801
|
Weuring W, Geerligs J, Koeleman BPC. Gene Therapies for Monogenic Autism Spectrum Disorders. Genes (Basel) 2021; 12:genes12111667. [PMID: 34828273 PMCID: PMC8617899 DOI: 10.3390/genes12111667] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
Novel genome editing and transient gene therapies have been developed the past ten years, resulting in the first in-human clinical trials for monogenic disorders. Syndromic autism spectrum disorders can be caused by mutations in a single gene. Given the monogenic aspect and severity of syndromic ASD, it is an ideal candidate for gene therapies. Here, we selected 11 monogenic ASD syndromes, validated by animal models, and reviewed current gene therapies for each syndrome. Given the wide variety and novelty of some forms of gene therapy, the best possible option must be decided based on the gene and mutation.
Collapse
|
802
|
Editing SOX Genes by CRISPR-Cas: Current Insights and Future Perspectives. Int J Mol Sci 2021; 22:ijms222111321. [PMID: 34768751 PMCID: PMC8583549 DOI: 10.3390/ijms222111321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 01/16/2023] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and its associated proteins (Cas) is an adaptive immune system in archaea and most bacteria. By repurposing these systems for use in eukaryote cells, a substantial revolution has arisen in the genome engineering field. In recent years, CRISPR-Cas technology was rapidly developed and different types of DNA or RNA sequence editors, gene activator or repressor, and epigenome modulators established. The versatility and feasibility of CRISPR-Cas technology has introduced this system as the most suitable tool for discovering and studying the mechanism of specific genes and also for generating appropriate cell and animal models. SOX genes play crucial roles in development processes and stemness. To elucidate the exact roles of SOX factors and their partners in tissue hemostasis and cell regeneration, generating appropriate in vitro and in vivo models is crucial. In line with these premises, CRISPR-Cas technology is a promising tool for studying different family members of SOX transcription factors. In this review, we aim to highlight the importance of CRISPR-Cas and summarize the applications of this novel, promising technology in studying and decoding the function of different members of the SOX gene family.
Collapse
|
803
|
Huang Y, Zhang Y, Wu M, Porter A, Barrangou R. Determination of Factors Driving the Genome Editing Field in the CRISPR Era Using Bibliometrics. CRISPR J 2021; 4:728-738. [PMID: 34661427 DOI: 10.1089/crispr.2021.0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Over the past two decades, the discovery of CRISPR-Cas immune systems and the repurposing of their effector nucleases as biotechnological tools have revolutionized genome editing. The corresponding work has been captured by 90,000 authors representing 7,600 affiliations in 126 countries, who have published more than 19,000 papers spanning medicine, agriculture, and biotechnology. Here, we use tech mining and an integrated bibliometric and networks framework to investigate the CRISPR literature over three time periods. The analysis identified seminal papers, leading authors, influential journals, and rising applications and topics interconnected through collaborative networks. A core set of foundational topics gave rise to diverging avenues of research and applications, reflecting a bona fide disruptive emerging technology. This analysis illustrates how bibliometrics can identify key factors, decipher rising trends, and untangle emerging applications and technologies that dynamically shape a morphing field, and provides insights into the trajectory of genome editing.
Collapse
Affiliation(s)
- Ying Huang
- Center for Studies of Information Resources, School of Information Management, Wuhan University, Wuhan, P.R. China; Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA.,Center for Science, Technology and Education Assessment (CSTEA), Wuhan University, Wuhan, P.R. China; Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA.,Department of MSI, Centre for R&D Monitoring (ECOOM), KU Leuven, Leuven, Belgium; Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Yi Zhang
- Australian Artificial Intelligence Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia; Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Mengjia Wu
- Australian Artificial Intelligence Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, Australia; Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Alan Porter
- Search Technology, Inc., Norcross, Georgia, USA; Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA.,Program in Science, Technology and Innovation Policy, Georgia Institute of Technology, Atlanta, Georgia, USA; and Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
804
|
Yannaki E, Psatha N, Papadopoulou A, Athanasopoulos T, Gravanis A, Roubelakis MG, Tsirigotis P, Anagnostopoulos A, Anagnou NP, Vassilopoulos G. Success Stories and Challenges Ahead in Hematopoietic Stem Cell Gene Therapy: Hemoglobinopathies as Disease Models. Hum Gene Ther 2021; 32:1120-1137. [PMID: 34662232 DOI: 10.1089/hum.2021.196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gene therapy is a relatively novel field that amounts to around four decades of continuous growth with its good and bad moments. Currently, the field has entered the clinical arena with the ambition to fulfil its promises for a permanent fix of incurable genetic disorders. Hemoglobinopathies as target diseases and hematopoietic stem cells (HSCs) as target cells of genetic interventions had a major share in the research effort toward efficiently implementing gene therapy. Dissection of HSC biology and improvements in gene transfer and gene expression technologies evolved in an almost synchronous manner to a point where the two fields seem to be functionally intercalated. In this review, we focus specifically on the development of gene therapy for hemoglobin disorders and look at both gene addition and gene correction strategies that may dominate the field of HSC-directed gene therapy in the near future and transform the therapeutic landscape for genetic diseases.
Collapse
Affiliation(s)
- Evangelia Yannaki
- Hematology Department-HCT Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Nikoletta Psatha
- Altius Institute for Biomedical Sciences, Seattle, Washington, USA
| | - Anastasia Papadopoulou
- Hematology Department-HCT Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | - Takis Athanasopoulos
- Cell and Gene Therapy (CGT), Medicinal Science and Technology (MST), GlaxoSmithKline (GSK), Medicines Research Centre, Stevenage, United Kingdom
| | - Achilleas Gravanis
- Department of Pharmacology, School of Medicine, University of Crete, Heraklion, Greece
| | - Maria G Roubelakis
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece and Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Panagiotis Tsirigotis
- 2nd Department of Internal Medicine, ATTIKO General University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Achilles Anagnostopoulos
- Hematology Department-HCT Unit, Gene and Cell Therapy Center, George Papanikolaou Hospital, Thessaloniki, Greece
| | | | - George Vassilopoulos
- BRFAA, Cell and Gene Therapy Lab, Athens, Greece.,Department of Hematology, UHL, University of Thessaly Medical School, Athens, Greece
| |
Collapse
|
805
|
Büning H, Fehse B, Ivics Z, Kochanek S, Koehl U, Kupatt C, Mussolino C, Nettelbeck DM, Schambach A, Uckert W, Wagner E, Cathomen T. Gene Therapy "Made in Germany": A Historical Perspective, Analysis of the Status Quo, and Recommendations for Action by the German Society for Gene Therapy. Hum Gene Ther 2021; 32:987-996. [PMID: 34662229 DOI: 10.1089/hum.2021.29178.hbu] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gene therapies have been successfully applied to treat severe inherited and acquired disorders. Although research and development are sufficiently well funded in Germany and while the output of scientific publications and patents is comparable with the leading nations in gene therapy, the country lags noticeably behind with regard to the number of both clinical studies and commercialized gene therapy products. In this article, we give a historical perspective on the development of gene therapy in Germany, analyze the current situation from the standpoint of the German Society for Gene Therapy (DG-GT), and define recommendations for action that would enable our country to generate biomedical and economic advantages from innovations in this sector, instead of merely importing advanced therapy medicinal products. Inter alia, we propose (1) to harmonize and simplify regulatory licensing processes to enable faster access to advanced therapies, and (2) to establish novel coordination, support and funding structures that facilitate networking of the key players. Such a center would provide the necessary infrastructure and know-how to translate cell and gene therapies to patients on the one hand, and pave the way for commercialization of these promising and innovative technologies on the other. Hence, these courses of action would not only benefit the German biotech and pharma landscape but also the society and the patients in need of new treatment options.
Collapse
Affiliation(s)
- Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Boris Fehse
- Research Department Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Centre Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Zoltán Ivics
- Division of Medical Biotechnology, Paul Ehrlich Institute, Langen, Germany
| | | | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology (IZI) and Institute of Clinical Immunology, University of Leipzig, Leipzig, Germany.,Institute for Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany
| | - Claudio Mussolino
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Dirk M Nettelbeck
- Clinical Cooperation Unit Virotherapy, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Wolfgang Uckert
- Department of Molecular Cell Biology and Gene Therapy, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-based Drug Research, Center for NanoScience (CeNS), Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center-University of Freiburg, Freiburg, Germany.,Center for Chronic Immunodeficiency (CCI), Medical Faculty, University of Freiburg, Freiburg, Germany
| |
Collapse
|
806
|
Naeem M, Hoque MZ, Ovais M, Basheer C, Ahmad I. Stimulus-Responsive Smart Nanoparticles-Based CRISPR-Cas Delivery for Therapeutic Genome Editing. Int J Mol Sci 2021; 22:11300. [PMID: 34681959 PMCID: PMC8540563 DOI: 10.3390/ijms222011300] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 12/21/2022] Open
Abstract
The innovative research in genome editing domains such as CRISPR-Cas technology has enabled genetic engineers to manipulate the genomes of living organisms effectively in order to develop the next generation of therapeutic tools. This technique has started the new era of "genome surgery". Despite these advances, the barriers of CRISPR-Cas9 techniques in clinical applications include efficient delivery of CRISPR/Cas9 and risk of off-target effects. Various types of viral and non-viral vectors are designed to deliver the CRISPR/Cas9 machinery into the desired cell. These methods still suffer difficulties such as immune response, lack of specificity, and efficiency. The extracellular and intracellular environments of cells and tissues differ in pH, redox species, enzyme activity, and light sensitivity. Recently, smart nanoparticles have been synthesized for CRISPR/Cas9 delivery to cells based on endogenous (pH, enzyme, redox specie, ATP) and exogenous (magnetic, ultrasound, temperature, light) stimulus signals. These methodologies can leverage genome editing through biological signals found within disease cells with less off-target effects. Here, we review the recent advances in stimulus-based smart nanoparticles to deliver the CRISPR/Cas9 machinery into the desired cell. This review article will provide extensive information to cautiously utilize smart nanoparticles for basic biomedical applications and therapeutic genome editing.
Collapse
Affiliation(s)
- Muhammad Naeem
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; (M.N.); (M.Z.H.)
| | - Mubasher Zahir Hoque
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; (M.N.); (M.Z.H.)
| | - Muhammad Ovais
- National Center for Nanosciences and Nanotechnology (NCNST), Beijing 100190, China;
| | - Chanbasha Basheer
- Chemistry Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia;
| | - Irshad Ahmad
- Department of Bioengineering, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia; (M.N.); (M.Z.H.)
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| |
Collapse
|
807
|
Rattananon P, Anurathapan U, Bhukhai K, Hongeng S. The Future of Gene Therapy for Transfusion-Dependent Beta-Thalassemia: The Power of the Lentiviral Vector for Genetically Modified Hematopoietic Stem Cells. Front Pharmacol 2021; 12:730873. [PMID: 34658870 PMCID: PMC8517149 DOI: 10.3389/fphar.2021.730873] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/09/2021] [Indexed: 01/15/2023] Open
Abstract
β-thalassemia, a disease that results from defects in β-globin synthesis, leads to an imbalance of β- and α-globin chains and an excess of α chains. Defective erythroid maturation, ineffective erythropoiesis, and shortened red blood cell survival are commonly observed in most β-thalassemia patients. In severe cases, blood transfusion is considered as a mainstay therapy; however, regular blood transfusions result in chronic iron overload with life-threatening complications, e.g., endocrine dysfunction, cardiomyopathy, liver disease, and ultimately premature death. Therefore, transplantation of healthy hematopoietic stem cells (HSCs) is considered an alternative treatment. Patients with a compatible human leukocyte antigen (HLA) matched donor can be cured by allogeneic HSC transplantation. However, some recipients faced a high risk of morbidity/mortality due to graft versus host disease or graft failure, while a majority of patients do not have such HLA match-related donors. Currently, the infusion of autologous HSCs modified with a lentiviral vector expressing the β-globin gene into the erythroid progenitors of the patient is a promising approach to completely cure β-thalassemia. Here, we discuss a history of β-thalassemia treatments and limitations, in particular the development of β-globin lentiviral vectors, with emphasis on clinical applications and future perspectives in a new era of medicine.
Collapse
Affiliation(s)
- Parin Rattananon
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Thailand
| | - Usanarat Anurathapan
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Thailand
| | - Kanit Bhukhai
- Department of Physiology, Faculty of Science, Mahidol University, Ratchathewi, Thailand
| | - Suradej Hongeng
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Ratchathewi, Thailand
| |
Collapse
|
808
|
Jordan B. [In vivo gene editing for gene therapy]. Med Sci (Paris) 2021; 37:933-935. [PMID: 34647883 DOI: 10.1051/medsci/2021140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In vivo gene editing has been achieved in a phase I clinical trial and results in a strong reduction of the level of a pathogenic protein. While preliminary, these results open the way for many applications in gene therapy.
Collapse
Affiliation(s)
- Bertrand Jordan
- ADÉS (Anthropologie bio-culturelle, droit, éthique et santé) UMR CNRS 7268, Aix Marseille université, Établissement français du sang.CoReBio PACA, case 901, Parc scientifique de Luminy, 13288 Marseille Cedex 09, France
| |
Collapse
|
809
|
Cyrus C. The Role of miRNAs as Therapeutic Tools in Sickle Cell Disease. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1106. [PMID: 34684143 PMCID: PMC8538468 DOI: 10.3390/medicina57101106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 01/05/2023]
Abstract
Background and Objectives: Sickle cell disorder (SCD) is a paradigmatic example of a complex monogenic disorder. SCD is characterized by the production of abnormal hemoglobin, primarily in the deoxygenated state, which makes erythrocytes susceptible to intracellular hemoglobin polymerization. Functional studies have affirmed that the dysregulation of miRNAs enhances clinical severity or has an ameliorating effect in SCD. miRNAs can be effectively regulated to reduce the pace of cell cycle progression, to reduce iron levels, to influence hemolysis and oxidative stress, and most importantly, to increase γ-globin gene expression and enhance the effectiveness of hydroxyurea. Results: This review highlights the roles played by some key miRNAs in hemoglobinopathies, especially in hematopoiesis, erythroid differentiation, and severity of anemia, which make miRNAs attractive molecular tools for innovative therapeutic approaches. Conclusions: In this era of targeted medicine, miRNAs mimics and antagomirs may be promising inducers of HbF synthesis which could ameliorate the clinical severity of SCD.
Collapse
Affiliation(s)
- Cyril Cyrus
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31141, Saudi Arabia
| |
Collapse
|
810
|
De Simone G, Quattrocchi A, Mancini B, di Masi A, Nervi C, Ascenzi P. Thalassemias: From gene to therapy. Mol Aspects Med 2021; 84:101028. [PMID: 34649720 DOI: 10.1016/j.mam.2021.101028] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/19/2021] [Indexed: 12/26/2022]
Abstract
Thalassemias (α, β, γ, δ, δβ, and εγδβ) are the most common genetic disorders worldwide and constitute a heterogeneous group of hereditary diseases characterized by the deficient synthesis of one or more hemoglobin (Hb) chain(s). This leads to the accumulation of unstable non-thalassemic Hb chains, which precipitate and cause intramedullary destruction of erythroid precursors and premature lysis of red blood cells (RBC) in the peripheral blood. Non-thalassemic Hbs display high oxygen affinity and no cooperativity. Thalassemias result from many different genetic and molecular defects leading to either severe or clinically silent hematologic phenotypes. Thalassemias α and β are particularly diffused in the regions spanning from the Mediterranean basin through the Middle East, Indian subcontinent, Burma, Southeast Asia, Melanesia, and the Pacific Islands, whereas δβ-thalassemia is prevalent in some Mediterranean regions including Italy, Greece, and Turkey. Although in the world thalassemia and malaria areas overlap apparently, the RBC protection against malaria parasites is openly debated. Here, we provide an overview of the historical, geographic, genetic, structural, and molecular pathophysiological aspects of thalassemias. Moreover, attention has been paid to molecular and epigenetic pathways regulating globin gene expression and globin switching. Challenges of conventional standard treatments, including RBC transfusions and iron chelation therapy, splenectomy and hematopoietic stem cell transplantation from normal donors are reported. Finally, the progress made by rapidly evolving fields of gene therapy and gene editing strategies, already in pre-clinical and clinical evaluation, and future challenges as novel curative treatments for thalassemia are discussed.
Collapse
Affiliation(s)
- Giovanna De Simone
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy
| | - Alberto Quattrocchi
- Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Facoltà di Farmacia e Medicina, "Sapienza" Università di Roma, Corso della Repubblica, 79, 04100, Latina, Italy
| | - Benedetta Mancini
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy
| | - Alessandra di Masi
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy
| | - Clara Nervi
- Dipartimento di Scienze e Biotecnologie Medico-Chirurgiche, Facoltà di Farmacia e Medicina, "Sapienza" Università di Roma, Corso della Repubblica, 79, 04100, Latina, Italy.
| | - Paolo Ascenzi
- Dipartimento di Scienze, Università Roma Tre, Viale Guglielmo Marconi 446, 00146, Roma, Italy; Accademia Nazionale dei Lincei, Via della Lungara 10, 00165, Roma, Italy.
| |
Collapse
|
811
|
Fu J, Li Q, Liu X, Tu T, Lv X, Yin X, Lv J, Song Z, Qu J, Zhang J, Li J, Gu F. Human cell based directed evolution of adenine base editors with improved efficiency. Nat Commun 2021; 12:5897. [PMID: 34625552 PMCID: PMC8501064 DOI: 10.1038/s41467-021-26211-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/14/2021] [Indexed: 12/26/2022] Open
Abstract
Adenine base editors (ABE) are genome-editing tools that have been harnessed to introduce precise A•T to G•C conversion. However, the low activity of ABE at certain sites remains a major bottleneck that precludes efficacious applications. Here, to address it, we develop a directional screening system in human cells to evolve the deaminase component of the ABE, and identify three high-activity NG-ABEmax variants: NG-ABEmax-SGK (R101S/D139G/E140K), NG-ABEmax-R (Q154R) and NG-ABEmax-K (N127K). With further engineering, we create a consolidated variant [NG-ABEmax-KR (N127K/Q154R)] which exhibit superior editing activity both in human cells and in mouse disease models, compared to the original NG-ABEmax. We also find that NG-ABEmax-KR efficiently introduce natural mutations in gamma globin gene promoters with more than four-fold increase in editing activity. This work provides a broadly applicable, rapidly deployable platform to directionally screen and evolve user-specified traits in base editors that extend beyond augmented editing activity.
Collapse
Affiliation(s)
- Junhao Fu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Qing Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyu Liu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Tianxiang Tu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Xiujuan Lv
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Xidi Yin
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Jineng Lv
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Zongming Song
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
- Henan Eye Hospital, Henan Eye Institute, Henan Provincial People's Hospital and People's Hospital of Zhengzhou University and People's Hospital of Henan University, Zhengzhou, Henan, China
| | - Jia Qu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Feng Gu
- School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, State Key Laboratory and Key Laboratory of Vision Science, Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China.
| |
Collapse
|
812
|
Vicente MM, Chaves-Ferreira M, Jorge JMP, Proença JT, Barreto VM. The Off-Targets of Clustered Regularly Interspaced Short Palindromic Repeats Gene Editing. Front Cell Dev Biol 2021; 9:718466. [PMID: 34604217 PMCID: PMC8484971 DOI: 10.3389/fcell.2021.718466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
The repurposing of the CRISPR/Cas bacterial defense system against bacteriophages as simple and flexible molecular tools has revolutionized the field of gene editing. These tools are now widely used in basic research and clinical trials involving human somatic cells. However, a global moratorium on all clinical uses of human germline editing has been proposed because the technology still lacks the required efficacy and safety. Here we focus on the approaches developed since 2013 to decrease the frequency of unwanted mutations (the off-targets) during CRISPR-based gene editing.
Collapse
Affiliation(s)
- Manuel M Vicente
- DNA Breaks Group, NOVA Medical School (NMS), Centro de Estudos de Doenças Crónicas (CEDOC), NOVA University of Lisbon, Lisbon, Portugal
| | - Miguel Chaves-Ferreira
- DNA Breaks Group, NOVA Medical School (NMS), Centro de Estudos de Doenças Crónicas (CEDOC), NOVA University of Lisbon, Lisbon, Portugal
| | - João M P Jorge
- DNA Breaks Group, NOVA Medical School (NMS), Centro de Estudos de Doenças Crónicas (CEDOC), NOVA University of Lisbon, Lisbon, Portugal
| | - João T Proença
- DNA Breaks Group, NOVA Medical School (NMS), Centro de Estudos de Doenças Crónicas (CEDOC), NOVA University of Lisbon, Lisbon, Portugal
| | - Vasco M Barreto
- DNA Breaks Group, NOVA Medical School (NMS), Centro de Estudos de Doenças Crónicas (CEDOC), NOVA University of Lisbon, Lisbon, Portugal
| |
Collapse
|
813
|
Ashok B, Peppas NA, Wechsler ME. Lipid- and Polymer-Based Nanoparticle Systems for the Delivery of CRISPR/Cas9. J Drug Deliv Sci Technol 2021; 65:102728. [PMID: 34335878 PMCID: PMC8318345 DOI: 10.1016/j.jddst.2021.102728] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The discovery of clustered regularly interspaced short palindromic repeat (CRISPR)/ CRISPR-associated (Cas) genome editing systems and their applications in human health and medicine has heralded a new era of biotechnology. However, the delivery of CRISPR therapeutics is arguably the most difficult barrier to overcome for translation to in vivo clinical administration. Appropriate delivery methods are required to efficiently and selectively transport all gene editing components to specific target cells and tissues of interest, while minimizing off-target effects. To overcome this challenge, we discuss and critic nanoparticle delivery strategies, focusing on the use of lipid-based and polymeric-based matrices herein.
Collapse
Affiliation(s)
- Bhaargavi Ashok
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin TX, USA
- Department of Biomedical Engineering, The University of Texas at Austin, Austin TX, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin TX, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin TX, USA
| | - Marissa E Wechsler
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
814
|
Cas9 conjugate complex delivering donor DNA for efficient gene editing by homology-directed repair. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
815
|
TCRαβ/CD19 depleted HSCT from an HLA-haploidentical relative to treat children with different non-malignant disorders. Blood Adv 2021; 6:281-292. [PMID: 34592755 PMCID: PMC8753220 DOI: 10.1182/bloodadvances.2021005628] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022] Open
Abstract
Several non-malignant disorders (NMDs), either inherited or acquired, can be cured by allogeneic hematopoietic stem cell transplantation (HSCT). Between January 2012 and April 2020, 70 consecutive children affected by primary immunodeficiencies, inherited/acquired bone marrow failure syndromes, red blood cell disorders or metabolic diseases, lacking a fully-matched donor or requiring urgent transplantation, underwent TCRαβ/CD19-depleted haploidentical HSCT from an HLA-partially matched relative as part of a prospective study (#NCT01810120). Median age at transplant was 3.5 years (range 0.3-16.1); median time from diagnosis to transplant was 10.5 months (2.7 for SCID patients). Primary engraftment was obtained in 51 patients, while 19 and 2 patients experienced either primary or secondary graft failure (GF), the overall incidence of this complication being 30.4%. Most GFs were observed in children with disease at risk for this complication (e.g., aplastic anemia, thalassemia). All but 5 patients experiencing GF were successfully retransplanted. Six patients died of infectious complications (4 had active/recent infections at time of HSCT), the cumulative incidence of transplant-related mortality (TRM) being 8.5%. Cumulative incidence of grade I-II acute GvHD was 14.4% (no patient developed grade III-IV acute GVHD). Only one patient at risk developed mild chronic GvHD. With a median follow-up of 3.5 years, the 5-year probability of overall and disease-free survival was 91.4% and 86.8%, respectively. In conclusion, TCRαβ/CD19-depleted haploidentical HSCT from an HLA-partially matched relative is confirmed to be an effective treatment for children with NMDs. Prompt donor availability, low incidence of GvHD and TRM make this strategy an attractive option in NMDs patients.
Collapse
|
816
|
Mettananda S. Genetic and Epigenetic Therapies for β-Thalassaemia by Altering the Expression of α-Globin Gene. Front Genome Ed 2021; 3:752278. [PMID: 34713267 PMCID: PMC8525347 DOI: 10.3389/fgeed.2021.752278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/20/2021] [Indexed: 01/19/2023] Open
Abstract
β-Thalassaemia is caused by over 300 mutations in and around the β-globin gene that lead to impaired synthesis of β-globin. The expression of α-globin continues normally, resulting in an excess of α-globin chains within red blood cells and their precursors. These unpaired α-globin chains form unstable α-hemichromes that trigger cascades of events to generate reactive oxygen species, leading to ineffective erythropoiesis and haemolysis in patients with β-thalassaemia. The clinical genetic data reported over several decades have demonstrated how the coinheritance of α-thalassaemia ameliorates the disease phenotype of β-thalassaemia. Thus, it is evident that down-regulation of the α-globin gene expression in patients with β-thalassaemia could ameliorate or even cure β-thalassaemia. Over the last few years, significant progress has been made in utilising this pathway to devise a cure for β-thalassaemia. Most research has been done to alter the epigenetic landscape of the α-globin locus or the well-characterised distant enhancers of α-globin. In vitro, pre-clinical studies on primary human erythroid cells have unveiled inhibition of histone lysine demethylation and histone deacetylation as potential targets to achieve selective downregulation of α-globin through epigenetic drug targeting. CRISPR based genome editing has been successfully used in vitro to mutate α-globin genes or enhancers of α-goblin to achieve clinically significant knockdowns of α-globin to the levels beneficial for patients with β-thalassaemia. This review summarises the current knowledge on the regulation of human α-globin genes and the clinical genetic data supporting the pathway of targeting α-globin as a treatment for β-thalassaemia. It also presents the progress of epigenetic drug and genome editing approaches currently in development to treat β-thalassaemia.
Collapse
Affiliation(s)
- Sachith Mettananda
- Department of Paediatrics, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
- University Paediatrics Unit, Colombo North Teaching Hospital, Ragama, Sri Lanka
| |
Collapse
|
817
|
Corda V, Murgia F, Dessolis F, Murru S, Chervenak FA, McCullough LB, Monni G. Professionally responsible management of the ethical and social challenges of antenatal screening and diagnosis of β-thalassemia in a high-risk population. J Perinat Med 2021; 49:847-852. [PMID: 33721919 DOI: 10.1515/jpm-2021-0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/16/2021] [Indexed: 01/19/2023]
Abstract
Thalassemias are among the most frequent genetic disorders worldwide. They are an important social and economic strain in high-risk populations. The benefit of β-thalassemia screening programs is growing evident but the capacity to diagnose fetal β-thalassemia exceeds the treatment possibilities and even when treatment before birth becomes feasible, difficult decisions about the relative risks will remain. This paper can be of practical and ethically justified aid when counseling women about screening, diagnosis, and treatment of β-thalassemia. It takes in consideration various social challenges, medical issues such as antenatal screening, preimplantation genetic diagnosis, prenatal diagnosis, non-invasive prenatal testing and prenatal therapy. We also describe the Sardinian experience in applying and promoting high-risk population screening and diagnosis programs and future trends in the management of β-thalassemia.
Collapse
Affiliation(s)
- Valentina Corda
- Department of Obstetrics and Gynecology, Prenatal and Preimplantation Genetic Diagnosis, Fetal Therapy, Microcitemico Pediatric Hospital "A. Cao", Cagliari, Sardinia, Italy
| | - Federica Murgia
- Department of Obstetrics and Gynecology, Prenatal and Preimplantation Genetic Diagnosis, Fetal Therapy, Microcitemico Pediatric Hospital "A. Cao", Cagliari, Sardinia, Italy
| | - Francesca Dessolis
- Department of Obstetrics and Gynecology, Prenatal and Preimplantation Genetic Diagnosis, Fetal Therapy, Microcitemico Pediatric Hospital "A. Cao", Cagliari, Sardinia, Italy
| | - Stefania Murru
- Laboratory of Genetics and Genomics, Microcitemico Pediatric Hospital "A. Cao", Cagliari, Sardinia, Italy
| | - Frank A Chervenak
- Department of Obstetrics and Gynecology, Zucker School of Medicine at Hofstra/Northwell and Lenox Hill Hospital, New York, USA
| | - Laurence B McCullough
- Department of Obstetrics and Gynecology, Zucker School of Medicine at Hofstra/Northwell and Lenox Hill Hospital, New York, USA
| | - Giovanni Monni
- Department of Obstetrics and Gynecology, Prenatal and Preimplantation Genetic Diagnosis, Fetal Therapy, Microcitemico Pediatric Hospital "A. Cao", Cagliari, Sardinia, Italy
| |
Collapse
|
818
|
Li X, Chen M, Liu B, Lu P, Lv X, Zhao X, Cui S, Xu P, Nakamura Y, Kurita R, Chen B, Huang DCS, Liu DP, Liu M, Zhao Q. Transcriptional silencing of fetal hemoglobin expression by NonO. Nucleic Acids Res 2021; 49:9711-9723. [PMID: 34379783 PMCID: PMC8464040 DOI: 10.1093/nar/gkab671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Human fetal globin (γ-globin) genes are developmentally silenced after birth, and reactivation of γ-globin expression in adulthood ameliorates symptoms of hemoglobin disorders, such as sickle cell disease (SCD) and β-thalassemia. However, the mechanisms by which γ-globin expression is precisely regulated are still incompletely understood. Here, we found that NonO (non-POU domain-containing octamer-binding protein) interacted directly with SOX6, and repressed the expression of γ-globin gene in human erythroid cells. We showed that NonO bound to the octamer binding motif, ATGCAAAT, of the γ-globin proximal promoter, resulting in inhibition of γ-globin transcription. Depletion of NonO resulted in significant activation of γ-globin expression in K562, HUDEP-2, and primary human erythroid progenitor cells. To confirm the role of NonO in vivo, we further generated a conditional knockout of NonO by using IFN-inducible Mx1-Cre transgenic mice. We found that induced NonO deletion reactivated murine embryonic globin and human γ-globin gene expression in adult β-YAC mice, suggesting a conserved role for NonO during mammalian evolution. Thus, our data indicate that NonO acts as a novel transcriptional repressor of γ-globin gene expression through direct promoter binding, and is essential for γ-globin gene silencing.
Collapse
Affiliation(s)
- Xinyu Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Mengxia Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Biru Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Peifen Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiang Lv
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuaiying Cui
- Section of Hematology-Medical Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Peipei Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Bing Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
819
|
Hsu LJ, Liu CL, Kuo ML, Shen CN, Shen CR. An Alternative Cell Therapy for Cancers: Induced Pluripotent Stem Cell (iPSC)-Derived Natural Killer Cells. Biomedicines 2021; 9:1323. [PMID: 34680440 PMCID: PMC8533510 DOI: 10.3390/biomedicines9101323] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Cell therapy is usually defined as the treatment or prevention of human disease by supplementation with cells that have been selected, manipulated, and pharmacologically treated or altered outside the body (ex vivo). Induced pluripotent stem cells (iPSCs), with their unique characteristics of indefinite expansion in cultures and genetic modifications, represent an ideal cell source for differentiation into specialized cell types. Cell therapy has recently become one of the most promising therapeutic approaches for cancers, and different immune cell types are selected as therapeutic platforms. Natural killer (NK) cells are shown to be effective tumor cell killers and do not cause graft-vs-host disease (GVHD), making them excellent candidates for, and facilitating the development of, "off-the-shelf" cell therapies. In this review, we summarize the progress in the past decade in the advent of iPSC technology and review recent developments in gene-modified iPSC-NK cells as readily available "off-the-shelf" cellular therapies.
Collapse
Affiliation(s)
- Li-Jie Hsu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- PhD Program in Biotechnology Industry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chao-Lin Liu
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei 243, Taiwan;
- Biochemical Technology R&D Center, Ming Chi University of Technology, New Taipei 243, Taiwan
| | - Ming-Ling Kuo
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Center of Molecular and Clinical Immunology, Chang Gung University, Taoyuan 333, Taiwan
- Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Lin-Kou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Pediatrics, New Taipei Municipal TuCheng Hospital, New Taipei 236, Taiwan
| | - Chia-Ning Shen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Chia-Rui Shen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- PhD Program in Biotechnology Industry, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Center of Molecular and Clinical Immunology, Chang Gung University, Taoyuan 333, Taiwan
- Department of Ophthalmology, Lin-Kou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
820
|
Pattan V, Kashyap R, Bansal V, Candula N, Koritala T, Surani S. Genomics in medicine: A new era in medicine. World J Methodol 2021; 11:231-242. [PMID: 34631481 PMCID: PMC8472545 DOI: 10.5662/wjm.v11.i5.231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/18/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023] Open
Abstract
The sequencing of complete human genome revolutionized the genomic medicine. However, the complex interplay of gene-environment-lifestyle and influence of non-coding genomic regions on human health remain largely unexplored. Genomic medicine has great potential for diagnoses or disease prediction, disease prevention and, targeted treatment. However, many of the promising tools of genomic medicine are still in their infancy and their application may be limited because of the limited knowledge we have that precludes its use in many clinical settings. In this review article, we have reviewed the evolution of genomic methodologies/tools, their limitations, and scope, for current and future clinical application.
Collapse
Affiliation(s)
- Vishwanath Pattan
- Division of Endocrinology, Wyoming Medical Center, Casper, WY 82601, United States
| | - Rahul Kashyap
- Department of Anesthesiology and Peri-operative Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Vikas Bansal
- Department of Anesthesiology and Peri-operative Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Narsimha Candula
- Hospital Medicine, University Florida Health, Jacksonville, FL 32209, United States
| | - Thoyaja Koritala
- Hospital Medicine, Mayo Clinic Health System, Mankato, MN 56001, United States
| | - Salim Surani
- Department of Internal Medicine, Texas A&M University, Corpus Christi, TX 78405, United States
| |
Collapse
|
821
|
Xie R, Wang Y, Gong S. External stimuli-responsive nanoparticles for spatially and temporally controlled delivery of CRISPR-Cas genome editors. Biomater Sci 2021; 9:6012-6022. [PMID: 34286726 PMCID: PMC8440484 DOI: 10.1039/d1bm00558h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The CRISPR-Cas9 system is a powerful tool for genome editing, which can potentially lead to new therapies for genetic diseases. To date, various viral and non-viral delivery systems have been developed for the delivery of CRISPR-Cas9 in vivo. However, spatially and temporally controlled genome editing is needed to enhance the specificity in organs/tissues and minimize the off-target effects of editing. In this review, we summarize the state-of-the-art non-viral vectors that exploit external stimuli (i.e., light, magnetic field, and ultrasound) for spatially and temporally controlled genome editing and their in vitro and in vivo applications.
Collapse
Affiliation(s)
- Ruosen Xie
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Yuyuan Wang
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
| | - Shaoqin Gong
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53715, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.
| |
Collapse
|
822
|
Abstract
The CRISPR-Cas system has revolutionized the biomedical research field with its simple and flexible genome editing method. In October 2020, Emmanuelle Charpentier and Jennifer A. Doudna were awarded the 2020 Nobel Prize in chemistry in recognition of their outstanding contributions to the discovery of CRISPR-Cas9 genetic scissors, which allow scientists to alter DNA sequences with high precision. Recently, the first phase I clinical trials in cancer patients affirmed the safety and feasibility of ex vivo CRISPR-edited T cells. However, specific and effective CRISPR delivery in vivo remains challenging due to the multiple extracellular and intracellular barriers. Here, we discuss the recent advances in novel lipid nanomaterials for CRISPR delivery and describe relevant examples of potential therapeutics in cancers, genetic disorders, and infectious diseases.
Collapse
Affiliation(s)
- Jingyue Yan
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Diana D Kang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA.
- Department of Biomedical Engineering; The Center for Clinical and Translational Science; The Comprehensive Cancer Center; Dorothy M. Davis Heart & Lung Research Institute; Department of Radiation Oncology, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
823
|
Thuret I. [Gene therapy in beta-thalassemia]. Transfus Clin Biol 2021; 28:405-406. [PMID: 34500092 DOI: 10.1016/j.tracli.2021.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Affiliation(s)
- I Thuret
- Service d'immuno-onco-hématologie pédiatrique, Centre de référence des syndromes drépanocytaires majeurs, thalassémies et autres pathologies rares du globule rouge, hôpital d'Enfant de la Timone, Assistance publique des Hôpitaux de Marseille, 13005 Marseille, France.
| |
Collapse
|
824
|
Clinically relevant gene editing in hematopoietic stem cells for the treatment of pyruvate kinase deficiency. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:237-248. [PMID: 34485608 PMCID: PMC8399088 DOI: 10.1016/j.omtm.2021.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2021] [Indexed: 01/19/2023]
Abstract
Pyruvate kinase deficiency (PKD), an autosomal-recessive disorder, is the main cause of chronic non-spherocytic hemolytic anemia. PKD is caused by mutations in the pyruvate kinase, liver and red blood cell (PKLR) gene, which encodes for the erythroid pyruvate kinase protein (RPK). RPK is implicated in the last step of anaerobic glycolysis in red blood cells (RBCs), responsible for the maintenance of normal erythrocyte ATP levels. The only curative treatment for PKD is allogeneic hematopoietic stem and progenitor cell (HSPC) transplant, associated with a significant morbidity and mortality, especially relevant in PKD patients. Here, we address the correction of PKD through precise gene editing at the PKLR endogenous locus to keep the tight regulation of RPK enzyme during erythropoiesis. We combined CRISPR-Cas9 system and donor recombinant adeno-associated vector (rAAV) delivery to build an efficient, safe, and clinically applicable system to knock in therapeutic sequences at the translation start site of the RPK isoform in human hematopoietic progenitors. Edited human hematopoietic progenitors efficiently reconstituted human hematopoiesis in primary and secondary immunodeficient mice. Erythroid cells derived from edited PKD-HSPCs recovered normal ATP levels, demonstrating the restoration of RPK function in PKD erythropoiesis after gene editing. Our gene-editing strategy may represent a lifelong therapy to correct RPK functionality in RBCs for PKD patients.
Collapse
|
825
|
Shafique F, Ali S, Almansouri T, Van Eeden F, Shafi N, Khalid M, Khawaja S, Andleeb S, Hassan MU. Thalassemia, a human blood disorder. BRAZ J BIOL 2021; 83:e246062. [PMID: 34495151 DOI: 10.1590/1519-6984.246062] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/02/2021] [Indexed: 11/22/2022] Open
Abstract
A group of inherited blood defects is known as Thalassemia is among the world's most prevalent hemoglobinopathies. Thalassemias are of two types such as Alpha and Beta Thalassemia. The cause of these defects is gene mutations leading to low levels and/or malfunctioning α and β globin proteins, respectively. In some cases, one of these proteins may be completely absent. α and β globin chains form a globin fold or pocket for heme (Fe++) attachment to carry oxygen. Genes for alpha and beta-globin proteins are present in the form of a cluster on chromosome 16 and 11, respectively. Different globin genes are used at different stages in the life course. During embryonic and fetal developmental stages, γ globin proteins partner with α globin and are later replaced by β globin protein. Globin chain imbalances result in hemolysis and impede erythropoiesis. Individuals showing mild symptoms include carriers of alpha thalassemia or the people bearing alpha or beta-thalassemia trait. Alpha thalassemia causes conditions like hemolytic anemia or fatal hydrops fetalis depending upon the severity of the disease. Beta thalassemia major results in hemolytic anemia, growth retardation, and skeletal aberrations in early childhood. Children affected by this disorder need regular blood transfusions throughout their lives. Patients that depend on blood transfusion usually develop iron overload that causes other complications in the body systems like renal or hepatic impairment therefore, thalassemias are now categorized as a syndrome. The only cure for Thalassemias would be a bone marrow transplant, or gene therapy with currently no significant success rate. A thorough understanding of the molecular basis of this syndrome may provide novel insights and ideas for its treatment, as scientists have still been unable to find a permanent cure for this deadly disease after more than 87 years since it is first described in 1925.
Collapse
Affiliation(s)
- F Shafique
- University of Azad Jammu and Kashmir, Faculty of Science, Department of Zoology, Muzaffarabad, Pakistan.,University of Sheffield, Faculty of Science, Department of Biomedical Science, Sheffield, United Kingdom
| | - S Ali
- Government College University Lahore, Faculty of Science, Department of Zoology, Applied Entomology and Medical Toxicology Laboratory, Lahore, Pakistan
| | - T Almansouri
- University of Sheffield, Sheffield Institute for Translational Neuroscience - SITraN, Department of Neuroscience, Sheffield, United Kingdom.,King Abdulaziz University, Department of Applied Medical Science (Medical Laboratory), Jeddah, Saudi Arabia
| | - F Van Eeden
- University of Sheffield, Faculty of Science, Department of Biomedical Science, Sheffield, United Kingdom
| | - N Shafi
- University of Azad Jammu and Kashmir, Faculty of Science, Department of Zoology, Muzaffarabad, Pakistan
| | - M Khalid
- Women University of Azad Kashmir, Department of Biotechnology, Bagh, Azad Kashmir, Pakistan
| | - S Khawaja
- University of Azad Jammu and Kashmir, Department of Biotechnology, Muzaffarabad, Pakistan
| | - S Andleeb
- University of Azad Jammu and Kashmir, Faculty of Science, Department of Zoology, Muzaffarabad, Pakistan
| | - M Ul Hassan
- University of Sheffield, Faculty of Science, Department of Molecular Biology and Biotechnology, Sheffield, United Kingdom
| |
Collapse
|
826
|
Amendola M, Bedel A, Buj-Bello A, Carrara M, Concordet JP, Frati G, Gilot D, Giovannangeli C, Gutierrez-Guerrero A, Laurent M, Miccio A, Moreau-Gaudry F, Sourd C, Valton J, Verhoeyen E. Recent Progress in Genome Editing for Gene Therapy Applications: The French Perspective. Hum Gene Ther 2021; 32:1059-1075. [PMID: 34494480 DOI: 10.1089/hum.2021.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recent advances in genome editing tools, especially novel developments in the clustered regularly interspaced short palindromic repeats associated to Cas9 nucleases (CRISPR/Cas9)-derived editing machinery, have revolutionized not only basic science but, importantly, also the gene therapy field. Their flexibility and ability to introduce precise modifications in the genome to disrupt or correct genes or insert expression cassettes in safe harbors in the genome underline their potential applications as a medicine of the future to cure many genetic diseases. In this review, we give an overview of the recent progress made by French researchers in the field of therapeutic genome editing, while putting their work in the general context of advances made in the field. We focus on recent hematopoietic stem cell gene editing strategies for blood diseases affecting the red blood cells or blood coagulation as well as lysosomal storage diseases. We report on a genome editing-based therapy for muscular dystrophy and the potency of T cell gene editing to increase anticancer activity of chimeric antigen receptor T cells to combat cancer. We will also discuss technical obstacles and side effects such as unwanted editing activity that need to be surmounted on the way toward a clinical implementation of genome editing. We propose here improvements developed today, including by French researchers to overcome the editing-related genotoxicity and improve editing precision by the use of novel recombinant nuclease-based systems such as nickases, base editors, and prime editors. Finally, a solution is proposed to resolve the cellular toxicity induced by the systems employed for gene editing machinery delivery.
Collapse
Affiliation(s)
- Mario Amendola
- Genethon, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
| | - Aurélie Bedel
- Bordeaux University, Bordeaux, France.,INSERM U1035, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, Bordeaux, France.,Biochemistry Laboratory, University Hospital Bordeaux, Bordeaux, France
| | - Ana Buj-Bello
- Genethon, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
| | - Mathieu Carrara
- Museum National d'Histoire Naturelle, Inserm U1154, CNRS UMR 7196, Sorbonne Universités, Paris, France
| | - Jean-Paul Concordet
- Museum National d'Histoire Naturelle, Inserm U1154, CNRS UMR 7196, Sorbonne Universités, Paris, France
| | - Giacomo Frati
- Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute, INSERM UMR1163, Paris, France.,Université de Paris, Paris, France
| | - David Gilot
- Inserm U1242, Université de Rennes, Centre de lutte contre le cancer Eugène Marquis, Rennes, France
| | - Carine Giovannangeli
- Museum National d'Histoire Naturelle, Inserm U1154, CNRS UMR 7196, Sorbonne Universités, Paris, France
| | - Alejandra Gutierrez-Guerrero
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | - Marine Laurent
- Genethon, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute, INSERM UMR1163, Paris, France.,Université de Paris, Paris, France
| | - François Moreau-Gaudry
- Bordeaux University, Bordeaux, France.,INSERM U1035, Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancers, Bordeaux, France.,Biochemistry Laboratory, University Hospital Bordeaux, Bordeaux, France
| | - Célia Sourd
- Genethon, Evry, France.,Université Paris-Saclay, Univ Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, Evry, France
| | | | - Els Verhoeyen
- CIRI-International Center for Infectiology Research, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France.,Université Côte d'Azur, INSERM, C3M, Nice, France
| |
Collapse
|
827
|
Christopher AC, Venkatesan V, Karuppusamy KV, Srinivasan S, Babu P, Azhagiri MKK, C K, Bagchi A, Rajendiran V, Ravi NS, Kumar S, Marepally SK, Mohankumar KM, Srivastava A, Velayudhan SR, Thangavel S. Preferential expansion of human CD34+CD133+CD90+ hematopoietic stem cells enhances gene-modified cell frequency for gene therapy. Hum Gene Ther 2021; 33:188-201. [PMID: 34486377 DOI: 10.1089/hum.2021.089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CD34+CD133+CD90+ hematopoietic stem cells (HSCs) are responsible for long-term multi-lineage hematopoiesis and the high frequency of gene-modified HSCs is crucial for the success of hematopoietic stem and progenitor cell (HSPC) gene therapy. However, the ex vivo culture and gene manipulation steps of HSPC graft preparation significantly reduce the frequency of HSCs, thus necessitating large doses of HSPCs and reagents for the manipulation. Here, we identified a combination of small molecules, Resveratrol, UM729, and SR1 that preferentially expands CD34+CD133+CD90+ HSCs over other subpopulations of adult HSPCs in ex vivo culture. The preferential expansion enriches the HSCs in ex vivo culture, enhances the adhesion and results in a 6-fold increase in the long-term engraftment in NSG mice. Further, the culture enriched HSCs are more responsive to gene modification by lentiviral transduction and gene editing, increasing the frequency of gene-modified HSCs up to 10-fold in vivo. The yield of gene-modified HSCs obtained by the culture enrichment is similar to the sort-purification of HSCs and superior to Cyclosporin-H treatment. Our study addresses a critical challenge of low frequency of gene-modified HSCs in HSPC graft by developing and demonstrating a facile HSPC culture condition that increases the frequency of gene-modified cells in vivo. This strategy will improve the outcome of HSPC gene therapy and also simplify the gene manipulation process.
Collapse
Affiliation(s)
| | - Vigneshwaran Venkatesan
- Center for Stem Cell Research, 302927, Vellore, Tamil nadu, India.,Manipal Academy of Higher Education, 76793, Manipal, Karnataka, India;
| | - Karthik V Karuppusamy
- Center for Stem Cell Research, 302927, Vellore, Tamil nadu, India.,Manipal Academy of Higher Education, 76793, Manipal, Karnataka, India;
| | | | - Prathibha Babu
- Center for Stem Cell Research, 302927, Vellore, Tamil nadu, India.,Manipal Academy of Higher Education, 76793, Manipal, Karnataka, India;
| | - Manoj Kumar K Azhagiri
- Center for Stem Cell Research, 302927, Vellore, Tamil nadu, India.,Manipal Academy of Higher Education, 76793, Manipal, Karnataka, India;
| | - Karthik C
- Center for Stem Cell Research, 302927, Vellore, Tamil nadu, India;
| | - Abhirup Bagchi
- Center for Stem Cell Research, 302927, Vellore, Tamil nadu, India;
| | | | - Nithin Sam Ravi
- Center for Stem Cell Research, 302927, Vellore, Tamil Nadu, India;
| | - Sanjay Kumar
- Christian Medical College and Hospital Vellore, 30025, Center for Stem Cell Research, Vellore, Tamil Nadu, India;
| | | | | | - Alok Srivastava
- Christian Medical College, Centre for Stem Cell Research, CMC Campus, Bagayam, Vellore, Tamilnadu, India, 632002.,Christian Medical College, Haematology, Ida Scudder Road, Vellore, Tamil Nadu, India, 632004;
| | | | - Saravanabhavan Thangavel
- Center for Stem Cell Research, 302927, Christian Medical College Campus Bagayam,, Vellore, Tamil nadu, India, 632002;
| |
Collapse
|
828
|
Meyenberg M, Ferreira da Silva J, Loizou JI. Tissue Specific DNA Repair Outcomes Shape the Landscape of Genome Editing. Front Genet 2021; 12:728520. [PMID: 34539755 PMCID: PMC8446275 DOI: 10.3389/fgene.2021.728520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022] Open
Abstract
The use of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 has moved from bench to bedside in less than 10years, realising the vision of correcting disease through genome editing. The accuracy and safety of this approach relies on the precise control of DNA damage and repair processes to achieve the desired editing outcomes. Strategies for modulating pathway choice for repairing CRISPR-mediated DNA double-strand breaks (DSBs) have advanced the genome editing field. However, the promise of correcting genetic diseases with CRISPR-Cas9 based therapies is restrained by a lack of insight into controlling desired editing outcomes in cells of different tissue origin. Here, we review recent developments and urge for a greater understanding of tissue specific DNA repair processes of CRISPR-induced DNA breaks. We propose that integrated mapping of tissue specific DNA repair processes will fundamentally empower the implementation of precise and safe genome editing therapies for a larger variety of diseases.
Collapse
Affiliation(s)
- Mathilde Meyenberg
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Joana Ferreira da Silva
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Joanna I. Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
829
|
Affiliation(s)
- Hildegard Büning
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
- REBIRTH Research Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
830
|
Renella R. Biomarkers for the central nervous system complications of sickle cell disease: are we there yet? Proteomics Clin Appl 2021; 15:e2100026. [PMID: 34160906 DOI: 10.1002/prca.202100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/19/2021] [Indexed: 11/10/2022]
Abstract
Sickle cell disease (SCD, OMIM #603903), an autosomal recessively inherited β-hemoglobinopathy, was the first human disorder delineated at a molecular level. The putative single nucleotide mutation in the HBB gene generates an abnormal hemoglobin species, which polymerizes in deoxygenated conditions causing irreversible changes in erythrocyte shape and function. Sickling erythrocytes are in turn responsible for microvascular vaso-occlusion, hemolysis and a systemic vasculopathy in patients. SCD has represented an attractive field for proteomic investigation since its methodological infancy. Clinically actionable biomarkers, especially for the prevention of cerebrovascular complications in children with the condition, are urgently needed and their discovery remains a major challenge. In this issue, Lance and colleagues report of their unbiased proteomic studies on samples from the participants of the landmark prospective, randomized, single-blind SIT trial (NEJM 2014). Their results reveal numerous brain-enriched plasma proteins specific for SCD, and for silent cerebral infarcts in this disorder, and further analyses highlight novel cellular mechanisms behind the brain damage in SCD. Although the goal of identifying reliable biomarker candidates for cerebrovascular complications could not be met, the dataset produced by the authors constitutes a significant contribution to the field and opens new horizons for further clinical and laboratory investigation.
Collapse
Affiliation(s)
- Raffaele Renella
- Pediatric Hematology-Oncology Unit, Division of Pediatrics, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
831
|
|
832
|
Claringbould A, Zaugg JB. Enhancers in disease: molecular basis and emerging treatment strategies. Trends Mol Med 2021; 27:1060-1073. [PMID: 34420874 DOI: 10.1016/j.molmed.2021.07.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
Enhancers are genomic sequences that play a key role in regulating tissue-specific gene expression levels. An increasing number of diseases are linked to impaired enhancer function through chromosomal rearrangement, genetic variation within enhancers, or epigenetic modulation. Here, we review how these enhancer disruptions have recently been implicated in congenital disorders, cancers, and common complex diseases and address the implications for diagnosis and treatment. Although further fundamental research into enhancer function, target genes, and context is required, enhancer-targeting drugs and gene editing approaches show great therapeutic promise for a range of diseases.
Collapse
Affiliation(s)
- Annique Claringbould
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Judith B Zaugg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
833
|
Kim MY, Cooper ML, Jacobs MT, Ritchey JK, Hollaway J, Fehniger TA, DiPersio JF. CD7-deleted hematopoietic stem cells can restore immunity after CAR T cell therapy. JCI Insight 2021; 6:e149819. [PMID: 34423790 PMCID: PMC8410010 DOI: 10.1172/jci.insight.149819] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/30/2021] [Indexed: 11/17/2022] Open
Abstract
Targeting T cell malignancies with universal CD7-targeting chimeric antigen receptor T cells (UCART7) can lead to profound immune deficiency due to loss of normal T and NK cells. While a small population of endogenous CD7- T cells exists, these cells are unlikely to be able to repopulate the entire immune repertoire after UCART7 treatment, as they are limited in number and proliferative capacity. To rescue T and NK cells after UCART7, we created hematopoietic stem cells genetically deleted for CD7 (CD7-KO HSCs). CD7-KO HSCs were able to engraft immunodeficient mice and differentiate into T and NK cells lacking CD7 expression. CD7-KO T and NK cells could perform effector functions as robustly as control T and NK cells. Furthermore, CD7-KO T cells were phenotypically and functionally distinct from endogenous CD7- T cells, indicating that CD7-KO T cells can supplement immune functions lacking in CD7- T cells. Mice engrafted with CD7-KO HSCs maintained T and NK cell numbers after UCART7 treatment, while these were significantly decreased in control mice. These studies support the development of CD7-KO HSCs to augment host immunity in patients with T cell malignancies after UCART7 treatment.
Collapse
MESH Headings
- Animals
- Antigens, CD7/genetics
- Cell Engineering/methods
- Cytotoxicity, Immunologic
- Gene Editing
- Gene Knockout Techniques
- Hematopoietic Stem Cell Transplantation/methods
- Hematopoietic Stem Cells/metabolism
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukemia, B-Cell/immunology
- Leukemia, B-Cell/therapy
- Mice
- RNA-Seq
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Single-Cell Analysis
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Transplantation Chimera
Collapse
|
834
|
Asmamaw M, Zawdie B. Mechanism and Applications of CRISPR/Cas-9-Mediated Genome Editing. Biologics 2021; 15:353-361. [PMID: 34456559 PMCID: PMC8388126 DOI: 10.2147/btt.s326422] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) and their associated protein (Cas-9) is the most effective, efficient, and accurate method of genome editing tool in all living cells and utilized in many applied disciplines. Guide RNA (gRNA) and CRISPR-associated (Cas-9) proteins are the two essential components in CRISPR/Cas-9 system. The mechanism of CRISPR/Cas-9 genome editing contains three steps, recognition, cleavage, and repair. The designed sgRNA recognizes the target sequence in the gene of interest through a complementary base pair. While the Cas-9 nuclease makes double-stranded breaks at a site 3 base pair upstream to protospacer adjacent motif, then the double-stranded break is repaired by either non-homologous end joining or homology-directed repair cellular mechanisms. The CRISPR/Cas-9 genome-editing tool has a wide number of applications in many areas including medicine, agriculture, and biotechnology. In agriculture, it could help in the design of new grains to improve their nutritional value. In medicine, it is being investigated for cancers, HIV, and gene therapy such as sickle cell disease, cystic fibrosis, and Duchenne muscular dystrophy. The technology is also being utilized in the regulation of specific genes through the advanced modification of Cas-9 protein. However, immunogenicity, effective delivery systems, off-target effect, and ethical issues have been the major barriers to extend the technology in clinical applications. Although CRISPR/Cas-9 becomes a new era in molecular biology and has countless roles ranging from basic molecular researches to clinical applications, there are still challenges to rub in the practical applications and various improvements are needed to overcome obstacles.
Collapse
Affiliation(s)
- Misganaw Asmamaw
- Division of Biochemistry, Department of Biomedical Sciences, College of Medicine and Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Belay Zawdie
- Division of Biochemistry, Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
835
|
Nethery MA, Korvink M, Makarova KS, Wolf YI, Koonin EV, Barrangou R. CRISPRclassify: Repeat-Based Classification of CRISPR Loci. CRISPR J 2021; 4:558-574. [PMID: 34406047 DOI: 10.1089/crispr.2021.0021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Detection and classification of CRISPR-Cas systems in metagenomic data have become increasingly prevalent in recent years due to their potential for diverse applications in genome editing. Traditionally, CRISPR-Cas systems are classified through reference-based identification of proximate cas genes. Here, we present a machine learning approach for the detection and classification of CRISPR loci using repeat sequences in a cas-independent context, enabling identification of unclassified loci missed by traditional cas-based approaches. Using biological attributes of the CRISPR repeat, the core element in CRISPR arrays, and leveraging methods from natural language processing, we developed a machine learning model capable of accurate classification of CRISPR loci in an extensive set of metagenomes, resulting in an F1 measure of 0.82 across all predictions and an F1 measure of 0.97 when limiting to classifications with probabilities >0.85. Furthermore, assessing performance on novel repeats yielded an F1 measure of 0.96. Although the performance of cas-based identification will exceed that of a repeat-based approach in many cases, CRISPRclassify provides an efficient approach to classification of CRISPR loci for cases in which cas gene information is unavailable, such as metagenomes and fragmented genome assemblies.
Collapse
Affiliation(s)
- Matthew A Nethery
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, North Carolina, USA; National Library of Medicine, Bethesda, Maryland, USA
| | - Michael Korvink
- ITS Data Science, Premier Inc., Charlotte, North Carolina, USA; and National Library of Medicine, Bethesda, Maryland, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Rodolphe Barrangou
- Genomic Sciences Graduate Program, North Carolina State University, Raleigh, North Carolina, USA; National Library of Medicine, Bethesda, Maryland, USA
| |
Collapse
|
836
|
Fabozzi F, Strocchio L, Mastronuzzi A, Merli P. GATA2 and marrow failure. Best Pract Res Clin Haematol 2021; 34:101278. [PMID: 34404529 DOI: 10.1016/j.beha.2021.101278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 02/08/2023]
Abstract
GATA2 gene encodes a zinc finger transcription factor crucial for normal hematopoiesis. Its haploinsufficiency, caused by a great variety of heterozygous loss-of-function mutations, underlies one of the most common causes of inherited bone marrow failure, recognized as GATA2 deficiency. Its phenotype is characterized by a broad spectrum of clinical presentations, including: haematological malignancies; immunodeficiency leading to invasive viral, mycobacterial and fungal infections; recurrent warts; lymphedema; pulmonary alveolar proteinosis; deafness; and miscarriage. The onset of symptoms ranges from early childhood to late adulthood, more frequently between adolescence and early adulthood. The only curative treatment is allogenic hematopoietic stem cell transplantation (HSCT), that can restore the function of both hematopoietic and immune system and prevent lung deterioration. Currently, there are no consensus guidelines about the management of patients affected by GATA2 deficiency, especially with regard to the optimal time to proceed to HSCT.
Collapse
Affiliation(s)
- Francesco Fabozzi
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy.
| | - Luisa Strocchio
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy.
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy.
| | - Pietro Merli
- Department of Hematology/Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, 00165, Rome, Italy.
| |
Collapse
|
837
|
Musunuru K. CRISPR Hits Home in a First-in-Human Study. CRISPR J 2021; 4:460-461. [PMID: 34406041 DOI: 10.1089/crispr.2021.29131.mus] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kiran Musunuru
- Cardiovascular Institute, Department of Medicine, and Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
838
|
Montoliu L. WHO: Are You Ready for Human Genome Editing? CRISPR J 2021; 4:464-466. [PMID: 34406034 DOI: 10.1089/crispr.2021.29133.lmo] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Lluis Montoliu
- National Centre for Biotechnology (CNB-CSIC), Biomedical Research Networking Center on Rare Diseases (CIBERER-ISCIII), Madrid, Spain
| |
Collapse
|
839
|
Liuzzo G, Patrono C. First in man: gene editing for the treatment of transthyretin amyloidosis. Eur Heart J 2021; 42:3597-3598. [PMID: 34379739 DOI: 10.1093/eurheartj/ehab542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Giovanna Liuzzo
- Department of Cardiovascular and Pulmonary Sciences, Fondazione Policlinico Universitario A.Gemelli-IRCCS, Catholic University School of Medicine, Largo A. Gemelli, 8, Rome 00168, Italy
| | - Carlo Patrono
- Department of Pharmacology, Fondazione Policlinico Universitario A.Gemelli-IRCCS, Catholic University School of Medicine, Largo A. Gemelli, 8, Rome 00168, Italy
| |
Collapse
|
840
|
Cereseto A, Cradick TJ, Davies K. Base Editors Flex Sights on Sickle-Cell Disease. CRISPR J 2021; 4:166-168. [PMID: 33876950 DOI: 10.1089/crispr.2021.29125.kda] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Anna Cereseto
- Laboratory of Molecular Virology, CIBIO, University of Trento, Trento, Italy
| | | | - Kevin Davies
- Executive Editor, The CRISPR Journal, New Rochelle, New York, USA
| |
Collapse
|
841
|
Cimpeanu E, Poplawska M, Jimenez BC, Dutta D, Lim SH. Allogeneic hematopoietic stem cell transplant for sickle cell disease: The why, who, and what. Blood Rev 2021; 50:100868. [PMID: 34332804 DOI: 10.1016/j.blre.2021.100868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022]
Abstract
Allogeneic hematopoietic stem cell transplants (allo-HSCTs) from matched-related donors (MRDs), mismatched-related donors (MMRDs), and matched-unrelated donors (MUDs) are increasingly being used to treat sickle cell disease (SCD) in both pediatric and adult patients. The overall results have been extremely encouraging, especially if a MRD is available and the transplant being performed before the age of 13. Although there is a general consensus that patients with high-risk SCD, even in adults and irrespective of donor characteristics, should be offered allo-HSCT, the debates on optimal patient selection and timing of transplant have yet to be resolved. Unlike patients with hematologic malignancies, there are also a number of clinical issues that require to be addressed in patients with SCD undergoing allo-HSCT. In this review, we will discuss the reasons allo-HSCT should be offered more widely to patients with SCD, the challenges facing physicians in patient selection and timing of transplant, and the awareness of and solutions to prevent the complications that are unique or more common in SCD undergoing allo-HSCT.
Collapse
Affiliation(s)
- Emanuela Cimpeanu
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Maria Poplawska
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Brian Campbell Jimenez
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Dibyendu Dutta
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States
| | - Seah H Lim
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, United States.
| |
Collapse
|
842
|
Stewart C, Jang T, Mo G, Mohamed N, Poplawska M, Egini O, Dutta D, Lim SH. Antibiotics to modify sickle cell disease vaso-occlusive crisis? Blood Rev 2021; 50:100867. [PMID: 34304939 DOI: 10.1016/j.blre.2021.100867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
Despite the availability of hydroxyurea, the clinical use of the medication among patients with sickle cell disease (SCD) remains low in the United States. Given the high healthcare utilization cost, SCD requires new therapeutic approaches. Recent studies demonstrated bacterial overgrowth and dysbiosis-related intestinal pathophysiological changes in SCD. Intestinal microbes regulate neutrophil ageing. Aged and activated neutrophils contribute to the pathogenesis of vaso-occlusive crisis (VOC) in SCD. In this paper, we will review the pre-clinical and clinical data on how antibiotics might reduce the intestinal microbial density and influence the course of VOC. Based on these observations, we will discuss rationales for and potential challenges to antibiotic-based therapeutic approaches that may modify the clinical course of VOC in SCD.
Collapse
Affiliation(s)
- Connor Stewart
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America
| | - Tim Jang
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America
| | - George Mo
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America
| | - Nader Mohamed
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America
| | - Maria Poplawska
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America
| | - Ogechukwu Egini
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America
| | - Dibyendu Dutta
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America.
| | - Seah H Lim
- Division of Hematology and Oncology, Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, New York 11203, United States of America.
| |
Collapse
|
843
|
|
844
|
Lattanzi A, Camarena J, Lahiri P, Segal H, Srifa W, Vakulskas CA, Frock RL, Kenrick J, Lee C, Talbott N, Skowronski J, Cromer MK, Charlesworth CT, Bak RO, Mantri S, Bao G, DiGiusto D, Tisdale J, Wright JF, Bhatia N, Roncarolo MG, Dever DP, Porteus MH. Development of β-globin gene correction in human hematopoietic stem cells as a potential durable treatment for sickle cell disease. Sci Transl Med 2021; 13:13/598/eabf2444. [PMID: 34135108 DOI: 10.1126/scitranslmed.abf2444] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 05/25/2021] [Indexed: 12/11/2022]
Abstract
Sickle cell disease (SCD) is the most common serious monogenic disease with 300,000 births annually worldwide. SCD is an autosomal recessive disease resulting from a single point mutation in codon six of the β-globin gene (HBB). Ex vivo β-globin gene correction in autologous patient-derived hematopoietic stem and progenitor cells (HSPCs) may potentially provide a curative treatment for SCD. We previously developed a CRISPR-Cas9 gene targeting strategy that uses high-fidelity Cas9 precomplexed with chemically modified guide RNAs to induce recombinant adeno-associated virus serotype 6 (rAAV6)-mediated HBB gene correction of the SCD-causing mutation in HSPCs. Here, we demonstrate the preclinical feasibility, efficacy, and toxicology of HBB gene correction in plerixafor-mobilized CD34+ cells from healthy and SCD patient donors (gcHBB-SCD). We achieved up to 60% HBB allelic correction in clinical-scale gcHBB-SCD manufacturing. After transplant into immunodeficient NSG mice, 20% gene correction was achieved with multilineage engraftment. The long-term safety, tumorigenicity, and toxicology study demonstrated no evidence of abnormal hematopoiesis, genotoxicity, or tumorigenicity from the engrafted gcHBB-SCD drug product. Together, these preclinical data support the safety, efficacy, and reproducibility of this gene correction strategy for initiation of a phase 1/2 clinical trial in patients with SCD.
Collapse
Affiliation(s)
- Annalisa Lattanzi
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Center for Definitive and Curative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Joab Camarena
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Premanjali Lahiri
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - Helen Segal
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - Waracharee Srifa
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Richard L Frock
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Josefin Kenrick
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Ciaran Lee
- APC Microbiome Ireland, University College Cork, T12 YN60 Cork, Ireland
| | - Narae Talbott
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - Jason Skowronski
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - M Kyle Cromer
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Rasmus O Bak
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000 Aarhus, Denmark
| | - Sruthi Mantri
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77006, USA
| | - David DiGiusto
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA
| | - John Tisdale
- Molecular and Clinical Hematology Branch, NHLBI, Bethesda, MD 20814, USA
| | - J Fraser Wright
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Center for Definitive and Curative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Neehar Bhatia
- Laboratory for Cell and Gene Medicine, Stanford University, Stanford, CA 94304, USA.,Deceased
| | - Maria Grazia Roncarolo
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.,Center for Definitive and Curative Medicine, Stanford University, Stanford, CA 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Daniel P Dever
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA. .,Center for Definitive and Curative Medicine, Stanford University, Stanford, CA 94305, USA.,Institute of Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
845
|
Bode D, Cull AH, Rubio-Lara JA, Kent DG. Exploiting Single-Cell Tools in Gene and Cell Therapy. Front Immunol 2021; 12:702636. [PMID: 34322133 PMCID: PMC8312222 DOI: 10.3389/fimmu.2021.702636] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Single-cell molecular tools have been developed at an incredible pace over the last five years as sequencing costs continue to drop and numerous molecular assays have been coupled to sequencing readouts. This rapid period of technological development has facilitated the delineation of individual molecular characteristics including the genome, transcriptome, epigenome, and proteome of individual cells, leading to an unprecedented resolution of the molecular networks governing complex biological systems. The immense power of single-cell molecular screens has been particularly highlighted through work in systems where cellular heterogeneity is a key feature, such as stem cell biology, immunology, and tumor cell biology. Single-cell-omics technologies have already contributed to the identification of novel disease biomarkers, cellular subsets, therapeutic targets and diagnostics, many of which would have been undetectable by bulk sequencing approaches. More recently, efforts to integrate single-cell multi-omics with single cell functional output and/or physical location have been challenging but have led to substantial advances. Perhaps most excitingly, there are emerging opportunities to reach beyond the description of static cellular states with recent advances in modulation of cells through CRISPR technology, in particular with the development of base editors which greatly raises the prospect of cell and gene therapies. In this review, we provide a brief overview of emerging single-cell technologies and discuss current developments in integrating single-cell molecular screens and performing single-cell multi-omics for clinical applications. We also discuss how single-cell molecular assays can be usefully combined with functional data to unpick the mechanism of cellular decision-making. Finally, we reflect upon the introduction of spatial transcriptomics and proteomics, its complementary role with single-cell RNA sequencing (scRNA-seq) and potential application in cellular and gene therapy.
Collapse
Affiliation(s)
- Daniel Bode
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Alyssa H. Cull
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Juan A. Rubio-Lara
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - David G. Kent
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
846
|
Freen-van Heeren JJ. Exploiting HIV-1 tropism to target CD4 + T cells for CRISPR. Immunol Cell Biol 2021; 99:677-679. [PMID: 34231252 DOI: 10.1111/imcb.12487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 06/13/2021] [Indexed: 12/26/2022]
|
847
|
Applications of CRISPR-Cas9 as an Advanced Genome Editing System in Life Sciences. BIOTECH 2021; 10:biotech10030014. [PMID: 35822768 PMCID: PMC9245484 DOI: 10.3390/biotech10030014] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022] Open
Abstract
Targeted nucleases are powerful genomic tools to precisely change the target genome of living cells, controlling functional genes with high exactness. The clustered regularly interspaced short palindromic repeats associated protein 9 (CRISPR-Cas9) genome editing system has been identified as one of the most useful biological tools in genetic engineering that is taken from adaptive immune strategies for bacteria. In recent years, this system has made significant progress and it has been widely used in genome editing to create gene knock-ins, knock-outs, and point mutations. This paper summarizes the application of this system in various biological sciences, including medicine, plant science, and animal breeding.
Collapse
|
848
|
Ineffective Erythropoiesis in β-Thalassaemia: Key Steps and Therapeutic Options by Drugs. Int J Mol Sci 2021; 22:ijms22137229. [PMID: 34281283 PMCID: PMC8268821 DOI: 10.3390/ijms22137229] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 01/19/2023] Open
Abstract
β-thalassaemia is a rare genetic condition caused by mutations in the β-globin gene that result in severe iron-loading anaemia, maintained by a detrimental state of ineffective erythropoiesis (IE). The role of multiple mechanisms involved in the pathophysiology of the disease has been recently unravelled. The unbalanced production of α-globin is a major source of oxidative stress and membrane damage in red blood cells (RBC). In addition, IE is tightly linked to iron metabolism dysregulation, and the relevance of new players of this pathway, i.e., hepcidin, erythroferrone, matriptase-2, among others, has emerged. Advances have been made in understanding the balance between proliferation and maturation of erythroid precursors and the role of specific factors in this process, such as members of the TGF-β superfamily, and their downstream effectors, or the transcription factor GATA1. The increasing understanding of IE allowed for the development of a broad set of potential therapeutic options beyond the current standard of care. Many candidates of disease-modifying drugs are currently under clinical investigation, targeting the regulation of iron metabolism, the production of foetal haemoglobin, the maturation process, or the energetic balance and membrane stability of RBC. Overall, they provide tools and evidence for multiple and synergistic approaches that are effectively moving clinical research in β-thalassaemia from bench to bedside.
Collapse
|
849
|
Newby GA, Yen JS, Woodard KJ, Mayuranathan T, Lazzarotto CR, Li Y, Sheppard-Tillman H, Porter SN, Yao Y, Mayberry K, Everette KA, Jang Y, Podracky CJ, Thaman E, Lechauve C, Sharma A, Henderson JM, Richter MF, Zhao KT, Miller SM, Wang T, Koblan LW, McCaffrey AP, Tisdale JF, Kalfa TA, Pruett-Miller SM, Tsai SQ, Weiss MJ, Liu DR. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 2021; 595:295-302. [PMID: 34079130 PMCID: PMC8266759 DOI: 10.1038/s41586-021-03609-w] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 05/04/2021] [Indexed: 02/06/2023]
Abstract
Sickle cell disease (SCD) is caused by a mutation in the β-globin gene HBB1. We used a custom adenine base editor (ABE8e-NRCH)2,3 to convert the SCD allele (HBBS) into Makassar β-globin (HBBG), a non-pathogenic variant4,5. Ex vivo delivery of mRNA encoding the base editor with a targeting guide RNA into haematopoietic stem and progenitor cells (HSPCs) from patients with SCD resulted in 80% conversion of HBBS to HBBG. Sixteen weeks after transplantation of edited human HSPCs into immunodeficient mice, the frequency of HBBG was 68% and hypoxia-induced sickling of bone marrow reticulocytes had decreased fivefold, indicating durable gene editing. To assess the physiological effects of HBBS base editing, we delivered ABE8e-NRCH and guide RNA into HSPCs from a humanized SCD mouse6 and then transplanted these cells into irradiated mice. After sixteen weeks, Makassar β-globin represented 79% of β-globin protein in blood, and hypoxia-induced sickling was reduced threefold. Mice that received base-edited HSPCs showed near-normal haematological parameters and reduced splenic pathology compared to mice that received unedited cells. Secondary transplantation of edited bone marrow confirmed that the gene editing was durable in long-term haematopoietic stem cells and showed that HBBS-to-HBBG editing of 20% or more is sufficient for phenotypic rescue. Base editing of human HSPCs avoided the p53 activation and larger deletions that have been observed following Cas9 nuclease treatment. These findings point towards a one-time autologous treatment for SCD that eliminates pathogenic HBBS, generates benign HBBG, and minimizes the undesired consequences of double-strand DNA breaks.
Collapse
Affiliation(s)
- Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Jonathan S Yen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Kaitly J Woodard
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Cicera R Lazzarotto
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yichao Li
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Shaina N Porter
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yu Yao
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kalin Mayberry
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kelcee A Everette
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Yoonjeong Jang
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christopher J Podracky
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Elizabeth Thaman
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Christophe Lechauve
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Michelle F Richter
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Kevin T Zhao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Shannon M Miller
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Tina Wang
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Luke W Koblan
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | | | - John F Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute and National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Theodosia A Kalfa
- Division of Hematology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shengdar Q Tsai
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
850
|
Carvill GL, Matheny T, Hesselberth J, Demarest S. Haploinsufficiency, Dominant Negative, and Gain-of-Function Mechanisms in Epilepsy: Matching Therapeutic Approach to the Pathophysiology. Neurotherapeutics 2021; 18:1500-1514. [PMID: 34648141 PMCID: PMC8608973 DOI: 10.1007/s13311-021-01137-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 02/04/2023] Open
Abstract
This review summarizes the pathogenic mechanisms that underpin the monogenic epilepsies and discusses the potential of novel precision therapeutics to treat these disorders. Pathogenic mechanisms of epilepsy include recessive (null alleles), haploinsufficiency, imprinting, gain-of-function, and dominant negative effects. Understanding which pathogenic mechanism(s) that underlie each genetic epilepsy is pivotal to design precision therapies that are most likely to be beneficial for the patient. Novel therapeutics discussed include gene therapy, gene editing, antisense oligonucleotides, and protein replacement. Discussions are illustrated and reinforced with examples from the literature.
Collapse
Affiliation(s)
- Gemma L Carvill
- Departments of Neurology, Pharmacology and Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tyler Matheny
- Department Biochemistry and Molecular Genetics, School of Medicine, RNA Bioscience Initiative, University of Colorado, PO Box 6511, Aurora, CO, USA
| | - Jay Hesselberth
- Department Biochemistry and Molecular Genetics, School of Medicine, RNA Bioscience Initiative, University of Colorado, PO Box 6511, Aurora, CO, USA
| | - Scott Demarest
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|