses were generated and found to replicate efficiently in Vero cells: rDEN1/4(CME), rDEN1/4Δ30(CME), rDEN1/4(ME), and rDEN1/4Δ30(ME). With the exception of rDEN1/4(ME), each chimeric virus was significantly attenuated in a SCID-HuH-7 mouse xenograft model with a 25-fold or greater reduction in replication compared to wild type DEN1. In rhesus monkeys, only chimeric viruses with the Δ30 mutation appeared to be attenuated as measured by duration and magnitude of viremia. rDEN1/4Δ30(CME) appeared over-attenuated since it failed to induce detectable neutralizing antibody and did not confer protection from wild type DEN1 challenge. In contrast, rDEN1/4Δ30(ME) induced 66% seroconversion and protection from DEN1 challenge. Presence of the Δ30 mutation conferred a significant restriction in mosquito infectivity upon rDEN1/4Δ30(ME) which was shown to be non-infectious for Aedes aegypti fed an infectious bloodmeal. Conclusion The attenuation phenotype in SCID-HuH-7 mice, rhesus monkeys, and mosquitoes and the protective immunity observed in rhesus monkeys suggest that rDEN1/4Δ30(ME) should be considered for evaluation in a clinical trial.
Collapse
Affiliation(s)
- Joseph E Blaney
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Neeraj S Sathe
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christopher T Hanson
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cai Yen Firestone
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian R Murphy
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Stephen S Whitehead
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
826
|
Malet H, Egloff MP, Selisko B, Butcher RE, Wright PJ, Roberts M, Gruez A, Sulzenbacher G, Vonrhein C, Bricogne G, Mackenzie JM, Khromykh AA, Davidson AD, Canard B. Crystal structure of the RNA polymerase domain of the West Nile virus non-structural protein 5. J Biol Chem 2007; 282:10678-89. [PMID: 17287213 DOI: 10.1074/jbc.m607273200] [Citation(s) in RCA: 201] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Viruses of the family Flaviviridae are important human and animal pathogens. Among them, the Flaviviruses dengue (DENV) and West Nile (WNV) cause regular outbreaks with fatal outcomes. The RNA-dependent RNA polymerase (RdRp) activity of the non-structural protein 5 (NS5) is a key activity for viral RNA replication. In this study, crystal structures of enzymatically active and inactive WNV RdRp domains were determined at 3.0- and 2.35-A resolution, respectively. The determined structures were shown to be mostly similar to the RdRps of the Flaviviridae members hepatitis C and bovine viral diarrhea virus, although with unique elements characteristic for the WNV RdRp. Using a reverse genetic system, residues involved in putative interactions between the RNA-cap methyltransferase (MTase) and the RdRp domain of Flavivirus NS5 were identified. This allowed us to propose a model for the structure of the full-length WNV NS5 by in silico docking of the WNV MTase domain (modeled from our previously determined structure of the DENV MTase domain) onto the RdRp domain. The Flavivirus RdRp domain structure determined here should facilitate both the design of anti-Flavivirus drugs and structure-function studies of the Flavivirus replication complex in which the multifunctional NS5 protein plays a central role.
Collapse
Affiliation(s)
- Hélène Malet
- Architecture et Fonction des Macromolécules Biologiques, CNRS, and Universités d'Aix-Marseille I et II, UMR 6098, ESIL Case 925, 13288 Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
827
|
Peyrane F, Selisko B, Decroly E, Vasseur JJ, Benarroch D, Canard B, Alvarez K. High-yield production of short GpppA- and 7MeGpppA-capped RNAs and HPLC-monitoring of methyltransfer reactions at the guanine-N7 and adenosine-2'O positions. Nucleic Acids Res 2007; 35:e26. [PMID: 17259217 PMCID: PMC1851634 DOI: 10.1093/nar/gkl1119] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Many eukaryotic and viral mRNAs, in which the first transcribed nucleotide is an adenosine, are decorated with a cap-1 structure, 7MeG5′-ppp5′-A2′OMe. The positive-sense RNA genomes of flaviviruses (Dengue, West Nile virus) for example show strict conservation of the adenosine. We set out to produce GpppA- and 7MeGpppA-capped RNA oligonucleotides for non-radioactive mRNA cap methyltransferase assays and, in perspective, for studies of enzyme specificity in relation to substrate length as well as for co-crystallization studies. This study reports the use of a bacteriophage T7 DNA primase fragment to synthesize GpppACn and 7MeGpppACn (1 ≤ n ≤ 9) in a one-step enzymatic reaction, followed by direct on-line cleaning HPLC purification. Optimization studies show that yields could be modulated by DNA template, enzyme and substrate concentration adjustments and longer reaction times. Large-scale synthesis rendered pure (in average 99%) products (1 ≤ n ≤ 7) in quantities of up to 100 nmol starting from 200 nmol cap analog. The capped RNA oligonucleotides were efficient substrates of Dengue virus (nucleoside-2′-O-)-methyltransferase, and human (guanine-N7)-methyltransferase. Methyltransfer reactions were monitored by a non-radioactive, quantitative HPLC assay. Additionally, the produced capped RNAs may serve in biochemical, inhibition and structural studies involving a variety of eukaryotic and viral methyltransferases and guanylyltransferases.
Collapse
Affiliation(s)
- F. Peyrane
- Centre National de la Recherche Scientifique and Universités d’Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, AFMB-CNRS-ESIL, Case 925, 163 avenue de Luminy, 13288 Marseille Cedex 9, France and LCOBS, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - B. Selisko
- Centre National de la Recherche Scientifique and Universités d’Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, AFMB-CNRS-ESIL, Case 925, 163 avenue de Luminy, 13288 Marseille Cedex 9, France and LCOBS, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - E. Decroly
- Centre National de la Recherche Scientifique and Universités d’Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, AFMB-CNRS-ESIL, Case 925, 163 avenue de Luminy, 13288 Marseille Cedex 9, France and LCOBS, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - J. J. Vasseur
- Centre National de la Recherche Scientifique and Universités d’Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, AFMB-CNRS-ESIL, Case 925, 163 avenue de Luminy, 13288 Marseille Cedex 9, France and LCOBS, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - D. Benarroch
- Centre National de la Recherche Scientifique and Universités d’Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, AFMB-CNRS-ESIL, Case 925, 163 avenue de Luminy, 13288 Marseille Cedex 9, France and LCOBS, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - B. Canard
- Centre National de la Recherche Scientifique and Universités d’Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, AFMB-CNRS-ESIL, Case 925, 163 avenue de Luminy, 13288 Marseille Cedex 9, France and LCOBS, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - K. Alvarez
- Centre National de la Recherche Scientifique and Universités d’Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, AFMB-CNRS-ESIL, Case 925, 163 avenue de Luminy, 13288 Marseille Cedex 9, France and LCOBS, UMR 5625 CNRS-UMII, CC 008, Université Montpellier II, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
- *To whom the correspondence should be addressed. Tel: +33 491 828630; Fax: +33 491 828646;
| |
Collapse
|
828
|
Childs JE, Mackenzie JS, Richt JA. Introduction: conceptualizing and partitioning the emergence process of zoonotic viruses from wildlife to humans. Curr Top Microbiol Immunol 2007; 315:1-31. [PMID: 17848058 PMCID: PMC7122288 DOI: 10.1007/978-3-540-70962-6_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This introduction provides a telegraphic overview of the processes of zoonotic viral emergence, the intricacies of host-virus interactions, and the distinct role of biological transitions and modifying factors. The process of emergence is conceptualized as two transition stages which are common and required for all disease emergence, (1) human contact with the infectious agent and (2) cross-species transmission of the agent, and two transition stages which are not required for emergence and appear unavailable to many zoonotic pathogens, (3) sustained human-to-human transmission and (4) genetic adaptation to the human host. The latter two transitions are presumably prerequisites for the pandemic emergence of a pathogen. The themes introduced herein are amplified and explored in detail by the contributors to this volume. Each author explores the mechanisms and unique circumstances by which evolution, biology, history, and current context have contrived to drive the emergence of different zoonotic agents by a series of related events; although recognizable similarities exist among the events leading to emergence the details and circumstances are never repetitive.
Collapse
Affiliation(s)
- James E. Childs
- Department of Epidemiology and Public Health and Center for Eco-Epidemiolog, Yale University School of Medicine, 60 College St, 208034, 06520-8034 New Haven, CT USA
| | - John S. Mackenzie
- Centre for Emerging Infectious Diseases, Australian Biosecurity Cooperative Research Centre, Curtin University of Technology, U1987, 6845 Perth, WA Australia
| | - Jürgen A. Richt
- Virus and Prion Diseases of Livestock Research Unit, National Animal Disease Center USDA, 2300 Dayton Ave Ames, 50010 IA USA
| |
Collapse
|
829
|
Inflammation in the Central Nervous System. JUBB, KENNEDY & PALMER'S PATHOLOGY OF DOMESTIC ANIMALS 2007. [PMCID: PMC7155485 DOI: 10.1016/b978-070202823-6.50051-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
830
|
Virale Infektionen. PÄDIATRIE 2007. [PMCID: PMC7120150 DOI: 10.1007/978-3-540-76460-1_100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adenoviren verursachen im Kindesalter Krankheiten der Atemwege und des Darms, aber auch Krankheiten der Harnwege, der Lymphorgane und kardiologische und neurologische Manifestationen werden beobachtet. Einige typische Krankheitsbilder können klinisch diagnostiziert werden.
Collapse
|
831
|
Nicholson GM. Fighting the global pest problem: preface to the special Toxicon issue on insecticidal toxins and their potential for insect pest control. Toxicon 2006; 49:413-22. [PMID: 17223148 DOI: 10.1016/j.toxicon.2006.11.028] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 11/17/2006] [Indexed: 12/21/2022]
Abstract
Arthropod pests are responsible for major crop devastation and are vectors for the transmission of new and re-emerging diseases in humans and livestock. Despite many years of effective control by conventional agrochemical insecticides, a number of factors are threatening the effectiveness and continued use of these agents. These include the development of insecticide resistance and use-cancellation or de-registration of some insecticides due to human health and environmental concerns. Several approaches are being investigated for the design of new (bio)pesticides. These include the development of transgenic plants and recombinant baculoviruses as delivery systems for a variety of insect-selective toxins. Additional approaches for the development of foliar sprays include the rational design of peptidomimetics based on the key residues of these toxins that interact with the insect target. This special issue provides an overview of these phyletically selective animal, plant and microbial toxins and their diverse mechanisms of action to paralyze or kill arthropods. In addition, it reviews their potential for biopesticide discovery and validation of novel insecticide targets and provides an overview of the strengths and weaknesses of biopesticides in the global control of arthropod pests.
Collapse
Affiliation(s)
- Graham M Nicholson
- Neurotoxin Research Group, Department of Medical & Molecular Biosciences, University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|
832
|
Romero TA, Tumban E, Jun J, Lott WB, Hanley KA. Secondary structure of dengue virus type 4 3' untranslated region: impact of deletion and substitution mutations. J Gen Virol 2006; 87:3291-3296. [PMID: 17030863 DOI: 10.1099/vir.0.82182-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Several studies have generated computer-based predictions of secondary structure of the 3' untranslated region (UTR) of Dengue virus (DEN); however, experimental verification of the formation of these structures in vitro is lacking. This study assessed the congruence of Mfold predictions of secondary structure of the core region of the DEN type 4 3' UTR with nuclease maps of this region. Maps and predictions were largely consistent. Maps supported the existence of previously predicted pseudoknots and identified putative regions of dynamic folding. Additionally, this study investigated previously identified conserved elements in the flavivirus 3' UTR that differ among viruses with different modes of transmission. Specific regions of mosquito-borne DEN type 4 were either deleted or replaced with homologous sequences from tick-borne Langat virus. All of these mutations caused substantial distortion of secondary structure, yet viruses carrying these mutations were viable.
Collapse
Affiliation(s)
- Tammy A Romero
- Molecular Biology Program, New Mexico State University (NMSU), Las Cruces, NM 88003, USA
| | - Ebenezer Tumban
- Molecular Biology Program, New Mexico State University (NMSU), Las Cruces, NM 88003, USA
| | - Jeongwon Jun
- Molecular Biology Program, New Mexico State University (NMSU), Las Cruces, NM 88003, USA
| | - William B Lott
- School of Life Sciences, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Kathryn A Hanley
- Department of Biology, New Mexico State University (NMSU), Las Cruces, NM 88003, USA
| |
Collapse
|
833
|
Chappell KJ, Stoermer MJ, Fairlie DP, Young PR. Generation and characterization of proteolytically active and highly stable truncated and full-length recombinant West Nile virus NS3. Protein Expr Purif 2006; 53:87-96. [PMID: 17174105 DOI: 10.1016/j.pep.2006.10.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 10/31/2006] [Accepted: 10/31/2006] [Indexed: 11/21/2022]
Abstract
West Nile virus is a medically significant emerging pathogen for which there is no effective antiviral therapy. The viral protease encoded by NS2B and NS3 is an attractive target for development of an inhibitor and has been the focus of numerous studies. Most have employed recombinant proteases based on an expression strategy we developed which links the essential hydrophilic cofactor domain within NS2B to the NS3 protease domain by a flexible glycine linker. However, autoproteolysis has been a significant problem associated with this construct. The recently resolved crystal structure of the cofactor bound WNV NS3 protease for example, was found to be truncated by 18 residues at its N-terminus. In this study, the autocatalytic cleavage site was identified and removed along with nonessential regions of the glycine linker and cofactor domain. In addition, the optimal size of the NS3 protease was defined. Based on this optimized construct, a recombinant protease incorporating the full length of NS3 was also successfully expressed and purified. Somewhat surprisingly, comparative analysis of the proteolytic activity of this recombinant with that of the protease domain alone revealed little influence of the C-terminal two thirds of NS3 on substrate binding. These modifications have yielded highly stable and constrained recombinant proteases, which are more suitable than existing constructs for both activity and structural studies.
Collapse
Affiliation(s)
- Keith J Chappell
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane, Qld 4072, Australia
| | | | | | | |
Collapse
|
834
|
Hoshino K, Isawa H, Tsuda Y, Yano K, Sasaki T, Yuda M, Takasaki T, Kobayashi M, Sawabe K. Genetic characterization of a new insect flavivirus isolated from Culex pipiens mosquito in Japan. Virology 2006; 359:405-14. [PMID: 17070886 DOI: 10.1016/j.virol.2006.09.039] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 07/26/2006] [Accepted: 09/22/2006] [Indexed: 11/19/2022]
Abstract
We found a new flavivirus that is widespread in Culex pipiens and other Culex mosquitoes in Japan. The virus isolate, named Culex flavivirus (CxFV), multiplied only in mosquito cell lines producing a moderate cytopathic effect, but did not grow in mammalian cells. The CxFV genome is single-stranded RNA, 10,834 nt in length and containing a single open reading frame encoding a polyprotein of 3362 aa with 5' and 3' untranslated regions (UTRs) of 91 and 657 nt, respectively. Phylogenetic analyses revealed that CxFV is closely related to the insect flaviviruses associated with Aedes mosquitoes, Cell fusing agent (CFA) and Kamiti River virus (KRV). The 3' UTR of CxFV contains four tandem repeats, which have sequence similarities to the two direct repeats in the CFA and KRV 3' UTRs. These results suggest that CxFV may be a new group of insect flaviviruses.
Collapse
Affiliation(s)
- Keita Hoshino
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
835
|
Stiasny K, Kiermayr S, Holzmann H, Heinz FX. Cryptic properties of a cluster of dominant flavivirus cross-reactive antigenic sites. J Virol 2006; 80:9557-68. [PMID: 16973559 PMCID: PMC1617264 DOI: 10.1128/jvi.00080-06] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
A number of flaviviruses are important human pathogens, including yellow fever, dengue, West Nile, Japanese encephalitis, and tick-borne encephalitis (TBE) viruses. Infection with or immunization against any of these viruses induces a subset of antibodies that are broadly flavivirus cross-reactive but do not exhibit significant cross-neutralization. Nevertheless, these antibodies can efficiently bind to the major envelope protein (E), which is the main target of neutralizing and protective antibodies because of its receptor-binding and membrane fusion functions. The structural basis for this phenomenon is still unclear. In our studies with TBE virus, we have provided evidence that such cross-reactive antibodies are specific for a cluster of epitopes that are partially occluded in the cage-like assembly of E proteins at the surfaces of infectious virions and involve-but are not restricted to-amino acids of the highly conserved internal fusion peptide loop. Virus disintegration leads to increased accessibility of these epitopes, allowing the cross-reactive antibodies to bind with strongly increased avidity. The cryptic properties of these sites in the context of infectious virions can thus provide an explanation for the observed lack of efficient neutralizing activity of broadly cross-reactive antibodies, despite their specificity for a functionally important structural element in the E protein.
Collapse
Affiliation(s)
- Karin Stiasny
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A-1095 Vienna, Austria
| | | | | | | |
Collapse
|
836
|
Samuel MA, Diamond MS. Pathogenesis of West Nile Virus infection: a balance between virulence, innate and adaptive immunity, and viral evasion. J Virol 2006; 80:9349-60. [PMID: 16973541 PMCID: PMC1617273 DOI: 10.1128/jvi.01122-06] [Citation(s) in RCA: 242] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Melanie A Samuel
- Division of Infectious Diseases, Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | |
Collapse
|
837
|
Luplerdlop N, Missé D, Bray D, Deleuze V, Gonzalez JP, Leardkamolkarn V, Yssel H, Veas F. Dengue-virus-infected dendritic cells trigger vascular leakage through metalloproteinase overproduction. EMBO Rep 2006; 7:1176-81. [PMID: 17028575 PMCID: PMC1679776 DOI: 10.1038/sj.embor.7400814] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 08/28/2006] [Accepted: 08/28/2006] [Indexed: 01/26/2023] Open
Abstract
Dengue virus (DV) is an important re-emerging arthropod-borne virus of global significance. The defining characteristic of DV infection-associated pathology is haemorrhagic fever, which often leads to a fatal shock-like syndrome (DHF/DSS) owing to an increase in vascular endothelial permeability. Here, we show, in a viral dose-dependent manner, that DV-infected immature dendritic cells overproduce soluble gelatinolytic matrix metalloproteinase (MMP)-9-and to a lesser extent MMP-2-which enhances endothelial permeability, but which are reduced by specific inhibitors and a neutralizing anti-MMP-9 antibody. This permeability was associated with a loss of expression of the platelet endothelial adhesion molecule 1 (PECAM-1) and vascular endothelium (VE)-cadherin cell adhesion molecules and redistribution of F-actin fibres. These in vitro observations were confirmed in an in vivo vascular-leakage mouse model. These results provide a molecular basis for DHF/DSS that could be a basis for a general model of haemorrhagic fever-inducing viruses, and identify a new therapeutic approach for the treatment of viral-induced vascular leakage by specifically targeting gelatinolytic metalloproteases.
Collapse
Affiliation(s)
- Natthanej Luplerdlop
- Institut de Recherche pour le Développement, IRD, Immunologie Virale et Moléculaire, UR178 IFR122, 34094 Montpellier, France
- Department of Anatomy, Faculty of Sciences, Mahidol University, 272 Rama VI Road, Bangkok 10400, Thailand
| | - Dorothée Missé
- Institut de Recherche pour le Développement, IRD, Immunologie Virale et Moléculaire, UR178 IFR122, 34094 Montpellier, France
| | - Dorothy Bray
- ImmunoClin Ltd, Rowlandson House, 289-293 Ballards Lane, London N12 8PE, UK
| | - Virginie Deleuze
- CNRS UMR 5535, IGMM, 919 route de Mende, 34293 Montpellier, France
| | - Jean-Paul Gonzalez
- Institut de Recherche pour le Développement, IRD, Immunologie Virale et Moléculaire, UR178 IFR122, 34094 Montpellier, France
| | - Vijittra Leardkamolkarn
- Department of Anatomy, Faculty of Sciences, Mahidol University, 272 Rama VI Road, Bangkok 10400, Thailand
| | - Hans Yssel
- INSERM U 454, 371 rue G Giraud, 34295 Montpellier, France
| | - Francisco Veas
- Institut de Recherche pour le Développement, IRD, Immunologie Virale et Moléculaire, UR178 IFR122, 34094 Montpellier, France
- Tel: +33 681 416 506; Fax: +33 467 528 380; E-mail:
| |
Collapse
|
838
|
Abstract
Flavivirus membrane fusion is mediated by a class II viral fusion protein, the major envelope protein E, and the fusion process is extremely fast and efficient. Understanding of the underlying mechanisms has been advanced significantly by the determination of E protein structures in their pre- and post-fusion conformations and by the elucidation of the quarternary organization of E proteins in the viral envelope. In this review, these structural data are discussed in the context of functional and biochemical analyses of the flavivirus fusion mechanism and its characteristics are compared with those of other class II- and class I-driven fusion processes.
Collapse
Affiliation(s)
- Karin Stiasny
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A1095 Vienna, Austria
| | - Franz X Heinz
- Institute of Virology, Medical University of Vienna, Kinderspitalgasse 15, A1095 Vienna, Austria
| |
Collapse
|
839
|
Yu CY, Hsu YW, Liao CL, Lin YL. Flavivirus infection activates the XBP1 pathway of the unfolded protein response to cope with endoplasmic reticulum stress. J Virol 2006; 80:11868-80. [PMID: 16987981 PMCID: PMC1642612 DOI: 10.1128/jvi.00879-06] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The unfolded protein response (UPR) is a coordinated change in gene expression triggered by perturbations in functions of the endoplasmic reticulum (ER). XBP1, a key transcription factor of the UPR, is activated by an IRE1-mediated splicing event, which results in a frameshift and encodes a protein with transcriptional activity. Here, we report that XBP1 was activated during flaviviral infection, as evidenced by XBP1 mRNA splicing and protein expression, as well as induction of the downstream genes ERdj4, EDEM1, and p58(IPK) in Japanese encephalitis virus (JEV)- and dengue virus serotype 2 (DEN-2)-infected cells. Reporter systems based on IRE1-mediated XBP1 splicing were established, and several flaviviral proteins associated with the ER, including glycoproteins and small hydrophobic membrane-anchored proteins, were found to trigger the splicing event. Notably, nonstructural protein NS2B-3 of DEN-2, but not of JEV, was a potent inducer of XBP1 splicing through an unclear mechanism(s). Reduction of XBP1 by a small interfering RNA had no effect on cells' susceptibility to the two viruses but exacerbated the flavivirus-induced cytopathic effects. Overall, flaviviruses trigger the XBP1 signaling pathway and take advantage of this cellular response to alleviate virus-induced cytotoxicity.
Collapse
Affiliation(s)
- Chia-Yi Yu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 115, Taiwan, Republic of China
| | | | | | | |
Collapse
|
840
|
Wang T, Gao Y, Scully E, Davis CT, Anderson JF, Welte T, Ledizet M, Koski R, Madri JA, Barrett A, Yin Z, Craft J, Fikrig E. Gamma delta T cells facilitate adaptive immunity against West Nile virus infection in mice. THE JOURNAL OF IMMUNOLOGY 2006; 177:1825-32. [PMID: 16849493 DOI: 10.4049/jimmunol.177.3.1825] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
West Nile (WN) virus causes fatal meningoencephalitis in laboratory mice, and gammadelta T cells are involved in the protective immune response against viral challenge. We have now examined whether gammadelta T cells contribute to the development of adaptive immune responses that help control WN virus infection. Approximately 15% of TCRdelta(-/-) mice survived primary infection with WN virus compared with 80-85% of the wild-type mice. These mice were more susceptible to secondary challenge with WN virus than the wild-type mice that survived primary challenge with the virus. Depletion of gammadelta T cells in wild-type mice that survived the primary infection, however, does not affect host susceptibility during secondary challenge with WN virus. Furthermore, gammadelta T cells do not influence the development of Ab responses during primary and at the early stages of secondary infection with WN virus. Adoptive transfer of CD8(+) T cells from wild-type mice that survived primary infection with WN virus to naive mice afforded partial protection from lethal infection. In contrast, transfer of CD8(+) T cells from TCRdelta(-/-) mice that survived primary challenge with WN virus failed to alter infection in naive mice. This difference in survival correlated with the numeric and functional reduction of CD8 memory T cells in these mice. These data demonstrate that gammadelta T cells directly link innate and adaptive immunity during WN virus infection.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/transplantation
- CD8-Positive T-Lymphocytes/virology
- Genetic Predisposition to Disease/genetics
- Immunity, Cellular/genetics
- Immunity, Innate/genetics
- Immunization, Secondary
- Immunoglobulin G/biosynthesis
- Immunoglobulin M/biosynthesis
- Immunologic Memory/genetics
- Lymphocyte Depletion
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- Recurrence
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/virology
- West Nile Fever/genetics
- West Nile Fever/immunology
- West Nile virus/immunology
Collapse
Affiliation(s)
- Tian Wang
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80521, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
841
|
Abe M, Shiosaki K, Hammar L, Sonoda K, Xing L, Kuzuhara S, Kino Y, Holland Cheng R. Immunological equivalence between mouse brain-derived and Vero cell-derived Japanese encephalitis vaccines. Virus Res 2006; 121:152-60. [PMID: 16815584 DOI: 10.1016/j.virusres.2006.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 05/10/2006] [Accepted: 05/19/2006] [Indexed: 11/19/2022]
Abstract
The persistent spread via animal reservoirs urges expanding vaccination programs against pathogens like the Japanese encephalitis virus, JEV. The JEV is spreads to new areas by domestic as well as by wild animals. Although there is a safe and efficient vaccine on the market, this is derived from infected mouse brains, why today's situation requires overcoming the potential risk caused by using animal tissues. To meet this demand we have developed a Vero cell-derived JEV vaccine, using the same virus strain as in the established one. A phase III clinical study of the new vaccine has recently been completed with positive outcome. Like the established mouse brain-derived vaccine, the Vero cell-derived one is a formalin inactivated whole virus vaccine. We here demonstrate the very good agreement in immunological tests between the two antigens. The study includes analyses with two neutralizing monoclonal antibodies that blocks cell entry at a late stage in infection, assumedly interfering with fusion-related refolding in the virus fusion protein. It is obvious that the formalin inactivation treatment, with both virus preparations, retains these essential vaccine epitopes.
Collapse
Affiliation(s)
- Motoharu Abe
- The Chemo-Sero-Therapeutic Research Institute, Kikuchi Research Center, Kyokushi Kikuchi, Kumamoto, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
842
|
Ayers M, Adachi D, Johnson G, Andonova M, Drebot M, Tellier R. A single tube RT-PCR assay for the detection of mosquito-borne flaviviruses. J Virol Methods 2006; 135:235-9. [PMID: 16650488 PMCID: PMC7119486 DOI: 10.1016/j.jviromet.2006.03.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Revised: 01/30/2006] [Accepted: 03/20/2006] [Indexed: 11/17/2022]
Abstract
Mosquito-borne flaviviruses include several important agents of human disease and have provided striking examples of emerging infections. In this study we present the design and validation of a single tube RT-PCR assay using a pair of consensus primers for the detection of mosquito-borne flaviviruses. Sequencing of the amplicons permits the species identification. The assay was validated using RNA from the yellow fever virus vaccine strain and from representative strains of dengue viruses 1, 2, 3 and 4, West Nile virus, Kunjin virus (a clade of West Nile virus), and St. Louis encephalitis virus.
Collapse
Affiliation(s)
- M. Ayers
- From the Metabolism Research Program, Hospital for Sick Children, Toronto, Ont., Canada
| | - D. Adachi
- Division of Microbiology, Hospital for Sick Children, Toronto, Ont., Canada
| | - G. Johnson
- Division of Microbiology, Hospital for Sick Children, Toronto, Ont., Canada
| | - M. Andonova
- National Microbiology Laboratory, Winnipeg, Man., Canada
| | - M. Drebot
- National Microbiology Laboratory, Winnipeg, Man., Canada
| | - R. Tellier
- From the Metabolism Research Program, Hospital for Sick Children, Toronto, Ont., Canada
- Division of Microbiology, Hospital for Sick Children, Toronto, Ont., Canada
| |
Collapse
|
843
|
Wearing HJ, Rohani P. Ecological and immunological determinants of dengue epidemics. Proc Natl Acad Sci U S A 2006; 103:11802-7. [PMID: 16868086 PMCID: PMC1544250 DOI: 10.1073/pnas.0602960103] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Indexed: 11/18/2022] Open
Abstract
The management of infectious diseases is an increasingly important public health issue, the effective implementation of which is often complicated by difficulties in teasing apart the relative roles of extrinsic and intrinsic factors influencing transmission. Dengue, a vector-borne strain polymorphic disease, is one such infection where transmission dynamics are affected by environmental variables as well as immune-mediated serotype interactions. To understand how alternative hypotheses concerning dengue infection and transmission may explain observed multiannual cycles in disease incidence, we adopt a theoretical approach that combines both ecological and immunological mechanisms. We demonstrate that, contrary to perceived wisdom, patterns generated solely by antibody-dependent enhancement or heterogeneity in virus virulence are not consistent with serotype-specific notification data in important ways. Furthermore, to generate epidemics with the characteristic signatures observed in data, we find that a combination of seasonal variation in vector demography and, crucially, a short-lived period of cross-immunity is sufficient. We then show how understanding the persistence and eradication of dengue serotypes critically depends on the alternative assumed mechanisms.
Collapse
Affiliation(s)
- Helen J Wearing
- Institute of Ecology and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602-2202, USA.
| | | |
Collapse
|
844
|
Lowe DB, Shearer MH, Kennedy RC. DNA vaccines: successes and limitations in cancer and infectious disease. J Cell Biochem 2006; 98:235-42. [PMID: 16440328 DOI: 10.1002/jcb.20775] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vaccination with plasmid DNA is an active area of investigation that is being applied to diseases including cancer and microbial pathogens associated with infectious diseases. Since its discovery, great progress has been made with the administration of DNA vaccines to initiate specific and effective immune responses against targeted illnesses. However, many obstacles still face its use in prophylactic and therapeutic vaccination scenarios. The nature of these difficulties alongside the successes and future of plasmid DNA will be discussed.
Collapse
Affiliation(s)
- Devin B Lowe
- Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, 79430, USA
| | | | | |
Collapse
|
845
|
Best SM, Mitzel DN, Bloom ME. Action and reaction: the arthropod-borne flaviviruses and host interferon responses. Future Virol 2006. [DOI: 10.2217/17460794.1.4.447] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The arthropod-borne flaviviruses include tick- and mosquito-borne viruses that are causes of globally significant emerging diseases. These single-stranded RNA viruses are exquisitely sensitive to the antiviral effects of host interferons. However, both the tick- and mosquito-borne flaviviruses are capable of modulating the interferon response. Despite the high degree of similarity among members of the flavivirus genus, the mechanisms employed by individual viruses to modulate interferon responses differ. This review considers the arthropod-borne flaviviruses and the host interferon response as a pair of forces, the action and the reaction. The interaction of these two forces has led to a complex relationship between virus and host. An increased understanding of these interactions will likely facilitate the rational design of novel vaccines and therapeutics.
Collapse
Affiliation(s)
- Sonja M Best
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, 903 South Fourth Street, Hamilton, MT 59840, USA
| | - Dana N Mitzel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, 903 South Fourth Street, Hamilton, MT 59840, USA
| | - Marshall E Bloom
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, NIAID, NIH, 903 South Fourth Street, Hamilton, MT 59840, USA
| |
Collapse
|
846
|
German AC, Myint KSA, Mai NTH, Pomeroy I, Phu NH, Tzartos J, Winter P, Collett J, Farrar J, Barrett A, Kipar A, Esiri MM, Solomon T. A preliminary neuropathological study of Japanese encephalitis in humans and a mouse model. Trans R Soc Trop Med Hyg 2006; 100:1135-45. [PMID: 16814333 DOI: 10.1016/j.trstmh.2006.02.008] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 02/20/2006] [Accepted: 02/20/2006] [Indexed: 11/30/2022] Open
Abstract
Japanese encephalitis virus is a mosquito-borne flavivirus that causes approximately 10000 deaths annually in Asia. After a brief viraemia, the virus enters the central nervous system, but the means of crossing the blood-brain barrier is uncertain. We used routine histological staining, immunohistology and electron microscopy to examine brain material from four fatal human cases, and made comparisons with material from a mouse model. In human material there was oedema, perivascular inflammation, haemorrhage, microglial nodules and acellular necrotic foci, as has been described previously. In addition, there was new evidence suggestive of viral replication in the vascular endothelium, with endothelial cell damage; this included occasional viral antigen staining, uneven binding of the vascular endothelial cells to Ulex europaeus agglutinin I and ultrastructural changes. Viral antigen was also found in neurons. There was an active astrocytic response, as shown by glial fibrillary acidic protein staining, and activation of microglial cells was demonstrated by an increase in major histocompatibility complex class II expression. Similar inflammatory infiltrates and a microglial reaction were observed in mouse brain tissue. In addition, beta-amyloid precursor protein staining indicated impaired axonal transport. Whether these findings are caused by viral replication in the vascular endothelium or the immune response merits further investigation.
Collapse
Affiliation(s)
- Allison C German
- Division of Medical Microbiology, University of Liverpool, Liverpool, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
847
|
Cook S, Bennett SN, Holmes EC, De Chesse R, Moureau G, de Lamballerie X. Isolation of a new strain of the flavivirus cell fusing agent virus in a natural mosquito population from Puerto Rico. J Gen Virol 2006; 87:735-748. [PMID: 16528021 DOI: 10.1099/vir.0.81475-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Flavivirus contains approximately 70 single-stranded, positive-sense RNA viruses that are mosquito-borne, tick-borne or have no known vector. Two discoveries support previous suggestions of the existence of a large number of unsampled flaviviruses: (i) a new flavivirus, Kamiti River virus, was recently isolated from Kenyan mosquitoes, and (ii) sequences with high similarity to those of flaviviruses have been found integrated into the genome of Aedes mosquitoes, suggesting a past infection with a virus (or viruses) that has yet to be discovered. These sequences were related most closely to a flavivirus that infects insects alone, cell fusing agent virus (CFAV). CFAV was originally isolated in the laboratory from an Aedes aegypti cell line. To date, this virus had not been found in the wild. In the present study, over 40 isolates of a novel strain of CFAV were discovered from mature mosquitoes sampled from the wild in Puerto Rico. The viral strain was present in a range of mosquito species, including Aedes aegypti, Aedes albopictus and Culex sp., from numerous locations across the island and, importantly, in mosquitoes of both sexes, suggesting vertical transmission. Here, results from viral screening, and cell culture and molecular identification of the infected mosquitoes are presented. Experimental-infection tests were also conducted by using the original CFAV strain and a highly efficient reverse-transcription mechanism has been documented, in which initiation of copying occurs at the 3' terminus of either the genomic RNA or the intermediate of replication, potentially elucidating the mechanism by which flaviviral sequences may have integrated into mosquito genomes.
Collapse
Affiliation(s)
- Shelley Cook
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK
| | - Shannon N Bennett
- Asia-Pacific Institute of Tropical Medicine and Infectious Diseases, University of Hawaii at Manoa, 3675 Kilauea Avenue, Honolulu, HI 96816, USA
| | - Edward C Holmes
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Reine De Chesse
- Unité des Virus Emergents, Faculté de Médecine de Marseille, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | - Gregory Moureau
- Unité des Virus Emergents, Faculté de Médecine de Marseille, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| | - Xavier de Lamballerie
- Unité des Virus Emergents, Faculté de Médecine de Marseille, Université de la Méditerranée, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France
| |
Collapse
|
848
|
Pijlman GP, Suhrbier A, Khromykh AA. Kunjin virus replicons: an RNA-based, non-cytopathic viral vector system for protein production, vaccine and gene therapy applications. Expert Opin Biol Ther 2006; 6:135-45. [PMID: 16436039 DOI: 10.1517/14712598.6.2.135] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The application of viral vectors for gene expression and delivery is rapidly evolving, with several entering clinical trials. However, a number of issues, including safety, gene expression levels, cell selectivity and antivector immunity, are driving the search for new vector systems. A number of replicon-based vectors derived from positive-strand RNA viruses have recently been developed, and this paper reviews the current knowledge on the first flavivirus replicon system, which is based on the Australian flavivirus Kunjin (KUN). Like most replicon systems, KUN replicons can be delivered as DNA, RNA or virus-like particles, they replicate their RNA in the cytoplasm and direct prolonged high-level gene expression. However, unlike most alphavirus replicon systems, KUN replicons are non-cytopathic, with transfected cells able to divide, allowing the establishment of cell lines stably expressing replicon RNA and heterologous genes. As vaccine vectors KUN replicons can induce potent, long-lived, protective, immunogen-specific CD8+ T cell immunity, a feature potentially related to extended production of antigen and double-stranded RNA-induced 'danger signals'. The identification of KUN replicon mutants that induce increased levels of IFN-alpha/beta has also spawned investigation of KUN replicons for use in cancer gene therapy. The unique characteristics of KUN replicons may thus make them suitable for specific protein production, vaccine and gene therapy applications.
Collapse
Affiliation(s)
- Gorben P Pijlman
- University of Queensland, School of Molecular and Microbial Sciences, MBS Bld 76, St. Lucia, 4072 QLD, Australia
| | | | | |
Collapse
|
849
|
Selisko B, Dutartre H, Guillemot JC, Debarnot C, Benarroch D, Khromykh A, Desprès P, Egloff MP, Canard B. Comparative mechanistic studies of de novo RNA synthesis by flavivirus RNA-dependent RNA polymerases. Virology 2006; 351:145-58. [PMID: 16631221 DOI: 10.1016/j.virol.2006.03.026] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 02/22/2006] [Accepted: 03/16/2006] [Indexed: 01/09/2023]
Abstract
Flavivirus protein NS5 harbors the RNA-dependent RNA polymerase (RdRp) activity. In contrast to the RdRps of hepaci- and pestiviruses, which belong to the same family of Flaviviridae, NS5 carries two activities, a methyltransferase (MTase) and a RdRp. RdRp domains of Dengue virus (DV) and West Nile virus (WNV) NS5 were purified in high yield relative to full-length NS5 and showed full RdRp activity. Steady-state enzymatic parameters were determined on homopolymeric template poly(rC). The presence of the MTase domain does not affect the RdRp activity. Flavivirus RdRp domains might bear more than one GTP binding site displaying positive cooperativity. The kinetics of RNA synthesis by four Flaviviridae RdRps were compared. In comparison to Hepatitis C RdRp, DV and WNV as well as Bovine Viral Diarrhea virus RdRps show less rate limitation by early steps of short-product formation. This suggests that they display a higher conformational flexibility upon the transition from initiation to elongation.
Collapse
Affiliation(s)
- Barbara Selisko
- Centre National de la Recherche Scientifique and Universités d'Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, AFMB-CNRS-ESIL, 13288 Marseille Cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
850
|
Kumar P, Lee SK, Shankar P, Manjunath N. A single siRNA suppresses fatal encephalitis induced by two different flaviviruses. PLoS Med 2006; 3:e96. [PMID: 16464133 PMCID: PMC1361782 DOI: 10.1371/journal.pmed.0030096] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Accepted: 12/16/2005] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Japanese encephalitis virus (JEV) and West Nile virus (WNV) are neurotropic flaviviruses that can cause acute encephalitis with a high fatality rate. Currently there is no effective treatment for these infections. METHODS AND FINDINGS We tested RNA interference (RNAi)-based intervention to suppress lethal JE and WN encephalitis in mice. To induce RNAi, we used either lentivirally expressed short hairpin RNA (shRNA) or synthetic short interfering RNA (siRNA). As target, we selected the cd loop-coding sequence in domain II of the viral Envelope protein, which is highly conserved among all flaviviruses because of its essential role in membrane fusion. Using as a target a species-specific sequence in the cd loop that is conserved only among the different strains of either JEV or WNV, we could achieve specific protection against the corresponding virus. However, by targeting a cross-species conserved sequence within the cd loop, we were able to protect mice against encephalitis induced by both viruses. A single intracranial administration of lentivirally delivered shRNA or lipid-complexed siRNA before viral challenge or siRNA treatment after viral challenge was sufficient for protection against lethal encephalitis. CONCLUSIONS RNAi-based intervention affords near complete protection from both JEV- and WNV- induced encephalitis in mice. Our results show, to our knowledge for the first time, that siRNA can be used as a broad-spectrum antiviral agent for treating encephalitis caused by multiple related viruses.
Collapse
Affiliation(s)
- Priti Kumar
- 1The CBR Institute for Biomedical Research and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sang Kyung Lee
- 2Department of Bioengineering, Hanyang University, Seoul, Korea
| | - Premlata Shankar
- 1The CBR Institute for Biomedical Research and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
(PS); E-mail:
(NM)
| | - N Manjunath
- 1The CBR Institute for Biomedical Research and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
(PS); E-mail:
(NM)
| |
Collapse
|