801
|
Silibinin inhibits invasive properties of human glioblastoma U87MG cells through suppression of cathepsin B and nuclear factor kappa B-mediated induction of matrix metalloproteinase 9. Anticancer Drugs 2010; 21:252-60. [DOI: 10.1097/cad.0b013e3283340cd7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
802
|
Wu S, Walenkamp MJ, Lankester A, Bidlingmaier M, Wit JM, De Luca F. Growth hormone and insulin-like growth factor I insensitivity of fibroblasts isolated from a patient with an I{kappa}B{alpha} mutation. J Clin Endocrinol Metab 2010; 95:1220-8. [PMID: 20080849 DOI: 10.1210/jc.2009-1662] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
CONTEXT NF-kappaB is a family of transcription factors involved in cell proliferation, differentiation, and apoptosis. OBJECTIVE We have recently demonstrated that NF-kappaB is expressed in the growth plate and it mediates the growth-promoting effects of IGF-I on chondrogenesis and longitudinal bone growth. Humans with defects of the NF-kappaB pathway exhibit growth failure, which suggests a possible regulatory role for NF-kappaB in statural growth. We have previously reported a child with ectodermal dysplasia, immunodeficiency, and growth retardation, harboring a heterozygous mutation of IkappaBalpha, an essential component of the NF-kappaB pathway. Since he was found with low IGF-l and IGFBP-3, and elevated GH secretion, an IGF-l generation test was carried out: baseline IGF-l was low and only responded to a high dose of GH. Thus, the diagnosis of GH resistance was made. RESULTS To assess the underlying mechanisms of his GH resistance, we cultured the patient's skin fibroblasts with GH and/or IGF-I. While both GH and IGF-l induced cell proliferation and NF-kappaB activity in controls' fibroblasts, they had no effect on the patient's fibroblasts. In the fibroblasts of the patient's father (who displays mosaicism for the IkappaBalpha mutation), GH and IGF-l elicited an attenuated stimulatory effect. In addition, GH stimulated STAT5 phosphorylation and IGF-l mRNA expression in controls ' and the father's fibroblasts, while IGF-l induced PI3K activity and mRNA and protein expression of TDAG51, a target gene for IGF-I. In contrast, none of these effects was elicited by GH or IGF-l in the patient's fibroblasts. CONCLUSION Our findings suggest that this patient's IkappaBalpha mutation caused GH and IGF-l resistance which, in turn, contributed to his growth failure.
Collapse
Affiliation(s)
- Shufang Wu
- St. Christopher's Hospital for Children, 3601 A Street, Philadelphia, Pennsylvania 19134, USA
| | | | | | | | | | | |
Collapse
|
803
|
Shibata W, Takaishi S, Muthupalani S, Pritchard DM, Whary MT, Rogers AB, Fox JG, Betz KS, Kaestner KH, Karin M, Wang TC. Conditional deletion of IkappaB-kinase-beta accelerates helicobacter-dependent gastric apoptosis, proliferation, and preneoplasia. Gastroenterology 2010; 138:1022-34.e1-10. [PMID: 19962981 PMCID: PMC2831162 DOI: 10.1053/j.gastro.2009.11.054] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 11/23/2009] [Accepted: 11/25/2009] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS The nuclear factor kappaB (NF-kappaB)/IkappaB-kinase-beta (IKKbeta) pathway has been shown to represent a key link between inflammation and cancer, inducing pro-inflammatory cytokines in myeloid cells and anti-apoptotic pathways in epithelial cells. However, the role of NF-kappaB pathway in gastric carcinogenesis and injury has not been well-defined. We derived mice with a conditional knockout of IKKbeta in gastric epithelial cells (GECs) and myeloid cells, and examined responses to ionizing radiation (IR) and Helicobacter felis infection. METHODS Ikkbeta(Deltastom) mice were generated by crossing Foxa3-Cre mice to Ikkbeta(F/F) mice. Cellular stress was induced with IR and H felis in Ikkbeta(Deltastom), Ikkbeta(F/F), and cis-NF-kappaB-enhanced green fluorescent protein (GFP) reporter mice. Gastric histopathology, apoptosis, proliferation, necrosis, reactive oxygen species, and expression of cytokines, chemokines, and anti-apoptotic genes were assessed. The role of myeloid IKKbeta in these models was studied by crosses with LysM-Cre mice. RESULTS NF-kappaB activity was upregulated in myeloid cells with acute H felis infection, but in GECs by IR or long-term H felis infection during progression to dysplasia. Deletion of IKKbeta in GECs led to increased apoptosis, reactive oxygen species, and cellular necrosis, and resulted in up-regulation of interleukin-1alpha and down-regulation of anti-apoptotic genes. Loss of IKKbeta in GECs resulted in worse inflammation and more rapid progression to gastric preneoplasia, while loss of IKKbeta in myeloid cells inhibited development of gastric atrophy. CONCLUSIONS The loss of IKKbeta/NF-kappaB signaling in GECs results in increased apoptosis and necrosis in response to cellular stress, and accelerated development of dysplasia by Helicobacter infection.
Collapse
Affiliation(s)
- Wataru Shibata
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Shigeo Takaishi
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY
| | | | - D. Mark Pritchard
- Division of Gastroenterology, School of Clinical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Mark T. Whary
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - Arlin B. Rogers
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - James G. Fox
- Division of Comparative Medicine, Massachusetts Institute of Technology, Cambridge, MA
| | - Kelly S. Betz
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY
| | - Klaus H. Kaestner
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, Cancer Center, School of Medicine, University of California, San Diego, La Jolla, CA
| | - Timothy C. Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, College of Physicians and Surgeons, New York, NY
| |
Collapse
|
804
|
Simpson-Haidaris PJ, Pollock SJ, Ramon S, Guo N, Woeller CF, Feldon SE, Phipps RP. Anticancer Role of PPARgamma Agonists in Hematological Malignancies Found in the Vasculature, Marrow, and Eyes. PPAR Res 2010; 2010:814609. [PMID: 20204067 PMCID: PMC2829627 DOI: 10.1155/2010/814609] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 11/30/2009] [Accepted: 12/16/2009] [Indexed: 12/19/2022] Open
Abstract
The use of targeted cancer therapies in combination with conventional chemotherapeutic agents and/or radiation treatment has increased overall survival of cancer patients. However, longer survival is accompanied by increased incidence of comorbidities due, in part, to drug side effects and toxicities. It is well accepted that inflammation and tumorigenesis are linked. Because peroxisome proliferator-activated receptor (PPAR)-gamma agonists are potent mediators of anti-inflammatory responses, it was a logical extension to examine the role of PPARgamma agonists in the treatment and prevention of cancer. This paper has two objectives: first to highlight the potential uses for PPARgamma agonists in anticancer therapy with special emphasis on their role when used as adjuvant or combined therapy in the treatment of hematological malignancies found in the vasculature, marrow, and eyes, and second, to review the potential role PPARgamma and/or its ligands may have in modulating cancer-associated angiogenesis and tumor-stromal microenvironment crosstalk in bone marrow.
Collapse
Affiliation(s)
- P. J. Simpson-Haidaris
- Department of Medicine/Hem-Onc Division, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - S. J. Pollock
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - S. Ramon
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - N. Guo
- Department of Opthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - C. F. Woeller
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - S. E. Feldon
- Department of Opthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - R. P. Phipps
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- Department of Opthalmology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
- The Lung Biology and Disease Program, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
805
|
Büchele B, Zugmaier W, Lunov O, Syrovets T, Merfort I, Simmet T. Surface plasmon resonance analysis of nuclear factor-kappaB protein interactions with the sesquiterpene lactone helenalin. Anal Biochem 2010; 401:30-7. [PMID: 20175984 DOI: 10.1016/j.ab.2010.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 02/14/2010] [Accepted: 02/17/2010] [Indexed: 11/25/2022]
Abstract
Sesquiterpene lactones such as helenalin have generally been considered as highly promising compounds for the treatment of inflammatory disorders. Although sesquiterpene lactones are known to inhibit signaling through transcription factor nuclear factor-kappaB (NF-kappaB), the nature of their molecular targets remains controversial. To characterize the interactions of helenalin with putative target proteins, a surface plasmon resonance-based method was developed and validated to analyze the interactions of helenalin with the NF-kappaB protein p65/RelA, with recombinant IkappaB kinases (IKKs) alpha and beta, and with the intracellular antioxidant glutathione, all immobilized on sensor chips. At pH 7.4, helenalin is interacting with RelA (K(D)=4.8microM), yet it failed to bind either IKKalpha or IKKbeta. When DNA with NF-kappaB binding sites was immobilized on sensor chips, the binding of RelA was inhibited by helenalin with an IC(50) of 5.0microM. At pH 8.0, helenalin was also able to interact with reduced, but not oxidized, glutathione with a K(D) of 24microM, but no significant interaction was observed at pH 7.4. Thus, with this optimized method, we showed that the sesquiterpene lactone helenalin interacts with the NF-kappaB protein RelA but not with IKKalpha or IKKbeta. Moreover, at physiological pH, helenalin does not interact with glutathione to any significant extent.
Collapse
Affiliation(s)
- Berthold Büchele
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, D-89081 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
806
|
Lin Y, Bai L, Chen W, Xu S. The NF-kappaB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opin Ther Targets 2010; 14:45-55. [PMID: 20001209 DOI: 10.1517/14728220903431069] [Citation(s) in RCA: 296] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IMPORTANCE OF THE FIELD Nuclear factor kappa B (NF-kappaB) is activated by a variety of cancer-promoting agents. The reciprocal activation between NF-kappaB and inflammatory cytokines makes NF-kappaB important for inflammation-associated cancer development. Both the constitutive and anticancer therapeutic-induced NF-kappaB activation blunts the anticancer activities of the therapy. Elucidating the roles of NF-kappaB in cancer facilitates developing approaches for cancer prevention and therapy. AREAS COVERED IN THIS REVIEW By searching PubMed, we summarize the progress of studies on NF-kappaB in carcinogenesis and cancer cells' drug resistance in recent 10 years. WHAT THE READER WILL GAIN The mechanisms by which NF-kappaB activation pathways are activated; the roles and mechanisms of NF-kappaB in cell survival and proliferation, and in carcinogenesis and cancer cells' response to therapy; recent development of NF-kappaB-modulating means and their application in cancer prevention and therapy. TAKE HOME MESSAGE NF-kappaB is involved in cancer development, modulating NF-kappaB activation pathways has important implications in cancer prevention and therapy. Due to the complexity of NF-kappaB roles in different cancers, careful evaluation of NF-kappaB's in each cancer type is crucial in this regard. More cancer cell-specific NF-kappaB inhibiting means are desired for improving anticancer efficacy and reducing systemic toxicity.
Collapse
Affiliation(s)
- Yong Lin
- Molecular Biology and Lung Cancer Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA.
| | | | | | | |
Collapse
|
807
|
Tan Y, Chiow KH, Huang D, Wong SH. Andrographolide regulates epidermal growth factor receptor and transferrin receptor trafficking in epidermoid carcinoma (A-431) cells. Br J Pharmacol 2010; 159:1497-510. [PMID: 20233216 DOI: 10.1111/j.1476-5381.2009.00627.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Andrographolide is the active component of Andrographis paniculata, a plant used in both Indian and Chinese traditional medicine, and it has been demonstrated to induce apoptosis in different cancer cell lines. However, not much is known about how it may affect the key receptors implicated in cancer. Knowledge of how andrographolide affects receptor trafficking will allow us to better understand new mechanisms by which andrographolide may cause death in cancer cells. EXPERIMENTAL APPROACH We utilized the well-characterized epidermal growth factor receptor (EGFR) and transferrin receptor (TfR) expressed in epidermoid carcinoma (A-431) cells as a model to study the effect of andrographolide on receptor trafficking. Receptor distribution, the total number of receptors and surface receptors were analysed by immunofluorescence, Western blot as well as flow-cytometry respectively. KEY RESULTS Andrographolide treatment inhibited cell growth, down-regulated EGFRs on the cell surface and affected the degradation of EGFRs and TfRs. The EGFR was internalized into the cell at an increased rate, and accumulated in a compartment that co-localizes with the lysosomal-associated membrane protein in the late endosomes. CONCLUSION AND IMPLICATIONS This study sheds light on how andrographolide may affect receptor trafficking by inhibiting receptor movement from the late endosomes to lysosomes. The down-regulation of EGFR from the cell surface also indicates a new mechanism by which andrographolide may induce cancer cell death.
Collapse
Affiliation(s)
- Y Tan
- Laboratory of Membrane Trafficking and Immunoregulation, Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
| | | | | | | |
Collapse
|
808
|
Nadiminty N, Dutt S, Tepper C, Gao AC. Microarray analysis reveals potential target genes of NF-kappaB2/p52 in LNCaP prostate cancer cells. Prostate 2010; 70:276-87. [PMID: 19827050 DOI: 10.1002/pros.21062] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE Our previous studies showed that NF-kappaB2/p52 is involved in the castration-resistant growth of the androgen-sensitive LNCaP prostate cancer cells. The role of NF-kappaB2/p52 in lymphomagenesis has been studied extensively, but its target genes in other cancers remain unknown. In order to identify genes potentially regulated by p52 in prostate cancer cells, we performed a genome-wide microarray analysis of genes differentially up- or down-regulated by the overexpression of p52 by adenoviral-mediated gene delivery in LNCaP cells. EXPERIMENTAL DESIGN Total RNAs from vector control-infected and Adeno-p52-infected LNCaP cells were used to prepare cDNAs, which were hybridized to the Whole Genome Human 44k Microarray chips (Agilent Technologies). Data analysis was performed using GeneSpring and Ingenuity Pathway Analysis software. Validation of microarray results was performed by real-time quantitative RT-PCR and Western blot analyses. RESULTS Expression of approximately 130 genes was differentially upregulated by >5-fold, whereas approximately 60 genes were differentially downregulated by >2-fold in p52-expressing LNCaP cells. Pathway analysis revealed that the upregulated genes belong to functional categories like cell growth and proliferation, cellular movement, cell-to-cell signaling and interaction, cancer, cell cycle, etc., whereas the downregulated genes were represented by functional categories like cell movement, antigen presentation, and cell death. Six of the top upregulated genes including annexin A2, PLAU, RND3, Twist2, VEGFC, and CXCL1 were validated by real-time PCR and Western blot analysis. CONCLUSIONS This study provides a comprehensive analysis of genes potentially regulated by NF-kappaB2/p52 in the LNCaP prostate cancer cell line and provides a rationale for the induction of castration-resistant growth by p52 in LNCaP cells.
Collapse
Affiliation(s)
- Nagalakshmi Nadiminty
- Department of Urology, University of California Davis Medical Center, Sacramento, California, USA
| | | | | | | |
Collapse
|
809
|
Zanotto-Filho A, Delgado-Cañedo A, Schröder R, Becker M, Klamt F, Moreira JCF. The pharmacological NFκB inhibitors BAY117082 and MG132 induce cell arrest and apoptosis in leukemia cells through ROS-mitochondria pathway activation. Cancer Lett 2010; 288:192-203. [DOI: 10.1016/j.canlet.2009.06.038] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 06/28/2009] [Accepted: 06/30/2009] [Indexed: 02/05/2023]
|
810
|
Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc Natl Acad Sci U S A 2010; 107:2669-74. [PMID: 20133768 DOI: 10.1073/pnas.0910658107] [Citation(s) in RCA: 483] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Proinflammatory cytokines, such as IL-1beta, have been implicated in the cellular and behavioral effects of stress and in mood disorders, although the downstream signaling pathways underlying these effects have not been determined. In the present study, we demonstrate a critical role for NF-kappaB signaling in the actions of IL-1beta and stress. Stress inhibition of neurogenesis in the adult hippocampus, which has been implicated in the prodepressive effects of stress, is blocked by administration of an inhibitor of NF-kappaB. Further analysis reveals that stress activates NF-kappaB signaling and decreases proliferation of neural stem-like cells but not early neural progenitor cells in the adult hippocampus. We also find that depressive-like behaviors caused by exposure to chronic stress are mediated by NF-kappaB signaling. Together, these data identify NF-kappaB signaling as a critical mediator of the antineurogenic and behavioral actions of stress and suggest previously undescribed therapeutical targets for depression.
Collapse
|
811
|
Heteronemin, a spongean sesterterpene, inhibits TNF alpha-induced NF-kappa B activation through proteasome inhibition and induces apoptotic cell death. Biochem Pharmacol 2010; 79:610-22. [PMID: 19814997 DOI: 10.1016/j.bcp.2009.09.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/29/2009] [Accepted: 09/30/2009] [Indexed: 01/08/2023]
Abstract
In this study, we investigated the biological effects of heteronemin, a marine sesterterpene isolated from the sponge Hyrtios sp. on chronic myelogenous leukemia cells. To gain further insight into the molecular mechanisms triggered by this compound, we initially performed DNA microarray profiling and determined which genes respond to heteronemin stimulation in TNFalpha-treated cells and which genes display an interaction effect between heteronemin and TNFalpha. Within the differentially regulated genes, we found that heteronemin was affecting cellular processes including cell cycle, apoptosis, mitogen-activated protein kinases (MAPKs) pathway and the nuclear factor kappaB (NF-kappaB) signaling cascade. We confirmed in silico experiments regarding NF-kappaB inhibition by reporter gene analysis, electrophoretic mobility shift analysis and I-kappaB degradation. In order to assess the underlying molecular mechanisms, we determined that heteronemin inhibits both trypsin and chymotrypsin-like proteasome activity at an IC(50) of 0.4 microM. Concomitant to the inhibition of the NF-kappaB pathway, we also observed a reduction in cellular viability. Heteronemin induces apoptosis as shown by annexin V-FITC/propidium iodide-staining, nuclear morphology analysis, pro-caspase-3, -8 and -9 and poly(ADP-ribose) polymerase (PARP) cleavage as well as truncation of Bid. Altogether, results show that this compound has potential as anti-inflammatory and anti-cancer agent.
Collapse
|
812
|
Maki N, Martinson J, Nishimura O, Tarui H, Meller J, Tsonis PA, Agata K. Expression profiles during dedifferentiation in newt lens regeneration revealed by expressed sequence tags. Mol Vis 2010; 16:72-8. [PMID: 20090923 PMCID: PMC2807617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Accepted: 01/13/2010] [Indexed: 10/26/2022] Open
Abstract
PURPOSE The adult newt can regenerate lens from pigmented epithelial cells (PECs) of the dorsal iris via dedifferentiation. The purpose of this research is to obtain sequence resources for a newt lens regeneration study and to obtain insights of dedifferentiation at the molecular level. METHODS mRNA was purified from iris during dedifferentiation and its cDNA library was constructed. From the cDNA library 10,449 clones were sequenced and analyzed. RESULTS From 10,449 reads, 780 contigs and 1,666 singlets were annotated. The presence of several cancer- and apoptosis-related genes during newt dedifferentiation was revealed. Moreover, several candidate genes, which might participate in reprogramming during dedifferentiation, were also found. CONCLUSIONS The expression of cancer- and apoptosis-related genes could be hallmarks during dedifferentiation. The expression sequence tag (EST) resource is useful for the future study of newt dedifferentiation, and the sequence information is available in GenBank (accession numbers; FS290155-FS300559).
Collapse
Affiliation(s)
- Nobuyasu Maki
- Center for Developmental Biology, RIKEN Kobe, Kobe, Japan
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, OH
| | - John Martinson
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH
- Ecological Exposure Research Division, Cincinnati, OH
| | | | - Hiroshi Tarui
- Center for Developmental Biology, RIKEN Kobe, Kobe, Japan
| | - Jaroslaw Meller
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH
| | - Panagiotis A. Tsonis
- Department of Biology and Center for Tissue Regeneration and Engineering, University of Dayton, Dayton, OH
| | - Kiyokazu Agata
- Center for Developmental Biology, RIKEN Kobe, Kobe, Japan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
813
|
Rosato RR, Kolla SS, Hock SK, Almenara JA, Patel A, Amin S, Atadja P, Fisher PB, Dent P, Grant S. Histone deacetylase inhibitors activate NF-kappaB in human leukemia cells through an ATM/NEMO-related pathway. J Biol Chem 2010; 285:10064-10077. [PMID: 20065354 DOI: 10.1074/jbc.m109.095208] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Mechanisms underlying histone deacetylase inhibitor (HDACI)-mediated NF-kappaB activation were investigated in human leukemia cells. Exposure of U937 and other leukemia cells to LBH-589 induced reactive oxygen species (ROS) followed by single strand (XRCC1) and double strand (gamma-H2AX) DNA breaks. Notably, LBH-589 lethality was markedly attenuated by small interfering RNA (siRNA) knockdown of the DNA damage-linked histone, H1.2. LBH-589 triggered p65/RelA activation, NF-kappaB-dependent induction of Mn-SOD2, and ROS elimination. Interference with LBH-589-mediated NF-kappaB activation (e.g. in I kappaB alpha super-repressor transfected cells) diminished HDACI-mediated Mn-SOD2 induction and increased ROS accumulation, DNA damage, and apoptosis. The Mn-SOD2 mimetic TBAP (manganese(III)-tetrakis 4-benzoic acid porphyrin) prevented HDACI-induced ROS and NF-kappaB activation while dramatically attenuating DNA damage and cell death. In contrast, TRAF2 siRNA knockdown, targeting receptor-mediated NF-kappaB activation, blocked TNFalpha- but not HDACI-mediated NF-kappaB activation and lethality. Consistent with ROS-mediated DNA damage, LBH-589 exposure activated ATM (on serine 1981) and increased its association with NEMO. Significantly, siRNA NEMO or ATM knockdown blocked HDACI-mediated NF-kappaB activation, resulting in diminished MnSOD2 induction and enhanced oxidative DNA damage and cell death. In accord with the recently described DNA damage/ATM/NEMO pathway, SUMOylation site mutant NEMO (K277A or K309A) cells exposed to LBH-589 displayed diminished ATM/NEMO association, NEMO and p65/RelA nuclear localization/activation, and MnSOD2 up-regulation. These events were accompanied by increased ROS production, gamma-H2AX formation, and cell death. Together, these findings indicate that in human leukemia cells, HDACIs activate the cytoprotective NF-kappaB pathway through an ATM/NEMO/SUMOylation-dependent process involving the induction of ROS and DNA damage and suggest that blocking NF-kappaB activation via the atypical ATM/NEMO nuclear pathway can enhance HDACI antileukemic activity.
Collapse
Affiliation(s)
| | | | | | | | - Ankita Patel
- Departments of Medicine, Richmond, Virginia 23298
| | - Sanjay Amin
- Departments of Medicine, Richmond, Virginia 23298
| | - Peter Atadja
- Department of Oncology, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Paul B Fisher
- Human and Molecular Genetics, Richmond, Virginia 23298; Virginia Commonwealth University Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Paul Dent
- Biochemistry, the Massey Cancer Center, Richmond, Virginia 23298; Virginia Commonwealth University Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia 23298
| | - Steven Grant
- Departments of Medicine, Richmond, Virginia 23298; Biochemistry, the Massey Cancer Center, Richmond, Virginia 23298; Virginia Commonwealth University Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, Virginia 23298.
| |
Collapse
|
814
|
Yarde DN, Oliveira V, Mathews L, Wang X, Villagra A, Boulware D, Shain KH, Hazlehurst LA, Alsina M, Chen DT, Beg AA, Dalton WS. Targeting the Fanconi anemia/BRCA pathway circumvents drug resistance in multiple myeloma. Cancer Res 2010; 69:9367-75. [PMID: 19934314 DOI: 10.1158/0008-5472.can-09-2616] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The Fanconi anemia/BRCA (FA/BRCA) DNA damage repair pathway plays a pivotal role in the cellular response to replicative stress induced by DNA alkylating agents and greatly influences drug response in cancer treatment. We recently reported that FA/BRCA genes are overexpressed and causative for drug resistance in human melphalan-resistant multiple myeloma cell lines. However, the transcriptional regulation of the FA/BRCA pathway is not understood. In this report, we describe for the first time a novel function of the NF-kappaB subunits, RelB/p50, as transcriptional activators of the FA/BRCA pathway. Specifically, our findings point to constitutive phosphorylation of IkappaB kinase alpha and subsequent alterations in FANCD2 expression and function as underlying events leading to melphalan resistance in repeatedly exposed multiple myeloma cells. Inhibiting NF-kappaB by small interfering RNA, blocking the IkappaB kinase complex with BMS-345541, or using the proteasome inhibitor bortezomib drastically reduced FA/BRCA gene expression and FANCD2 protein expression in myeloma cells, resulting in diminished DNA damage repair and enhanced melphalan sensitivity. Importantly, we also found that bortezomib decreases FA/BRCA gene expression in multiple myeloma patients. These results show for the first time that NF-kappaB transcriptionally regulates the FA/BRCA pathway and provide evidence for targeting Fanconi anemia-mediated DNA repair to enhance chemotherapeutic response and circumvent drug resistance in myeloma patients.
Collapse
Affiliation(s)
- Danielle N Yarde
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
815
|
Rohr UD, Gocan AG, Bachg D, Schindler AE. Cancer protection of soy resembles cancer protection during pregnancy. Horm Mol Biol Clin Investig 2010; 3:391-409. [DOI: 10.1515/hmbci.2010.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 11/02/2010] [Indexed: 12/25/2022]
Abstract
AbstractIt has been established that carrying a pregnancy to full-term at an early age can protect against contracting cancer by up to 50% in later life. The trophoblast theory of cancer states that trophoblast and cancer tissue are very similar. New findings suggest that the loss of fetal cells during pregnancy resemble those cells responsible for causing metastasis in cancer. Fetal cells and spreading cancer cells are highly proliferative. They are similar to stem cells, exhibiting no or low hormone receptor expression, and require a hormone receptor independent mechanism for control. Control of membrane stability during pregnancy is of vital importance for a successful pregnancy and is mediated by androstenediol and 2-methoxyestradiol. 2-Methoxyestradiol has no hormone receptor affinity and elicits strong anticancer effects particularly against cancer stem cells and fetal cells, for which currently no treatment has yet been established. There is a discussion whether pregnancy reduces cancer stem cells in the breast. Soy isoflavones are structurally similar to both hormones, and elicit strong anticancer effects and antiangiogenesis via inhibition of NF-κB, even in hormone receptor independent breast cancers seen in epidemiologic studies. The trophoblast theory of cancer could help to explain why soy baby nutrition formulas have no effect on baby physiology, other than the nutritional aspect, although soy elicits many effects on the adult immune system. To survive the immune system of the mother, the immune system of the fetus has to be separated; otherwise, the reduction of the immune system in the mother, a necessary feature for the blastocyst to grow, would immediately reduce the immunity for the fetus and endanger its survival. Similar to a fetus, newly born babies show immune insensitive to Th1 and Th2 cytokines, which are necessary and crucial for regulating the immune system of the mother, thus raising the risk of the baby of developing allergies and neurodermatitis. Gene expression studies in vitro as well as in circulating tumor cells from patients consuming a fermented soy product support the antiangiogenic as well as antiproliferative effects of soy.
Collapse
|
816
|
Sodhi CP, Shi XH, Richardson WM, Grant ZS, Shapiro RA, Prindle T, Branca M, Russo A, Gribar SC, Ma C, Hackam DJ. Toll-like receptor-4 inhibits enterocyte proliferation via impaired beta-catenin signaling in necrotizing enterocolitis. Gastroenterology 2010; 138:185-96. [PMID: 19786028 PMCID: PMC2813409 DOI: 10.1053/j.gastro.2009.09.045] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 08/19/2009] [Accepted: 09/20/2009] [Indexed: 12/27/2022]
Abstract
BACKGROUND & AIMS Necrotizing enterocolitis (NEC), the leading cause of gastrointestinal death from gastrointestinal disease in preterm infants, is characterized by exaggerated TLR4 signaling and decreased enterocyte proliferation through unknown mechanisms. Given the importance of beta-catenin in regulating proliferation of many cell types, we hypothesize that TLR4 impairs enterocyte proliferation in NEC via impaired beta-catenin signaling. METHODS Enterocyte proliferation was detected in IEC-6 cells or in ileum or colon from wild-type, TLR4-mutant, or TLR4(-/-) mice after induction of NEC or endotoxemia. beta-Catenin signaling was assessed by cell fractionation or immunoconfocal microscopy to detect its nuclear translocation. Activation and inhibition of beta-catenin were achieved via cDNA or small interfering RNA, respectively. TLR4 in the intestinal mucosa was inhibited with adenoviruses expressing dominant-negative TLR4. RESULTS TLR4 activation significantly impaired enterocyte proliferation in the ileum but not colon in newborn but not adult mice and in IEC-6 enterocytes. beta-Catenin activation reversed these effects in vitro. To determine the mechanisms involved, TLR4 activation phosphorylated the upstream inhibitory kinase GSK3beta, causing beta-catenin degradation. NEC in both mouse and humans was associated with decreased beta-catenin and increased mucosal GSK3beta expression. Strikingly, the inhibition of enterocyte beta-catenin signaling in NEC could be reversed, and enterocyte proliferation restored, through adenoviral-mediated inhibition of TLR4 signaling in the small intestinal mucosa. CONCLUSION We now report a novel pathway linking TLR4 with inhibition of beta-catenin signaling via GSK3beta activation, leading to reduced enterocyte proliferation in vitro and in vivo. These data provide additional insights into the pathogenesis of diseases of intestinal inflammation such as NEC.
Collapse
|
817
|
Fulda S, Pervaiz S. Apoptosis signaling in cancer stem cells. Int J Biochem Cell Biol 2010; 42:31-8. [DOI: 10.1016/j.biocel.2009.06.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 06/26/2009] [Accepted: 06/29/2009] [Indexed: 12/18/2022]
|
818
|
Robert F, Pelletier J. Translation initiation: a critical signalling node in cancer. Expert Opin Ther Targets 2009; 13:1279-93. [PMID: 19705976 DOI: 10.1517/14728220903241625] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a master regulator of translation initiation that controls the recruitment of ribosomes to mRNA templates in response to intracellular and extracellular cues. Evidence suggests that mTOR and its direct downstream targets, S6K and eIF4E/4E-BP, play significant roles in oncogenesis, and that inhibiting this pathway holds promise as an anti-proliferative approach. Recent genome-wide analyses of mutations in human cancers indicate that transformed cells activate a handful of processes and signalling pathways that are major contributors to their phenotype. Here we review the current literature implicating mTOR and translation initiation downstream of many of these various signalling pathways and processes usurped in human cancers. This review highlights the widespread activation of mTOR/eIF4E following acquisition of oncogenic lesions and its implication in promoting the transformation phenotype and indicates that targeting the control of translation initiation makes logical sense as a broad-acting therapeutic approach.
Collapse
Affiliation(s)
- Francis Robert
- Department of Biochemistry and Goodman cancer centre, McGill University, McIntyre Medical Sciences Building, Room 810, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6, Canada
| | | |
Collapse
|
819
|
Kilareski EM, Shah S, Nonnemacher MR, Wigdahl B. Regulation of HIV-1 transcription in cells of the monocyte-macrophage lineage. Retrovirology 2009; 6:118. [PMID: 20030845 PMCID: PMC2805609 DOI: 10.1186/1742-4690-6-118] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 12/23/2009] [Indexed: 12/20/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) has been shown to replicate productively in cells of the monocyte-macrophage lineage, although replication occurs to a lesser extent than in infected T cells. As cells of the monocyte-macrophage lineage become differentiated and activated and subsequently travel to a variety of end organs, they become a source of infectious virus and secreted viral proteins and cellular products that likely initiate pathological consequences in a number of organ systems. During this process, alterations in a number of signaling pathways, including the level and functional properties of many cellular transcription factors, alter the course of HIV-1 long terminal repeat (LTR)-directed gene expression. This process ultimately results in events that contribute to the pathogenesis of HIV-1 infection. First, increased transcription leads to the upregulation of infectious virus production, and the increased production of viral proteins (gp120, Tat, Nef, and Vpr), which have additional activities as extracellular proteins. Increased viral production and the presence of toxic proteins lead to enhanced deregulation of cellular functions increasing the production of toxic cellular proteins and metabolites and the resulting organ-specific pathologic consequences such as neuroAIDS. This article reviews the structural and functional features of the cis-acting elements upstream and downstream of the transcriptional start site in the retroviral LTR. It also includes a discussion of the regulation of the retroviral LTR in the monocyte-macrophage lineage during virus infection of the bone marrow, the peripheral blood, the lymphoid tissues, and end organs such as the brain. The impact of genetic variation on LTR-directed transcription during the course of retrovirus disease is also reviewed.
Collapse
Affiliation(s)
- Evelyn M Kilareski
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | - Sonia Shah
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | - Michael R Nonnemacher
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| | - Brian Wigdahl
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Center for Molecular Therapeutics and Resistance, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N 15th St, Philadelphia, Pennsylvania 19102, USA
- Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, Pennsylvania 19129, USA
| |
Collapse
|
820
|
|
821
|
Lowe JM, Cha H, Yang Q, Fornace AJ. Nuclear factor-kappaB (NF-kappaB) is a novel positive transcriptional regulator of the oncogenic Wip1 phosphatase. J Biol Chem 2009; 285:5249-57. [PMID: 20007970 DOI: 10.1074/jbc.m109.034579] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The nuclear factor-kappaB (NF-kappaB) family of transcription factors plays a key role in inflammation and augments the initiation, promotion, and progression of cancer. NF-kappaB activation generally leads to transcriptional enhancement of genes important in cell survival and cell growth, which is exploited in cancer cells. In this study, we identify an additional oncogene, PPM1D, which encodes for Wip1, as a transcriptional target of NF-kappaB in breast cancer cells. Inhibition of NF-kappaB or activation of NF-kappaB resulted in decreased or increased Wip1 expression, respectively, at both the mRNA and protein levels. PPM1D promoter activity was positively regulated by NF-kappaB, and this regulation was dependent on the presence of the conserved kappaB site in the PPM1D promoter region. Chromatin immunoprecipitation analysis showed basal binding of the p65 NF-kappaB subunit to the PPM1D promoter region encompassing the kappaB site, which is enhanced after NF-kappaB activation by tumor necrosis factor-alpha. Finally, we show that Wip1 expression is induced in lipopolysaccharide-stimulated mouse splenic B-cells and is required for maximum proliferation. Taken together, these data suggest an additional mechanism by which NF-kappaB may promote tumorigenesis, support the selective use of NF-kappaB inhibitors as chemotherapeutic agents for the treatment of human cancers, and further define a function for Wip1 in inflammation.
Collapse
Affiliation(s)
- Julie M Lowe
- Department of Biochemistry and Molecular and Cellular Biology, Lombardi Comprehensive Center, Georgetown University, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
822
|
The IKK complex contributes to the induction of autophagy. EMBO J 2009; 29:619-31. [PMID: 19959994 DOI: 10.1038/emboj.2009.364] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 11/06/2009] [Indexed: 12/18/2022] Open
Abstract
In response to stress, cells start transcriptional and transcription-independent programs that can lead to adaptation or death. Here, we show that multiple inducers of autophagy, including nutrient depletion, trigger the activation of the IKK (IkappaB kinase) complex that is best known for its essential role in the activation of the transcription factor NF-kappaB by stress. Constitutively active IKK subunits stimulated autophagy and transduced multiple signals that operate in starvation-induced autophagy, including the phosphorylation of AMPK and JNK1. Genetic inhibition of the nuclear translocation of NF-kappaB or ablation of the p65/RelA NF-kappaB subunit failed to suppress IKK-induced autophagy, indicating that IKK can promote the autophagic pathway in an NF-kappaB-independent manner. In murine and human cells, knockout and/or knockdown of IKK subunits (but not that of p65) prevented the induction of autophagy in response to multiple stimuli. Moreover, the knockout of IKK-beta suppressed the activation of autophagy by food deprivation or rapamycin injections in vivo, in mice. Altogether, these results indicate that IKK has a cardinal role in the stimulation of autophagy by physiological and pharmacological stimuli.
Collapse
|
823
|
Ihekwaba AEC, Nguyen PT, Priami C. Elucidation of functional consequences of signalling pathway interactions. BMC Bioinformatics 2009; 10:370. [PMID: 19895694 PMCID: PMC2778660 DOI: 10.1186/1471-2105-10-370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 11/06/2009] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND A great deal of data has accumulated on signalling pathways. These large datasets are thought to contain much implicit information on their molecular structure, interaction and activity information, which provides a picture of intricate molecular networks believed to underlie biological functions. While tremendous advances have been made in trying to understand these systems, how information is transmitted within them is still poorly understood. This ever growing amount of data demands we adopt powerful computational techniques that will play a pivotal role in the conversion of mined data to knowledge, and in elucidating the topological and functional properties of protein - protein interactions. RESULTS A computational framework is presented which allows for the description of embedded networks, and identification of common shared components thought to assist in the transmission of information within the systems studied. By employing the graph theories of network biology - such as degree distribution, clustering coefficient, vertex betweenness and shortest path measures - topological features of protein-protein interactions for published datasets of the p53, nuclear factor kappa B (NF-kappaB) and G1/S phase of the cell cycle systems were ascertained. Highly ranked nodes which in some cases were identified as connecting proteins most likely responsible for propagation of transduction signals across the networks were determined. The functional consequences of these nodes in the context of their network environment were also determined. These findings highlight the usefulness of the framework in identifying possible combination or links as targets for therapeutic responses; and put forward the idea of using retrieved knowledge on the shared components in constructing better organised and structured models of signalling networks. CONCLUSION It is hoped that through the data mined reconstructed signal transduction networks, well developed models of the published data can be built which in the end would guide the prediction of new targets based on the pathway's environment for further analysis. Source code is available upon request.
Collapse
Affiliation(s)
- Adaoha E C Ihekwaba
- The Microsoft Research-University of Trento, Centre for Computational Systems Biology, Povo (Trento), Italy.
| | | | | |
Collapse
|
824
|
IKK/NF-kappaB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Rep 2009; 10:1314-9. [PMID: 19893576 DOI: 10.1038/embor.2009.243] [Citation(s) in RCA: 306] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Accepted: 10/16/2009] [Indexed: 02/07/2023] Open
Abstract
Our understanding of the molecular mechanisms that link inflammation and cancer has significantly increased in recent years. Here, we analyse genetic evidence indicating that the transcription factors nuclear factor-kappaB (NF-kappaB) and signal transducer and activator of transcription 3 (STAT3) have a central role in this context by regulating distinct functions in cancer cells and surrounding non-tumorigenic cells. In immune cells, NF-kappaB induces the transcription of genes that encode pro-inflammatory cytokines, which can act in a paracrine manner on initiated cells. By contrast, in tumorigenic cells, both NF-kappaB and STAT3 control apoptosis, and STAT3 can also enhance proliferation. Consequently, inflammation should be considered as a valuable target for cancer prevention and therapy.
Collapse
|
825
|
|
826
|
Abstract
Commensurate with their roles in regulating cytokine-dependent inflammation and immunity, signal transducer and activator of transcription (STAT) proteins are central in determining whether immune responses in the tumour microenvironment promote or inhibit cancer. Persistently activated STAT3 and, to some extent, STAT5 increase tumour cell proliferation, survival and invasion while suppressing anti-tumour immunity. The persistent activation of STAT3 also mediates tumour-promoting inflammation. STAT3 has this dual role in tumour inflammation and immunity by promoting pro-oncogenic inflammatory pathways, including nuclear factor-kappaB (NF-kappaB) and interleukin-6 (IL-6)-GP130-Janus kinase (JAK) pathways, and by opposing STAT1- and NF-kappaB-mediated T helper 1 anti-tumour immune responses. Consequently, STAT3 is a promising target to redirect inflammation for cancer therapy.
Collapse
Affiliation(s)
- Hua Yu
- Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, USA.
| | | | | |
Collapse
|
827
|
Chronic pancreatitis and pancreatic cancer: prediction and mechanism. Clin Gastroenterol Hepatol 2009; 7:S23-8. [PMID: 19896093 DOI: 10.1016/j.cgh.2009.07.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/06/2009] [Accepted: 07/08/2009] [Indexed: 02/07/2023]
Abstract
We investigated the SPINK 1 mutations in 156 sporadic pancreatic cancer (PCa), and 8 pancreatic cancer with chronic pancreatitis (CPPCa) patients, and in 527 healthy subjects. The results demonstrated that 3 of 8 patients with CPPCa (37.5%) had the SPINK 1 gene N34S mutation. In addition, 3 of 156 sporadic PCa patients (1.9%) and 1 of them (0.6%) had the N34S and IVS3+2T>C mutation, respectively. The combined frequency of 2.5% was significantly higher than that of healthy subjects (0.38%), suggesting that the SPINK 1 mutation is an important risk factor for the development of pancreatic cancer. To investigate the genetic difference between sporadic PCa and CPPCa, we investigated several factors involved in the pathogenesis of PCa in 6 CPPCa and 15 sporadic PCa patients. The factors examined were genes including K-ras, p53, smad 4, p-smad 1, CXCL 14, NF-kB subunit p65 and Wnt 5a. No significant difference was found in the comparative examination of these factors, suggesting that the molecular disorders appeared to occur similarly in CPPCa as well as sporadic PCa. To assess the role of fibrosis in pancreatic carcinogenesis, we investigated the effects of pancreatic stellate cells (PSCs), which are largely responsible for pancreatic fibrogenesis, on duct cells, in vitro and in vivo. Activated PSCs were found surrounding precancerous duct cells in the tissues of a dimethylbenzanthracene mouse model and those of human PCa. Consistently, human pancreatic epithelial duct cells cultured with PSC conditioned media showed increased cell proliferation and colony formation, suggesting that PSCs may promote pancreatic ductal tumorigenesis.
Collapse
|
828
|
Kong R, Sun B, Jiang H, Pan S, Chen H, Wang S, Krissansen GW, Sun X. Downregulation of nuclear factor-kappaB p65 subunit by small interfering RNA synergizes with gemcitabine to inhibit the growth of pancreatic cancer. Cancer Lett 2009; 291:90-8. [PMID: 19880242 DOI: 10.1016/j.canlet.2009.10.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 10/04/2009] [Accepted: 10/05/2009] [Indexed: 12/16/2022]
Abstract
The clinical benefit of gemcitabine for pancreatic cancer is low due to chemoresistance. Nuclear factor (NF)-kappaB, constitutively activated in pancreatic cancer, is a therapeutic target as it upregulates expression of genes controlling proliferation, apoptosis and angiogenesis. This study aimed to investigate whether downregulation of the p65 subunit of NF-kappaB by siRNA could enhance the efficacy of gemcitabine to treat pancreatic cancer. p65 siRNA synergized with gemcitabine to inhibit the proliferation and induce the apoptosis of pancreatic cancer cells in vitro and in vivo, and suppress the growth and angiogenesis of pancreatic tumors in nude mice. The mechanisms involved inhibition of NF-kappaB activity and consequent inhibition of Bcl-2, cyclin D1 and VEGF, and activation of caspase-3. The results suggest that downregulation of NF-kappaB p65 potentiates the efficacy of gemcitabine in combating pancreatic cancer.
Collapse
Affiliation(s)
- Rui Kong
- The Hepatosplenic Surgery Center, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, China
| | | | | | | | | | | | | | | |
Collapse
|
829
|
Ferch U, Kloo B, Gewies A, Pfänder V, Düwel M, Peschel C, Krappmann D, Ruland J. Inhibition of MALT1 protease activity is selectively toxic for activated B cell-like diffuse large B cell lymphoma cells. ACTA ACUST UNITED AC 2009; 206:2313-20. [PMID: 19841089 PMCID: PMC2768866 DOI: 10.1084/jem.20091167] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common type of lymphoma in humans. The aggressive activated B cell–like (ABC) subtype of DLBCL is characterized by constitutive NF-κB activity and requires signals from CARD11, BCL10, and the paracaspase MALT1 for survival. CARD11, BCL10, and MALT1 are scaffold proteins that normally associate upon antigen receptor ligation. Signal-induced CARD11–BCL10–MALT1 (CBM) complexes couple upstream events to IκB kinase (IKK)/NF-κB activation. MALT1 also possesses a recently recognized proteolytic activity that cleaves and inactivates the negative NF-κB regulator A20 and BCL10 upon antigen receptor ligation. Yet, the relevance of MALT1 proteolytic activity for malignant cell growth is unknown. Here, we demonstrate preassembled CBM complexes and constitutive proteolysis of the two known MALT1 substrates in ABC-DLBCL, but not in germinal center B cell–like (GCB) DLBCL. ABC-DLBCL cell treatment with a MALT1 protease inhibitor blocks A20 and BCL10 cleavage, reduces NF-κB activity, and decreases the expression of NF-κB targets genes. Finally, MALT1 paracaspase inhibition results in death and growth retardation selectively in ABC-DLBCL cells. Thus, our results indicate a growth-promoting role for MALT1 paracaspase activity in ABC-DLBCL and suggest that a pharmacological MALT1 protease inhibition could be a promising approach for lymphoma treatment.
Collapse
Affiliation(s)
- Uta Ferch
- Third Medical Department, Technical University of Munich, Klinikum rechts der Isar, 81675 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
830
|
Firestone GL, Sundar SN. Minireview: modulation of hormone receptor signaling by dietary anticancer indoles. Mol Endocrinol 2009; 23:1940-7. [PMID: 19837944 DOI: 10.1210/me.2009-0149] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Indole-3-carbinol and its diindole condensation product 3-3'-diindolylmethane are dietary phytochemicals that have striking anticarcinogenic properties in human cancer cells. Molecular, cellular, physiological, and clinical studies have documented that both indole-3-carbinol and 3-3'-diindolylmethane have potent endocrine modulating activities through a myriad of mechanisms. The focus of this review is to discuss the evidence that directly links the anticancer actions of these two indole compounds to the control of steroid receptor and growth factor receptor signaling.
Collapse
Affiliation(s)
- Gary L Firestone
- Department of Molecular and Cell Biology, The University of California at Berkeley, 94720-3200, USA.
| | | |
Collapse
|
831
|
|
832
|
Benzyl isothiocyanate exhibits anti-inflammatory effects in murine macrophages and in mouse skin. J Mol Med (Berl) 2009; 87:1251-61. [DOI: 10.1007/s00109-009-0532-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 08/07/2009] [Accepted: 08/28/2009] [Indexed: 01/24/2023]
|
833
|
Chen YC, Sosnoski DM, Gandhi UH, Novinger LJ, Prabhu KS, Mastro AM. Selenium modifies the osteoblast inflammatory stress response to bone metastatic breast cancer. Carcinogenesis 2009; 30:1941-8. [PMID: 19759193 DOI: 10.1093/carcin/bgp227] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Breast cancer frequently metastasizes to the skeleton resulting in bone degradation due to osteoclast activation. Metastases also downregulate differentiation and the bone-rebuilding function of osteoblasts. Moreover, cancer cells trigger osteoblast inflammatory stress responses. Pro-inflammatory mediators such as interleukin (IL)-6, monocyte chemoattractant protein-1 (MCP-1), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS), expressed by osteoblasts (MC3T3-E1) stimulated with human breast cancer cell (MDA-MB-231) conditioned medium, are pivotal to osteoclast activation and metastasis. Given that these genes are regulated by nuclear factor-kappaB (NF-kappaB), a redox-sensitive transcription factor, we hypothesized that selenium (Se) could abrogate the inflammatory response to metastatic breast cancer cells by modulating NF-kappaB. Caffeic acid phenethyl ester and parthenolide inhibited NF-kappaB activation, as seen by gel shift assays and immunoblotting for p65 in nuclear fractions, as well as decreased production of IL-6 and MCP-1. Supplementation of MC3T3-E1 with methylseleninic acid (MSA) (0.5 microM to 4 microM) reduced the activation of NF-kappaB leading to a decrease in IL-6, MCP-1, COX-2 and iNOS in response to MDA-MB-231 conditioned medium. Addition of MSA to osteoblasts for as little as 15 min suppressed activation of NF-kappaB suggesting that short-lived active metabolites might be involved. However, brief exposure to MSA also brought about an increase in selenoprotein glutathione peroxidase 1. In summary, our data indicate that the osteoblast response to metastatic breast cancer cells is regulated by NF-kappaB activation, which can be effectively suppressed by MSA either through short-lived active metabolites and/or selenoproteins. Thus, Se supplementation may prevent the osteoblast inflammatory response or dampen the vicious cycle established when breast cancer cells, osteoblasts and osteoclasts interact.
Collapse
Affiliation(s)
- Yu-Chi Chen
- Department of Biochemistry and Molecular Biology, 431 South Frear Building, Penn State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
834
|
Momeny M, Zakidizaji M, Ghasemi R, Dehpour AR, Rahimi-Balaei M, Abdolazimi Y, Ghavamzadeh A, Alimoghaddam K, Ghaffari SH. Arsenic trioxide induces apoptosis in NB-4, an acute promyelocytic leukemia cell line, through up-regulation of p73 via suppression of nuclear factor kappa B-mediated inhibition of p73 transcription and prevention of NF-kappaB-mediated induction of XIAP, cIAP2, BCL-XL and survivin. Med Oncol 2009; 27:833-42. [PMID: 19763917 DOI: 10.1007/s12032-009-9294-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Accepted: 08/16/2009] [Indexed: 01/24/2023]
Abstract
The purpose of the present study is to evaluate the effects of arsenic trioxide (ATO) on human acute promyelocytic leukemia NB-4 cells. Microculture tetrazolium test, bromodeoxyuridine (BrdU) cell proliferation assay, caspase 3 activity assay, cell-based nuclear factor kappa B (NF-kappaB) phosphorylation measurement by ELISA and real-time RT-PCR were employed to appraise the effects of ATO on metabolic activity, DNA synthesis, induction of programmed cell death and NF-kappaB activation. The suppressive effects of ATO on metabolic potential, cell proliferation and NF-kappaB activation were associated with induction of apoptosis in NB-4 cells. In addition, an expressive enhancement in mRNA levels of p73, cyclin-dependent kinase inhibitor 1A (p21), tumor protein 53-induced nuclear protein 1 (TP53INP1), WNK lysine deficient protein kinase 2 (WNK2) and lipocalin 2 coupled with a significant reduction in transcriptional levels of NF-kappaB inhibitor beta (IKK2), Nemo, BCL2-like 1 (BCL-X(L)), inhibitor of apoptosis protein 1 (cIAP2), X-linked inhibitor of apoptosis protein (XIAP), survivin, Bcl-2, TIP60, ataxia telangiectasia (ATM), SHP-2 and sirtuin (SIRT1) were observed. Altogether, these issues show for the first time that ATO treatment could trammel cell growth and proliferation as well as induces apoptosis in NB-4 cells through induction of transcriptional levels of p73, TP53INP1, WNK2, lipocalin 2 as well as suppression of NF-kappaB-mediated induction of BCL-X(L), cIAP2, XIAP and survivin. Furthermore, the inductionary effects of ATO on transcriptional stimulation of p73 might be through cramping the NF-kappaB module (through suppression of p65 phosphorylation as well as transcriptional hindering of IKK2, ATM and Nemo) along with diminishing the mRNA expression of TIP60, SHP-2 and SIRT1.
Collapse
MESH Headings
- Acute-Phase Proteins/biosynthesis
- Acute-Phase Proteins/genetics
- Apoptosis/drug effects
- Arsenic Trioxide
- Arsenicals/pharmacology
- Ataxia Telangiectasia Mutated Proteins
- Baculoviral IAP Repeat-Containing 3 Protein
- Carrier Proteins/biosynthesis
- Carrier Proteins/genetics
- Caspase 3/biosynthesis
- Caspase 3/genetics
- Cell Cycle Proteins/biosynthesis
- Cell Cycle Proteins/genetics
- Cell Line, Tumor/drug effects
- Cell Line, Tumor/metabolism
- Cell Line, Tumor/pathology
- Cyclin-Dependent Kinase Inhibitor p21/biosynthesis
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Heat-Shock Proteins/biosynthesis
- Heat-Shock Proteins/genetics
- Histone Acetyltransferases/biosynthesis
- Histone Acetyltransferases/genetics
- Humans
- I-kappa B Kinase/biosynthesis
- I-kappa B Kinase/genetics
- Inhibitor of Apoptosis Proteins/biosynthesis
- Inhibitor of Apoptosis Proteins/genetics
- Lipocalin-2
- Lipocalins/biosynthesis
- Lipocalins/genetics
- Lysine Acetyltransferase 5
- Microtubule-Associated Proteins/biosynthesis
- Microtubule-Associated Proteins/genetics
- NF-kappa B/antagonists & inhibitors
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Nuclear Proteins/biosynthesis
- Nuclear Proteins/genetics
- Oxides/pharmacology
- Protein Serine-Threonine Kinases/biosynthesis
- Protein Serine-Threonine Kinases/genetics
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/biosynthesis
- Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Sirtuin 1/biosynthesis
- Sirtuin 1/genetics
- Survivin
- Transcription, Genetic/drug effects
- Tumor Protein p73
- Tumor Suppressor Proteins/biosynthesis
- Tumor Suppressor Proteins/genetics
- Ubiquitin-Protein Ligases
- X-Linked Inhibitor of Apoptosis Protein/biosynthesis
- X-Linked Inhibitor of Apoptosis Protein/genetics
- bcl-X Protein/biosynthesis
- bcl-X Protein/genetics
Collapse
Affiliation(s)
- Majid Momeny
- Hematology, Oncology and Bone Marrow Transplantation Research Center, Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
835
|
Hu G, Wei Y, Kang Y. The multifaceted role of MTDH/AEG-1 in cancer progression. Clin Cancer Res 2009; 15:5615-20. [PMID: 19723648 DOI: 10.1158/1078-0432.ccr-09-0049] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cancer is the result of the progressive acquisition of multiple malignant traits through the accumulation of genetic or epigenetic alterations. Recent studies have established a functional role of MTDH (Metadherin)/AEG-1 (Astrocyte Elevated Gene 1) in several crucial aspects of tumor progression, including transformation, evasion of apoptosis, invasion, metastasis, and chemoresistance. Overexpression of MTDH/AEG-1 is frequently observed in melanoma, glioma, neuroblastoma, and carcinomas of breast, prostate, liver, and esophagus and is correlated with poor clinical outcomes. MTDH/AEG-1 functions as a downstream mediator of the transforming activity of oncogenic Ha-Ras and c-Myc. Furthermore, MTDH/AEG-1 overexpression activates the PI3K/Akt, nuclear factor kappaB (NFkappaB), and Wnt/beta-catenin signaling pathways to stimulate proliferation, invasion, cell survival, and chemoresistance. The lung-homing domain of MTDH/AEG-1 also mediates the adhesion of tumor cells to the vasculature of distant organs and promotes metastasis. These findings suggest that therapeutic targeting of MTDH/AEG-1 may simultaneously suppress tumor growth, block metastasis, and enhance the efficacy of chemotherapeutic treatments.
Collapse
Affiliation(s)
- Guohong Hu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | | | | |
Collapse
|
836
|
Kaur M, Agarwal C, Agarwal R. Anticancer and cancer chemopreventive potential of grape seed extract and other grape-based products. J Nutr 2009; 139:1806S-12S. [PMID: 19640973 PMCID: PMC2728696 DOI: 10.3945/jn.109.106864] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
With emerging trends in the incidence of cancer of various organ sites, additional approaches are needed to control human malignancies. Intervention or prevention of cancer by dietary constituents, a strategy defined as chemoprevention, holds great promise in our conquest to control cancer, because it can be implemented on a broader population base with less economic burden. Consistent with this, several epidemiological studies have shown that populations that consume diets rich in fruits and vegetables have an overall lower cancer incidence. Based on these encouraging observations, research efforts from across the globe have focused on identifying, characterizing, and providing scientific basis to the efficacy of various phytonutrients in an effort to develop effective strategy to control various human malignancies. Cancer induction, growth, and progression are multi-step events and numerous studies have demonstrated that various dietary agents interfere with these stages of cancer, thus blocking malignancy. Fruits and vegetables represent untapped reservoir of various nutritive and nonnutritive phytochemicals with potential cancer chemopreventive activity. Grapes and grape-based products are one such class of dietary products that have shown cancer chemopreventive potential and are also known to improve overall human health. This review focuses on recent advancements in cancer chemopreventive and anticancer efficacy of grape seed extract and other grape-based products. Overall, completed studies from various scientific groups conclude that both grapes and grape-based products are excellent sources of various anticancer agents and their regular consumption should thus be beneficial to the general population.
Collapse
Affiliation(s)
- Manjinder Kaur
- Department of Pharmaceutical Sciences, School of Pharmacy and University of Colorado Cancer Center, University of Colorado, Denver, CO 80045
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, School of Pharmacy and University of Colorado Cancer Center, University of Colorado, Denver, CO 80045
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, School of Pharmacy and University of Colorado Cancer Center, University of Colorado, Denver, CO 80045
| |
Collapse
|
837
|
Moscat J, Diaz-Meco MT, Wooten MW. Of the atypical PKCs, Par-4 and p62: recent understandings of the biology and pathology of a PB1-dominated complex. Cell Death Differ 2009; 16:1426-37. [PMID: 19713972 DOI: 10.1038/cdd.2009.119] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The recent identification of a novel protein-protein interaction module, termed PB1, in critical signaling molecules such as p62 (also known as sequestosome1), the atypical PKCs, and Par-6, has unveiled the existence of a new set of signaling complexes, which can be central to several biological processes from development to cancer. In this review, we will discuss the most recent advances on the role that the different components of these complexes have in vivo and that are relevant to human disease. In particular, we will review what we are learning from new data from knockout mice, and the indications from human mutations on the real role of these proteins in the physiology and biology of human diseases. The role that PKCzeta, PKClambda/iota, and Par-4 have in lung and prostate cancer in vivo and in humans will be extensively covered in this article, as will the multifunctional role of p62 as a novel hub in cell signaling during cancer and inflammation, and the mechanistic details and controversial data published on its potential role in aggregate formation and signaling. All this published information is shedding new light on the proposed pathological implications of these PB1-regulators in disease and shows their important role in cell physiology.
Collapse
Affiliation(s)
- J Moscat
- Department of Cancer and Cell Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA.
| | | | | |
Collapse
|
838
|
Diet-induced obesity increases NF-kappaB signaling in reporter mice. GENES AND NUTRITION 2009; 4:215-22. [PMID: 19707810 DOI: 10.1007/s12263-009-0133-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 03/10/2009] [Indexed: 01/04/2023]
Abstract
The nuclear factor (NF)-kappaB is a primary regulator of inflammatory responses and may be linked to pathology associated with obesity. We investigated the progression of NF-kappaB activity during a 12-week feeding period on a high-fat diet (HFD) or a low-fat diet (LFD) using NF-kappaB luciferase reporter mice. In vivo imaging of luciferase activity showed that NF-kappaB activity was higher in the HFD mice compared with LFD-fed mice. Thorax region of HFD females displayed fourfold higher activity compared with LFD females, while no such increase was evident in males. In male HFD mice, abdominal NF-kappaB activity was increased twofold compared with the LFD males, while females had unchanged NF-kappaB activity in the abdomen by HFD. HFD males, but not females, exhibited evident glucose intolerance during the study. In conclusion, HFD increased NF-kappaB activity in both female and male mice. However, HFD differentially increased activity in males and females. The moderate increase in abdomen of male mice may be linked to glucose intolerance.
Collapse
|
839
|
Menges CW, Altomare DA, Testa JR. FAS-associated factor 1 (FAF1): diverse functions and implications for oncogenesis. Cell Cycle 2009; 8:2528-34. [PMID: 19597341 DOI: 10.4161/cc.8.16.9280] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
FAS-associated factor 1, FAF1, is an evolutionarily conserved protein that has several protein interaction domains. Although FAF1 was initially identified as a member of the FAS death-inducing signaling complex, subsequent work has revealed that FAF1 functions in diverse biological processes. FAF1 has been shown to play an important role in normal development and neuronal cell survival, whereas FAF1 downregulation may contribute to multiple aspects of tumorigenesis. In particular, there is compelling evidence implicating FAF1 as a tumor suppressor involved in the regulation of apoptosis and NFkappaB activity, as well as in ubiquitination and proteasomal degradation. Here, we highlight FAF1's role in NFkappaB signaling and postulate that this pathway has critical connotations for the pathogenesis and treatment of human cancers.
Collapse
Affiliation(s)
- Craig W Menges
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
840
|
Bhat UG, Halasi M, Gartel AL. FoxM1 is a general target for proteasome inhibitors. PLoS One 2009; 4:e6593. [PMID: 19672316 PMCID: PMC2721658 DOI: 10.1371/journal.pone.0006593] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 07/09/2009] [Indexed: 01/12/2023] Open
Abstract
Proteasome inhibitors are currently in the clinic or in clinical trials, but the mechanism of their anticancer activity is not completely understood. The oncogenic transcription factor FoxM1 is one of the most overexpressed genes in human tumors, while its expression is usually halted in normal non-proliferating cells. Previously, we established that thiazole antibiotics Siomycin A and thiostrepton inhibit FoxM1 and induce apoptosis in human cancer cells. Here, we report that Siomycin A and thiostrepton stabilize the expression of a variety of proteins, such as p21, Mcl-1, p53 and hdm-2 and also act as proteasome inhibitors in vitro. More importantly, we also found that well-known proteasome inhibitors such as MG115, MG132 and bortezomib inhibit FoxM1 transcriptional activity and FoxM1 expression. In addition, overexpression of FoxM1 specifically protects against bortezomib-, but not doxorubicin-induced apoptosis. These data suggest that negative regulation of FoxM1 by proteasome inhibitors is a general feature of these drugs and it may contribute to their anticancer properties.
Collapse
Affiliation(s)
- Uppoor G. Bhat
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Marianna Halasi
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Andrei L. Gartel
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
841
|
Chariot A. The NF-kappaB-independent functions of IKK subunits in immunity and cancer. Trends Cell Biol 2009; 19:404-13. [PMID: 19648011 DOI: 10.1016/j.tcb.2009.05.006] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/13/2009] [Accepted: 05/19/2009] [Indexed: 12/14/2022]
Abstract
The I kappaB kinase (IKK) complex is involved in transcriptional activation by phosphorylating the inhibitory molecule I kappaB alpha, a modification that triggers its subsequent degradation, enabling activation of nuclear factor kappa B (NF-kappaB). Importantly, recent reports indicate that multiple cytoplasmic and nuclear proteins distinct from the NF-kappaB and I kappaB proteins are phosphorylated by the catalytic subunits of the IKK complex, IKK alpha or IKK beta. Here, I describe how IKK subunits can have crucial roles in allergy, inflammation and immunity by targeting proteins such as SNAP23 and IRF7, but also in cancer by phosphorylating key molecules such as p53, TSC1 and FOXO3a through NF-kappaB-independent pathways. Thus, these recent findings considerably widen the biological roles of these kinases and suggest that a full understanding of the biological roles of IKK alpha and IKK beta requires an exhaustive characterization of their substrates.
Collapse
Affiliation(s)
- Alain Chariot
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA-R), GIGA-Signal Transduction, Laboratory of Medical Chemistry, CHU, Sart-Tilman, University of Liege, Belgium.
| |
Collapse
|
842
|
Bastos DHM, Rogero MM, Arêas JAG. Mecanismos de ação de compostos bioativos dos alimentos no contexto de processos inflamatórios relacionados à obesidade. ACTA ACUST UNITED AC 2009; 53:646-56. [DOI: 10.1590/s0004-27302009000500017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Accepted: 06/26/2009] [Indexed: 01/24/2023]
Abstract
É indiscutível o papel da dieta e dos alimentos na manutenção da saúde e na redução do risco de DCNT. Estudos epidemiológicos mostram que o aumento do consumo de alimentos de origem vegetal influencia positivamente a saúde, enquanto estudos in vitro e in vivo em modelo animal elucidam os mecanismos pelos quais compostos bioativos não nutrientes, presentes nos alimentos, atuam na manutenção da saúde e na redução do risco de doenças. A modulação da expressão de genes que codificam proteínas envolvidas em vias de sinalização celular ativadas em DCNT é um dos mecanismos de ação dos compostos bioativos, sugerindo que estes possam ser essenciais à manutenção da saúde. A biodisponibilidade dos compostos bioativos de alimentos, as suas rotas metabólicas e o modo de ação de seus metabólitos são importantes fatores no seu efeito nas DCNT. Todos esses aspectos são temas de investigações recentes, cujos resultados contribuem para a compreensão da ocorrência e desenvolvimento das DCNT e da sua relação com a dieta. Essa revisão visou discutir alguns dos mecanismos envolvidos na resposta inflamatória induzida pela obesidade, apresentar os compostos bioativos de alimentos que modulam essa resposta inflamatória e sua relação com o metabolismo desses compostos.
Collapse
|
843
|
Folmer F, Jaspars M, Solano G, Cristofanon S, Henry E, Tabudravu J, Black K, Green DH, Küpper FC, Aalbersberg W, Feussner K, Dicato M, Diederich M. The inhibition of TNF-alpha-induced NF-kappaB activation by marine natural products. Biochem Pharmacol 2009; 78:592-606. [PMID: 19445900 DOI: 10.1016/j.bcp.2009.05.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 05/01/2009] [Accepted: 05/05/2009] [Indexed: 10/20/2022]
Abstract
The deregulated activation of NF-kappaB is associated with cancer development and inflammatory diseases. With an aim to find new NF-kappaB inhibitors, we purified and characterized compounds from extracts of the Fijian sponge Rhabdastrella globostellata, the crinoid Comanthus parvicirrus, the soft corals Sarcophyton sp. nov. and Sinularia sp., and the gorgonian Subergorgia sp. after an initial screening of 266 extracts from different marine origins. Results obtained show that selected purified compounds had a cytotoxic effect on the human leukaemia cell line K562, inhibited both TNF-alpha-induced NF-kappaB-DNA binding as well as TNF-alpha-induced IkappaBalpha degradation and nuclear translocation of p50/p65. Furthermore, we observed the inhibition of NF-kappaB activation induced by an overexpression of IKKbeta. Interestingly, natural products inhibited IKKbeta kinase as well as the 26S proteasome proteolytic activity.
Collapse
Affiliation(s)
- Florence Folmer
- Department of Chemistry, University of Aberdeen, Old Aberdeen, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
844
|
Liu J, Gu X, Robbins D, Li G, Shi R, McCord JM, Zhao Y. Protandim, a fundamentally new antioxidant approach in chemoprevention using mouse two-stage skin carcinogenesis as a model. PLoS One 2009; 4:e5284. [PMID: 19384424 PMCID: PMC2668769 DOI: 10.1371/journal.pone.0005284] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 03/20/2009] [Indexed: 01/29/2023] Open
Abstract
Oxidative stress is an important contributor to cancer development. Consistent with that, antioxidant enzymes have been demonstrated to suppress tumorigenesis when being elevated both in vitro and in vivo, making induction of these enzymes a more potent approach for cancer prevention. Protandim, a well-defined combination of widely studied medicinal plants, has been shown to induce superoxide dismutase (SOD) and catalase activities and reduce superoxide generation and lipid peroxidation in healthy human subjects. To investigate whether Protandim can suppress tumor formation by a dietary approach, a two-stage mouse skin carcinogenesis study was performed. At the end of the study, the mice on a Protandim-containing basal diet had similar body weight compared with those on the basal diet, which indicated no overt toxicity by Protandim. After three weeks on the diets, there was a significant increase in the expression levels of SOD and catalase, in addition to the increases in SOD activities. Importantly, at the end of the carcinogenesis study, both skin tumor incidence and multiplicity were reduced in the mice on the Protandim diet by 33% and 57% respectively, compared with those on basal diet. Biochemical and histological studies revealed that the Protandim diet suppressed tumor promoter-induced oxidative stress (evidenced by reduction of protein carbonyl levels), cell proliferation (evidenced by reduction of skin hyperplasia and suppression of PKC/JNK/Jun pathway), and inflammation (evidenced by reduction of ICAM-1/VCAM-1 expression, NF-κB binding activity, and nuclear p65/p50 levels). Overall, induction of antioxidant enzymes by Protandim may serve as a practical and potent approach for cancer prevention.
Collapse
Affiliation(s)
- Jianfeng Liu
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Xin Gu
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Delira Robbins
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Guohong Li
- Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Runhua Shi
- Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
| | - Joe M. McCord
- Department of Medicine, University of Colorado Health Sciences Center, Denver, Colorado, United States of America
| | - Yunfeng Zhao
- Department of Pharmacology, Toxicology & Neuroscience, Louisiana State University Health Sciences Center, Shreveport, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
845
|
Younes A. Novel treatment strategies for patients with relapsed classical Hodgkin lymphoma. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2009; 2009:507-519. [PMID: 20008236 DOI: 10.1182/asheducation-2009.1.507] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Although classical Hodgkin lymphoma (HL) is considered one of the most curable human cancers, the treatment of patients with relapsed and refractory disease, especially those who relapse after autologous stem cell transplantation, remains challenging. Furthermore, because the median age of the patients is in the mid-30s, the impact of early mortality on the number of years lost from productive life is remarkable. Patients with HL whose disease relapses after stem cell transplantation are rarely cured with current treatment modalities. New drugs and novel treatment strategies that are based on our understanding of the disease biology and signaling pathways are needed to improve treatment outcome for these patients. This review will focus on emerging new treatment modalities that are currently under investigation for patients with relapsed classical HL.
Collapse
Affiliation(s)
- Anas Younes
- Department of Lymphoma/Myeloma, M D Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|