801
|
Costa DK, Huckestein BR, Edmunds LR, Petersen MC, Nasiri A, Butrico GM, Abulizi A, Harmon DB, Lu C, Mantell BS, Hartman DJ, Camporez JPG, O'Doherty RM, Cline GW, Shulman GI, Jurczak MJ. Reduced intestinal lipid absorption and body weight-independent improvements in insulin sensitivity in high-fat diet-fed Park2 knockout mice. Am J Physiol Endocrinol Metab 2016; 311:E105-16. [PMID: 27166280 PMCID: PMC4967148 DOI: 10.1152/ajpendo.00042.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/06/2016] [Indexed: 12/21/2022]
Abstract
Mitochondrial dysfunction is associated with many human diseases and results from mismatch of damage and repair over the life of the organelle. PARK2 is a ubiquitin E3 ligase that regulates mitophagy, a repair mechanism that selectively degrades damaged mitochondria. Deletion of PARK2 in multiple in vivo models results in susceptibility to stress-induced mitochondrial and cellular dysfunction. Surprisingly, Park2 knockout (KO) mice are protected from nutritional stress and do not develop obesity, hepatic steatosis or insulin resistance when fed a high-fat diet (HFD). However, these phenomena are casually related and the physiological basis for this phenotype is unknown. We therefore undertook a series of acute HFD studies to more completely understand the physiology of Park2 KO during nutritional stress. We find that intestinal lipid absorption is impaired in Park2 KO mice as evidenced by increased fecal lipids and reduced plasma triglycerides after intragastric fat challenge. Park2 KO mice developed hepatic steatosis in response to intravenous lipid infusion as well as during incubation of primary hepatocytes with fatty acids, suggesting that hepatic protection from nutritional stress was secondary to changes in energy balance due to altered intestinal triglyceride absorption. Park2 KO mice showed reduced adiposity after 1-wk HFD, as well as improved hepatic and peripheral insulin sensitivity. These studies suggest that changes in intestinal lipid absorption may play a primary role in protection from nutritional stress in Park2 KO mice by preventing HFD-induced weight gain and highlight the need for tissue-specific models to address the role of PARK2 during metabolic stress.
Collapse
Affiliation(s)
- Diana K Costa
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Brydie R Huckestein
- Department of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lia R Edmunds
- Department of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Max C Petersen
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Ali Nasiri
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gina M Butrico
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Abudukadier Abulizi
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Daniel B Harmon
- Department of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Canying Lu
- Department of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Benjamin S Mantell
- Department of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Douglas J Hartman
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Robert M O'Doherty
- Department of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Center for Metabolic and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gary W Cline
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Gerald I Shulman
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; The Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut; and
| | - Michael J Jurczak
- Department of Endocrinology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Center for Metabolic and Mitochondrial Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
802
|
Riley JS, Tait SW. Mechanisms of mitophagy: putting the powerhouse into the doghouse. Biol Chem 2016; 397:617-35. [DOI: 10.1515/hsz-2016-0137] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
Abstract
Since entering our cells in an endosymbiotic event one billion years ago, mitochondria have shaped roles for themselves in metabolism, inflammation, calcium storage, migration, and cell death. Given this critical role in cellular homeostasis it is essential that they function correctly. Equally critical is the ability of a cell to remove damaged or superfluous mitochondria to avoid potential deleterious effects. In this review we will discuss the various mechanisms of mitochondrial clearance, with a particular focus on Parkin/PINK1-mediated mitophagy, discuss the impact of altered mitophagy in ageing and disease, and finally consider potential therapeutic benefits of targeting mitophagy.
Collapse
|
803
|
Buhlman LM. Parkin loss-of-function pathology: Premature neuronal senescence induced by high levels of reactive oxygen species? Mech Ageing Dev 2016; 161:112-120. [PMID: 27374431 DOI: 10.1016/j.mad.2016.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 12/18/2022]
Abstract
Parkinson's and Alzheimer's diseases (PD and AD, respectively) are considered to be diseases of advanced brain ageing, which seems to involve high levels of reactive oxygen species (ROS). AD neurodegeneration is initially apparent in the hippocampus; as AD progresses, many more brain regions are affected. PD-associated neurodegeneration is relatively limited to dopaminergic neurons of the substantia nigra pars compacta (SNpc), especially in cases in which patients inherit particular disease-causing mutations. Thus, the task of elucidating mechanisms by which loss of function of one particular protein triggers death of a subset of neurons may be more approachable. Understanding the mechanisms of neurodegeneration in these forms of PD may not only shed light on avenues leading toward therapeutic strategies in PD and other neurodegenerative diseases, but also on those leading toward understanding natural ageing. Neurodegeneration in PD patients harboring homozygous loss-of-function mutations in the PARK2 gene may result from unbalanced levels of ROS, which are mostly produced in mitochondria and can irreparably damage macromolecules and trigger apoptosis. This review discusses mitochondrial sources of ROS, how ROS can trigger apoptosis, mechanisms by which Parkin loss-of-function may cause neurodegeneration by increasing ROS levels, and concludes with hypotheses regarding selective SNpc dopaminergic neuron vulnerability.
Collapse
Affiliation(s)
- Lori M Buhlman
- Midwestern University, 19555 N 59th Avenue, Glendale, AZ, 85308, USA.
| |
Collapse
|
804
|
Meissner C, Lorenz H, Hehn B, Lemberg MK. Intramembrane protease PARL defines a negative regulator of PINK1- and PARK2/Parkin-dependent mitophagy. Autophagy 2016; 11:1484-98. [PMID: 26101826 DOI: 10.1080/15548627.2015.1063763] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Mutations in PINK1 and PARK2/Parkin are a main risk factor for familial Parkinson disease. While the physiological mechanism of their activation is unclear, these proteins have been shown in tissue culture cells to serve as a key trigger for autophagy of depolarized mitochondria. Here we show that ablation of the mitochondrial rhomboid protease PARL leads to retrograde translocation of an intermembrane space-bridging PINK1 import intermediate. Subsequently, it is rerouted to the outer membrane in order to recruit PARK2, which phenocopies mitophagy induction by uncoupling agents. Consistent with a role of this retrograde translocation mechanism in neurodegenerative disease, we show that pathogenic PINK1 mutants which are not cleaved by PARL affect PINK1 kinase activity and the ability to induce PARK2-mediated mitophagy. Altogether we suggest that PARL is an important intrinsic player in mitochondrial quality control, a system substantially impaired in Parkinson disease as indicated by reduced removal of damaged mitochondria in affected patients.
Collapse
Affiliation(s)
- Cathrin Meissner
- a Zentrum für Molekulare Biologie der Universität Heidelberg; DKFZ-ZMBH Allianz ; Heidelberg , Germany
| | - Holger Lorenz
- a Zentrum für Molekulare Biologie der Universität Heidelberg; DKFZ-ZMBH Allianz ; Heidelberg , Germany
| | - Beate Hehn
- a Zentrum für Molekulare Biologie der Universität Heidelberg; DKFZ-ZMBH Allianz ; Heidelberg , Germany
| | - Marius K Lemberg
- a Zentrum für Molekulare Biologie der Universität Heidelberg; DKFZ-ZMBH Allianz ; Heidelberg , Germany
| |
Collapse
|
805
|
Murphy E, Ardehali H, Balaban RS, DiLisa F, Dorn GW, Kitsis RN, Otsu K, Ping P, Rizzuto R, Sack MN, Wallace D, Youle RJ. Mitochondrial Function, Biology, and Role in Disease: A Scientific Statement From the American Heart Association. Circ Res 2016; 118:1960-91. [PMID: 27126807 PMCID: PMC6398603 DOI: 10.1161/res.0000000000000104] [Citation(s) in RCA: 321] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cardiovascular disease is a major leading cause of morbidity and mortality in the United States and elsewhere. Alterations in mitochondrial function are increasingly being recognized as a contributing factor in myocardial infarction and in patients presenting with cardiomyopathy. Recent understanding of the complex interaction of the mitochondria in regulating metabolism and cell death can provide novel insight and therapeutic targets. The purpose of this statement is to better define the potential role of mitochondria in the genesis of cardiovascular disease such as ischemia and heart failure. To accomplish this, we will define the key mitochondrial processes that play a role in cardiovascular disease that are potential targets for novel therapeutic interventions. This is an exciting time in mitochondrial research. The past decade has provided novel insight into the role of mitochondria function and their importance in complex diseases. This statement will define the key roles that mitochondria play in cardiovascular physiology and disease and provide insight into how mitochondrial defects can contribute to cardiovascular disease; it will also discuss potential biomarkers of mitochondrial disease and suggest potential novel therapeutic approaches.
Collapse
|
806
|
Walinda E, Morimoto D, Sugase K, Shirakawa M. Dual Function of Phosphoubiquitin in E3 Activation of Parkin. J Biol Chem 2016; 291:16879-91. [PMID: 27284007 DOI: 10.1074/jbc.m116.728600] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 11/06/2022] Open
Abstract
Mutations in the gene encoding parkin, an auto-inhibited E3 ubiquitin ligase that functions in the clearance of damaged mitochondria, are the most common cause of autosomal recessive juvenile Parkinsonism. The mechanism regulating parkin activation remains poorly understood. Here we show, by using isothermal titration calorimetry, solution NMR, and fluorescence spectroscopy, that parkin can bind ubiquitin and phosphomimetic ubiquitin by recognizing the canonical hydrophobic patch and C terminus of ubiquitin. The affinity of parkin for both phosphomimetic and unmodified ubiquitin is markedly enhanced upon removal of the ubiquitin-like (UBL) domain of parkin. This suggests that the agonistic binding of ubiquitin to parkin in trans is counterbalanced by the antagonistic activity of the parkin UBL domain in cis Intriguingly, UBL binding is enthalpy-driven, whereas ubiquitin binding is driven by an increase in the total entropy of the system. These thermodynamic differences are explained by different chemistry in the ubiquitin- and UBL-binding pockets of parkin and, as shown by molecular dynamics simulations, are not a consequence of changes in protein conformational entropy. Indeed, comparison of conformational fluctuations reveals that the RING1-IBR element becomes considerably more rigid upon complex formation. A model of parkin activation is proposed in which E2∼Ub binding triggers large scale diffusional motion of the RING2 domain toward the ubiquitin-stabilized RING1-IBR assembly to complete formation of the active parkin-E2∼Ub transfer complex. Thus, ubiquitin plays a dual role in parkin activation by competing with the inhibitory UBL domain and stabilizing the active form of parkin.
Collapse
Affiliation(s)
- Erik Walinda
- From the Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501 and
| | - Daichi Morimoto
- the Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Kenji Sugase
- the Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Masahiro Shirakawa
- the Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
807
|
Voigt A, Berlemann LA, Winklhofer KF. The mitochondrial kinase PINK1: functions beyond mitophagy. J Neurochem 2016; 139 Suppl 1:232-239. [PMID: 27251035 DOI: 10.1111/jnc.13655] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 04/05/2016] [Accepted: 04/22/2016] [Indexed: 11/29/2022]
Abstract
Mutations in the genes encoding the mitochondrial kinase PINK1 and the E3 ubiquitin ligase Parkin cause autosomal recessive Parkinson's disease (PD). Pioneering work in Drosophila melanogaster revealed that the loss of PINK1 or Parkin function causes similar phenotypes including dysfunctional mitochondria. Further research showed that PINK1 can act upstream of Parkin in a mitochondrial quality control pathway to induce removal of damaged mitochondria in a process called mitophagy. Albeit the PINK1/Parkin-induced mitophagy pathway is well established and has recently been elucidated in great detail, its pathophysiological relevance is being debated. Mounting evidence indicates that PINK1 has additional functions, for example, in regulating complex I activity and maintaining neuronal viability in response to stress. Here, we discuss mitophagy-dependent and -independent functions of PINK1 and their possible role in PD pathogenesis. Mutations in the PINK1 gene, encoding a mitochondrial kinase, are associated with autosomal recessive Parkinson's disease. In this review, we summarize and discuss the functional roles of PINK1 in maintaining mitochondrial integrity, eliminating damaged mitochondria, and promoting cell survival. This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Aaron Voigt
- Department of Neurology, University Hospital, RWTH Aachen University, Aachen, Germany.
| | - Lena A Berlemann
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany
| | - Konstanze F Winklhofer
- Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Germany.
| |
Collapse
|
808
|
Morimoto D, Shirakawa M. The evolving world of ubiquitin: transformed polyubiquitin chains. Biomol Concepts 2016; 7:157-67. [PMID: 27226101 DOI: 10.1515/bmc-2016-0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/15/2016] [Indexed: 12/22/2022] Open
Abstract
The regulation of diverse cellular events by proteins that have undergone post-translational modification with ubiquitin is well documented. Ubiquitin can be polymerized and eight types of polyubiquitin chain contribute to the complexity and specificity of the ubiquitin signal. Unexpectedly, recent studies have shown that ubiquitin itself undergoes post-translational modification by acetylation and phosphorylation; moreover, amyloid-like fibrils comprised of polyubiquitin chains have been discovered. Thus, ubiquitin is not only conjugated to substrate proteins, but also modified and transformed itself. Here, we review these novel forms of ubiquitin signal, with a focus on fibril formation of polyubiquitin chains and its underlying biological relevance.
Collapse
|
809
|
Devine MJ, Birsa N, Kittler JT. Miro sculpts mitochondrial dynamics in neuronal health and disease. Neurobiol Dis 2016; 90:27-34. [DOI: 10.1016/j.nbd.2015.12.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/17/2015] [Indexed: 01/18/2023] Open
|
810
|
Kruppa AJ, Kendrick-Jones J, Buss F. Myosins, Actin and Autophagy. Traffic 2016; 17:878-90. [PMID: 27146966 PMCID: PMC4957615 DOI: 10.1111/tra.12410] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 12/20/2022]
Abstract
Myosin motor proteins working together with the actin cytoskeleton drive a wide range of cellular processes. In this review, we focus on their roles in autophagy – the pathway the cell uses to ensure homeostasis by targeting pathogens, misfolded proteins and damaged organelles for degradation. The actin cytoskeleton regulated by a host of nucleating, anchoring and stabilizing proteins provides the filament network for the delivery of essential membrane vesicles from different cellular compartments to the autophagosome. Actin networks have also been implicated in structurally supporting the expanding phagophore, moving autophagosomes and enabling efficient fusion with the lysosome. Only a few myosins have so far been shown to play a role in autophagy. Non‐muscle myosin IIA functions in the early stages delivering membrane for the initial formation of the autophagosome, whereas myosin IC and myosin VI are involved in the final stages providing specific membranes for autophagosome maturation and its fusion with the lysosome.
Collapse
Affiliation(s)
- Antonina J Kruppa
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| | - John Kendrick-Jones
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
| |
Collapse
|
811
|
Dynamic recruitment and activation of ALS-associated TBK1 with its target optineurin are required for efficient mitophagy. Proc Natl Acad Sci U S A 2016; 113:E3349-58. [PMID: 27247382 DOI: 10.1073/pnas.1523810113] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondria play an essential role in maintaining cellular homeostasis. The removal of damaged or depolarized mitochondria occurs via mitophagy, in which damaged mitochondria are targeted for degradation via ubiquitination induced by PTEN-induced putative kinase 1 (PINK1) and Parkin. Mitophagy receptors, including optineurin (OPTN), nuclear dot 52 kDa protein (NDP52), and Tax1-binding protein 1 (TAX1BP1), are recruited to mitochondria via ubiquitin binding and mediate autophagic engulfment through their association with microtubule-associated protein light chain 3 (LC3). Here, we use live-cell imaging to demonstrate that OPTN, NDP52, and TAX1BP1 are recruited to mitochondria with similar kinetics following either mitochondrial depolarization or localized generation of reactive oxygen species, leading to sequestration by the autophagosome within ∼45 min after insult. Despite this corecruitment, we find that depletion of OPTN, but not NDP52, significantly slows the efficiency of sequestration. OPTN is phosphorylated by the kinase TANK-binding kinase 1 (TBK1) at serine 177; we find that TBK1 is corecruited with OPTN to depolarized mitochondria. Inhibition or depletion of TBK1, or expression of amyotrophic lateral sclerosis (ALS)-associated OPTN or TBK1 mutant blocks efficient autophagosome formation. Together, these results indicate that although there is some functional redundancy among mitophagy receptors, efficient sequestration of damaged mitochondria in response to mitochondrial stress requires both TBK1 and OPTN. Notably, ALS-linked mutations in OPTN and TBK1 can interfere with mitophagy, suggesting that inefficient turnover of damaged mitochondria may represent a key pathophysiological mechanism contributing to neurodegenerative disease.
Collapse
|
812
|
Liebl MP, Hoppe T. It's all about talking: two-way communication between proteasomal and lysosomal degradation pathways via ubiquitin. Am J Physiol Cell Physiol 2016; 311:C166-78. [PMID: 27225656 DOI: 10.1152/ajpcell.00074.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Selective degradation of proteins requires a fine-tuned coordination of the two major proteolytic pathways, the ubiquitin-proteasome system (UPS) and autophagy. Substrate selection and proteolytic activity are defined by a plethora of regulatory cofactors influencing each other. Both proteolytic pathways are initiated by ubiquitylation to mark substrate proteins for degradation, although the size and/or topology of the modification are different. In this context E3 ubiquitin ligases, ensuring the covalent attachment of activated ubiquitin to the substrate, are of special importance. The regulation of E3 ligase activity, competition between different E3 ligases for binding E2 conjugation enzymes and substrates, as well as their interplay with deubiquitylating enzymes (DUBs) represent key events in the cross talk between the UPS and autophagy. The coordination between both degradation routes is further influenced by heat shock factors and ubiquitin-binding proteins (UBPs) such as p97, p62, or optineurin. Mutations in enzymes and ubiquitin-binding proteins or a general decline of both proteolytic systems during aging result in accumulation of damaged and aggregated proteins. Thus further mechanistic understanding of how UPS and autophagy communicate might allow therapeutic intervention especially against age-related diseases.
Collapse
Affiliation(s)
- Martina P Liebl
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
813
|
Scott TL, Wicker CA, Suganya R, Dhar B, Pittman T, Horbinski C, Izumi T. Polyubiquitination of apurinic/apyrimidinic endonuclease 1 by Parkin. Mol Carcinog 2016; 56:325-336. [PMID: 27148961 DOI: 10.1002/mc.22495] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/26/2016] [Accepted: 04/13/2016] [Indexed: 01/20/2023]
Abstract
Apurinic/apyrimidinic endonuclease 1 (APE1) is an essential protein crucial for repair of oxidized DNA damage not only in genomic DNA but also in mitochondrial DNA. Parkin, a tumor suppressor and Parkinson's disease (PD) associated gene, is an E3 ubiquitin ligase crucial for mitophagy. Although DNA damage is known to induce mitochondrial stress, Parkin's role in regulating DNA repair proteins has not been elucidated. In this study, we examined the possibility of Parkin-dependent ubiquitination of APE1. Ectopically expressed APE1 was degraded by Parkin and PINK1 via polyubiquitination in mouse embryonic fibroblast cells. PD-causing mutations in Parkin and PINK1 abrogated APE1 ubiquitination. Interaction of APE1 with Parkin was observed by co-immunoprecipitation, proximity ligation assay, and co-localization in the cytoplasm. N-terminal deletion of 41 amino acid residues in APE1 significantly reduced the Parkin-dependent APE1 degradation. These results suggested that Parkin directly ubiquitinated N-terminal Lys residues in APE1 in the cytoplasm. Modulation of Parkin and PINK1 activities under mitochondrial or oxidative stress caused moderate but statistically significant decrease of endogenous APE1 in human cell lines including SH-SY5Y, HEK293, and A549 cells. Analyses of glioblastoma tissues showed an inverse relation between the expression levels of APE1 and Parkin. These results suggest that degradation of endogenous APE1 by Parkin occur when cells are stressed to activate Parkin, and imply a role of Parkin in maintaining the quality of APE1, and loss of Parkin may contribute to elevated APE1 levels in glioblastoma. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Timothy L Scott
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Christina A Wicker
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Rangaswamy Suganya
- Radiation Oncology, Houston Methodist Research Institute, Houston, Texas
| | - Bithika Dhar
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Thomas Pittman
- Department of Neurosurgery, University of Kentucky, Lexington, Kentucky
| | - Craig Horbinski
- Departments of Pathology and Neurosurgery, Northwestern University, Chicago, Illinois
| | - Tadahide Izumi
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
814
|
Montagna C, Rizza S, Maiani E, Piredda L, Filomeni G, Cecconi F. To eat, or NOt to eat: S-nitrosylation signaling in autophagy. FEBS J 2016; 283:3857-3869. [PMID: 27083138 DOI: 10.1111/febs.13736] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/14/2016] [Accepted: 04/08/2016] [Indexed: 12/15/2022]
Abstract
Autophagy is the main catabolic cellular process through which cells adapt their needs (e.g., growth and proliferation) to environmental availability of nutrients (e.g., amino acid and glucose) and growth factors. The rapid activation of the autophagy response essentially depends on protein post-translational modifications (PTMs), which act as molecular switches triggering signaling cascades. Deregulation of autophagy contributes to pathological conditions, such as cancer and neurodegeneration. Therefore, understanding how PTMs affect the occurrence of autophagy is of the highest importance for clinical applications. Besides phosphorylation and ubiquitylation, which represent the best known examples of PTMs, redox-based modifications are also emerging as contributing to the regulation of intracellular signaling. Of note, S-nitrosylation of cysteine residues is a redox PTM and is the principal mechanism of nitric oxide-based signaling. Results emerging in recent years suggest that NO has a role in modulating autophagy. However, the function of S-nitrosylation in autophagy regulation remains still unveiled. By this review, we describe the upstream events regulating autophagy activation focusing on recently published evidence implying a S-nitrosylation-dependent regulation.
Collapse
Affiliation(s)
| | | | | | - Lucia Piredda
- Department of Biology, University of Rome Tor Vergata, Italy
| | - Giuseppe Filomeni
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biology, University of Rome Tor Vergata, Italy
| | - Francesco Cecconi
- Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Biology, University of Rome Tor Vergata, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
815
|
George S, Aguirre JD, Spratt DE, Bi Y, Jeffery M, Shaw GS, O'Donoghue P. Generation of phospho-ubiquitin variants by orthogonal translation reveals codon skipping. FEBS Lett 2016; 590:1530-42. [DOI: 10.1002/1873-3468.12182] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 04/10/2016] [Accepted: 04/11/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Susanna George
- Department of Biochemistry; The University of Western Ontario; London Canada
| | - Jacob D. Aguirre
- Department of Biochemistry; The University of Western Ontario; London Canada
| | - Donald E. Spratt
- Department of Biochemistry; The University of Western Ontario; London Canada
| | - Yumin Bi
- Department of Biochemistry; The University of Western Ontario; London Canada
| | - Madeline Jeffery
- Department of Biochemistry; The University of Western Ontario; London Canada
| | - Gary S. Shaw
- Department of Biochemistry; The University of Western Ontario; London Canada
- Department of Chemistry; The University of Western Ontario; London Canada
| | - Patrick O'Donoghue
- Department of Biochemistry; The University of Western Ontario; London Canada
- Department of Chemistry; The University of Western Ontario; London Canada
| |
Collapse
|
816
|
Wu W, Lin C, Wu K, Jiang L, Wang X, Li W, Zhuang H, Zhang X, Chen H, Li S, Yang Y, Lu Y, Wang J, Zhu R, Zhang L, Sui S, Tan N, Zhao B, Zhang J, Li L, Feng D. FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions. EMBO J 2016; 35:1368-84. [PMID: 27145933 DOI: 10.15252/embj.201593102] [Citation(s) in RCA: 267] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 03/31/2016] [Indexed: 01/15/2023] Open
Abstract
In hypoxic cells, dysfunctional mitochondria are selectively removed by a specialized autophagic process called mitophagy. The ER-mitochondrial contact site (MAM) is essential for fission of mitochondria prior to engulfment, and the outer mitochondrial membrane protein FUNDC1 interacts with LC3 to recruit autophagosomes, but the mechanisms integrating these processes are poorly understood. Here, we describe a new pathway mediating mitochondrial fission and subsequent mitophagy under hypoxic conditions. FUNDC1 accumulates at the MAM by associating with the ER membrane protein calnexin. As mitophagy proceeds, FUNDC1/calnexin association attenuates and the exposed cytosolic loop of FUNDC1 interacts with DRP1 instead. DRP1 is thereby recruited to the MAM, and mitochondrial fission then occurs. Knockdown of FUNDC1, DRP1, or calnexin prevents fission and mitophagy under hypoxic conditions. Thus, FUNDC1 integrates mitochondrial fission and mitophagy at the interface of the MAM by working in concert with DRP1 and calnexin under hypoxic conditions in mammalian cells.
Collapse
Affiliation(s)
- Wenxian Wu
- Guangdong Key Laboratory of Age-related Cardiac-cerebral Vascular Disease, Department of Neurology, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Chunxia Lin
- Guangdong Key Laboratory of Age-related Cardiac-cerebral Vascular Disease, Department of Neurology, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Keng Wu
- Department of Cardiovasology, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lei Jiang
- Guangdong Key Laboratory of Age-related Cardiac-cerebral Vascular Disease, Department of Neurology, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China Guangdong General Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaojing Wang
- Guangdong Key Laboratory of Age-related Cardiac-cerebral Vascular Disease, Department of Neurology, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Li
- Guangdong Key Laboratory of Age-related Cardiac-cerebral Vascular Disease, Department of Neurology, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Haixia Zhuang
- Department of Anesthesiology, Guangdong Medical University, Zhanjiang, China
| | - Xingliang Zhang
- Department of Pediatrics, Guangdong Medical University, Zhanjiang, China
| | - Hao Chen
- Guangdong Key Laboratory of Age-related Cardiac-cerebral Vascular Disease, Department of Neurology, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Shupeng Li
- Guangdong Key Laboratory of Age-related Cardiac-cerebral Vascular Disease, Department of Neurology, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Yue Yang
- Department of Anesthesiology, Guangdong Medical University, Zhanjiang, China
| | - Yue Lu
- Department of Anesthesiology, Guangdong Medical University, Zhanjiang, China
| | - Jingjing Wang
- Department of Anesthesiology, Guangdong Medical University, Zhanjiang, China
| | - Runzhi Zhu
- Laboratory of Hepatobiliary Surgery, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Liangqing Zhang
- Department of Anesthesiology, Guangdong Medical University, Zhanjiang, China
| | - Senfang Sui
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Ning Tan
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-related Cardiac-cerebral Vascular Disease, Department of Neurology, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Jingjing Zhang
- Guangdong Key Laboratory of Age-related Cardiac-cerebral Vascular Disease, Department of Neurology, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| | - Longxuan Li
- Department of Neurology, Gongli Hospital, Pudong New Area, Shanghai, China
| | - Du Feng
- Guangdong Key Laboratory of Age-related Cardiac-cerebral Vascular Disease, Department of Neurology, Institute of Neurology, The Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China Department of Developmental Biology, Harvard School of Dental Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
817
|
Pao KC, Stanley M, Han C, Lai YC, Murphy P, Balk K, Wood NT, Corti O, Corvol JC, Muqit MM, Virdee S. Probes of ubiquitin E3 ligases enable systematic dissection of parkin activation. Nat Chem Biol 2016; 12:324-31. [PMID: 26928937 PMCID: PMC4909137 DOI: 10.1038/nchembio.2045] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/08/2016] [Indexed: 12/17/2022]
Abstract
E3 ligases represent an important class of enzymes, yet there are currently no chemical probes for profiling their activity. We develop a new class of activity-based probe by re-engineering a ubiquitin-charged E2 conjugating enzyme and demonstrate the utility of these probes by profiling the transthiolation activity of the RING-in-between-RING (RBR) E3 ligase parkin in vitro and in cellular extracts. Our study provides valuable insight into the roles, and cellular hierarchy, of distinct phosphorylation events in parkin activation. We also profile parkin mutations associated with patients with Parkinson's disease and demonstrate that they mediate their effect largely by altering transthiolation activity. Furthermore, our probes enable direct and quantitative measurement of endogenous parkin activity, revealing that endogenous parkin is activated in neuronal cell lines (≥75%) in response to mitochondrial depolarization. This new technology also holds promise as a novel biomarker of PINK1-parkin signaling, as demonstrated by its compatibility with samples derived from individuals with Parkinson's disease.
Collapse
Affiliation(s)
- Kuan-Chuan Pao
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK, DD1 5EH
| | - Mathew Stanley
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK, DD1 5EH
| | - Cong Han
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK, DD1 5EH
| | - Yu-Chiang Lai
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK, DD1 5EH
| | - Paul Murphy
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK, DD1 5EH
| | - Kristin Balk
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK, DD1 5EH
| | - Nicola T. Wood
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK, DD1 5EH
| | - Olga Corti
- Sorbonne Universités, UPMC Univ Paris 06; and INSERM UMRS_1127, CIC_1422; CNRS UMR_7225; AP-HP and ICM, Hôpital Pitié-Salpêtrière, Department of Neurology, F-75013, Paris, France
| | - Jean-Christophe Corvol
- Sorbonne Universités, UPMC Univ Paris 06; and INSERM UMRS_1127, CIC_1422; CNRS UMR_7225; AP-HP and ICM, Hôpital Pitié-Salpêtrière, Department of Neurology, F-75013, Paris, France
| | - Miratul M.K. Muqit
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK, DD1 5EH
- School of Medicine, University of Dundee, Dundee, Scotland, UK, DD1 9SY
| | - Satpal Virdee
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK, DD1 5EH
| |
Collapse
|
818
|
Broad W, Ling Q, Jarvis P. New Insights Into Roles of Ubiquitin Modification in Regulating Plastids and Other Endosymbiotic Organelles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 325:1-33. [PMID: 27241217 DOI: 10.1016/bs.ircmb.2016.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent findings have revealed important and diverse roles for the ubiquitin modification of proteins in the regulation of endosymbiotic organelles, which include the primary plastids of plants as well as complex plastids: the secondary endosymbiotic organelles of cryptophytes, alveolates, stramenopiles, and haptophytes. Ubiquitin modifications have a variety of potential consequences, both to the modified protein itself and to cellular regulation. The ubiquitin-proteasome system (UPS) can target individual proteins for selective degradation by the cytosolic 26S proteasome. Ubiquitin modifications can also signal the removal of whole endosymbiotic organelles, for example, via autophagy as has been well characterized in mitochondria. As plastids must import over 90% of their proteins from the cytosol, the observation that the UPS selectively targets the plastid protein import machinery is particularly significant. In this way, the UPS may influence the development and interconversions of different plastid types, as well as plastid responses to stress, by reconfiguring the organellar proteome. In complex plastids, the Symbiont-derived ERAD-Like Machinery (SELMA) has coopted the protein transport capabilities of the ER-Associated Degradation (ERAD) system, whereby misfolded proteins are retrotranslocated from ER for proteasomal degradation, uncoupling them from proteolysis: SELMA components have been retargeted to the second outermost plastid membrane to mediate protein import. In spite of this wealth of new information, there still remain a large number of unanswered questions and a need to define the roles of ubiquitin modification further in the regulation of plastids.
Collapse
Affiliation(s)
- W Broad
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - Q Ling
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom
| | - P Jarvis
- Department of Plant Sciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
819
|
Abstract
Autophagy is an essential homeostatic process for degrading cellular cargo. Aging organelles and protein aggregates are degraded by the autophagosome-lysosome pathway, which is particularly crucial in neurons. There is increasing evidence implicating defective autophagy in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease, Parkinson's disease and Huntington's disease. Recent work using live-cell imaging has identified autophagy as a predominantly polarized process in neuronal axons; autophagosomes preferentially form at the axon tip and undergo retrograde transport back towards the cell body. Autophagosomes engulf cargo including damaged mitochondria (mitophagy) and protein aggregates, and subsequently fuse with lysosomes during axonal transport to effectively degrade their internalized cargo. In this Cell Science at a Glance article and the accompanying poster, we review recent progress on the dynamics of the autophagy pathway in neurons and highlight the defects observed at each step of this pathway during neurodegeneration.
Collapse
Affiliation(s)
- Yvette C Wong
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104 USA
| |
Collapse
|
820
|
Pryde KR, Smith HL, Chau KY, Schapira AHV. PINK1 disables the anti-fission machinery to segregate damaged mitochondria for mitophagy. J Cell Biol 2016; 213:163-71. [PMID: 27091447 PMCID: PMC5084273 DOI: 10.1083/jcb.201509003] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 03/08/2016] [Indexed: 01/08/2023] Open
Abstract
In addition to recruiting Parkin/autophagy receptors to damaged mitochondria, the authors show that PINK1 triggers PKA displacement from AKAP1 after damage to trigger mitochondrial fission in a Parkin-independent manner, suggesting that PINK1 is a master mitophagy regulator. Mitochondrial fission is essential for the degradation of damaged mitochondria. It is currently unknown how the dynamin-related protein 1 (DRP1)–associated fission machinery is selectively targeted to segregate damaged mitochondria. We show that PTEN-induced putative kinase (PINK1) serves as a pro-fission signal, independently of Parkin. Normally, the scaffold protein AKAP1 recruits protein kinase A (PKA) to the outer mitochondrial membrane to phospho-inhibit DRP1. We reveal that after damage, PINK1 triggers PKA displacement from A-kinase anchoring protein 1. By ejecting PKA, PINK1 ensures the requisite fission of damaged mitochondria for organelle degradation. We propose that PINK1 functions as a master mitophagy regulator by activating Parkin and DRP1 in response to damage. We confirm that PINK1 mutations causing Parkinson disease interfere with the orchestration of selective fission and mitophagy by PINK1.
Collapse
Affiliation(s)
- Kenneth R Pryde
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London NW3 2PF, England, UK
| | - Heather L Smith
- Faculty of Brain Sciences, University College London, London W1T 7NF, England, UK
| | - Kai-Yin Chau
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London NW3 2PF, England, UK
| | - Anthony H V Schapira
- Department of Clinical Neurosciences, Institute of Neurology, University College London, London NW3 2PF, England, UK
| |
Collapse
|
821
|
Hernandez DG, Reed X, Singleton AB. Genetics in Parkinson disease: Mendelian versus non-Mendelian inheritance. J Neurochem 2016; 139 Suppl 1:59-74. [PMID: 27090875 DOI: 10.1111/jnc.13593] [Citation(s) in RCA: 320] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/25/2016] [Accepted: 02/09/2016] [Indexed: 12/12/2022]
Abstract
Parkinson's disease is a common, progressive neurodegenerative disorder, affecting 3% of those older than 75 years of age. Clinically, Parkinson's disease (PD) is associated with resting tremor, postural instability, rigidity, bradykinesia, and a good response to levodopa therapy. Over the last 15 years, numerous studies have confirmed that genetic factors contribute to the complex pathogenesis of PD. Highly penetrant mutations producing rare, monogenic forms of the disease have been discovered in singular genes such as SNCA, Parkin, DJ-1, PINK 1, LRRK2, and VPS35. Unique variants with incomplete penetrance in LRRK2 and GBA have been shown to be strong risk factors for PD in certain populations. Additionally, over 20 common variants with small effect sizes are now recognized to modulate the risk for PD. Investigating Mendelian forms of PD has provided precious insight into the pathophysiology that underlies the more common idiopathic form of disease; however, no treatment methodologies have developed. Furthermore, for identified common risk alleles, the functional basis underlying risk principally remains unknown. The challenge over the next decade will be to strengthen the findings delivered through genetic discovery by assessing the direct, biological consequences of risk variants in tandem with additional high-content, integrated datasets. This review discusses monogenic risk factors and mechanisms of Mendelian inheritance of Parkinson disease. Highly penetrant mutations in SNCA, Parkin, DJ-1, PINK 1, LRRK2 and VPS35 produce rare, monogenic forms of the disease, while unique variants within LRRK2 and GBA show incomplete penetrance and are strong risk factors for PD. Additionally, over 20 common variants with small effect sizes modulate disease risk. The challenge over the next decade is to strengthen genetic findings by assessing direct, biological consequences of risk variants in tandem with high-content, integrated datasets. This article is part of a special issue on Parkinson disease.
Collapse
Affiliation(s)
- Dena G Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA.,German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
| | - Xylena Reed
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, USA.
| |
Collapse
|
822
|
Abstract
Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation.
Collapse
Affiliation(s)
- Kirby N Swatek
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
823
|
Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc Natl Acad Sci U S A 2016; 113:4039-44. [PMID: 27035970 DOI: 10.1073/pnas.1523926113] [Citation(s) in RCA: 548] [Impact Index Per Article: 60.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Selective autophagy of damaged mitochondria requires autophagy receptors optineurin (OPTN), NDP52 (CALCOCO2), TAX1BP1, and p62 (SQSTM1) linking ubiquitinated cargo to autophagic membranes. By using quantitative proteomics, we show that Tank-binding kinase 1 (TBK1) phosphorylates all four receptors on several autophagy-relevant sites, including the ubiquitin- and LC3-binding domains of OPTN and p62/SQSTM1 as well as the SKICH domains of NDP52 and TAX1BP1. Constitutive interaction of TBK1 with OPTN and the ability of OPTN to bind to ubiquitin chains are essential for TBK1 recruitment and kinase activation on mitochondria. TBK1 in turn phosphorylates OPTN's UBAN domain at S473, thereby expanding the binding capacity of OPTN to diverse Ub chains. In combination with phosphorylation of S177 and S513, this posttranslational modification promotes recruitment and retention of OPTN/TBK1 on ubiquitinated, damaged mitochondria. Moreover, phosphorylation of OPTN on S473 enables binding to pS65 Ub chains and is also implicated in PINK1-driven and Parkin-independent mitophagy. Thus, TBK1-mediated phosphorylation of autophagy receptors creates a signal amplification loop operating in selective autophagy of damaged mitochondria.
Collapse
|
824
|
Maday S. Mechanisms of neuronal homeostasis: Autophagy in the axon. Brain Res 2016; 1649:143-150. [PMID: 27038755 DOI: 10.1016/j.brainres.2016.03.047] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/08/2016] [Accepted: 03/28/2016] [Indexed: 12/14/2022]
Abstract
Autophagy is an evolutionarily conserved lysosomal degradation pathway that removes damaged organelles and protein aggregates from the cytoplasm. Being post-mitotic, neurons are particularly vulnerable to the accumulation of proteotoxins and are thus heavily dependent on autophagy to maintain homeostasis. In fact, CNS-specific and neuron-specific loss of autophagy is sufficient to cause neurodegeneration in mice. Further, mutations in genes that encode PINK1 and Parkin, proteins that selectively remove damaged mitochondria, cause Parkinson's disease, linking defective autophagy with neurodegenerative disease in humans. This review provides an overview of the mechanisms of autophagy in the axon and the role of neuronal autophagy in axonal homeostasis and degeneration. The pathway for autophagosome biogenesis and maturation along the axon will be discussed as well as several key insights revealing the diverse functions of axonal autophagy. Evidence linking altered autophagy with axonal degeneration and neuronal death will be presented. Appropriate manipulation of autophagy may lead to promising therapeutics for neurodegenerative diseases. This article is part of a Special Issue entitled SI:Autophagy.
Collapse
Affiliation(s)
- Sandra Maday
- Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
825
|
Mitochondrial autophagy in cardiomyopathy. Curr Opin Genet Dev 2016; 38:8-15. [PMID: 27003723 DOI: 10.1016/j.gde.2016.02.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/11/2016] [Accepted: 02/21/2016] [Indexed: 12/17/2022]
Abstract
Cardiac mitochondria produce vast amounts of ATP through oxidative phosphorylation to maintain contractile function. They are also the primary source of reactive oxygen species, which contribute to mitochondrial dysfunction, cardiomyocyte death, and heart failure. To protect against mitochondrial damage, cardiomyocytes develop well-coordinated quality control mechanisms that maintain the overall mitochondrial health through mitochondrial biogenesis, mitochondrial dynamics, and mitochondrial autophagy (mitophagy). Mitophagy removes dysfunctional mitochondria in the heart not only under normal physiological conditions, but also in response to pathological stresses. Accumulating evidence suggests that mitophagy dysregulation can induce cardiomyocyte death and cardiomyopathy. In this review, we discuss what is currently known about mitophagic mechanisms, regulatory pathways, and function in the heart.
Collapse
|
826
|
Dorn GW. Central Parkin: The evolving role of Parkin in the heart. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:1307-1312. [PMID: 26992930 DOI: 10.1016/j.bbabio.2016.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/11/2016] [Accepted: 03/13/2016] [Indexed: 11/17/2022]
Abstract
Parkin is familiar to many because of its link to Parkinson's disease, and to others because of its well-characterized role as a central factor mediating selective mitophagy of damaged mitochondria for mitochondrial quality control. The genetic connection between Parkin and Parkinson's disease derives from clinical gene-association studies, whereas our mechanistic understanding of Parkin functioning in mitophagy is based almost entirely on work performed in cultured cells. Surprisingly, experimental evidence linking the disease and the presumed mechanism derives almost entirely from fruit flies; germline Parkin deficient mice do not develop Parkinson's disease phenotypes. Moreover, genetic manipulation of Parkin signaling in mouse hearts does not support a central role for Parkin in homeostatic mitochondrial quality control in this mitochondria-rich and -dependent organ. Here, I provide an overview of data suggesting that (in mouse hearts at least) Parkin functions more as a stress-induced and developmentally-programmed facilitator of cardiomyocyte mitochondrial turnover. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016.
Collapse
Affiliation(s)
- Gerald W Dorn
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
827
|
Paul P, Münz C. Autophagy and Mammalian Viruses: Roles in Immune Response, Viral Replication, and Beyond. Adv Virus Res 2016; 95:149-95. [PMID: 27112282 DOI: 10.1016/bs.aivir.2016.02.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Autophagy is an important cellular catabolic process conserved from yeast to man. Double-membrane vesicles deliver their cargo to the lysosome for degradation. Hence, autophagy is one of the key mechanisms mammalian cells deploy to rid themselves of intracellular pathogens including viruses. However, autophagy serves many more functions during viral infection. First, it regulates the immune response through selective degradation of immune components, thus preventing possibly harmful overactivation and inflammation. Additionally, it delivers virus-derived antigens to antigen-loading compartments for presentation to T lymphocytes. Second, it might take an active part in the viral life cycle by, eg, facilitating its release from cells. Lastly, in the constant arms race between host and virus, autophagy is often hijacked by viruses and manipulated to their own advantage. In this review, we will highlight key steps during viral infection in which autophagy plays a role. We have selected some exemplary viruses and will describe the molecular mechanisms behind their intricate relationship with the autophagic machinery, a result of host-pathogen coevolution.
Collapse
Affiliation(s)
- P Paul
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - C Münz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
828
|
Mancias JD, Kimmelman AC. Mechanisms of Selective Autophagy in Normal Physiology and Cancer. J Mol Biol 2016; 428:1659-80. [PMID: 26953261 DOI: 10.1016/j.jmb.2016.02.027] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 01/04/2023]
Abstract
Selective autophagy is critical for regulating cellular homeostasis by mediating lysosomal turnover of a wide variety of substrates including proteins, aggregates, organelles, and pathogens via a growing class of molecules termed selective autophagy receptors. The molecular mechanisms of selective autophagy receptor action and regulation are complex. Selective autophagy receptors link their bound cargo to the autophagosomal membrane by interacting with lipidated ATG8 proteins (LC3/GABARAP) that are intimately associated with the autophagosome membrane. The cargo signals that selective autophagy receptors recognize are diverse but their recognition can be broadly grouped into two classes, ubiquitin-dependent cargo recognition versus ubiquitin-independent. The roles of post-translational modification of selective autophagy receptors in regulating these pathways in response to stimuli are an active area of research. Here we will review recent advances in the identification of selective autophagy receptors and their regulatory mechanisms. Given its importance in maintaining cellular homeostasis, disruption of autophagy can lead to disease including neurodegeneration and cancer. The role of autophagy in cancer is complex as autophagy can mediate promotion or inhibition of tumorigenesis. Here we will also review the importance of autophagy in cancer with a specific focus on the role of selective autophagy receptors.
Collapse
Affiliation(s)
- Joseph D Mancias
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Alec C Kimmelman
- Division of Genomic Stability and DNA Repair, Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
829
|
Clearance of Damaged Mitochondria Through PINK1 Stabilization by JNK and ERK MAPK Signaling in Chlorpyrifos-Treated Neuroblastoma Cells. Mol Neurobiol 2016; 54:1844-1857. [PMID: 26892626 DOI: 10.1007/s12035-016-9753-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/26/2016] [Indexed: 12/30/2022]
Abstract
Mitochondrial quality control and clearance of damaged mitochondria through mitophagy are important cellular activities. Studies have shown that PTEN-induced putative protein kinase 1 (PINK1) and Parkin play central roles in triggering mitophagy; however, little is known regarding the mechanism by which PINK1 modulates mitophagy in response to reactive oxygen species (ROS)-induced stress. In this study, chlorpyrifos (CPF)-induced ROS caused mitochondrial damage and subsequent engulfing of mitochondria in double-membrane autophagic vesicles, indicating that clearance of damaged mitochondria is due to mitophagy. CPF treatment resulted in PINK1 stabilization on the outer mitochondrial membrane and subsequently increased Parkin recruitment from the cytosol to the abnormal mitochondria. We found that PINK1 physically interacts with Parkin in the mitochondria of CPF-treated cells. Furthermore, a knockdown of PINK1 strongly inhibited the LC3-II protein level by blocking Parkin recruitment. This indicates that CPF-induced mitophagy is due to PINK1 stabilization in mitochondria. We observed that PINK1 stabilization was selectively regulated by ROS-mediated c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling activation but not p38 signaling. In the mitochondria of CPF-exposed cells, pretreatment with specific inhibitors of JNK and ERK1/2 significantly decreased PINK1 stabilization and Parkin recruitment and blocked the LC3-II protein level. Specifically, JNK and ERK1/2 inhibition also dramatically blocked the interaction between PINK1 and Parkin. Our results demonstrated that PINK1 regulation plays a critical role in CPF-induced mitophagy. The simple interpretation of these results is that JNK and ERK1/2 signaling regulates PINK1/Parkin-dependent mitophagy in the mitochondria of CPF-treated cells. Overall, this study proposes a novel molecular regulatory mechanism of PINK1 stabilization under CPF exposure.
Collapse
|
830
|
Abstract
Ubiquitin plays an essential role in modulating protein functions, and deregulation of the ubiquitin system leads to the development of multiple human diseases. Owing to its molecular features, ubiquitin can form various homo- and heterotypic polymers on substrate proteins, thereby provoking distinct cellular responses. The concept of multifaceted ubiquitin chains encoding different functions has been substantiated in recent years. It has been established that all possible ubiquitin linkage types are utilized for chain assembly and propagation of specific signals in vivo. In addition, branched ubiquitin chains and phosphorylated ubiquitin molecules have been put under the spotlight recently. The development of novel technologies has provided detailed insights into the structure and function of previously poorly understood ubiquitin signals. In this Cell Science at a Glance article and accompanying poster, we provide an update on the complexity of ubiquitin chains and their physiological relevance.
Collapse
Affiliation(s)
- Masato Akutsu
- Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Max-von Laue-Str. 15, Frankfurt 60438, Germany
| | - Ivan Dikic
- Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Max-von Laue-Str. 15, Frankfurt 60438, Germany
| | - Anja Bremm
- Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Max-von Laue-Str. 15, Frankfurt 60438, Germany
| |
Collapse
|
831
|
Abstract
A majority of proteins in the cell can be modified by ubiquitination, thereby altering their function or stability. This ubiquitination is controlled by both ubiquitinating and deubiquitinating enzymes (DUBs). The number of ubiquitin ligases exceeds that of DUBs by about eightfold, indicating that DUBs may have much broader substrate specificity. Despite this, DUBs have been shown to have quite specific physiological functions. This functional specificity is likely due to very precise regulation of activity arising from the sophisticated use of all mechanisms of enzyme regulation. In this commentary, we briefly review key features of DUBs with more emphasis on regulation. In particular, we focus on localization of the enzymes as a critical regulatory mechanism which when integrated with control of expression, substrate activation, allosteric regulation, and post-translational modifications results in precise spatial and temporal deubiquitination of proteins and therefore specific physiological functions. Identification of compounds that target the structural elements in DUBs that dictate localization may be a more promising approach to development of drugs with specificity of action than targeting the enzymatic activity, which for most DUBs is dependent on a thiol group that can react non-specifically with many compounds in large-scale screening.
Collapse
Affiliation(s)
- Erin S Coyne
- Polypeptide Laboratory, Departments of Medicine and Biochemistry, McGill University, McGill University Health Centre Research Institute, Montreal, QC, Canada
| | - Simon S Wing
- Polypeptide Laboratory, Departments of Medicine and Biochemistry, McGill University, McGill University Health Centre Research Institute, Montreal, QC, Canada
| |
Collapse
|
832
|
Yamano K, Matsuda N, Tanaka K. The ubiquitin signal and autophagy: an orchestrated dance leading to mitochondrial degradation. EMBO Rep 2016; 17:300-16. [PMID: 26882551 DOI: 10.15252/embr.201541486] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/05/2016] [Indexed: 12/21/2022] Open
Abstract
The quality of mitochondria, essential organelles that produce ATP and regulate numerous metabolic pathways, must be strictly monitored to maintain cell homeostasis. The loss of mitochondrial quality control systems is acknowledged as a determinant for many types of neurodegenerative diseases including Parkinson's disease (PD). The two gene products mutated in the autosomal recessive forms of familial early-onset PD, Parkin and PINK1, have been identified as essential proteins in the clearance of damaged mitochondria via an autophagic pathway termed mitophagy. Recently, significant progress has been made in understanding how the mitochondrial serine/threonine kinase PINK1 and the E3 ligase Parkin work together through a novel stepwise cascade to identify and eliminate damaged mitochondria, a process that relies on the orchestrated crosstalk between ubiquitin/phosphorylation signaling and autophagy. In this review, we highlight our current understanding of the detailed molecular mechanisms governing Parkin-/PINK1-mediated mitophagy and the evidences connecting Parkin/PINK1 function and mitochondrial clearance in neurons.
Collapse
Affiliation(s)
- Koji Yamano
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
833
|
Matsuda N. Phospho-ubiquitin: upending the PINK-Parkin-ubiquitin cascade. J Biochem 2016; 159:379-85. [PMID: 26839319 DOI: 10.1093/jb/mvv125] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/09/2015] [Indexed: 11/12/2022] Open
Abstract
Mitochondria with decreased membrane potential are characterized by defects in protein import into the matrix and impairments in high-efficiency synthesis of ATP. These low-quality mitochondria are marked with ubiquitin for selective degradation. Key factors in this mechanism are PTEN-induced putative kinase 1 (PINK1, a mitochondrial kinase) and Parkin (a ubiquitin ligase), disruption of which has been implicated in predisposition to Parkinson's disease. Previously, the clearance of damaged mitochondria had been thought to be the end result of a simple cascading reaction of PINK1-Parkin-ubiquitin. However, in the past year, several research groups including ours unexpectedly revealed that Parkin regulation is mediated by PINK1-dependent phosphorylation of ubiquitin. These results overturned the simple hierarchy that posited PINK1 and ubiquitin as the upstream and downstream factors of Parkin, respectively. Although ubiquitylation is well-known as a post-translational modification, it has recently become clear that ubiquitin itself can be modified, and that this modification unexpectedly converts ubiquitin to a factor that functions in retrograde signalling.
Collapse
Affiliation(s)
- Noriyuki Matsuda
- Ubiquitin Project, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| |
Collapse
|
834
|
Hamacher-Brady A, Brady NR. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol Life Sci 2016; 73:775-95. [PMID: 26611876 PMCID: PMC4735260 DOI: 10.1007/s00018-015-2087-8] [Citation(s) in RCA: 302] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 02/07/2023]
Abstract
Mitochondria are an essential source of ATP for cellular function, but when damaged, mitochondria generate a plethora of stress signals, which lead to cellular dysfunction and eventually programmed cell death. Thus, a major component of maintaining cellular homeostasis is the recognition and removal of dysfunctional mitochondria through autophagy-mediated degradation, i.e., mitophagy. Mitophagy further constitutes a developmental program, and undergoes a high degree of crosstalk with apoptosis. Reduced mitochondrial quality control is linked to disease pathogenesis, suggesting the importance of process elucidation as a clinical target. Recent work has revealed multiple mitophagy programs that operate independently or undergo crosstalk, and require modulated autophagy receptor activities at outer membranes of mitochondria. Here, we review these mitophagy programs, focusing on pathway mechanisms which recognize and target mitochondria for sequestration by autophagosomes, as well as mechanisms controlling pathway activities. Furthermore, we provide an introduction to the currently available methods for detecting mitophagy.
Collapse
Affiliation(s)
- Anne Hamacher-Brady
- Lysosomal Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Bioquant, University of Heidelberg, INF 267, BQ0045, 69120, Heidelberg, Germany.
| | - Nathan Ryan Brady
- Systems Biology of Cell Death Mechanisms, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Department of Surgery, Heidelberg University Hospital, Heidelberg, Germany.
- Bioquant, University of Heidelberg, INF 267, BQ0045, 69120, Heidelberg, Germany.
| |
Collapse
|
835
|
Neill T, Schaefer L, Iozzo RV. Decorin as a multivalent therapeutic agent against cancer. Adv Drug Deliv Rev 2016; 97:174-85. [PMID: 26522384 DOI: 10.1016/j.addr.2015.10.016] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/20/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022]
Abstract
Decorin is a prototypical small leucine-rich proteoglycan that epitomizes the multifunctional nature of this critical gene family. Soluble decorin engages multiple receptor tyrosine kinases within the target-rich environment of the tumor stroma and tumor parenchyma. Upon receptor binding, decorin initiates signaling pathways within endothelial cells downstream of VEGFR2 that ultimately culminate in a Peg3/Beclin 1/LC3-dependent autophagic program. Concomitant with autophagic induction, decorin blunts capillary morphogenesis and endothelial cell migration, thereby significantly compromising tumor angiogenesis. In parallel within the tumor proper, decorin binds multiple RTKs with high affinity, including Met, for a multitude of oncosuppressive functions including growth inhibition, tumor cell mitophagy, and angiostasis. Decorin is also pro-inflammatory by modulating macrophage function and cytokine secretion. Decorin suppresses tumorigenic growth, angiogenesis, and prevents metastatic lesions in a variety of in vitro and in vivo tumor models. Therefore, decorin would be an ideal therapeutic candidate for combating solid malignancies.
Collapse
|
836
|
Knuppertz L, Osiewacz HD. Orchestrating the network of molecular pathways affecting aging: Role of nonselective autophagy and mitophagy. Mech Ageing Dev 2016; 153:30-40. [PMID: 26814678 DOI: 10.1016/j.mad.2016.01.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/08/2016] [Accepted: 01/20/2016] [Indexed: 12/28/2022]
Abstract
Autophagy is best known as a mechanism involved in cellular recycling of biomolecules during periods of nutritional starvation. More recently, an additional function of autophagy emerged: the selective degradation of functionally impaired or surplus proteins, organelles and invading bacteria. With this function autophagy is integrated in a network of pathways involved in molecular and cellular quality control with a key impact on development and aging. Impairments in the autophagic machinery lead to accelerated aging and the development of diseases. Here we focus on the role of nonselective autophagy and mitophagy, the selective autophagic degradation of mitochondria, on aging and lifespan of biological systems.
Collapse
Affiliation(s)
- Laura Knuppertz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, J. W. Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Heinz D Osiewacz
- Institute of Molecular Biosciences and Cluster of Excellence Frankfurt Macromolecular Complexes, Department of Biosciences, J. W. Goethe University, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
837
|
In Vitro Comparison of the Activity Requirements and Substrate Specificity of Human and Triboleum castaneum PINK1 Orthologues. PLoS One 2016; 11:e0146083. [PMID: 26784449 PMCID: PMC4718624 DOI: 10.1371/journal.pone.0146083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/11/2015] [Indexed: 11/19/2022] Open
Abstract
Mutations in the gene encoding the mitochondrial kinase PINK1 cause early-onset familial Parkinson's disease. To understand the biological function of PINK1 and its role in the pathogenesis of Parkinson's disease, it is useful to study its kinase activity towards substrates both in vivo and in vitro. For in vitro kinase assays, a purified Triboleum castaneum PINK1 insect orthologue is often employed, because it displays higher levels of activity when compared to human PINK1. We show, however, that the activity requirements, and more importantly the substrate specificity, differ between both orthologues. While Triboleum castaneum PINK1 readily phosphorylates the PINKtide peptide and Histone H1 in vitro, neither of these non-physiological substrates is phosphorylated by human PINK1. Nonetheless, both Tc and human PINK1 phosphorylate Parkin and Ubiquitin, two physiological substrates of PINK1. Our results show that the substrate selectivity differs among PINK1 orthologues, an important consideration that should be taken into account when extrapolating findings back to human PINK1.
Collapse
|
838
|
Bondi H, Zilocchi M, Mare MG, D'Agostino G, Giovannardi S, Ambrosio S, Fasano M, Alberio T. Dopamine induces mitochondrial depolarization without activating PINK1-mediated mitophagy. J Neurochem 2016; 136:1219-1231. [DOI: 10.1111/jnc.13506] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/19/2015] [Accepted: 12/08/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Heather Bondi
- Division of Biomedical Research; Department of Theoretical and Applied Sciences; University of Insubria; Busto Arsizio Italy
- Center of Neuroscience; University of Insubria; Busto Arsizio Italy
| | - Mara Zilocchi
- Division of Biomedical Research; Department of Theoretical and Applied Sciences; University of Insubria; Busto Arsizio Italy
- Center of Neuroscience; University of Insubria; Busto Arsizio Italy
| | - Maria Gabriella Mare
- Division of Biomedical Research; Department of Theoretical and Applied Sciences; University of Insubria; Busto Arsizio Italy
| | - Gianluca D'Agostino
- Division of Biomedical Research; Department of Theoretical and Applied Sciences; University of Insubria; Busto Arsizio Italy
- Biochemistry Unit; Second Department of Physiological Sciences; University of Barcelona; Barcelona Spain
| | - Stefano Giovannardi
- Division of Biomedical Research; Department of Theoretical and Applied Sciences; University of Insubria; Busto Arsizio Italy
| | - Santiago Ambrosio
- Biochemistry Unit; Second Department of Physiological Sciences; University of Barcelona; Barcelona Spain
| | - Mauro Fasano
- Division of Biomedical Research; Department of Theoretical and Applied Sciences; University of Insubria; Busto Arsizio Italy
- Center of Neuroscience; University of Insubria; Busto Arsizio Italy
| | - Tiziana Alberio
- Division of Biomedical Research; Department of Theoretical and Applied Sciences; University of Insubria; Busto Arsizio Italy
- Center of Neuroscience; University of Insubria; Busto Arsizio Italy
| |
Collapse
|
839
|
Zhang CW, Hang L, Yao TP, Lim KL. Parkin Regulation and Neurodegenerative Disorders. Front Aging Neurosci 2016; 7:248. [PMID: 26793099 PMCID: PMC4709595 DOI: 10.3389/fnagi.2015.00248] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022] Open
Abstract
Parkin is a unique, multifunctional ubiquitin ligase whose various roles in the cell, particularly in neurons, are widely thought to be protective. The pivotal role that Parkin plays in maintaining neuronal survival is underscored by our current recognition that Parkin dysfunction represents not only a predominant cause of familial parkinsonism but also a formal risk factor for the more common, sporadic form of Parkinson’s disease (PD). Accordingly, keen research on Parkin over the past decade has led to an explosion of knowledge regarding its physiological roles and its relevance to PD. However, our understanding of Parkin is far from being complete. Indeed, surprises emerge from time to time that compel us to constantly update the paradigm of Parkin function. For example, we now know that Parkin’s function is not confined to mere housekeeping protein quality control (QC) roles but also includes mitochondrial homeostasis and stress-related signaling. Furthermore, emerging evidence also suggest a role for Parkin in several other major neurodegenerative diseases including Alzheimer’s disease (AD) and Amyotrophic Lateral Sclerosis (ALS). Yet, it remains truly amazing to note that a single enzyme could serve such multitude of functions and cellular roles. Clearly, its activity has to be tightly regulated. In this review, we shall discuss this and how dysregulated Parkin function may precipitate neuronal demise in various neurodegenerative disorders.
Collapse
Affiliation(s)
- Cheng-Wu Zhang
- Neurodegeneration Research Laboratory, National Neuroscience InstituteSingapore, Singapore; Institute of Advanced Materials, Nanjing Tech UniversityNanjing, People's Republic of China
| | - Liting Hang
- Department of Physiology, National University of Singapore Singapore, Singapore
| | - Tso-Pang Yao
- Departments of Pharmacology and Cancer Biology, Duke University Medical Center Durham, NC, USA
| | - Kah-Leong Lim
- Neurodegeneration Research Laboratory, National Neuroscience InstituteSingapore, Singapore; Institute of Advanced Materials, Nanjing Tech UniversityNanjing, People's Republic of China; Department of Physiology, National University of SingaporeSingapore, Singapore; Duke-NUS Graduate Medical School, National University of SingaporeSingapore, Singapore
| |
Collapse
|
840
|
Romanello V, Sandri M. Mitochondrial Quality Control and Muscle Mass Maintenance. Front Physiol 2016; 6:422. [PMID: 26793123 PMCID: PMC4709858 DOI: 10.3389/fphys.2015.00422] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 12/22/2015] [Indexed: 12/24/2022] Open
Abstract
Loss of muscle mass and force occurs in many diseases such as disuse/inactivity, diabetes, cancer, renal, and cardiac failure and in aging-sarcopenia. In these catabolic conditions the mitochondrial content, morphology and function are greatly affected. The changes of mitochondrial network influence the production of reactive oxygen species (ROS) that play an important role in muscle function. Moreover, dysfunctional mitochondria trigger catabolic signaling pathways which feed-forward to the nucleus to promote the activation of muscle atrophy. Exercise, on the other hand, improves mitochondrial function by activating mitochondrial biogenesis and mitophagy, possibly playing an important part in the beneficial effects of physical activity in several diseases. Optimized mitochondrial function is strictly maintained by the coordinated activation of different mitochondrial quality control pathways. In this review we outline the current knowledge linking mitochondria-dependent signaling pathways to muscle homeostasis in aging and disease and the resulting implications for the development of novel therapeutic approaches to prevent muscle loss.
Collapse
Affiliation(s)
| | - Marco Sandri
- Venetian Institute of Molecular MedicinePadova, Italy; Department of Biomedical Science, University of PadovaPadova, Italy; Institute of Neuroscience, Consiglio Nazionale delle RicerchePadova, Italy; Department of Medicine, McGill UniversityMontreal, QC, Canada
| |
Collapse
|
841
|
Song P, Li S, Wu H, Gao R, Rao G, Wang D, Chen Z, Ma B, Wang H, Sui N, Deng H, Zhang Z, Tang T, Tan Z, Han Z, Lu T, Zhu Y, Chen Q. Parkin promotes proteasomal degradation of p62: implication of selective vulnerability of neuronal cells in the pathogenesis of Parkinson's disease. Protein Cell 2016; 7:114-29. [PMID: 26746706 PMCID: PMC4742389 DOI: 10.1007/s13238-015-0230-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 10/31/2015] [Indexed: 12/14/2022] Open
Abstract
Mutations or inactivation of parkin, an E3 ubiquitin ligase, are associated with familial form or sporadic Parkinson’s disease (PD), respectively, which manifested with the selective vulnerability of neuronal cells in substantia nigra (SN) and striatum (STR) regions. However, the underlying molecular mechanism linking parkin with the etiology of PD remains elusive. Here we report that p62, a critical regulator for protein quality control, inclusion body formation, selective autophagy and diverse signaling pathways, is a new substrate of parkin. P62 levels were increased in the SN and STR regions, but not in other brain regions in parkin knockout mice. Parkin directly interacts with and ubiquitinates p62 at the K13 to promote proteasomal degradation of p62 even in the absence of ATG5. Pathogenic mutations, knockdown of parkin or mutation of p62 at K13 prevented the degradation of p62. We further showed that parkin deficiency mice have pronounced loss of tyrosine hydroxylase positive neurons and have worse performance in motor test when treated with 6-hydroxydopamine hydrochloride in aged mice. These results suggest that, in addition to their critical role in regulating autophagy, p62 are subjected to parkin mediated proteasomal degradation and implicate that the dysregulation of parkin/p62 axis may involve in the selective vulnerability of neuronal cells during the onset of PD pathogenesis.
Collapse
Affiliation(s)
- Pingping Song
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shanshan Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hao Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ruize Gao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Guanhua Rao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Dongmei Wang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ziheng Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Hongxia Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Nan Sui
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haiteng Deng
- College of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhuohua Zhang
- State Key Laboratory of Medical Genetics, Xiangya Medical School, Central South University, Changsha, 410078, China
| | - Tieshan Tang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zheng Tan
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zehan Han
- Department of Health and Sports Science, Tianjin University of Sport, Tianjin, 300381, China
| | - Tieyuan Lu
- Department of Health and Sports Science, Tianjin University of Sport, Tianjin, 300381, China.
| | - Yushan Zhu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Quan Chen
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China. .,State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
842
|
Chin LS, Li L. Ubiquitin phosphorylation in Parkinson's disease: Implications for pathogenesis and treatment. Transl Neurodegener 2016; 5:1. [PMID: 26740872 PMCID: PMC4702311 DOI: 10.1186/s40035-015-0049-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, characterized primarily by the loss of dopaminergic neurons in substantia nigra. The pathogenic mechanisms of PD remain unclear, and no effective therapy currently exists to stop neurodegeneration in this debilitating disease. The identification of mutations in mitochondrial serine/threonine kinase PINK1 or E3 ubiquitin-protein ligase parkin as the cause of autosomal recessive PD opens up new avenues for uncovering neuroprotective pathways and PD pathogenic mechanisms. Recent studies reveal that PINK1 translocates to the outer mitochondrial membrane in response to mitochondrial depolarization and phosphorylates ubiquitin at the residue Ser65. The phosphorylated ubiquitin serves as a signal for activating parkin and recruiting autophagy receptors to promote clearance of damaged mitochondria via mitophagy. Emerging evidence has begun to indicate a link between impaired ubiquitin phosphorylation-dependent mitophagy and PD pathogenesis and supports the potential of Ser65-phosphorylated ubiquitin as a biomarker for PD. The new mechanistic insights and phenotypic screens have identified multiple potential therapeutic targets for PD drug discovery. This review highlights recent advances in understanding ubiquitin phosphorylation in mitochondrial quality control and PD pathogenesis and discusses how these findings can be translated into novel approaches for PD diagnostic and therapeutic development.
Collapse
Affiliation(s)
- Lih-Shen Chin
- Department of Pharmacology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Lian Li
- Department of Pharmacology and Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
843
|
Fogel AI, Martin SE, Hasson SA. Application of Imaging-Based Assays in Microplate Formats for High-Content Screening. Methods Mol Biol 2016; 1439:273-304. [PMID: 27317002 DOI: 10.1007/978-1-4939-3673-1_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The use of multiparametric microscopy-based screens with automated analysis has enabled the large-scale study of biological phenomena that are currently not measurable by any other method. Collectively referred to as high-content screening (HCS), or high-content analysis (HCA), these methods rely on an expanding array of imaging hardware and software automation. Coupled with an ever-growing amount of diverse chemical matter and functional genomic tools, HCS has helped open the door to a new frontier of understanding cell biology through phenotype-driven screening. With the ability to interrogate biology on a cell-by-cell basis in highly parallel microplate-based platforms, the utility of HCS continues to grow as advancements are made in acquisition speed, model system complexity, data management, and analysis systems. This chapter uses an example of screening for genetic factors regulating mitochondrial quality control to exemplify the practical considerations in developing and executing high-content campaigns.
Collapse
Affiliation(s)
| | - Scott E Martin
- Department of Discovery Oncology Genentech Inc., South San Francisco, CA, 94080, USA
| | - Samuel A Hasson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA.
- Pfizer, Inc., 610 Main Street, Cambridge, MA, 02144, USA.
| |
Collapse
|
844
|
Harrigan J, Jacq X. Monitoring Target Engagement of Deubiquitylating Enzymes Using Activity Probes: Past, Present, and Future. Methods Mol Biol 2016; 1449:395-410. [PMID: 27613052 PMCID: PMC7120244 DOI: 10.1007/978-1-4939-3756-1_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Deubiquitylating enzymes or DUBs are a class of enzymes that selectively remove the polypeptide posttranslational modification ubiquitin from a number of substrates. Approximately 100 DUBs exist in human cells and are involved in key regulatory cellular processes, which drive many disease states, making them attractive therapeutic targets. Several aspects of DUB biology have been studied through genetic knock-out or knock-down, genomic, or proteomic studies. However, investigation of enzyme activation and regulation requires additional tools to monitor cellular and physiological dynamics. A comparison between genetic ablation and dominant-negative target validation with pharmacological inhibition often leads to striking discrepancies. Activity probes have been used to profile classes of enzymes, including DUBs, and allow functional and dynamic properties to be assigned to individual proteins. The ability to directly monitor DUB activity within a native biological system is essential for understanding the physiological and pathological role of individual DUBs. We will discuss the evolution of DUB activity probes, from in vitro assay development to their use in monitoring DUB activity in cells and in animal tissues, as well as recent progress and prospects for assessing DUB inhibition in vivo.
Collapse
Affiliation(s)
- Jeanine Harrigan
- MISSION Therapeutics Limited, Moneta, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Xavier Jacq
- MISSION Therapeutics Limited, Moneta, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
845
|
Abstract
The PINK1 (phosphatase and tensin homologue-induced putative kinase 1)/Parkin-dependent mitochondrial quality control pathway mediates the clearance of damaged organelles, but appears to be disrupted in Parkinson's disease (PD) [Springer and Kahle (2011) Autophagy 7, 266-278]. Upon mitochondrial stress, PINK1 activates the E3 ubiquitin (Ub) ligase Parkin through phosphorylation of the Ub-like (UBL) domain of Parkin and of the small modifier Ub itself at a conserved residue [Sauvé and Gehring (2014) Cell Res. 24, 1025-1026]. Recently resolved partial crystal structures of Parkin showed a 'closed', auto-inhibited conformation, consistent with its notoriously weak enzymatic activity at steady state [Wauer and Komander (2013) EMBO J. 32, 2099-2112; Riley et al. (2013) Nat. Commun. 4, 1982; Trempe et al. (2013) Science 340, 1451-1455; Spratt et al. (2013) Nat. Commun. 4, 1983]. It has thus become clear that Parkin must undergo major structural rearrangements in order to unleash its catalytic functions. Recent published findings derived from X-ray structures and molecular modelling present a complete structural model of human Parkin at an all-atom resolution [Caulfield et al. (2014) PLoS Comput. Biol. 10, e1003935]. The results of the combined in silico simulations-based and experimental assay-based study indicates that PINK1-dependent Ser65 phosphorylation of Parkin is required for its activation and triggering of 'opening' conformations. Indeed, the obtained structures showed a sequential release of Parkin's intertwined domains and allowed docking of an Ub-charged E2 coenzyme, which could enable its enzymatic activity. In addition, using cell-based screening, select E2 enzymes that redundantly, cooperatively or antagonistically regulate Parkin's activation and/or enzymatic functions at different stages of the mitochondrial autophagy (mitophagy) process were identified [Fiesel et al. (2014) J. Cell Sci. 127, 3488-3504]. Other work that aims to pin-point the particular pathogenic dysfunctions of Parkin mis-sense mutations have been recently disseminated (Fabienne C. Fiesel, Thomas R. Caulfield, Elisabeth L. Moussaud-Lamodiere, Daniel F.A.R. Dourado, Kotaro Ogaki, Owen A. Ross, Samuel C. Flores, and Wolfdieter Springer, submitted). Such a structure-function approach provides the basis for the dissection of Parkin's regulation and a targeted drug design to identify small-molecule activators of this neuroprotective E3 Ub ligase.
Collapse
|
846
|
Rivero-Ríos P, Madero-Pérez J, Fernández B, Hilfiker S. Targeting the Autophagy/Lysosomal Degradation Pathway in Parkinson's Disease. Curr Neuropharmacol 2016; 14:238-49. [PMID: 26517050 PMCID: PMC4857622 DOI: 10.2174/1570159x13666151030103027] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 01/08/2023] Open
Abstract
Autophagy is a cellular quality control mechanism crucial for neuronal homeostasis. Defects in autophagy are critically associated with mechanisms underlying Parkinson's disease (PD), a common and debilitating neurodegenerative disorder. Autophagic dysfunction in PD can occur at several stages of the autophagy/lysosomal degradative machinery, contributing to the formation of intracellular protein aggregates and eventual neuronal cell death. Therefore, autophagy inducers may comprise a promising new therapeutic approach to combat neurodegeneration in PD. Several currently available FDA-approved drugs have been shown to enhance autophagy, which may allow for their repurposing for use in novel clinical conditions including PD. This review summarizes our current knowledge of deficits in the autophagy/lysosomal degradation pathways associated with PD, and highlight current approaches which target this pathway as possible means towards novel therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | - Sabine Hilfiker
- Institute of Parasitology and Biomedicine "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Avda del Conocimiento s/n, 18016 Granada, Spain.
| |
Collapse
|
847
|
Abstract
PINK1 [phosphatase and tensin homologue (PTEN)-induced putative kinase 1] is a serine/threonine kinase targeted to mitochondria and implicated in early-onset recessive Parkinson's disease (PD). Through the phosphorylation of its downstream targets, PINK1 regulates multiple mitochondrial processes, including ATP production, stress-response and mitochondrial dynamics and quality control. The orchestration of such a wide array of functions by an individual kinase requires a fine-tuned and versatile regulation of its activity. PINK1 proteolytic processing, trafficking and localization, as well as different post-translational modifications, affect its activity and function. Unravelling the regulatory mechanisms of PINK1 is essential for a full comprehension of its kinase function in health and disease.
Collapse
|
848
|
Ham SJ, Lee SY, Song S, Chung JR, Choi S, Chung J. Interaction between RING1 (R1) and the Ubiquitin-like (UBL) Domains Is Critical for the Regulation of Parkin Activity. J Biol Chem 2015; 291:1803-1816. [PMID: 26631732 DOI: 10.1074/jbc.m115.687319] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Indexed: 11/06/2022] Open
Abstract
Parkin is an E3 ligase that contains a ubiquitin-like (UBL) domain in the N terminus and an R1-in-between-ring-RING2 motif in the C terminus. We showed that the UBL domain specifically interacts with the R1 domain and negatively regulates Parkin E3 ligase activity, Parkin-dependent mitophagy, and Parkin translocation to the mitochondria. The binding between the UBL domain and the R1 domain was suppressed by carbonyl cyanide m-chlorophenyl hydrazone treatment or by expression of PTEN-induced putative kinase 1 (PINK1), an upstream kinase that phosphorylates Parkin at the Ser-65 residue of the UBL domain. Moreover, we demonstrated that phosphorylation of the UBL domain at Ser-65 prevents its binding to the R1 domain and promotes Parkin activities. We further showed that mitochondrial translocation of Parkin, which depends on phosphorylation at Ser-65, and interaction between the R1 domain and a mitochondrial outer membrane protein, VDAC1, are suppressed by binding of the UBL domain to the R1 domain. Interestingly, Parkin with missense mutations associated with Parkinson disease (PD) in the UBL domain, such as K27N, R33Q, and A46P, did not translocate to the mitochondria and induce E3 ligase activity by m-chlorophenyl hydrazone treatment, which correlated with the interaction between the R1 domain and the UBL domain with those PD mutations. These findings provide a molecular mechanism of how Parkin recruitment to the mitochondria and Parkin activation as an E3 ubiquitin ligase are regulated by PINK1 and explain the previously unknown mechanism of how Parkin mutations in the UBL domain cause PD pathogenesis.
Collapse
Affiliation(s)
- Su Jin Ham
- From the Interdisciplinary Graduate Program in Genetic Engineering,; National Creative Research Initiatives Center for Energy Homeostasis Regulation,; Institute of Molecular Biology and Genetics, and
| | - Soo Young Lee
- National Creative Research Initiatives Center for Energy Homeostasis Regulation,; Institute of Molecular Biology and Genetics, and
| | - Saera Song
- National Creative Research Initiatives Center for Energy Homeostasis Regulation,; Institute of Molecular Biology and Genetics, and
| | - Ju-Ryung Chung
- School of Biological Sciences, Seoul National University, Seoul 51-742, Republic of Korea
| | - Sekyu Choi
- National Creative Research Initiatives Center for Energy Homeostasis Regulation,; Institute of Molecular Biology and Genetics, and
| | - Jongkyeong Chung
- From the Interdisciplinary Graduate Program in Genetic Engineering,; National Creative Research Initiatives Center for Energy Homeostasis Regulation,; Institute of Molecular Biology and Genetics, and; School of Biological Sciences, Seoul National University, Seoul 51-742, Republic of Korea.
| |
Collapse
|
849
|
Wesselborg S, Stork B. Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci 2015; 72:4721-57. [PMID: 26390974 PMCID: PMC4648967 DOI: 10.1007/s00018-015-2034-8] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/13/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023]
Abstract
Autophagy represents an intracellular degradation process which is involved in both cellular homeostasis and disease settings. In the last two decades, the molecular machinery governing this process has been characterized in detail. To date, several key factors regulating this intracellular degradation process have been identified. The so-called autophagy-related (ATG) genes and proteins are central to this process. However, several additional molecules contribute to the outcome of an autophagic response. Several review articles describing the molecular process of autophagy have been published in the recent past. In this review article we would like to add the most recent findings to this knowledge, and to give an overview of the network character of the autophagy signaling machinery.
Collapse
Affiliation(s)
- Sebastian Wesselborg
- Institute of Molecular Medicine I, Heinrich-Heine-University, Universitätsstr. 1, Building 23.12, 40225, Düsseldorf, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Heinrich-Heine-University, Universitätsstr. 1, Building 23.12, 40225, Düsseldorf, Germany.
| |
Collapse
|
850
|
Franz A, Kevei É, Hoppe T. Double-edged alliance: mitochondrial surveillance by the UPS and autophagy. Curr Opin Cell Biol 2015; 37:18-27. [DOI: 10.1016/j.ceb.2015.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/17/2015] [Accepted: 08/18/2015] [Indexed: 11/24/2022]
|