851
|
Le DD, Nguyen DH, Ma ES, Lee JH, Min BS, Choi JS, Woo MH. PTP1B Inhibitory and Anti-inflammatory Properties of Constituents from Eclipta prostrata L. Biol Pharm Bull 2021; 44:298-304. [PMID: 33361652 DOI: 10.1248/bpb.b20-00994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The white-flowered leaves of Eclipta prostrata L. together with leaves of Scoparia dulcis and Cynodon dactylon are mixedly boiled in water and given to diabetic patients resulting in the significant improvement in the management of diabetes. However, the active constituents from this plant for antidiabetic and anti-obesity properties are remaining unclear. Thus, this study was to discover anti-diabetes and anti-obesity activities through protein tyrosine phosphatases (PTP)1B inhibitory effects. We found that the fatty acids (23, 24) showed potent PTP1B inhibition with IC50 values of 2.14 and 3.21 µM, respectively. Triterpenoid-glycosides (12-15) also exhibited strong to moderate PTP1B inhibitory effects, with IC50 values ranging from 10.88 to 53.35 µM. Additionally, active compounds were investigated for their PTP1B inhibitory mechanism and docking analysis. On the other hand, the anti-inflammatory activity from our study revealed that compounds (1-4, 7, 8, 10) displayed the significant inhibition nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Especially, compound 9 showed the potent inhibitory effects in LPS-induced NO production on RAW264.7 cell. Therefore, further Western blot analysis was performed to identify the inhibitory expression including heme oxygenase-1 (HO-1) and inhibitor of kappaB (IκB) phosphorylation.
Collapse
Affiliation(s)
- Duc Dat Le
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University.,Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University.,Faculty of Pharmacy, Ton Duc Thang University
| | - Duc Hung Nguyen
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University.,Department of Biotechnology, V-Kist
| | - Eun Sook Ma
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University
| | | | - Byung Sun Min
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University
| | - Jae Sue Choi
- Department of Food and Life Science, Pukyong National University
| | - Mi Hee Woo
- College of Pharmacy, Drug Research and Development Center, Daegu Catholic University
| |
Collapse
|
852
|
Li H, Liang J, Wang J, Han J, Li S, Huang K, Liu C. Mex3a promotes oncogenesis through the RAP1/MAPK signaling pathway in colorectal cancer and is inhibited by hsa-miR-6887-3p. Cancer Commun (Lond) 2021; 41:472-491. [PMID: 33638620 PMCID: PMC8211350 DOI: 10.1002/cac2.12149] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/30/2021] [Accepted: 02/17/2021] [Indexed: 12/22/2022] Open
Abstract
Background Although Mex3 RNA‐binding family member A (Mex3a) has demonstrated an important role in multiple cancers, its role and regulatory mechanism in CRC is unclear. In this study, we aimed to investigate the role and clinical significance of Mex3a in CRC and to explore its underlying mechanism. Methods Western blotting and quantitative real‐time polymerase chain reaction (qRT‐PCR) were performed to detect the expression levels of genes. 5‐Ethynyl‐2'‐deoxyuridine (EDU) and transwell assays were utilized to examine CRC cell proliferation and metastatic ability. The R software was used to do hierarchical clustering analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Overexpression and rescue experiments which included U0126, a specific mitogen activated protein kinase kinase/extracellular regulated protein kinase (MEK/ERK) inhibitor, and PX‐478, a hypoxia‐inducible factor 1 subunit alpha (HIF‐1α) inhibitor, were used to study the molecular mechanisms of Mex3a in CRC cells. Co‐immunoprecipitation (Co‐IP) assay was performed to detect the interaction between two proteins. Bioinformatics analysis including available public database and Starbase software (starbase.sysu.edu.cn) were used to evaluate the expression and prognostic significance of genes. TargetScan (www.targetscan.org) and the miRDB (mirdb.org) website were used to predict the combination site between microRNA and target mRNA. BALB/c nude mice were used to study the function of Mex3a and hsa‐miR‐6887‐3p in vivo. Results Clinicopathological and immunohistochemical (IHC) studies of 101 CRC tissues and 79 normal tissues demonstrated that Mex3a was a significant prognostic factor for overall survival (OS) in CRC patients. Mex3a knockdown substantially inhibited the migration, invasion, and proliferation of CRC cells. Transcriptome analysis and mechanism verification showed that Mex3a regulated the RAP1 GTPase activating protein (RAP1GAP)/MEK/ERK/HIF‐1α pathway. Furthermore, RAP1GAP was identified to interact with Mex3a in Co‐IP experiments. Bioinformatics and dual‐luciferase reporter experiments revealed that hsa‐miR‐6887‐3p could bind to the 3'‐untranslated regions (3'‐UTR) of the Mex3a mRNA. hsa‐miR‐6887‐3p downregulated Mex3a expression and inhibited the tumorigenesis of CRC both in vitro and in vivo. Conclusions Our study demonstrated that the hsa‐miR‐6887‐3p/Mex3a/RAP1GAP signaling axis was a key regulator of CRC and Mex3a has the potential to be a new diagnostic marker and treatment target for CRC.
Collapse
Affiliation(s)
- Haixia Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Jinghui Liang
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Jiang Wang
- Weifang People's Hospital, Weifang, Shandong, 261000, P. R. China
| | - Jingyi Han
- Department of Thoracic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Shuang Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Kai Huang
- Department of Medical Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China
| | - Chuanyong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, P. R. China.,Provincial Key Lab of Mental Disorder, Shandong University, Jinan, Shandong, 250012, P. R. China
| |
Collapse
|
853
|
Aboelella NS, Brandle C, Kim T, Ding ZC, Zhou G. Oxidative Stress in the Tumor Microenvironment and Its Relevance to Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13050986. [PMID: 33673398 PMCID: PMC7956301 DOI: 10.3390/cancers13050986] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancer cells are consistently under oxidative stress, as reflected by elevated basal level of reactive oxygen species (ROS), due to increased metabolism driven by aberrant cell growth. This feature has been exploited to develop therapeutic strategies that control tumor growth by modulating the oxidative stress in tumor cells. This review provides an overview of recent advances in cancer therapies targeting tumor oxidative stress, and highlights the emerging evidence implicating the effectiveness of cancer immunotherapies in intensifying tumor oxidative stress. The promises and challenges of combining ROS-inducing agents with cancer immunotherapy are also discussed. Abstract It has been well-established that cancer cells are under constant oxidative stress, as reflected by elevated basal level of reactive oxygen species (ROS), due to increased metabolism driven by aberrant cell growth. Cancer cells can adapt to maintain redox homeostasis through a variety of mechanisms. The prevalent perception about ROS is that they are one of the key drivers promoting tumor initiation, progression, metastasis, and drug resistance. Based on this notion, numerous antioxidants that aim to mitigate tumor oxidative stress have been tested for cancer prevention or treatment, although the effectiveness of this strategy has yet to be established. In recent years, it has been increasingly appreciated that ROS have a complex, multifaceted role in the tumor microenvironment (TME), and that tumor redox can be targeted to amplify oxidative stress inside the tumor to cause tumor destruction. Accumulating evidence indicates that cancer immunotherapies can alter tumor redox to intensify tumor oxidative stress, resulting in ROS-dependent tumor rejection. Herein we review the recent progresses regarding the impact of ROS on cancer cells and various immune cells in the TME, and discuss the emerging ROS-modulating strategies that can be used in combination with cancer immunotherapies to achieve enhanced antitumor effects.
Collapse
Affiliation(s)
- Nada S. Aboelella
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
- The Graduate School, Augusta University, Augusta, GA 30912, USA
| | - Caitlin Brandle
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
| | - Timothy Kim
- The Center for Undergraduate Research and Scholarship, Augusta University, Augusta, GA 30912, USA;
| | - Zhi-Chun Ding
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Gang Zhou
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA; (N.S.A.); (C.B.); (Z.-C.D.)
- The Graduate School, Augusta University, Augusta, GA 30912, USA
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-706-721-4472
| |
Collapse
|
854
|
Wang L, Liu W, Liu J, Wang Y, Tai J, Yin X, Tan J. Identification of Immune-Related Therapeutically Relevant Biomarkers in Breast Cancer and Breast Cancer Stem Cells by Transcriptome-Wide Analysis: A Clinical Prospective Study. Front Oncol 2021; 10:554138. [PMID: 33718103 PMCID: PMC7945036 DOI: 10.3389/fonc.2020.554138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 12/31/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) represent a subset of tumor cells that are responsible for recurrence and metastasis of tumors. These cells are resistant to radiotherapy and chemotherapy. Immunotherapeutic strategies that target CSCs specifically have provided initial results; however, the mechanism of action of these strategies is unclear. The data were requested from The Cancer Genome Atlas and Genotype-Tissue Expression, followed with the survival analysis and weighted gene co-expression network analysis to detect survival and stemness related genes. Patients were divided into three groups based on their immune status by applying single sample GSEA (ssGSEA) with proven dependability by ESTIMATE analysis. The filtered key genes were analyzed using oncomine, GEPIA, HPA, qRT-PCR, and functional analysis. Patients in a group with a higher stemness and a lower immune infiltration showed a worse overall survival probability, stemness and immune infiltration characteristics of breast cancer progressed in a non-linear fashion. Thirteen key genes related to stemness and immunity were identified and the functional analysis indicated their crucial roles in cell proliferation and immune escape strategies. The qRT-PCR results showed that the expression of PIMREG and MTFR2 differed in different stages of patients. Our study revealed a promising potential for CSC-target immunotherapy in the early stage of cancer and a probable value for PIMREG and MTFR2 as biomarkers and targets for immunotherapy.
Collapse
Affiliation(s)
- Linbang Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingkun Liu
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yuanyuan Wang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiaojiao Tai
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Xuedong Yin
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinxiang Tan
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
855
|
Jin L, Zhou Y, Chen G, Dai G, Fu K, Yang D, Zhu J. EZH2-TROAP Pathway Promotes Prostate Cancer Progression Via TWIST Signals. Front Oncol 2021; 10:592239. [PMID: 33692939 PMCID: PMC7938320 DOI: 10.3389/fonc.2020.592239] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/31/2020] [Indexed: 12/27/2022] Open
Abstract
Trophinin-associated protein (TROAP) has been shown to be overexpressed and promotes tumor progression in some tumors. We performed this study to assess the biological and clinical significance of TROAP in prostate cancer. We downloaded TROAP mRNA expression data from TCGA and GEO databases. We analyzed expressions of TROAP and other genes in prostate cancer tumors at different stages and assessed Gleason scores. We used Celigo image, Transwell, and rescue assays, and flow cytometry detection to assess growth, apoptosis, proliferation, migration, and invasion of the prostate cancer cells. We identified and validated up- and down-stream genes in the TROAP pathway. The mRNA data suggested that TROAP expression was markedly upregulated in prostate cancer compared with its expression in normal tissues, especially in cancers with high stages and Gleason scores. Moreover, a high TROAP expression was associated with poor patient survival. Results of our in vitro assay showed that TROAP knockdown inhibited DU145 and PC3 cell proliferation and viability via cell apoptosis and S phase cycle arrest. The Transwell assay showed that TROAP knockdown inhibited cell migration and invasion, probably through MMP-9 and E-Cadherin modulation. Overexpression of TWIST partially abrogated the inhibitory effects of TROAP knockdown on prostate cancer cells. Our integrative mechanism dissection revealed that TROAP is in a pathway downstream of EZH2 and that it activates the TWIST/c-Myc pathway to regulate prostate cancer progression. In all, we identified TROAP as a driver of prostate cancer development and progression, providing a novel target for prostate cancer treatments.
Collapse
Affiliation(s)
- Lu Jin
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yibin Zhou
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangqiang Chen
- Department of Radiology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangcheng Dai
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Kai Fu
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongrong Yang
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jin Zhu
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
856
|
Xiao H, Wang K, Li D, Wang K, Yu M. Evaluation of FGFR1 as a diagnostic biomarker for ovarian cancer using TCGA and GEO datasets. PeerJ 2021; 9:e10817. [PMID: 33604191 PMCID: PMC7866899 DOI: 10.7717/peerj.10817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 12/30/2020] [Indexed: 12/30/2022] Open
Abstract
Background Malignant ovarian cancer is associated with the highest mortality of all gynecological tumors. Designing therapeutic targets that are specific to OC tissue is important for optimizing OC therapies. This study aims to identify different expression patterns of genes related to FGFR1 and the usefulness of FGFR1 as diagnostic biomarker for OC. Methods We collected data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. In the TCGA cohort we analyzed clinical information according to patient characteristics, including age, stage, grade, longest dimension of the tumor and the presence of a residual tumor. GEO data served as a validation set. We obtained data on differentially expressed genes (DEGs) from the two microarray datasets. We then used gene set enrichment analysis (GSEA) to analyze the DEG data in order to identify enriched pathways related to FGFR1. Results Differential expression analysis revealed that FGFR1 was significantly downregulated in OC specimens. 303 patients were included in the TCGA cohort. The GEO dataset confirmed these findings using information on 75 Asian patients. The GSE105437 and GSE12470 database highlighted the significant diagnostic value of FGFR1 in identifying OC (AUC = 1, p = 0.0009 and AUC = 0.8256, p = 0.0015 respectively). Conclusions Our study examined existing TCGA and GEO datasets for novel factors associated with OC and identified FGFR1 as a potential diagnostic factor. Further investigation is warranted to characterize the role played by FGFR1 in OC.
Collapse
Affiliation(s)
- Huiting Xiao
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Kun Wang
- Department of Urologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dan Li
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Ke Wang
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Min Yu
- Department of Gynecologic Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| |
Collapse
|
857
|
Weber S, Parmon A, Kurrle N, Schnütgen F, Serve H. The Clinical Significance of Iron Overload and Iron Metabolism in Myelodysplastic Syndrome and Acute Myeloid Leukemia. Front Immunol 2021; 11:627662. [PMID: 33679722 PMCID: PMC7933218 DOI: 10.3389/fimmu.2020.627662] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Myelodysplasticsyndrome (MDS) and acute myeloid leukemia (AML) are clonal hematopoietic stem cell diseases leading to an insufficient formation of functional blood cells. Disease-immanent factors as insufficient erythropoiesis and treatment-related factors as recurrent treatment with red blood cell transfusions frequently lead to systemic iron overload in MDS and AML patients. In addition, alterations of function and expression of proteins associated with iron metabolism are increasingly recognized to be pathogenetic factors and potential vulnerabilities of these diseases. Iron is known to be involved in multiple intracellular and extracellular processes. It is essential for cell metabolism as well as for cell proliferation and closely linked to the formation of reactive oxygen species. Therefore, iron can influence the course of clonal myeloid disorders, the leukemic environment and the occurrence as well as the defense of infections. Imbalances of iron homeostasis may induce cell death of normal but also of malignant cells. New potential treatment strategies utilizing the importance of the iron homeostasis include iron chelation, modulation of proteins involved in iron metabolism, induction of leukemic cell death via ferroptosis and exploitation of iron proteins for the delivery of antileukemic drugs. Here, we provide an overview of some of the latest findings about the function, the prognostic impact and potential treatment strategies of iron in patients with MDS and AML.
Collapse
Affiliation(s)
- Sarah Weber
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Anastasia Parmon
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Nina Kurrle
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Frank Schnütgen
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| | - Hubert Serve
- Department of Medicine, Hematology/Oncology, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Frankfurt Cancer Institute, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
858
|
Song Y, Wang X, Wang F, Peng X, Li P, Liu S, Zhang D. Identification of four genes and biological characteristics of esophageal squamous cell carcinoma by integrated bioinformatics analysis. Cancer Cell Int 2021; 21:123. [PMID: 33602210 PMCID: PMC7890804 DOI: 10.1186/s12935-021-01814-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/06/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) has become one of the most serious diseases affecting populations worldwide and is the primary subtype of esophageal cancer (EC). However, the molecular mechanisms governing the development of ESCC have not been fully elucidated. METHODS The robust rank aggregation method was performed to identify the differentially expressed genes (DEGs) in six datasets (GSE17351, GSE20347, GSE23400, GSE26886, GSE38129 and GSE77861) from the Gene Expression Omnibus (GEO). The Search Tool for the Retrieval of Interacting Genes (STRING) database was utilized to extract four hub genes from the protein-protein interaction (PPI) network. Module analysis and disease free survival analysis of the four hub genes were performed by Cytoscape and GEPIA. The expression of hub genes was analyzed by GEPIA and the Oncomine database and verified by real-time quantitative PCR (qRT-PCR). RESULTS In total, 720 DEGs were identified in the present study; these genes consisted of 302 upregulated genes and 418 downregulated genes that were significantly enriched in the cellular component of the extracellular matrix part followed by the biological process of the cell cycle phase and nuclear division. The primary enriched pathways were hsa04110:Cell cycle and hsa03030:DNA replication. Four hub genes were screened out, namely, SPP1, MMP12, COL10A1 and COL5A2. These hub genes all exhibited notably increased expression in ESCC samples compared with normal samples, and ESCC patients with upregulation of all four hub genes exhibited worse disease free survival. CONCLUSIONS SPP1, MMP12, COL10A1 and COL5A2 may participate in the tumorigenesis of ESCC and demonstrate the potential to serve as molecular biomarkers in the early diagnosis of ESCC. This study may help to elucidate the molecular mechanisms governing ESCC and facilitate the selection of targets for early treatment and diagnosis.
Collapse
Affiliation(s)
- Yexun Song
- Department of Otolaryngology-Head Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China.,Department of Otolaryngology-Head Neck Surgery, The Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Xianyao Wang
- Department of Otolaryngology-Head Neck Surgery, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China.,Department of Clinical Laboratory, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China
| | - Fengjun Wang
- Department of Otolaryngology-Head Neck Surgery, The Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China
| | - Xiaowei Peng
- Department of Oncology Plastic Surgery, Hunan Province Cancer Hospital, Changsha, 410007, Hunan, China
| | - Peiyu Li
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China.,Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, 410013, Hunan, China
| | - Shaojun Liu
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China.,Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, 410013, Hunan, China
| | - Decai Zhang
- Department of Gastroenterology, The Third Xiangya Hospital of Central South University, Changsha, 410013, Hunan, China. .,Key Laboratory of Nonresolving Inflammation and Cancer, Changsha, 410013, Hunan, China.
| |
Collapse
|
859
|
Huang J, Zhang Q, Shen J, Chen X, Ma S. Multi-omics analysis identifies potential mechanisms of AURKB in mediating poor outcome of lung adenocarcinoma. Aging (Albany NY) 2021; 13:5946-5966. [PMID: 33612479 PMCID: PMC7950220 DOI: 10.18632/aging.202517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023]
Abstract
Aurora kinases B (AURKB), which plays a critical role in chromosomal segmentation and mitosis, greatly promotes cell cycle progression and aggressive proliferation of cancers. So far, its role and underlying mechanisms in mediating poor outcome of lung adenocarcinoma (LUAD) remained largely unclear. Analyses on multiple omics data of lung adenocarcinoma cohort in The Cancer Genome Atlas (TCGA) were performed based on AURKB expression, and demonstrated its association with clinical characteristics and the potential of using AURKB as a biomarker in predicting patients' survival. This study found aberrant alterations of genomics and epigenetics, including up-regulation and down-regulation of oncogenic genes and tumor suppressors, pathways involved in the cell cycle, DNA repair, spliceosome, and proteasome, hypermethylation enrichments around transcriptional start sites, which are all related to AURKB expression. We further discovered the possible role of tumor suppressors DLC1 and HLF in AURKB-mediated adverse outcome of LUAD. To conclude, this study proved AURKB as a potential prognostic factor and therapeutic target for lung adenocarcinoma treatment and provide a future research direction.
Collapse
Affiliation(s)
- Jie Huang
- Nanjing Medical University, Nanjing, China
- Department of Oncology, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou, China
| | - Qianyun Zhang
- Nanjing Medical University, Nanjing, China
- Department of Oncology, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou, China
| | - Juan Shen
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueqin Chen
- Department of Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenglin Ma
- Nanjing Medical University, Nanjing, China
- Department of Oncology, Nanjing Medical University Affiliated Hangzhou Hospital, Hangzhou, China
| |
Collapse
|
860
|
Mo Y, Duan L, Yang Y, Liu W, Zhang Y, Zhou L, Su S, Lo PC, Cai J, Gao L, Liu Q, Chen X, Yang C, Wang Q, Chen T. Nanoparticles improved resveratrol brain delivery and its therapeutic efficacy against intracerebral hemorrhage. NANOSCALE 2021; 13:3827-3840. [PMID: 33565555 DOI: 10.1039/d0nr06249a] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intracerebral hemorrhage (ICH) is a neurological disorder resulting from the nontraumatic rupture of blood vessels in the brain. Ferroptosis is a newly identified form of programmed cell death, which is an important pathological feature of ICH injury. At present, the therapeutic efficacy of ICH treatment is far from satisfactory, so it is urgent to develop a safer and more effective method to treat ICH injury. Resveratrol (Res), a widely used nonflavonoid polyphenol compound, plays a neuroprotective role in many diseases. However, its poor oral bioavailability limits its clinical application in ICH. Polymer nanoparticles (NPs) are a commonly used drug delivery matrix material with good biocompatibility. To improve its bioavailability and accumulation in the brain, we used NPs to encapsulate Res. These spherical Res nanoparticles (Res-NPs) had a particle size of 297.57 ± 7.07 nm, a PDI of 0.23 ± 0.02 and a zeta potential of -5.45 ± 0.27 mV. They could be taken up by Madin-Darby canine kidney (MDCK) cells through a variety of nonspecific endocytosis mechanisms, mainly mediated by clathrin and plasma membrane microcapsules. After entering the cell, Res-NPs tend to accumulate in the endoplasmic reticulum and lysosomes. In a zebrafish model, we observed that Res-NPs could transport across physiological barriers. In a Sprague-Dawley (SD) rat model, we found that Res-NPs had more desirable improvements in Res accumulation within the plasma and brain. Moreover, we demonstrated that Res-NPs were able to inhibit ferroptosis induced by erastin in HT22 mouse hippocampal cells, which are commonly used in in vitro studies to examine neuronal differentiation and neurotoxicity implicated in brain injuries or neurological diseases. Finally, in an ICH mouse model, we confirmed that Res-NPs are a safer and effective treatment for ICH injury. Collectively, Res-NPs are effective to improve Res brain delivery and its therapeutic efficacy in ICH treatment.
Collapse
Affiliation(s)
- Yousheng Mo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
861
|
Shi D, Li H, Zhang J, Li Y. CircGDI2 Regulates the Proliferation, Migration, Invasion and Apoptosis of OSCC via miR-454-3p/FOXF2 Axis. Cancer Manag Res 2021; 13:1371-1382. [PMID: 33603482 PMCID: PMC7886390 DOI: 10.2147/cmar.s277096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/10/2020] [Indexed: 12/16/2022] Open
Abstract
Background Aberrant expression of circular RNA (circRNA) is involved in the occurrence and development of multifarious cancers, including oral squamous cell carcinoma (OSCC). However, the biological role of circGDI2 and the action mechanism in OSCC remain largely unclear. Methods The expression levels of circGDI2, miR-454-3p and forkhead box F2 (FOXF2) were examined by quantitative real-time PCR (qRT-PCR) or Western blot. The stability of circGDI2 was confirmed by Ribonuclease R (RNase R) assay. Cell Counting Kit 8 (CCK8) assay, colony formation and transwell assay were used to detect cell proliferation, migration or invasion. Cell apoptosis was tested by flow cytometry. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were employed to verify the interaction between miR-454-3p and circGDI2 or FOXF2. Moreover, xenograft mouse models were constructed to assess tumor growth in vivo. Results CircGDI2 was a stable circRNA and was low expressed in OSCC tissues and cells. CircGDI2 overexpression could effectively inhibit the proliferation, migration, invasion and promote apoptosis in OSCC cells, and suppress OSCC tumor growth in nude mice in vivo. MiR-454-3p could be sponged by circGDI2, and its overexpression could mitigate the suppressive effects of circGDI2 overexpression on OSCC progression. In addition, FOXF2 was a target of miR-454-3p, and miR-454-3p silence could impede the cell growth of OSCC cells by enhancing FOXF2 expression. Meanwhile, circGDI2 positively regulated FOXF2 expression by targeting miR-454-3p. Conclusion CircGDI2 served as a repressor to restrain OSCC malignancy via miR-454-3p/FOXF2 axis, which might be a novel biomarker for targeted OSCC therapy.
Collapse
Affiliation(s)
- Dan Shi
- Department of Oral Medicine Centre, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Huiyun Li
- Department of Anesthesiology, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Junge Zhang
- Department of Ophthalmology, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Yadong Li
- Department of Oral Medicine Centre, Henan Provincial People's Hospital, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
862
|
Yan N, Liu C, Tian F, Wang L, Wang Y, Yang Z, Jiao Y, He M. Downregulated mRNA Expression of ZNF385B Is an Independent Predictor of Breast Cancer. Int J Genomics 2021; 2021:4301802. [PMID: 33614780 PMCID: PMC7876827 DOI: 10.1155/2021/4301802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/13/2020] [Accepted: 01/07/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND ZNF385B, a zinc finger protein, has been known as a potential biomarker in some neurological and hematological studies recently. Although numerous studies have demonstrated the potential function of zinc finger proteins in tumor progression, the effects of ZNF385B in breast cancer (BC) are less studied. METHODS The Oncomine database and "ESurv" tool were used to explore the differential expression of ZNF385B in pan-cancer. Furthermore, data of patients with BC were downloaded from The Cancer Genome Atlas (TCGA). The receiver operating characteristic (ROC) curve of ZNF385B expression was established to explore the diagnostic value of ZNF385B and to obtain the cut-off value of high or low ZNF385B expression in BC. The chi-square test as well as Fisher exact test was used for identification of the relationships between clinical features and ZNF385B expression. Furthermore, the effects of ZNF385B on BC patients' survival were evaluated by the Kaplan-Meier and Cox regression. Data from the Gene Expression Omnibus (GEO) database were employed to validate the results of TCGA. Protein expression of ZNF385B in BC patient specimens was detected by immunohistochemistry (IHC) staining. RESULTS ZNF385B expression was downregulated in most types of cancer including BC. Low ZNF385B expression was related with survival status, overall survival (OS), and recurrence of BC. ZNF385B had modest diagnostic value, which is indicated by the area under the ROC curve (AUC = 0.671). Patients with lower ZNF385B expression had shorter OS and RFS (relapse-free survival). It had been demonstrated that low ZNF385B expression represented independent prognostic value for OS and RFS by multivariate survival analysis. The similar results were verified by datasets from the GEO database as well. The protein expression of ZNF385B was decreased in patients' samples compared with adjacent tissues by IHC. CONCLUSIONS Low ZNF385B expression was an independent predictor for worse prognosis of BC patients.
Collapse
Affiliation(s)
- Ning Yan
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Cong Liu
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Fang Tian
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Ling Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, Jilin 130022, China
| | - Yimin Wang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Zhaoying Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Miao He
- Department of Anesthesia, The Second Hospital of Jilin University, Changchun, Jilin 130022, China
| |
Collapse
|
863
|
Yang J, Zhang Z, Chen S, Dou W, Xie R, Gao J. miR-654-3p predicts the prognosis of hepatocellular carcinoma and inhibits the proliferation, migration, and invasion of cancer cells. Cancer Biomark 2021; 28:73-79. [PMID: 32176631 DOI: 10.3233/cbm-191084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Increasing evidence reveals that aberrant microRNAs (miRNAs) expression play a crucial role in the tumorigenesis of cancers, including hepatocellular carcinoma (HCC), whereas the role of miR-654-3p in HCC remains unclear. This study aimed to investigate the role of miR-654-3p in HCC. METHODS Real-time quantitative PCR was performed to detect miR-654-3p expression in HCC tissues and cell lines. The association of miR-654-3p expression with clinical characteristics of HCC patients were analyzed. And the prognostic value of miR-654-3p was examined using Kaplan-Meier curve and Cox regression analysis. CCK-8 and Transwell assays were used to observe the effects of miR-654-3p on proliferation, migration, and invasion of HCC cells. RESULTS The miR-654-3p expression was downregulated in both HCC tissues and cell lines, which was significantly associated with lymph node metastasis and TNM stage. Downregulation of miR-654-3p predicted poor prognosis of HCC patients. Overexpression of miR-654-3p inhibited HCC cell proliferation, migration, and invasion, while knockdown of miR-654-3p promoted these cellular behaviors in vitro. CONCLUSION Our study suggested that miR-654-3p expression was downregulated in HCC and might serve as a potential prognostic marker and therapeutic target for the survival of HCC patients. miR-654-3p might exert a suppressor role in HCC through inhibiting tumor cell proliferation, migration, and invasion.
Collapse
Affiliation(s)
- Junsheng Yang
- Department of Oncology, Zaozhuang Municipal Hospital, Zaozhuang, Shangdong, China.,Department of Oncology, Zaozhuang Municipal Hospital, Zaozhuang, Shangdong, China
| | - Zhen Zhang
- Department of Logistics, Yidu Central Hospital of Weifang, Weifang, Shandong, China.,Department of Oncology, Zaozhuang Municipal Hospital, Zaozhuang, Shangdong, China
| | - Shaoping Chen
- Department of Oncology, Dongying People's Hospital, Dongying, Shandong, China.,Department of Oncology, Zaozhuang Municipal Hospital, Zaozhuang, Shangdong, China
| | - Wenwen Dou
- Department of Infectious Diseases, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Ruizhu Xie
- Department of Infectious Diseases, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Jie Gao
- Department of Gastroenterology, Dongying People's Hospital, Dongying, Shandong, China
| |
Collapse
|
864
|
Xie Z, Hou H, Luo D, An R, Zhao Y, Qiu C. ROS-Dependent Lipid Peroxidation and Reliant Antioxidant Ferroptosis-Suppressor-Protein 1 in Rheumatoid Arthritis: a Covert Clue for Potential Therapy. Inflammation 2021; 44:35-47. [PMID: 32920707 DOI: 10.1007/s10753-020-01338-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/23/2020] [Accepted: 09/02/2020] [Indexed: 02/08/2023]
Abstract
Rheumatoid arthritis (RA) is a common systemic autoimmune disease with a prevalence of about 1% in which genetic and environmental risk factors both participate in performance of disease. Though several studies contributed in identifying its etiology and pathogenesis, the underlying mechanisms are still unknown. To date, so as palliative for RA, cure strategies are still popular. Hypoxia and oxidative stress are implicated to RA development and subsequent ROS-mediated cell death which is a critical feature for RA progression. As for cell death and lipid peroxidation, ferroptosis is a newly discovered, iron-dependent, and non-apoptotic cell death which draws various attention due to its potential strategies for cancer therapy. Meanwhile, ferroptosis-suppressor-protein 1 (FSP1) is recently identified as a seminal breakthrough owing to its property of versus ferroptosis. By virtue of the complicated research progress on FSP1 with ferroptosis, in this review, we summarize the whole region of relevance between ROS and RA. Taken together, we hypothesize that ROS accompanied with ferroptosis may function as a reciprocal with cell death that interplays with RA; besides, FSP1 might become a potential therapeutic target for RA because of its potential interaction with TNF-α/ROS-positive feedback loop. This review systematically concludes the previous understandings about identification of ROS and FSP1 and, in turn, aims to provide references for further achievements of them and hints on elucidation of its thorough underlying mechanisms.
Collapse
Affiliation(s)
- Zhaoxiang Xie
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Haodong Hou
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Dan Luo
- College of Stomatology, Qingdao University, Qingdao, 266071, Shandong, People's Republic of China
| | - Ran An
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Yunpeng Zhao
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| | - Cheng Qiu
- Department of Orthopaedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, People's Republic of China.
| |
Collapse
|
865
|
Yu S, Wang X, Zhu L, Xie P, Zhou Y, Jiang S, Chen H, Liao X, Pu S, Lei Z, Wang B, Ren Y. A systematic analysis of a potential metabolism-related prognostic signature for breast cancer patients. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:330. [PMID: 33708957 PMCID: PMC7944328 DOI: 10.21037/atm-20-7600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Metabolic pathways play an essential role in breast cancer. However, the role of metabolism-related genes in the early diagnosis of breast cancer remains unknown. Methods In our study, RNA sequencing (RNA-seq) expression data and clinicopathological information from The Cancer Genome Atlas (TCGA) and GSE20685 were obtained. Univariate cox regression and least absolute shrinkage and selection operator (LASSO) regression analyses were performed on the differentially expressed metabolism-related genes. Then, the formula of the metabolism-related risk model was composed, and the risk score of each patient was calculated. The breast cancer patients were divided into high-risk and low-risk groups with a cutoff of the median expression value of the risk score, and the prognostic analysis was also used to analyze the survival time between these two groups. In the end, we also analyzed the expression, interaction, and correlation among genes in the metabolism-related gene risk model. Results The results from the prognostic analysis indicated that the survival was significantly poorer in the high-risk group than in the low-risk group in both TCGA and GSE20685 datasets. In addition, after adjusting for different clinicopathological features in multivariate analysis, the metabolism-related risk model remained an independent prognostic indicator in TCGA dataset. Conclusions In summary, we systematically developed a potential metabolism-related gene risk model for predicting prognosis in breast cancer patients.
Collapse
Affiliation(s)
- Shibo Yu
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaowen Wang
- Department of Second Breast surgery, the Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Lizhe Zhu
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Peiling Xie
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yudong Zhou
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Siyuan Jiang
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Heyan Chen
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoqin Liao
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shengyu Pu
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhenzhen Lei
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bin Wang
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Ren
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
866
|
Epigenetic Regulation and Nonepigenetic Mechanisms of Ferroptosis Drive Emerging Nanotherapeutics in Tumor. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8854790. [PMID: 33574983 PMCID: PMC7864727 DOI: 10.1155/2021/8854790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/14/2020] [Accepted: 01/15/2021] [Indexed: 02/05/2023]
Abstract
Currently, traditional cancer therapy still falls far short of expectations. However, a variety of invasive cancers that are resistant to chemotherapy (such as platinum drugs, one of the most applied antineoplastics in clinic) and targeted agents are susceptible to ferroptosis. Ferroptosis is a form of cell death that is driven by cell metabolism and iron-dependent lipid peroxidation. Ferroptosis inducers can eliminate the drug resistance of tumor cells in the mesenchymal state, effectively inhibit the drug resistance of acquired tumor cells, and optimize cancer efficacy. Research based on the epigenetic mechanism of ferroptosis is still in the stage of screening and verifying the regulatory effect, and there is no complete regulatory mechanism network. In this review, we expound on the epigenetic regulation and nonepigenetic mechanisms of ferroptosis and review the epigenetic-based mechanisms of tumor therapy potential and emerging nonepigenetic-based therapies (nanotherapeutics).
Collapse
|
867
|
Morishita A, Oura K, Tadokoro T, Fujita K, Tani J, Masaki T. MicroRNAs in the Pathogenesis of Hepatocellular Carcinoma: A Review. Cancers (Basel) 2021; 13:cancers13030514. [PMID: 33572780 PMCID: PMC7866004 DOI: 10.3390/cancers13030514] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Hepatocellular carcinoma (HCC) is one of the most frequently occurring cancers, and the prognosis for late-stage HCC remains poor. A better understanding of the pathogenesis of HCC is expected to improve outcomes. MicroRNAs (miRNAs) are small, noncoding, single-stranded RNAs that regulate the expression of various target genes, including those in cancer-associated genomic regions or fragile sites in various human cancers. We summarize the central roles of miRNAs in the pathogenesis of HCC and discuss their potential utility as valuable biomarkers and new therapeutic agents for HCC. Abstract Hepatocellular carcinoma (HCC) is the seventh most frequent cancer and the fourth leading cause of cancer mortality worldwide. Despite substantial advances in therapeutic strategies, the prognosis of late-stage HCC remains dismal because of the high recurrence rate. A better understanding of the etiology of HCC is therefore necessary to improve outcomes. MicroRNAs (miRNAs) are small, endogenous, noncoding, single-stranded RNAs that modulate the expression of their target genes at the posttranscriptional and translational levels. Aberrant expression of miRNAs has frequently been detected in cancer-associated genomic regions or fragile sites in various human cancers and has been observed in both HCC cells and tissues. The precise patterns of aberrant miRNA expression differ depending on disease etiology, including various causes of hepatocarcinogenesis, such as viral hepatitis, alcoholic liver disease, or nonalcoholic steatohepatitis. However, little is known about the underlying mechanisms and the association of miRNAs with the pathogenesis of HCC of various etiologies. In the present review, we summarize the key mechanisms of miRNAs in the pathogenesis of HCC and emphasize their potential utility as valuable diagnostic and prognostic biomarkers, as well as innovative therapeutic targets, in HCC diagnosis and treatment.
Collapse
|
868
|
Shang C, Li Y, Wu Z, Han Q, Zhu Y, He T, Guo H. The Prognostic Value of DNA Methylation, Post-Translational Modifications and Correlated with Immune Infiltrates in Gynecologic Cancers. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:39-53. [PMID: 33488112 PMCID: PMC7814251 DOI: 10.2147/pgpm.s293399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/26/2020] [Indexed: 11/23/2022]
Abstract
Background To depict the prognostic landscape of gynecological cancers from the perspective of DNA methylation, alternative splicing (AS) and polyadenylation (APA) events and investigate their correlation with immune infiltrates. Methods Methylation and RNA-seq data and corresponding clinical information regarding gynecologic cancers were used to explore the relationships between changes in DNA methylation, AS and APA events and gynecologic cancer prognosis. QRT-PCR and multiple bioinformatics tools were employed to construct a gene interaction network and explore immune infiltrates. Results Only the mRNA levels of CIRBP and INPP5K were simultaneously significantly decreased in gynecologic cancers and negatively associated with overall survival, which verified by qrt-PCR. We also identified that CIRBP or INPP5K DNA methylation, AS and APA events are prognostic indicators of gynecologic cancers. The activation of T cells might be the main signaling pathway by which these genes modulate cancer progression. CIRBP/INPP5K expression is positively associated with immune infiltration and is a major risk factor of survival, especially among uterine corpus endometrial carcinoma (UCEC) patients. Conclusion According to these findings, the DNA methylation, AS and APA events of CIRBP and INPP5K may serve as important prognostic biomarkers and targets in gynecological cancers by modulating T cell infiltration.
Collapse
Affiliation(s)
- Chunliang Shang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Yuan Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Zhangxin Wu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Qin Han
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Yuan Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Tianhui He
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, People's Republic of China.,National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, People's Republic of China
| |
Collapse
|
869
|
Li L, Wei JR, Song Y, Fang S, Du Y, Li Z, Zeng TT, Zhu YH, Li Y, Guan XY. TROAP switches DYRK1 activity to drive hepatocellular carcinoma progression. Cell Death Dis 2021; 12:125. [PMID: 33500384 PMCID: PMC7838256 DOI: 10.1038/s41419-021-03422-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the common malignancy and lacks effective therapeutic targets. Here, we demonstrated that ectopic expression of trophinin-associated protein (TROAP) dramatically drove HCC cell growth assessed by foci formation in monolayer culture, colony formation in soft agar and orthotopic liver transplantation in nude mice. Inversely, silencing TROAP expression with short-hairpin RNA attenuated the malignant proliferation of HCC cells in vitro and in vivo. Next, mechanistic investigation revealed that TROAP directly bound to dual specificity tyrosine phosphorylation regulated kinase 1A/B (DYRK1A/B), resulting in the cytoplasmic retention of proteins DYRK1A/B and promoting cell cycle process via activation of Akt/GSK-3β signaling. Combination of cisplatin with an inhibitor of DYRK1 AZ191 effectively inhibited tumor growth in mouse model for HCC cells with high level of TROAP. Clinically, TROAP was significantly upregulated by miR-142-5p in HCC tissues, which predicted the poor survival of patients with HCC. Therefore, TROAP/DYRK1/Akt axis may be a promising therapeutic target and prognostic indicator for patients with HCC.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
- Department of Clinical Oncology, State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
- Department of Clinical Oncology Center, The University of Hongkong-Shenzhen Hospital, 518053, Shenzhen, China.
| | - Jia-Ru Wei
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Ye Song
- Affiliated Cancer Hospital & Institutes of Guangzhou Medical University, Guangzhou Key Medical Discipline Construction Project, 510095, Guangzhou, China
| | - Shuo Fang
- The Seventh Affiliated Hospital, Sun Yat-sen University, 518100, Shenzhen, China
| | - Yanyu Du
- The Seventh Affiliated Hospital, Sun Yat-sen University, 518100, Shenzhen, China
| | - Zhuo Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Ting-Ting Zeng
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Ying-Hui Zhu
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Yan Li
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China and Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China.
- Department of Clinical Oncology, State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
- Department of Clinical Oncology Center, The University of Hongkong-Shenzhen Hospital, 518053, Shenzhen, China.
| |
Collapse
|
870
|
Tian S, Liu J, Sun K, Liu Y, Yu J, Ma S, Zhang M, Jia G, Zhou X, Shang Y, Han Y. Systematic Construction and Validation of an RNA-Binding Protein-Associated Model for Prognosis Prediction in Hepatocellular Carcinoma. Front Oncol 2021; 10:597996. [PMID: 33575212 PMCID: PMC7870868 DOI: 10.3389/fonc.2020.597996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/07/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Evidence from prevailing studies show that hepatocellular carcinoma (HCC) is among the top cancers with high mortality globally. Gene regulation at post-transcriptional level orchestrated by RNA-binding proteins (RBPs) is an important mechanism that modifies various biological behaviors of HCC. Currently, it is not fully understood how RBPs affects the prognosis of HCC. In this study, we aimed to construct and validate an RBP-related model to predict the prognosis of HCC patients. METHODS Differently expressed RBPs were identified in HCC patients based on the GSE54236 dataset from the Gene Expression Omnibus (GEO) database. Integrative bioinformatics analyses were performed to select hub genes. Gene expression patterns were validated in The Cancer Genome Atlas (TCGA) database, after which univariate and multivariate Cox regression analyses, as well as Kaplan-Meier analysis were performed to develop a prognostic model. Then, the performance of the prognostic model was assessed using receiver operating characteristic (ROC) curves and clinicopathological correlation analysis. Moreover, data from the International Cancer Genome Consortium (ICGC) database were used for external validation. Finally, a nomogram combining clinicopathological parameters and prognostic model was established for the individual prediction of survival probability. RESULTS The prognostic risk model was finally constructed based on two RBPs (BOP1 and EZH2), facilitating risk-stratification of HCC patients. Survival was markedly higher in the low-risk group relative to the high-risk group. Moreover, higher risk score was associated with advanced pathological grade and late clinical stage. Besides, the risk score was found to be an independent prognosis factor based on multivariate analysis. Nomogram including the risk score and clinical stage proved to perform better in predicting patient prognosis. CONCLUSIONS The RBP-related prognostic model established in this study may function as a prognostic indicator for HCC, which could provide evidence for clinical decision making.
Collapse
Affiliation(s)
- Siyuan Tian
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Jingyi Liu
- Department of Radiation Oncology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Keshuai Sun
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Yansheng Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Jiahao Yu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Shuoyi Ma
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Miao Zhang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Gui Jia
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Xia Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Yulong Shang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| | - Ying Han
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
871
|
Ai JW, Zhang H, Zhou Z, Weng S, Huang H, Wang S, Shao L, Gao Y, Wu J, Ruan Q, Wang F, Jiang N, Chen J, Zhang W. Gene expression pattern analysis using dual-color RT-MLPA and integrative genome-wide association studies of eQTL for tuberculosis suscepitibility. Respir Res 2021; 22:23. [PMID: 33472618 PMCID: PMC7816316 DOI: 10.1186/s12931-020-01612-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/29/2020] [Indexed: 01/06/2023] Open
Abstract
Background When infected with Mycobacterium tuberculosis, only a small proportion of the population will develop active TB, and the role of host genetic factors in different TB infection status was not fully understood. Methods Forty-three patients with active tuberculosis and 49 with latent tuberculosis were enrolled in the prospective cohort. Expressing levels of 27 candidate mRNAs, which were previously demonstrated to differentially expressed in latent and active TB, were measured by dual color reverse transcription multiplex ligation dependent probe amplification assay (dcRT-MLPA). Using expression levels of these mRNAs as quantitative traits, associations between expression abundance and genome-wild single nucleotide polymorphisms (SNPs) were calculated. Finally, identified candidate SNPs were further assessed for their associations with TB infection status in a validation cohort with 313 Chinese Han cases. Results We identified 9 differentially expressed mRNAs including il7r, il4, il8, tnfrsf1b, pgm5, ccl19, il2ra, marco and fpr1 in the prospective cohort. Through expression quantitative trait loci mapping, we screened out 8 SNPs associated with these mRNAs. Then, CG genotype of the SNP rs62292160 was finally verified to be significantly associated with higher transcription levels of IL4 in LTBI than in TB patients. Conclusion We reported that the SNP rs62292160 in Chinese Han population may link to higher expression of il4 in latent tuberculosis. Our findings provided a new genetic variation locus for further exploration of the mechanisms of TB and a possible target for TB genetic susceptibility studies, which might aid the clinical decision to precision treatment of TB.
Collapse
Affiliation(s)
- Jing-Wen Ai
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Hanyue Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Zumo Zhou
- Department of Infectious Diseases, People's Hospital of Zhuji, 122 Huanshan South Road, Zhuji, 311800, China
| | - Shanshan Weng
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Heqing Huang
- Department of Infectious Diseases, People's Hospital of Zhuji, 122 Huanshan South Road, Zhuji, 311800, China
| | - Sen Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Lingyun Shao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Yan Gao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Jing Wu
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Qiaoling Ruan
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Feifei Wang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering and Institute of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| | - Jiazhen Chen
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China.
| | - Wenhong Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, 12 Wulumuqi Zhong Road, Shanghai, 200040, China.
| |
Collapse
|
872
|
Lv J, Zhang H, Gao Z, Zhang X, Huang X, Jia X. Prognostic value of miR-892a in gastric cancer and its regulatory effect on tumor progression. Cancer Biomark 2021; 28:247-254. [PMID: 32390603 DOI: 10.3233/cbm-191323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Gastric cancer is a prevalent malignant around the world. Aberrantly expression of microRNAs (miRNAs) contributes to the progression of tumors. The aim of this study was to investigate the expression and role of miR-892a in gastric cancer. METHODS A total of 119 gastric cancer patients were enrolled in this study. And the expression of miR-892a in gastric cancer tissues and cells was measured using RT-qPCR analysis. Kaplan-Meier plotter and multivariate Cox regression analysis were used to explore the prognostic value of miR-892a in gastric cancer. The biological function of miR-892a in gastric cancer cells was evaluated using CCK-8 assays and Transwell assays. RESULTS The expression of miR-892a was high-expressed in gastric cancer tissues and cells. The miR-892a expression was associated with tumor size, differentiation, lymph node metastasis, and TNM stages. Gastric cancer patients with high miR-892a expression showed a short overall survival rate. Overexpression of miR-892a promoted cell proliferation, migration, and invasion of gastric cancer cells. CONCLUSION miR-892a was upregulated and predictor of poor prognosis in gastric cancer patients. The miR-892a in gastric cancer cells significantly promoted cell proliferative, migratory, and invasive properties. Furthermore, miR-892a may be served as a prognostic marker as well as a therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Jingjing Lv
- Department of Pathology, Caoxian People's Hospital of Shandong, Heze, Shandong, China.,Department of Pathology, Caoxian People's Hospital of Shandong, Heze, Shandong, China
| | - Haitao Zhang
- Department of Pathology, Chengwuxian People's Hospital of Shandong, Heze, Shandong, China.,Department of Pathology, Caoxian People's Hospital of Shandong, Heze, Shandong, China
| | - Zhimei Gao
- Department of Pathology, Diseases in Caoxian Hospital of Traditional Chinese Medicine of Shandong, Heze, Shandong, China
| | - Xinyan Zhang
- Department of Clinical Laboratory, Caoxian Maternal and Child Health and Family Planning Service Center of Shandong, Heze, Shandong, China
| | - Xin Huang
- Department of Pathology, Caoxian People's Hospital of Shandong, Heze, Shandong, China
| | - Xiaojuan Jia
- Department of Pathology, Caoxian People's Hospital of Shandong, Heze, Shandong, China
| |
Collapse
|
873
|
Xu M, Ouyang T, Lv K, Ma X. Integrated WGCNA and PPI Network to Screen Hub Genes Signatures for Infantile Hemangioma. Front Genet 2021; 11:614195. [PMID: 33519918 PMCID: PMC7844399 DOI: 10.3389/fgene.2020.614195] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Infantile hemangioma (IH) is characterized by proliferation and regression. METHODS Based on the GSE127487 dataset, the differentially expressed genes (DEGs) between 6, 12, or 24 months and normal samples were screened, respectively. STEM software was used to screen the continued up-regulated or down-regulated in common genes. The modules were assessed by weighted gene co-expression network analysis (WGCNA). The enrichment analysis was performed to identified the biological function of important module genes. The area under curve (AUC) value and protein-protein interaction (PPI) network were used to identify hub genes. The differential expression of hub genes in IH and normal tissues was detected by qPCR. RESULTS There were 5,785, 4,712, and 2,149 DEGs between 6, 12, and 24 months and normal tissues. We found 1,218 DEGs were up-regulated or down-regulated expression simultaneously in common genes. They were identified as 10 co-expression modules. Module 3 and module 4 were positively or negatively correlated with the development of IH, respectively. These two module genes were significantly involved in immunity, cell cycle arrest and mTOR signaling pathway. The two module genes with AUC greater than 0.8 at different stages of IH were put into PPI network, and five genes with the highest degree were identified as hub genes. The differential expression of these genes was also verified by qRTPCR. CONCLUSION Five hub genes may distinguish for proliferative and regressive IH lesions. The WGCNA and PPI network analyses may help to clarify the molecular mechanism of IH at different stages.
Collapse
Affiliation(s)
| | | | - Kaiyang Lv
- Department of Plastic and Reconstructive Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaorong Ma
- Department of Plastic and Reconstructive Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
874
|
Gagaoua M, Troy D, Mullen AM. The Extent and Rate of the Appearance of the Major 110 and 30 kDa Proteolytic Fragments during Post-Mortem Aging of Beef Depend on the Glycolysing Rate of the Muscle and Aging Time: An LC-MS/MS Approach to Decipher Their Proteome and Associated Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:602-614. [PMID: 33377770 DOI: 10.1021/acs.jafc.0c06485] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Post-mortem (p-m) muscle undergoes a myriad of complex physical and biochemical changes prior to its conversion to meat, which are influential on proteolysis and hence tenderization. A more in-depth understanding of the mechanisms underpinning these dynamics is a key to consistently providing tender beef. Using an LC-MS/MS approach, with state-of-art mass spectrometry Q Exactive HF-X, the proteome and associated pathways contributing to the appearance of the proteolytic breakdown products appearing over 14 days p-m, at two important molecular weights (110 and 30 kDa) on 1D SDS-PAGE gels, have been investigated in beef longissimus thoracis et lumborum muscles exhibiting four rates of pH decline differentiated on the basis of time at pH 6 (fast glycolysing, <3 h; medium, 3-5 h; slow, 5-8 h; and very slow, 8+ h). Both 110 and 30 kDa bands appeared during aging and increased in intensity as a function of p-m time in a pH decline-dependent manner. The 110 kDa band appeared as early as 3 h p-m and displayed an incremental increase in all groups through to 14 days p-m. From 2 days p-m, this increase in abundance during aging was significantly (P < 0.001) influenced by the glycolytic rate: fast > or = medium > slow > very slow. The day 2 p-m appearance of the 30 kDa band was most evident for the fast glycolysing muscle with little or no evidence of appearance in slow and very slow. For days 7 and 14 p-m, the strength of appearance was dependent on glycolysing groups fast > medium > or = slow > very slow. LC-MS/MS analysis yielded a total of 22 unique proteins for the 110 kDa fragment and 13 for the 30 kDa, with 4 common proteins related to both the actin and fibrinogen complex. The Gene Ontology analysis revealed that a myriad of biological pathways are influential with many related to proteins involved primarily in muscle contraction and structure. Other pathways of interest include energy metabolism, apoptotic mitochondrial changes, calcium and ion transport, and so on. Interestingly, most of the proteins composing the fragments were so far identified as biomarkers of beef tenderness and other quality traits.
Collapse
Affiliation(s)
- Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Declan Troy
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Anne Maria Mullen
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland
| |
Collapse
|
875
|
Identifying breast cancer subtypes associated modules and biomarkers by integrated bioinformatics analysis. Biosci Rep 2021; 41:227295. [PMID: 33313822 PMCID: PMC7796196 DOI: 10.1042/bsr20203200] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most common form of cancer afflicting women worldwide. Patients with breast cancer of different molecular classifications need varied treatments. Since it is known that the development of breast cancer involves multiple genes and functions, identification of functional gene modules (clusters of the functionally related genes) is indispensable as opposed to isolated genes, in order to investigate their relationship derived from the gene co-expression analysis. In total, 6315 differentially expressed genes (DEGs) were recognized and subjected to the co-expression analysis. Seven modules were screened out. The blue and turquoise modules have been selected from the module trait association analysis since the genes in these two modules are significantly correlated with the breast cancer subtypes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment show that the blue module genes engaged in cell cycle, DNA replication, p53 signaling pathway, and pathway in cancer. According to the connectivity analysis and survival analysis, 8 out of 96 hub genes were filtered and have shown the highest expression in basal-like breast cancer. Furthermore, the hub genes were validated by the external datasets and quantitative real-time PCR (qRT-PCR). In summary, hub genes of Cyclin E1 (CCNE1), Centromere Protein N (CENPN), Checkpoint kinase 1 (CHEK1), Polo-like kinase 1 (PLK1), DNA replication and sister chromatid cohesion 1 (DSCC1), Family with sequence similarity 64, member A (FAM64A), Ubiquitin Conjugating Enzyme E2 C (UBE2C) and Ubiquitin Conjugating Enzyme E2 T (UBE2T) may serve as the prognostic markers for different subtypes of breast cancer.
Collapse
|
876
|
|
877
|
Aoki Y, Sujino T, Takabayashi K, Mutakuchi M, Emoto K, Hosoe N, Ogata H, Kanai T. Various Endoscopic Features in Monomorphic Epitheliotropic Intestinal T-Cell Lymphoma. Case Rep Gastroenterol 2021; 15:312-322. [PMID: 33790720 PMCID: PMC7989822 DOI: 10.1159/000513902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/11/2020] [Indexed: 12/15/2022] Open
Abstract
A 77-year-old female who had an acute severe abdominal pain was taken to the emergency room in the previous hospital. CT scans showed jejunum and ileum wall thickening and fatty deposits around the small intestinal tract, and gastrointestinal perforation could not be ruled out. By using single anal and oral balloon endoscopy, we observed mild edema with petechial erythema, shallow erosions with edematous mucosa and ulcers with surrounded disrupted villous structures at the jejunum and ileum. Histological analysis revealed atypical lymphocytes infiltrating the small intestinal mucosa demonstrating intraepithelial lymphocytosis. Immunohistochemical staining revealed that CD3, CD7, and CD56 staining was positive, and CD4, CD5, and CD8 staining was negative in infiltrated lymphocytes. We made the diagnosis of monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL) with the combination of HE staining and IHC. PET-CT showed abnormal uptake in irregular wall thickening of the small intestine, lymph nodes, ribs, spine and pelvic bone. She was treated with chemotherapy (etoposide, prednisolone, oncovin, cyclophosphamide, hydroxydaunorubicin) and is still alive 1 year after the diagnosis. We reported the various endoscopic findings in the same MEITL patient by using single balloon endoscopy. We also summarized endoscopic characteristics of MEITL patients.
Collapse
Affiliation(s)
- Yasuhiro Aoki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Tomohisa Sujino
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kaoru Takabayashi
- Center for Diagnostic and Therapeutic Endoscopy, School of Medicine, Keio University, Tokyo, Japan
| | - Makoto Mutakuchi
- Center for Diagnostic and Therapeutic Endoscopy, School of Medicine, Keio University, Tokyo, Japan
| | - Katsura Emoto
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Naoki Hosoe
- Center for Diagnostic and Therapeutic Endoscopy, School of Medicine, Keio University, Tokyo, Japan
| | - Haruhiko Ogata
- Center for Diagnostic and Therapeutic Endoscopy, School of Medicine, Keio University, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
878
|
Comprehensive Analysis of lncRNAs Related to the Prognosis of Esophageal Cancer Based on ceRNA Network and Cox Regression Model. BIOMED RESEARCH INTERNATIONAL 2021; 2020:3075729. [PMID: 33381546 PMCID: PMC7748909 DOI: 10.1155/2020/3075729] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/15/2020] [Accepted: 11/21/2020] [Indexed: 01/10/2023]
Abstract
Background Esophageal cancer is one of the most deadly malignant tumors. Among the common malignant tumors in the world, esophageal cancer is ranked seventh, which has a high mortality rate. Long noncoding RNAs (lncRNAs) play an important role in the occurrence and development of various tumors. lncRNAs can competitively bind microRNAs (miRNAs) with mRNA, which can regulate the expression level of the encoded gene at the posttranscriptional level. This regulatory mechanism is called the competitive endogenous RNA (ceRNA) hypothesis, and ceRNA has important research value in tumor-related research. However, the regulation of lncRNAs is less studied in the study of esophageal cancer. Methods The Cancer Genome Atlas (TCGA) database was used to download transcriptome profiling data of esophageal cancer. Gene expression quantification data contains 160 cancer samples and 11 normal samples. These data were used to identify differentially expressed lncRNAs and mRNAs. miRNA expression data includes 185 cancer samples and 13 normal samples. The differentially expressed RNAs were identified using the edgeR package in R software. Then, the miRcode database was used to predict miRNAs that bind to lncRNAs. MiRTarBase, miRDB, and TargetScan databases were used to predict the target genes of miRNAs. Cytoscape software was used to draw ceRNA network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using DAVID 6.8. Finally, multifactor cox regression was used to screen lncRNAs related to prognosis. Results We have screened 1331 DElncRNAs, 3193 DEmRNAs, and 162 DEmiRNAs. Among them, the ceRNA network contains 111 lncRNAs, 11 miRNAs, and 63 DEmRNAs. Finally, we established a prediction model containing three lncRNAs through multifactor Cox regression analysis. Conclusions Our research screened out three independent prognostic lncRNAs from the ceRNA network and constructed a risk assessment model. This is helpful to understand the regulatory role of lncRNAs in esophageal cancer.
Collapse
|
879
|
Hong GQ, Cai D, Gong JP, Lai X. Innate immune cells and their interaction with T cells in hepatocellular carcinoma. Oncol Lett 2021; 21:57. [PMID: 33281968 PMCID: PMC7709558 DOI: 10.3892/ol.2020.12319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/08/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor and is associated with necroinflammation driven by various immune cells, such as dendritic cells, macrophages and natural killer cells. Innate immune cells can directly affect HCC or regulate the T-cell responses that mediate HCC. In addition, innate immune cells and T cells are not isolated, which means the interaction between them is important in the HCC microenvironment. Considering the current unsatisfactory efficacy of immunotherapy in patients with HCC, understanding the relationship between innate immune cells and T cells is necessary. In the present review the roles and clinical value of innate immune cells that have been widely reported to be involved in HCC, including dendritic cells, macrophages (including kupffer cells), neutrophils, eosinophils, basophils and innate lymphoid cells and the crosstalk between the innate and adaptive immune responses in the antitumor process have been discussed. The present review will facilitate researchers in understanding the importance of innate immune cells in HCC and lead to innovative immunotherapy approaches for the treatment of HCC.
Collapse
Affiliation(s)
- Guo-Qing Hong
- Department of Hepatobiliary and Thyroid Breast Surgery, Tongnan District People's Hospital, Chongqing 402660, P.R. China
| | - Dong Cai
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Jian-Ping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Xing Lai
- Department of Hepatobiliary and Thyroid Breast Surgery, Tongnan District People's Hospital, Chongqing 402660, P.R. China
- Correspondence to: Dr Xing Lai, Department of Hepatobiliary and Thyroid Breast Surgery, Tongnan District People's Hospital, 271 Datong, Tongnan, Chongqing 402660, P.R. China, E-mail:
| |
Collapse
|
880
|
Comprehensive Analysis of mRNA Expression Profiles in Head and Neck Cancer by Using Robust Rank Aggregation and Weighted Gene Coexpression Network Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4908427. [PMID: 33376725 PMCID: PMC7746451 DOI: 10.1155/2020/4908427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/02/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022]
Abstract
Background Head and neck squamous cell cancer (HNSCC) is the sixth most common cancer in the world; its pathogenic mechanism remains to be further clarified. Methods Robust rank aggregation (RRA) analysis was utilized to identify the metasignature dysregulated genes, which were then used for potential drug prediction. Weighted gene coexpression network analysis (WGCNA) was performed on all metasignature genes to find hub genes. DNA methylation analysis, GSEA, functional annotation, and immunocyte infiltration analysis were then performed on hub genes to investigate their potential role in HNSCC. Result A total of 862 metasignature genes were identified, and 6 potential drugs were selected based on these genes. Based on the result of WGCNA, six hub genes (ITM2A, GALNTL1, FAM107A, MFAP4, PGM5, and OGN) were selected (GS > 0.1, MM > 0.75, GS p value < 0.05, and MM p value < 0.05). All six genes were downregulated in tumor tissue (FDR < 0.01) and were related to the clinical stage and prognosis of HNSCC in different degrees. Methylation analysis showed that the dysregulation of ITM2A, GALNTL1, FAM107A, and MFAP4 may be caused by hypermethylation. Moreover, the expression level of all 6 hub genes was positively associated with immune cell infiltration, and the result of GSEA showed that all hub genes may be involved in the process of immunoregulation. Conclusion All identified hub genes could be potential biomarkers for HNSCC and provide a new insight into the diagnosis and treatment of head and neck tumors.
Collapse
|
881
|
Xing C, Sun SG, Yue ZQ, Bai F. Role of lncRNA LUCAT1 in cancer. Biomed Pharmacother 2020; 134:111158. [PMID: 33360049 DOI: 10.1016/j.biopha.2020.111158] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Accepted: 12/14/2020] [Indexed: 02/09/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNA molecules with a transcript length of more than 200 nt and lack a protein-coding ability. They regulate gene expression by interacting with protein, RNA, and DNA. Their function is closely related to their subcellular localization. In the nucleus, lncRNAs regulate gene expression at the epigenetic and transcriptional levels, and in the cytoplasm, they regulate gene expression at the post-transcriptional and translational levels. Abnormalities in lncRNAs have been confirmed to exhibit tumor suppressor or carcinogenic effects and play an important role in the development of tumors. In particular, the lung cancer-related transcript 1 (LUCAT1) located in the antisense strand of the q14.3 region of chromosome 5 was first discovered in smoking-related lung cancer. Increasing evidence have showed that LUCAT1 is involved in breast cancer, ovarian cancer, thyroid cancer, renal cell carcinoma. It is highly expressed in liver cancer and other malignant tumors and has been confirmed to be induce various malignant tumors. It regulates tumor proliferation, invasion, and migration via various mechanisms and is related to the clinicopathological characteristics of tumor patients. Thus, LUCAT1 is a potential prognostic biological marker and therapeutic target for cancer. This article reviews its expression, function, and molecular mechanism in various malignant tumors.
Collapse
Affiliation(s)
- Ce Xing
- Lanzhou University Second Hospital, Department of Cardiology, 82 Cuiying Men, Lanzhou, 730030, PR China
| | - Shou-Gang Sun
- Lanzhou University Second Hospital, Department of Cardiology, 82 Cuiying Men, Lanzhou, 730030, PR China
| | - Zhi-Quan Yue
- Lanzhou University Second Hospital, Department of Cardiology, 82 Cuiying Men, Lanzhou, 730030, PR China
| | - Feng Bai
- Lanzhou University Second Hospital, Department of Cardiology, 82 Cuiying Men, Lanzhou, 730030, PR China.
| |
Collapse
|
882
|
Jia Y, Chen Y, Liu J. Prognosis-Predictive Signature and Nomogram Based on Autophagy-Related Long Non-coding RNAs for Hepatocellular Carcinoma. Front Genet 2020; 11:608668. [PMID: 33424932 PMCID: PMC7793718 DOI: 10.3389/fgene.2020.608668] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/08/2020] [Indexed: 12/24/2022] Open
Abstract
Autophagy plays a vital role in hepatocellular carcinoma (HCC) pathogenesis. Long non-coding RNAs (lncRNAs) are considered regulators of autophagy, and the aim of the present study was to investigate the prognostic value of autophagy-related lncRNA (ARlncRNA) and develop a new prognostic signature to predict the 1-year and 3-year overall survival (OS) of HCC patients. Transcriptome and clinical survival information of HCC patients was obtained from The Cancer Genome Atlas database. A set of ARlncRNAs was identified by co-expression analysis, from which seven ARlncRNAs (AC005229.4, AL365203.2, AL117336.3, AC099850.3, ELFN1-AS1, LUCAT1, and AL031985.3) were selected for use as a predictive signature. Risk scores were derived for each patient, who were then divided into high-risk and low-risk groups according to the median risk value. The OS of high-risk patients was significantly lower than that of low-risk patients (P < 0.0001). The 1- and 3-year time-dependent ROC curves were used to evaluate the predictive ability of the risk score (AUC = 0.785 of 1 year, 0.710 of 3 years), and its predictive ability was found to be better than TNM stage. Moreover, the risk score was significantly, linearly related to pathological grade and TNM stage (P < 0.05). Overall, a novel nomogram to predict the 1-year and 3-year OS of HCC patients was developed, which shows good reliability and accuracy, for use in improved treatment decision-making.
Collapse
Affiliation(s)
- Yu Jia
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, China.,First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yan Chen
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, China.,First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Jiansheng Liu
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, China.,First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
883
|
Lu S, Dai M, Hu X, Yi H, Zhang Y. A new survival model based on ion channel genes for prognostic prediction in hepatocellular carcinoma. Genomics 2020; 113:171-182. [PMID: 33340691 DOI: 10.1016/j.ygeno.2020.12.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/30/2020] [Accepted: 12/15/2020] [Indexed: 01/05/2023]
Abstract
Accumulating studies revealed the vital role of ion channels in cancers, but the prognosis role of ion channels in hepatocellular carcinoma (HCC) remains limited. Here, we developed and validated an ion channel signature for prognostic prediction of HCC patients. In total, 35 differential expressed ion channel genes (DEChannelGs) were identified in HCC and a novel ion channel risk model was established for HCC prognosis prediction using the TCGA cohort, which was validated using the ICGC cohort. Moreover, this risk model was an independent prognostic factor and was associated with the immune microenvironment in HCC. Finally, the mRNA and protein levels of ANO10 and CLCN2 were prominently up-regulated and were related to the poor prognosis of HCC patients. Taken together, these results indicated a novel ion channel risk model as a prognostic biomarker for HCC patients and provided further insight into its immunoregulatory mechanism in HCC progression.
Collapse
Affiliation(s)
- Shanshan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Minhui Dai
- Department of Ophthalmology, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China
| | - Xingwang Hu
- Department of Infectious Diseases/ Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, Hunan 41008, China.
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, 87# Xiangya Road, Changsha, Hunan 410008, China; The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yiya Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
884
|
Liang C, Niu J, Wang X, Zhang ZS, Yang RH, Yao X, Liu FY, Li WQ, Pei SH, Sun H, Wang CJ, Fang D, Xie SQ. P300-dependent acetylation of histone H3 is required for epidermal growth factor receptor-mediated high-mobility group protein A2 transcription in hepatocellular carcinoma. Cancer Sci 2020; 112:679-690. [PMID: 33164305 PMCID: PMC7894021 DOI: 10.1111/cas.14729] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 12/24/2022] Open
Abstract
High‐mobility group protein A2 (HMGA2) is highly expressed in hepatocellular carcinoma (HCC) cells and contributes to tumor metastasis and poor patient survival. However, the molecular mechanism through which HMGA2 is transcriptionally regulated in HCC cells remains largely unclear. Here, we showed that the expression HMGA2 was upregulated in HCC, and that elevated HMGA2 could promote tumor metastasis. Incubation of HCC cells with epidermal growth factor (EGF) could promote the expression of HMGA2 mRNA and protein. Mechanistic studies suggested that EGF can phosphorylate p300 at Ser1834 residue through the PI3K/Akt signaling pathway in HCC cells. Knockdown of p300 can reverse EGF‐induced HMGA2 expression and histone H3‐K9 acetylation, whereas a phosphorylation‐mimic p300 S1834D mutant can stimulate HMGA2 expression as well as H3‐K9 acetylation in HCC cells. Furthermore, we identified that p300‐mediated H3‐K9 acetylation participates in EGF‐induced HMGA2 expression in HCC. In addition, the levels of H3‐K9 acetylation positively correlated with the expression levels of HMGA2 in a chemically induced HCC model in rats and human HCC specimens.
Collapse
Affiliation(s)
- Chao Liang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Jie Niu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Xiao Wang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Zhan-Sheng Zhang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Ruo-Han Yang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Xin Yao
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Fan-Ye Liu
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Wen-Qi Li
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Shu-Hua Pei
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Hua Sun
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Chao-Jie Wang
- The Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, China
| | - Dong Fang
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China
| | - Song-Qiang Xie
- Institute for Innovative Drug Design and Evaluation, School of Pharmacy, Henan University, Kaifeng, China.,Institute of Chemical Biology, School of Pharmacy, Henan University, Kaifeng, China
| |
Collapse
|
885
|
Anti-Inflammatory Flavonolignans from Triticum aestivum Linn. Hull. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238656] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Wheat (Triticum aestivum Linn.; Poaceae) is a very common and important food grain and ranks second in total cereal crop production. A large amount of wheat hull is produced after threshing that, as the non-food part of wheat, is agro-waste, accounting for 15~20% of the wheat. This study aimed at biologically and phytochemically investigating wheat hull for its valorization as a by-product. In our ongoing search for natural product-derived anti-inflammatory agents, T. aestivum hull was evaluated for its nitric oxide (NO) production inhibition in lipopolysaccharide (LPS)-activated RAW 264.7 cells, and the phytochemical investigation of the ethyl acetate fraction showing inhibitory effect led to the isolation of a flavone (1) and seven flavonolignans (2–8). Compounds 2–8 have not yet been isolated from Triticum species. All compounds were evaluated for their LPS-induced NO production inhibition, and 1, 2, 4, 6, and 8 exhibited inhibitory effects with IC50 values ranging from 24.14 to 58.95 μM. These results suggest the potential of using T. aestivum hull as a source for producing anti-inflammatory components, enhancing its valorization as a by-product.
Collapse
|
886
|
Hong M, Tao S, Zhang L, Diao LT, Huang X, Huang S, Xie SJ, Xiao ZD, Zhang H. RNA sequencing: new technologies and applications in cancer research. J Hematol Oncol 2020; 13:166. [PMID: 33276803 PMCID: PMC7716291 DOI: 10.1186/s13045-020-01005-x] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, RNA sequencing has significantly progressed, becoming a paramount approach for transcriptome profiling. The revolution from bulk RNA sequencing to single-molecular, single-cell and spatial transcriptome approaches has enabled increasingly accurate, individual cell resolution incorporated with spatial information. Cancer, a major malignant and heterogeneous lethal disease, remains an enormous challenge in medical research and clinical treatment. As a vital tool, RNA sequencing has been utilized in many aspects of cancer research and therapy, including biomarker discovery and characterization of cancer heterogeneity and evolution, drug resistance, cancer immune microenvironment and immunotherapy, cancer neoantigens and so on. In this review, the latest studies on RNA sequencing technology and their applications in cancer are summarized, and future challenges and opportunities for RNA sequencing technology in cancer applications are discussed.
Collapse
Affiliation(s)
- Mingye Hong
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Shuang Tao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Ling Zhang
- Health Science Center, The University of Texas, Houston, 77030, USA
| | - Li-Ting Diao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xuanmei Huang
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Shaohui Huang
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China
| | - Shu-Juan Xie
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zhen-Dong Xiao
- Biotherapy Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Hua Zhang
- Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
887
|
Hong W, Liang L, Gu Y, Qi Z, Qiu H, Yang X, Zeng W, Ma L, Xie J. Immune-Related lncRNA to Construct Novel Signature and Predict the Immune Landscape of Human Hepatocellular Carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:937-947. [PMID: 33251044 PMCID: PMC7670249 DOI: 10.1016/j.omtn.2020.10.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022]
Abstract
The signature composed of immune-related long noncoding ribonucleic acids (irlncRNAs) with no requirement of specific expression level seems to be valuable in predicting the survival of patients with hepatocellular carcinoma (HCC). Here, we retrieved raw transcriptome data from The Cancer Genome Atlas (TCGA), identified irlncRNAs by co-expression analysis, and recognized differently expressed irlncRNA (DEirlncRNA) pairs using univariate analysis. In addition, we modified Lasso penalized regression. Then, we compared the areas under curve, counted the Akaike information criterion (AIC) values of 5-year receiver operating characteristic curve, and identified the cut-off point to set up an optimal model for distinguishing the high- or low-disease-risk groups among patients with HCC. We then reevaluated them from the viewpoints of survival, clinic-pathological characteristics, tumor-infiltrating immune cells, chemotherapeutics efficacy, and immunosuppressed biomarkers. 36 DEirlncRNA pairs were identified, 12 of which were included in a Cox regression model. After regrouping the patients by the cut-off point, we could more effectively differentiate between them based on unfavorable survival outcome, aggressive clinic-pathological characteristics, specific tumor immune infiltration status, low chemotherapeutics sensitivity, and highly expressed immunosuppressed biomarkers. The signature established by paring irlncRNA regardless of expression levels showed a promising clinical prediction value.
Collapse
Affiliation(s)
- Weifeng Hong
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Li Liang
- Departments of Medical Oncology, Zhongshan Hospital of Fudan University, Shanghai 200032, China
- Corresponding author: Li Liang, Departments of Medical Oncology, Zhongshan Hospital of Fudan University, Shanghai 200032, China.
| | - Yujun Gu
- Department of Ultrasonic Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510000, China
| | - Zhenhua Qi
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| | - Haibo Qiu
- Department of Gastric and Pancreatic Surgery, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| | - Xiaosong Yang
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| | - Weian Zeng
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
| | - Liheng Ma
- Department of Medical Imaging, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, China
| | - Jingdun Xie
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China
- Corresponding author: Jingdun Xie, Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
888
|
Shan Y, Yang G, Huang H, Zhou Y, Hu X, Lu Q, Guo P, Hou J, Cao L, Tian F, Pan Q. Ubiquitin-Like Modifier Activating Enzyme 1 as a Novel Diagnostic and Prognostic Indicator That Correlates With Ferroptosis and the Malignant Phenotypes of Liver Cancer Cells. Front Oncol 2020; 10:592413. [PMID: 33344241 PMCID: PMC7744729 DOI: 10.3389/fonc.2020.592413] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Ferroptosis is a type of cell death that is iron dependent, a characteristic that distinguishes it from necrosis, apoptosis, and autophagy. However, the ferroptotic mechanisms for hepatitis B virus-associated hepatocellular carcinoma (HCC) remain incompletely described. METHODS Two hepatitis B virus-associated HCC public datasets, GSE22058 (n=192) and GSE54238 (n=23), were obtained from the NCBI Gene Expression Omnibus (GEO) database. Bioinformatics methods, including weighted gene coexpression network analysis (WGCNA), Cox regression, and LASSO analysis, were used to identify signature markers for diagnosis and prognosis. CCK8, wound healing, Transwell migration/invasion, and ferroptosis assays were employed to explore the biological function of novel candidate markers weight gene coexpression network analysis. RESULTS In total, 926 differentially expressed genes (DEGs) were common between the GSE22058 and GSE54238 datasets. Following WGCNA, 515 DEGs derived from the MEturquoise gene module were employed to establish diagnosis and prognosis models in The Cancer Genome Atlas (TCGA) HCC RNA-Seq cohort (n=423). The score of the diagnostic model was strikingly upregulated in the TCGA HCC group (p<2.2e-16). The prognostic model exhibited high specificity and sensitivity in both training and validation (AUC=0.835 and 0.626, respectively), and the high-risk group showed dismal prognostic outcomes compared with the low-risk group (training: p=1.416e-10; validation: p=4.495e-02). Ubiquitin-like modifier activating enzyme 1 (UBA1) was identified among both diagnosis and prognosis signature genes, and its overexpression was associated with poor survival. We validated the expression level of UBA1 in eight pairs of HCC patient tissues and liver cancer cell lines. UBA1 silencing decreased proliferation, migration, and invasion in Huh7 cells while elevating the Fe2+ and malondialdehyde (MDA) levels. Additionally, these biological effects were recovered by oltipraz (an Nrf2 activator). Furthermore, blocking UBA1 strikingly repressed the protein expression levels of Nrf2, HO-1, NQO1, and FTH1 in the Nrf2 signal transduction pathway. CONCLUSION Our findings demonstrated that UBA1 participates in the development of HCC by modulating Huh7 phenotypes and ferroptosis via the Nrf2 signal transduction pathway and might be a promising diagnostic and prognostic indicator for HCC.
Collapse
Affiliation(s)
- Yiru Shan
- Department of Oncology, Jiulongpo People’s Hospital of Chongqing, Chongqing, China
| | - Guang Yang
- Department of Urology Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haixia Huang
- Department of Critical Care Medicine, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, China international Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Yehan Zhou
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiangyu Hu
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Qiuhong Lu
- Department of Orthopaedics, Jiulongpo People’s Hospital of Chongqing, Chongqing, China
| | - Peng Guo
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jun Hou
- Department of Pathology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Cao
- Department of Patient Service Center, Jiulongpo People’s Hospital of Chongqing, Chongqing, China
| | - Fuhua Tian
- Department of Oncology, Jiulongpo People’s Hospital of Chongqing, Chongqing, China
| | - Qi Pan
- Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
- College of Bioengineering, “111 Project” Laboratory of Biomechanics & Tissue Repair Engineering, Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing, China
| |
Collapse
|
889
|
Gustafsson R, Eckhard U, Ye W, Enbody ED, Pettersson M, Jemth P, Andersson L, Selmer M. Structure and Characterization of Phosphoglucomutase 5 from Atlantic and Baltic Herring-An Inactive Enzyme with Intact Substrate Binding. Biomolecules 2020; 10:E1631. [PMID: 33287293 PMCID: PMC7761743 DOI: 10.3390/biom10121631] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022] Open
Abstract
Phosphoglucomutase 5 (PGM5) in humans is known as a structural muscle protein without enzymatic activity, but detailed understanding of its function is lacking. PGM5 belongs to the alpha-D-phosphohexomutase family and is closely related to the enzymatically active metabolic enzyme PGM1. In the Atlantic herring, Clupea harengus, PGM5 is one of the genes strongly associated with ecological adaptation to the brackish Baltic Sea. We here present the first crystal structures of PGM5, from the Atlantic and Baltic herring, differing by a single substitution Ala330Val. The structure of PGM5 is overall highly similar to structures of PGM1. The structure of the Baltic herring PGM5 in complex with the substrate glucose-1-phosphate shows conserved substrate binding and active site compared to human PGM1, but both PGM5 variants lack phosphoglucomutase activity under the tested conditions. Structure comparison and sequence analysis of PGM5 and PGM1 from fish and mammals suggest that the lacking enzymatic activity of PGM5 is related to differences in active-site loops that are important for flipping of the reaction intermediate. The Ala330Val substitution does not alter structure or biophysical properties of PGM5 but, due to its surface-exposed location, could affect interactions with protein-binding partners.
Collapse
Affiliation(s)
- Robert Gustafsson
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden; (R.G.); (U.E.)
| | - Ulrich Eckhard
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden; (R.G.); (U.E.)
| | - Weihua Ye
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23 Uppsala, Sweden; (W.Y.); (E.D.E.); (M.P.); (P.J.); (L.A.)
| | - Erik D. Enbody
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23 Uppsala, Sweden; (W.Y.); (E.D.E.); (M.P.); (P.J.); (L.A.)
| | - Mats Pettersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23 Uppsala, Sweden; (W.Y.); (E.D.E.); (M.P.); (P.J.); (L.A.)
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23 Uppsala, Sweden; (W.Y.); (E.D.E.); (M.P.); (P.J.); (L.A.)
| | - Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, SE-751 23 Uppsala, Sweden; (W.Y.); (E.D.E.); (M.P.); (P.J.); (L.A.)
- Department of Veterinary Integrative Biosciences, Texas A & M University, College Station, TX 77843, USA
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Maria Selmer
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden; (R.G.); (U.E.)
| |
Collapse
|
890
|
Effective inhibition of MYC-amplified group 3 medulloblastoma by FACT-targeted curaxin drug CBL0137. Cell Death Dis 2020; 11:1029. [PMID: 33268769 PMCID: PMC7710710 DOI: 10.1038/s41419-020-03201-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/15/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022]
Abstract
Medulloblastoma (MB) is the most common malignant pediatric brain tumor that can be categorized into four major molecular subgroups. Group 3 MB with MYC amplification (MYCamp-G3-MB) has been shown to be highly aggressive and exhibited worst prognosis, indicating the need for novel effective therapy most urgently. A few epigenetic targeted therapeutic strategies have recently been proven to effectively treat preclinical models of MYCamp-G3-MB, including BET inhibition, HDAC inhibition and SETD8 inhibition, unveiling a promising direction for further investigation. In this study, we carried out systemic bioinformatic analyses of public-available MB datasets as well as functional genomic screening datasets of primary MYCamp-G3-MB lines to search for other potential therapeutic targets within epigenetic modulators. We identified SSRP1, a subunit of histone-chaperone FACT complex, to be the top drug target candidate as it is highly cancer-dependent in whole-genome CRISPR-Cas9 screening across multiple MYCamp-G3-MB lines; significantly upregulated in MYCamp-G3-MB compared to normal cerebellum and most of the rest MB subtypes; its higher expression is correlated with worse prognosis; and it has a blood-brain-barrier penetrable targeted drug that has entered early phase human clinical trials already. Then we utilized RNA-interference approach to verify the cancer-dependency of SSRP1 in multiple MYCamp-G3-MB lines and further confirmed the therapeutic efficacy of FACT-targeted curaxin drug CBL0137 on treating preclinical models of MYCamp-G3-MB in vitro and in vivo, including an orthotopic intracranial xenograft model. Mechanistically, transcriptome analyses showed CBL0137 preferentially suppressed cell-cycle and DNA-repair related biological processes. Moreover, it selectively disrupted transcription of MYC and NEUROD1, two critical oncogenic transcription factors of MYCamp-G3-MB, via depleting FACT complex from their promoter regions. In summary, our study demonstrates FACT-targeted CBL0137 works effectively on treating MYCamp-G3-MB, presenting another promising epigenetic-targeted therapeutic strategy against the most devastating form of MB.
Collapse
|
891
|
Kong J, Shen S, Zhang Z, Wang W. Identification of hub genes and pathways in cholangiocarcinoma by coexpression analysis. Cancer Biomark 2020; 27:505-517. [PMID: 32116234 DOI: 10.3233/cbm-190038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is the most common biliary malignancy worldwide. However, the molecular mechanisms of its tumorigenesis and progression are still largely unclear. OBJECTIVE This study aimed to explore the hub genes and pathways associated with CCA prognosis by coexpression analysis. METHODS A coexpression network complex was constructed using the top 20% most variant genes in the GSE89748 dataset to find modules associated with prognosis related clinical trait-histology. The hub genes in the clinically significant modules were defined as candidates if they were common in both the coexpression network and protein-protein interaction (PPI) network. Afterwards, survival analysis, expression level analysis and a series of bioinformatic analysis were used to validate the hub genes. RESULTS Twenty-five modules were obtained, and the cyan, light cyan and red modules regarded as closely associated with histology were selected. Subsequently, combining the PPI network complexes and coexpression networks, we screened 20 candidates. After expression and survival analysis, 10 real hub genes (LIMA1, HDAC1, ITGA3, ACTR3, GSK3B, ITGA2, THOC2, PTGES3, HEATR1 and ILF2) were finally identified. Additionally, functional enrichment analysis revealed that the hub genes were mainly enriched in cell cycle-related pathways. CONCLUSIONS Overall, this study identified 10 hub genes and cell cycle-related pathways were closely related to CCA development, progression and prognosis, which may contribute to CCA diagnosis and treatment.
Collapse
|
892
|
Wang JF, Wang Y, Zhang SW, Chen YY, Qiu Y, Duan SY, Li BP, Chen JQ. Expression and Prognostic Analysis of Integrins in Gastric Cancer. JOURNAL OF ONCOLOGY 2020; 2020:8862228. [PMID: 33335550 PMCID: PMC7722456 DOI: 10.1155/2020/8862228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Integrins are involved in the biological process of a variety of cancers, but their importance in the diagnosis and prognosis of gastric cancer (GC) is still unclear. Therefore, this study aimed at exploring the significance of ITG gene expression in GC to evaluate its diagnosis and prognosis. METHODS GEPIA data were used to evaluate the mRNA expression of ITG genes in GC patients. The prognostic value of these genes was assessed by analyzing their mRNA expression using the Kaplan-Meier curve. The biological function of ITG genes was evaluated by GC tissue sequencing combined with GSEA bioinformatics. Based on the sequencing data, ITGA5 with the largest expression difference was selected for verification, and RT-PCR was used to verify its mRNA expression level in 40 pairs of GC and normal tissues. RESULTS ITG (A2, A3, A4, A5, A6, A11, AE, AL, AM, AV, AX, B1, B2, B4, B5, B6, and B8) was highly expressed in GC tissues, while ITGA8 was low, compared with their expression in normal tissues. RNA-seq data shows that ITG (A2, A5, A11, AV, and B1) expression was associated with poor prognosis and overall survival. In addition, combined with the results of GC tissue mRNA sequencing, it was further found that the differentially expressed genes in the ITGs genes. ITGA5 was highly expressed in GC tissues compared with its expression in normal tissues, as evaluated by qRT-PCR (P < 0.001) and ROC (P < 0.001, AUC (95% CI) = 0.747 (0.641-0.851)), and confirmed that ITGA5 expression was a potential diagnostic marker for GC. Bioinformatics analysis revealed that the signaling pathway involved in ITGA5 was mainly enriched in focal adhesion, ECM-receptor interaction, and PI3K-AKT and was mainly involved in biological processes such as cell adhesion, extracellular matrix, and cell migration. CONCLUSION This study suggested that ITGs were associated with the diagnosis and prognosis of GC and discovered the prognostic value and biological role of ITGA5 in GC. Thus, ITGA5 might be used as a potential diagnostic marker for GC.
Collapse
Affiliation(s)
- Jun-Fu Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ye Wang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Si-Wen Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Ye-Yang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yue Qiu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Shao-Yi Duan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Bo-Pei Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Jun-Qiang Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
893
|
Szakacs G, Abele R. An inventory of lysosomal ABC transporters. FEBS Lett 2020; 594:3965-3985. [DOI: 10.1002/1873-3468.13967] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/23/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Gergely Szakacs
- Institute of Enzymology Research Centre of Natural Sciences Eötvös Loránd Research Network Budapest Hungary
- Institute of Cancer Research Medical University of Vienna Vienna Austria
| | - Rupert Abele
- Institute of Biochemistry Goethe‐University Frankfurt am Main Frankfurt am Main Germany
| |
Collapse
|
894
|
Lu S, Sun C, Chen H, Zhang C, Li W, Wu L, Zhu J, Sun F, Huang J, Wang J, Zhen Z, Cai R, Sun X, Zhang Y, Zhang X. Bioinformatics Analysis and Validation Identify CDK1 and MAD2L1 as Prognostic Markers of Rhabdomyosarcoma. Cancer Manag Res 2020; 12:12123-12136. [PMID: 33273853 PMCID: PMC7705535 DOI: 10.2147/cmar.s265779] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/16/2020] [Indexed: 12/28/2022] Open
Abstract
Purpose The goal of the current study was to identify potential prognostic biomarkers of rhabdomyosarcoma (RMS). Materials and Methods We screened chip sequencing datasets of RMS through the gene expression omnibus (GEO) database. A total of 74 RMS patient tissues and 39 normal muscle cell tissues were analyzed. Limma R software was used to identify the differentially expressed genes (DEGs) between RMS tissues and normal controls. The GO plot R package was used to visualize the results of the GO analysis. We screened for pathaffy package enrichment of DEGs by the Kyoto Encyclopedia of Genes and Genomes (KEGG). The cutoff criterion was a P-value <0.05. Immunohistochemistry (IHC) was applied to validate the expression of CDK1 (cyclin-dependent kinases 1) and MAD2L1 (Mitotic Arrest Deficient 2 Like 1) in RMS. Results We obtained a total of 498 up- and 480 down-regulated DEGs. The hub genes are mainly involved in the cell cycle and P53 singling pathway. CDK1 expression was associated with tumor size and COG-STS (Children's Oncology Group-soft tissue sarcoma) staging of RMS. For the low CDK1 expression group and high CDK1 expression group, the 5-year overall survival (OS) rate was 83.0% vs 63.5% (P = 0.004), and the 5-year event-free survival (EFS) rate was 47.5% vs 27.5% (P = 0.049) respectively. When compared low MAD2L1 expression group with high MAD2L1 expression group, the 5-year OS rate was 80.0% vs 43.2% (P = 0.001), and the 5-year EFS rate was 45.1% vs 21.8% (P = 0.038), respectively. If patients were divided into three groups: low CDK1 and low MAD2L1 expression group, high CDK1 or high MAD2L1 expression group, and high CDK1 and high MAD2L1 expression group, the 5-year OS rate was 87.1%, 58.6%, 39.6% (P = 0.001), while the 5-year EFS rate of RMS patients was 54.2%, 23.2%, 21.7% (P = 0.028), respectively. Conclusion This study has identified that CDK1 and MAD2L1 were adverse prognostic factors of RMS.
Collapse
Affiliation(s)
- Suying Lu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Chengtao Sun
- Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, People's Republic of China
| | - Huimou Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Chao Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Wei Li
- Department of Cardiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Liuhong Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Jia Zhu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Feifei Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Junting Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Juan Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Zijun Zhen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Ruiqing Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Xiaofei Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Yizhuo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Pediatric Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| | - Xing Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, 510060, People's Republic of China.,Department of Medical Melanoma and Sarcoma, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong 510060, People's Republic of China
| |
Collapse
|
895
|
Ferroptosis Mechanisms Involved in Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21228765. [PMID: 33233496 PMCID: PMC7699575 DOI: 10.3390/ijms21228765] [Citation(s) in RCA: 280] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
Ferroptosis is a type of cell death that was described less than a decade ago. It is caused by the excess of free intracellular iron that leads to lipid (hydro) peroxidation. Iron is essential as a redox metal in several physiological functions. The brain is one of the organs known to be affected by iron homeostatic balance disruption. Since the 1960s, increased concentration of iron in the central nervous system has been associated with oxidative stress, oxidation of proteins and lipids, and cell death. Here, we review the main mechanisms involved in the process of ferroptosis such as lipid peroxidation, glutathione peroxidase 4 enzyme activity, and iron metabolism. Moreover, the association of ferroptosis with the pathophysiology of some neurodegenerative diseases, namely Alzheimer’s, Parkinson’s, and Huntington’s diseases, has also been addressed.
Collapse
|
896
|
Zhao Y, Tao Z, Chen X. A Three-Metabolic-Genes Risk Score Model Predicts Overall Survival in Clear Cell Renal Cell Carcinoma Patients. Front Oncol 2020; 10:570281. [PMID: 33194661 PMCID: PMC7642863 DOI: 10.3389/fonc.2020.570281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/07/2020] [Indexed: 01/22/2023] Open
Abstract
Metabolic alterations play crucial roles in carcinogenesis, tumor progression, and prognosis in clear cell renal cell carcinoma (ccRCC). A risk score (RS) model for ccRCC consisting of disease-associated metabolic genes remains unidentified. Here, we utilized gene set enrichment analysis to analyze expression data from normal and tumor groups from the cancer genome atlas. Out of 70 KEGG metabolic pathways, we found seven and two pathways to be significantly enriched in our normal and tumor groups, respectively. We identified 113 genes enriched in these nine pathways. We further filtered 47 prognostic-related metabolic genes and used Least absolute shrinkage and selection operator (LASSO) analysis to construct a three-metabolic-genes RS model composed of ALDH3A2, B3GAT3, and CPT2. We further tested the RS by mapping Kaplan-Meier plots and receiver operating characteristic curves, the results were promising. Additionally, multivariate Cox analysis revealed the RS to be an independent prognostic factor. Thereafter, we considered all the independent factors and constructed a nomogram model, which manifested in better prediction capability. We validated our results using a dataset from ArrayExpress and through qRT-PCR. In summary, our study provided a metabolic gene-based RS model that can be used as a prognostic predictor for patients with ccRCC.
Collapse
Affiliation(s)
- Yiqiao Zhao
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zijia Tao
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
897
|
Hu W, Chen Z, Chen J, Cai D, Chen C, Fang T. LOC441178 Overexpression Inhibits the Proliferation and Migration of Esophageal Carcinoma Cells via Methylation of miR-182. Onco Targets Ther 2020; 13:11253-11263. [PMID: 33173314 PMCID: PMC7648570 DOI: 10.2147/ott.s271711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/05/2020] [Indexed: 02/05/2023] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have been shown to play an important role in the development and progression of esophageal carcinoma (EC). Recently, lncRNA LOC441178 was shown to be dysregulated in many cancer types; however, the role of LOC441178 in EC remains unclear. Materials and Methods Flow cytometry, transwell and wound healing assays were used to measure the apoptosis and migration in esophageal squamous cell carcinoma (ESCC) cells. RT-qPCR was used to detect the level of miR-182 in LOC441178-overexpressed EC cells. In addition, DNA methylation status of miR-182 promoter in LOC441178-overexpressed ESCC cells was detected by methylation-specific PCR (MSP) and bisulfite sequencing PCR. Results In this study, we found that LOC441178 negatively regulated miR-182 expression in ESCC cells. In addition, overexpression of LOC441178 inhibited the proliferation and migration and induced apoptosis in ESCC cells via downregulation of miR-182. Moreover, overexpression of LOC441178 markedly inhibited the phosphorylation of Akt and phosphorylation FOXO3a and increased the expression of FOXO3a in ESCC cells via downregulation of miR-182. Mechanistically, LOC441178 overexpression epigenetically suppressed miR-182 expression via DNA methylation. In vivo experiments revealed that overexpression of LOC441178 inhibited ESCC tumor growth in mouse xenograft model. Conclusion Collectively, our data suggested that LOC441178 overexpression epigenetically inhibited tumorigenesis of ESCC via DNA methylation of miR-182. These data indicated that the LOC441178/miR-182 axis might represent a novel therapeutic option for the treatment of ESCC.
Collapse
Affiliation(s)
- Weitao Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| | - Zongchi Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| | - Jiangmu Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| | - Daxing Cai
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| | - Congjie Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, People's Republic of China
| |
Collapse
|
898
|
Li Y, Tian H, Luo H, Fu J, Jiao Y, Li Y. Prognostic Significance and Related Mechanisms of Hexokinase 1 in Ovarian Cancer. Onco Targets Ther 2020; 13:11583-11594. [PMID: 33204111 PMCID: PMC7667154 DOI: 10.2147/ott.s270688] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/13/2020] [Indexed: 01/10/2023] Open
Abstract
PURPOSE Ovarian cancer (OC) has the highest mortality among gynecological malignancies. Therefore, it is urgent to explore prognostic biomarkers to improve the survival of OC patients. One of the most prominent metabolic characteristics of cancer is effective glycolysis. Hexokinase 1 (HK1), as the first rate-limiting enzyme in glycolysis, is closely related to cancer progression. However, the role of HK1 in OC remains unclear. MATERIALS AND METHODS The Cancer Genome Atlas (TCGA) database was used to detect the expression of HK1 in OC patients. The chi-squared test was performed to examine the correlations between HK1 and patients' clinical characteristics. Survival analyses were undertaken to determine the relationship between HK1 and patient survival, while the univariate/multivariate Cox model was used to evaluate the role of HK1 in patient prognosis. Gene Set Enrichment Analysis (GSEA) was performed to ascertain the related signaling pathways of HK1. RT-qPCR was implemented to validate the mRNA expression of HK1 in OC cells. MTT was used to detect cell viability after adding 2DG and knocking down HK1 in OC cells. HK1 protein expression was examined by Western blotting. Glucose uptake, lactate production, and ATP assays were undertaken following knockdown of HK1 in OC cells. Colony formation assays were performed to determine OC cell proliferation after HK1 knockdown. Transwell and wound healing assays were carried out to detect the invasion and migration of OC cells after HK1 knockdown. RESULTS We found that HK1 expression was increased in OC tissues and cells, and HK1 was related to the clinical characteristics of OC patients. Survival analysis revealed that OC patients in the HK1 overexpression group had poor survival. Moreover, univariant/multivariate analyses showed that HK1 may be an independent biomarker for the poor prognosis of OC patients. OC cell viability and proliferation decreased after knockdown of HK1. Consistently, glucose uptake, lactic acid production, ATP production, invasion, and migration were also decreased. Finally, GSEA enrichment analysis and Western blotting showed that HK1 was involved in MAPK/ERK signaling. CONCLUSION HK1 may be a biomarker for the poor prognosis of OC patients and a potential therapeutic target.
Collapse
Affiliation(s)
- Yanqing Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Huining Tian
- College of Translational Medicine, The First Affiliated Hospital of Jilin University, Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Haoge Luo
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Jiaying Fu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Yan Jiao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, Jilin130021, People’s Republic of China
| | - Yang Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin130021, People’s Republic of China
| |
Collapse
|
899
|
Molecular and Functional Roles of MicroRNAs in the Progression of Hepatocellular Carcinoma-A Review. Int J Mol Sci 2020; 21:ijms21218362. [PMID: 33171811 PMCID: PMC7664704 DOI: 10.3390/ijms21218362] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022] Open
Abstract
Liver cancer is the fourth leading cause of cancer deaths globally, of which hepatocellular carcinoma (HCC) is the major subtype. Viral hepatitis B and C infections, alcohol abuse, and metabolic disorders are multiple risk factors for liver cirrhosis and HCC development. Although great therapeutic advances have been made in recent decades, the prognosis for HCC patients remains poor due to late diagnosis, chemotherapy failure, and frequent recurrence. MicroRNAs (miRNAs) are endogenous, non-coding RNAs that regulate various molecular biological phenomena by suppressing the translation of target messenger RNAs (mRNAs). miRNAs, which often become dysregulated in malignancy, control cell proliferation, migration, invasion, and development in HCC by promoting or suppressing tumors. Exploring the detailed mechanisms underlying miRNA-mediated HCC development and progression can likely improve the outcomes of patients with HCC. This review summarizes the molecular and functional roles of miRNAs in the pathogenesis of HCC. Further, it elucidates the utility of miRNAs as novel biomarkers and therapeutic targets.
Collapse
|
900
|
Bu F, Zhu X, Yi X, Luo C, Lin K, Zhu J, Hu C, Liu Z, Zhao J, Huang C, Zhang W, Huang J. Expression Profile of GINS Complex Predicts the Prognosis of Pancreatic Cancer Patients. Onco Targets Ther 2020; 13:11433-11444. [PMID: 33192076 PMCID: PMC7654543 DOI: 10.2147/ott.s275649] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The GINS complex has been implicated in the prognosis of various cancers. It comprises four subunits, encoded by GINS1, GINS2, GINS3, and GINS4 genes. Based on the current understanding, no report exists on the role of the GINS complex in pancreatic cancer. METHODS We employed various bioinformatics databases including GEPIA, UALCAN, GEPIA2, and Kaplan Meier Plotter to identify the expression profile of the four genes (GINS1, GINS2, GINS3, and GINS4), their correlation with pancreatic cancer grade as well as their prognostic value of in pancreatic cancer. Western blotting and qRT-PCR analyses were conducted to verify the expression profiles of the four genes in pancreatic cancer. CCK8 and EdU cell experiments were conducted to reveal the role played by the four genes in pancreatic cancer cell proliferation. RESULTS Based on GEPIA, Western blotting, and qRT-PCR analyses, all the four genes in the GINS complex were overexpressed in pancreatic cancer. Notably, the expression of each member was significantly associated with pancreatic cancer grade. The prognostic analysis revealed that not only the whole GINS complex but also each individual were prognostic biomarkers for pancreatic cancer. CCK8 and EdU experiments demonstrated that inhibition of the expression of each GINS member lowered pancreatic cancer cell proliferation. CONCLUSION This work implicated GINS1, GINS2, GINS3, and GINS4 genes as critical prognostic markers for pancreatic cancer.
Collapse
Affiliation(s)
- Fanqin Bu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province330006, People’s Republic of China
- Jiangxi Medical College of Nanchang University, Nanchang, People’s Republic of China
| | - Xiaojian Zhu
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Xuan Yi
- Jiangxi Medical College of Nanchang University, Nanchang, People’s Republic of China
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province330006, People’s Republic of China
| | - Chen Luo
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province330006, People’s Republic of China
- Jiangxi Medical College of Nanchang University, Nanchang, People’s Republic of China
| | - Kang Lin
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province330006, People’s Republic of China
- Jiangxi Medical College of Nanchang University, Nanchang, People’s Republic of China
| | - Jinfeng Zhu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province330006, People’s Republic of China
- Jiangxi Medical College of Nanchang University, Nanchang, People’s Republic of China
| | - Cegui Hu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province330006, People’s Republic of China
- Jiangxi Medical College of Nanchang University, Nanchang, People’s Republic of China
| | - Zitao Liu
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province330006, People’s Republic of China
- Jiangxi Medical College of Nanchang University, Nanchang, People’s Republic of China
| | - Jiefeng Zhao
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province330006, People’s Republic of China
- Jiangxi Medical College of Nanchang University, Nanchang, People’s Republic of China
| | - Chao Huang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province330006, People’s Republic of China
- Jiangxi Medical College of Nanchang University, Nanchang, People’s Republic of China
| | - Wenjun Zhang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province330006, People’s Republic of China
- Jiangxi Medical College of Nanchang University, Nanchang, People’s Republic of China
| | - Jun Huang
- Department of Gastrointestinal Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province330006, People’s Republic of China
| |
Collapse
|