851
|
Brusilovsky M, Cordoba M, Rosental B, Hershkovitz O, Andrake MD, Pecherskaya A, Einarson MB, Zhou Y, Braiman A, Campbell KS, Porgador A. Genome-wide siRNA screen reveals a new cellular partner of NK cell receptor KIR2DL4: heparan sulfate directly modulates KIR2DL4-mediated responses. THE JOURNAL OF IMMUNOLOGY 2013; 191:5256-67. [PMID: 24127555 DOI: 10.4049/jimmunol.1302079] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
KIR2DL4 (CD158d) is a distinct member of the killer cell Ig-like receptor (KIR) family in human NK cells that can induce cytokine production and cytolytic activity in resting NK cells. Soluble HLA-G, normally expressed only by fetal-derived trophoblast cells, was reported to be a ligand for KIR2DL4; however, KIR2DL4 expression is not restricted to the placenta and can be found in CD56(high) subset of peripheral blood NK cells. We demonstrated that KIR2DL4 can interact with alternative ligand(s), expressed by cells of epithelial or fibroblast origin. A genome-wide high-throughput siRNA screen revealed that KIR2DL4 recognition of cell-surface ligand(s) is directly regulated by heparan sulfate (HS) glucosamine 3-O-sulfotransferase 3B1 (HS3ST3B1). KIR2DL4 was found to directly interact with HS/heparin, and the D0 domain of KIR2DL4 was essential for this interaction. Accordingly, exogenous HS/heparin can regulate cytokine production by KIR2DL4-expressing NK cells and HEK293T cells (HEK293T-2DL4), and induces differential localization of KIR2DL4 to rab5(+) and rab7(+) endosomes, thus leading to downregulation of cytokine production and degradation of the receptor. Furthermore, we showed that intimate interaction of syndecan-4 (SDC4) HS proteoglycan (HSPG) and KIR2DL4 directly affects receptor endocytosis and membrane trafficking.
Collapse
Affiliation(s)
- Michael Brusilovsky
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Moti Cordoba
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Oren Hershkovitz
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mark D Andrake
- The Research Institute of Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Anna Pecherskaya
- The Research Institute of Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Margret B Einarson
- The Research Institute of Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Yan Zhou
- The Research Institute of Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Kerry S Campbell
- The Research Institute of Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel.,National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
852
|
Conformational analysis of NMDA receptor GluN1, GluN2, and GluN3 ligand-binding domains reveals subtype-specific characteristics. Structure 2013; 21:1788-99. [PMID: 23972471 PMCID: PMC3814224 DOI: 10.1016/j.str.2013.07.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 07/11/2013] [Accepted: 07/17/2013] [Indexed: 02/06/2023]
Abstract
The NMDA receptor family of glutamate receptor ion channels is formed by obligate heteromeric assemblies of GluN1, GluN2, and GluN3 subunits. GluN1 and GluN3 bind glycine, whereas GluN2 binds glutamate. Crystal structures of the GluN1 and GluN3A ligand-binding domains (LBDs) in their apo states unexpectedly reveal open- and closed-cleft conformations, respectively, with water molecules filling the binding pockets. Computed conformational free energy landscapes for GluN1, GluN2A, and GluN3A LBDs reveal that the apo-state LBDs sample closed-cleft conformations, suggesting that their agonists bind via a conformational selection mechanism. By contrast, free energy landscapes for the AMPA receptor GluA2 LBD suggest binding of glutamate via an induced-fit mechanism. Principal component analysis reveals a rich spectrum of hinge bending, rocking, twisting, and sweeping motions that are different for the GluN1, GluN2A, GluN3A, and GluA2 LBDs. This variation highlights the structural complexity of signaling by glutamate receptor ion channels.
Collapse
|
853
|
Tan J, Tian F, Lv Y, Liu W, Zhong L, Liu Y, Yang L. Integration of QSAR modelling and QM/MM analysis to investigate functional food peptides with antihypertensive activity. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2013.788247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
854
|
Baggio F, Bozzato A, Benna C, Leonardi E, Romoli O, Cognolato M, Tosatto SCE, Costa R, Sandrelli F. 2mit, an intronic gene of Drosophila melanogaster timeless2, is involved in behavioral plasticity. PLoS One 2013; 8:e76351. [PMID: 24098788 PMCID: PMC3786989 DOI: 10.1371/journal.pone.0076351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 08/27/2013] [Indexed: 12/15/2022] Open
Abstract
Background Intronic genes represent ~6% of the total gene complement in Drosophila melanogaster and ~85% of them encode for proteins. We recently characterized the D. melanogastertimeless2 (tim2) gene, showing its active involvement in chromosomal stability and light synchronization of the adult circadian clock. The protein coding gene named 2mit maps on the 11thtim2 intron in the opposite transcriptional orientation. Methodology/Principal Findings Here we report the molecular and functional characterization of 2mit. The 2mit gene is expressed throughout Drosophila development, localizing mainly in the nervous system during embryogenesis and mostly in the mushroom bodies and ellipsoid body of the central complex in the adult brain. Insilico analyses revealed that 2mit encodes a putative leucine-Rich Repeat transmembrane receptor with intrinsically disordered regions, harboring several fully conserved functional interaction motifs in the cytosolic side. Using insertional mutations, tissue-specific over-expression, and down-regulation approaches, it was found that 2mit is implicated in adult short-term memory, assessed by a courtship conditioning assay. In D. melanogaster, tim2 and 2mit do not seem to be functionally related. Bioinformatic analyses identified 2MIT orthologs in 21 Drosophilidae, 4 Lepidoptera and in Apis mellifera. In addition, the tim2-2mit host-nested gene organization was shown to be present in A. mellifera and maintained among Drosophila species. Within the Drosophilidae 2mit-hosting tim2 intron, insilico approaches detected a neuronal specific transcriptional binding site which might have contributed to preserve the specific host-nested gene association across Drosophila species. Conclusions/Significance Taken together, these results indicate that 2mit, a gene mainly expressed in the nervous system, has a role in the behavioral plasticity of the adult Drosophila. The presence of a putative 2mit regulatory enhancer within the 2mit-hosting tim2 intron could be considered an evolutionary constraint potentially involved in maintaining the tim2-2mit host-nested chromosomal architecture during the evolution of Drosophila species.
Collapse
Affiliation(s)
- Francesca Baggio
- Dipartimento di Biologia, Università degli Studi di Padova Padova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
855
|
Han KQ, Wu G, Lv F. Development of QSAR-Improved Statistical Potential for the Structure-Based Analysis of ProteinPeptide Binding Affinities. Mol Inform 2013; 32:783-92. [DOI: 10.1002/minf.201300064] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Accepted: 06/21/2013] [Indexed: 12/21/2022]
|
856
|
Alexander NS, Stein RA, Koteiche HA, Kaufmann KW, Mchaourab HS, Meiler J. RosettaEPR: rotamer library for spin label structure and dynamics. PLoS One 2013; 8:e72851. [PMID: 24039810 PMCID: PMC3764097 DOI: 10.1371/journal.pone.0072851] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 07/15/2013] [Indexed: 11/18/2022] Open
Abstract
An increasingly used parameter in structural biology is the measurement of distances between spin labels bound to a protein. One limitation to these measurements is the unknown position of the spin label relative to the protein backbone. To overcome this drawback, we introduce a rotamer library of the methanethiosulfonate spin label (MTSSL) into the protein modeling program Rosetta. Spin label rotamers were derived from conformations observed in crystal structures of spin labeled T4 lysozyme and previously published molecular dynamics simulations. Rosetta’s ability to accurately recover spin label conformations and EPR measured distance distributions was evaluated against 19 experimentally determined MTSSL labeled structures of T4 lysozyme and the membrane protein LeuT and 73 distance distributions from T4 lysozyme and the membrane protein MsbA. For a site in the core of T4 lysozyme, the correct spin label conformation (Χ1 and Χ2) is recovered in 99.8% of trials. In surface positions 53% of the trajectories agree with crystallized conformations in Χ1 and Χ2. This level of recovery is on par with Rosetta performance for the 20 natural amino acids. In addition, Rosetta predicts the distance between two spin labels with a mean error of 4.4 Å. The width of the experimental distance distribution, which reflects the flexibility of the two spin labels, is predicted with a mean error of 1.3 Å. RosettaEPR makes full-atom spin label modeling available to a wide scientific community in conjunction with the powerful suite of modeling methods within Rosetta.
Collapse
Affiliation(s)
- Nathan S. Alexander
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Richard A. Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Hanane A. Koteiche
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Kristian W. Kaufmann
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Hassane S. Mchaourab
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
857
|
Ni Z, Chen H, Qi X, Jin R. Why is Substrate Peptide Binding Unsusceptible to Multidrug-Resistant Mutations in HIV-1 Protease? A Structural and Energetic Analysis. Int J Pept Res Ther 2013. [DOI: 10.1007/s10989-013-9365-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
858
|
Mariani V, Biasini M, Barbato A, Schwede T. lDDT: a local superposition-free score for comparing protein structures and models using distance difference tests. Bioinformatics 2013; 29:2722-8. [PMID: 23986568 PMCID: PMC3799472 DOI: 10.1093/bioinformatics/btt473] [Citation(s) in RCA: 631] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Motivation: The assessment of protein structure prediction techniques requires objective criteria to measure the similarity between a computational model and the experimentally determined reference structure. Conventional similarity measures based on a global superposition of carbon α atoms are strongly influenced by domain motions and do not assess the accuracy of local atomic details in the model. Results: The Local Distance Difference Test (lDDT) is a superposition-free score that evaluates local distance differences of all atoms in a model, including validation of stereochemical plausibility. The reference can be a single structure, or an ensemble of equivalent structures. We demonstrate that lDDT is well suited to assess local model quality, even in the presence of domain movements, while maintaining good correlation with global measures. These properties make lDDT a robust tool for the automated assessment of structure prediction servers without manual intervention. Availability and implementation: Source code, binaries for Linux and MacOSX, and an interactive web server are available at http://swissmodel.expasy.org/lddt Contact:torsten.schwede@unibas.ch Supplementary information: Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Valerio Mariani
- Biozentrum, Universität Basel, Klingelbergstrasse 50-70 and Computational Structural Biology, SIB Swiss Institute of Bioinformatics, 4056 Basel, Switzerland
| | | | | | | |
Collapse
|
859
|
Simonson T, Gaillard T, Mignon D, Schmidt am Busch M, Lopes A, Amara N, Polydorides S, Sedano A, Druart K, Archontis G. Computational protein design: the Proteus software and selected applications. J Comput Chem 2013; 34:2472-84. [PMID: 24037756 DOI: 10.1002/jcc.23418] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/08/2013] [Accepted: 07/28/2013] [Indexed: 12/13/2022]
Abstract
We describe an automated procedure for protein design, implemented in a flexible software package, called Proteus. System setup and calculation of an energy matrix are done with the XPLOR modeling program and its sophisticated command language, supporting several force fields and solvent models. A second program provides algorithms to search sequence space. It allows a decomposition of the system into groups, which can be combined in different ways in the energy function, for both positive and negative design. The whole procedure can be controlled by editing 2-4 scripts. Two applications consider the tyrosyl-tRNA synthetase enzyme and its successful redesign to bind both O-methyl-tyrosine and D-tyrosine. For the latter, we present Monte Carlo simulations where the D-tyrosine concentration is gradually increased, displacing L-tyrosine from the binding pocket and yielding the binding free energy difference, in good agreement with experiment. Complete redesign of the Crk SH3 domain is presented. The top 10000 sequences are all assigned to the correct fold by the SUPERFAMILY library of Hidden Markov Models. Finally, we report the acid/base behavior of the SNase protein. Sidechain protonation is treated as a form of mutation; it is then straightforward to perform constant-pH Monte Carlo simulations, which yield good agreement with experiment. Overall, the software can be used for a wide range of application, producing not only native-like sequences but also thermodynamic properties with errors that appear comparable to other current software packages.
Collapse
Affiliation(s)
- Thomas Simonson
- Laboratoire de Biochimie (CNRS UMR7654), Department of Biology, Ecole Polytechnique, Palaiseau, 91128, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
860
|
Gorham RD, Forest DL, Tamamis P, López de Victoria A, Kraszni M, Kieslich CA, Banna CD, Bellows-Peterson ML, Larive CK, Floudas CA, Archontis G, Johnson LV, Morikis D. Novel compstatin family peptides inhibit complement activation by drusen-like deposits in human retinal pigmented epithelial cell cultures. Exp Eye Res 2013; 116:96-108. [PMID: 23954241 DOI: 10.1016/j.exer.2013.07.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/06/2013] [Accepted: 07/20/2013] [Indexed: 11/19/2022]
Abstract
We have used a novel human retinal pigmented epithelial (RPE) cell-based model that mimics drusen biogenesis and the pathobiology of age-related macular degeneration to evaluate the efficacy of newly designed peptide inhibitors of the complement system. The peptides belong to the compstatin family and, compared to existing compstatin analogs, have been optimized to promote binding to their target, complement protein C3, and to enhance solubility by improving their polarity/hydrophobicity ratios. Based on analysis of molecular dynamics simulation data of peptide-C3 complexes, novel binding features were designed by introducing intermolecular salt bridge-forming arginines at the N-terminus and at position -1 of N-terminal dipeptide extensions. Our study demonstrates that the RPE cell assay has discriminatory capability for measuring the efficacy and potency of inhibitory peptides in a macular disease environment.
Collapse
Affiliation(s)
- Ronald D Gorham
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
861
|
Scior T, Lozano-Aponte J, Figueroa-Vazquez V, Yunes-Rojas JA, Zähringer U, Alexander C. Three-dimensional mapping of differential amino acids of human, murine, canine and equine TLR4/MD-2 receptor complexes conferring endotoxic activation by lipid A, antagonism by Eritoran and species-dependent activities of Lipid IVA in the mammalian LPS sensor system. Comput Struct Biotechnol J 2013; 7:e201305003. [PMID: 24688739 PMCID: PMC3962092 DOI: 10.5936/csbj.201305003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 07/21/2013] [Accepted: 07/21/2013] [Indexed: 11/23/2022] Open
Abstract
A literature review concerning the unexpected species differences of the vertebrate innate immune response to lipid IVA was published in CSBJ prior to the present computational study to address the unpaired activity-sequence correlation of prototypic E. coli -type lipid A and its precursor lipid IVA regarding human, murine, equine and canine species. To this end, their sequences and structures of hitherto known Toll-like receptor 4 (TLR4) and myeloid differentiation factor 2 (MD-2) complexes were aligned and their differential side chain patterns studied. If required due to the lack of the corresponding X-ray crystallographic data, three-dimensional models of TLR4/MD-2/ligand complexes were generated using mono and dimeric crystal structures as templates and in silico docking of the prototypic ligands lipid A, lipid IVA and Eritoran. All differential amino acids were mapped to pinpoint species dependency on an atomic scale, i.e. the possible concert of mechanistically relevant side chains. In its most abstract and general form the three-dimensional (3D-) models devise a triangular interface or “wedge” where molecular interactions between TLR4, MD-2 and ligand itself take place. This study identifies two areas in the wedge related to either agonism or antagonism reflecting why ligands like lipid IVA can possess a species dependent dual activity. Lipid IVA represents an imperfect (underacylated and backbone-flipped), low affinity ligand of mammalian TLR4/MD-2 complexes. Its specific but weak antagonistic activity in the human system is in particular due to the loss of phosphate attraction in the wedge-shaped region conferred by nonhomologous residue changes when compared to crystal and modeled structures of the corresponding murine and equine TLR4/MD-2 complexes. The counter-TLR4/MD-2 unit was also taken into account since agonist-mediated dimerization in a defined m-shaped complex composed of two TLR4/MD-2/agonist subunits triggers intracellular signaling during the innate immune response to bacterial endotoxin exposure.
Collapse
Affiliation(s)
- Thomas Scior
- Departamento de Farmacia, Benemérita Universidad Autónoma de Puebla, C.P. 72570 Puebla, Pue., Mexico
| | - Jorge Lozano-Aponte
- Departamento de Farmacia, Benemérita Universidad Autónoma de Puebla, C.P. 72570 Puebla, Pue., Mexico
| | - Vianihuini Figueroa-Vazquez
- Department of Hematology and Laboratory for Cellular Therapy, Instituto Maimonides Investigación Biomédica, Cordoba, Spain
| | | | - Ulrich Zähringer
- Division of Immunochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Christian Alexander
- Division of Immunochemistry, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| |
Collapse
|
862
|
Interferon-induced RIP1/RIP3-mediated necrosis requires PKR and is licensed by FADD and caspases. Proc Natl Acad Sci U S A 2013; 110:E3109-18. [PMID: 23898178 DOI: 10.1073/pnas.1301218110] [Citation(s) in RCA: 378] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interferons (IFNs) are cytokines with powerful immunomodulatory and antiviral properties, but less is known about how they induce cell death. Here, we show that both type I (α/β) and type II (γ) IFNs induce precipitous receptor-interacting protein (RIP)1/RIP3 kinase-mediated necrosis when the adaptor protein Fas-associated death domain (FADD) is lost or disabled by phosphorylation, or when caspases (e.g., caspase 8) are inactivated. IFN-induced necrosis proceeds via progressive assembly of a RIP1-RIP3 "necrosome" complex that requires Jak1/STAT1-dependent transcription, but does not need the kinase activity of RIP1. Instead, IFNs transcriptionally activate the RNA-responsive protein kinase PKR, which then interacts with RIP1 to initiate necrosome formation and trigger necrosis. Although IFNs are powerful activators of necrosis when FADD is absent, these cytokines are likely not the dominant inducers of RIP kinase-driven embryonic lethality in FADD-deficient mice. We also identify phosphorylation on serine 191 as a mechanism that disables FADD and collaborates with caspase inactivation to allow IFN-activated necrosis. Collectively, these findings outline a mechanism of IFN-induced RIP kinase-dependent necrotic cell death and identify FADD and caspases as negative regulators of this process.
Collapse
|
863
|
Dupré E, Wohlkonig A, Herrou J, Locht C, Jacob-Dubuisson F, Antoine R. Characterization of the PAS domain in the sensor-kinase BvgS: mechanical role in signal transmission. BMC Microbiol 2013; 13:172. [PMID: 23883404 PMCID: PMC3726324 DOI: 10.1186/1471-2180-13-172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In bacteria, signal-transduction two-component systems are major players for adaptation to environmental stimuli. The perception of a chemical or physical signal by a sensor-kinase triggers its autophosphorylation. The phosphoryl group is then transferred to the cognate response regulator, which mediates the appropriate adaptive response. Virulence of the whooping cough agent Bordetella pertussis is controlled by the two-component system BvgAS. Atypically, the sensor-kinase BvgS is active without specific stimuli at 37°C in laboratory conditions and is inactivated by the addition of negative chemical modulators. The structure of BvgS is complex, with two tandem periplasmic Venus flytrap domains and a cytoplasmic PAS domain that precedes the kinase domain, which is followed by additional phosphotransfer domains. PAS domains are small, ubiquitous sensing or regulatory domains. The function of the PAS domain in BvgS remains unknown. RESULTS We showed that recombinant BvgS PAS proteins form dimers that are stabilized by α helical regions flanking the PAS core. A structural model of the PAS domain dimer was built and probed by site-directed mutagenesis and by biochemical and functional analyses. Although we found no ligands for the PAS domain cavity, its integrity is required for signaling. We also showed that the structural stability of the PAS core and its proper coupling to its flanking N- and C-terminal α helices are crucial for BvgS activity. CONCLUSIONS We propose that a major function of the BvgS PAS domain is to maintain conformational signals arising from mechanical strain generated by the periplasmic domain. The tight structure of the PAS core and its connections with the upstream and downstream helices ensure signaling to the kinase domain, which determines BvgS activity. Many mild substitutions that map to the PAS domain keep BvgS active but make it unresponsive to negative modulators, supporting that modulation increases conformational strain in the protein.
Collapse
Affiliation(s)
- Elian Dupré
- Institut Pasteur de Lille, Center for Infection and Immunity, Lille, France
| | | | | | | | | | | |
Collapse
|
864
|
Kushwaha HR, Singla-Pareek SL, Pareek A. Putative osmosensor--OsHK3b--a histidine kinase protein from rice shows high structural conservation with its ortholog AtHK1 from Arabidopsis. J Biomol Struct Dyn 2013; 32:1318-32. [PMID: 23869567 PMCID: PMC4017273 DOI: 10.1080/07391102.2013.818576] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 06/19/2013] [Indexed: 11/10/2022]
Abstract
Prokaryotes and eukaryotes respond to various environmental stimuli using the two-component system (TCS). Essentially, it consists of membrane-bound histidine kinase (HK) which senses the stimuli and further transfers the signal to the response regulator, which in turn, regulates expression of various target genes. Recently, sequence-based genome wide analysis has been carried out in Arabidopsis and rice to identify all the putative members of TCS family. One of the members of this family i.e. AtHK1, (a putative osmosensor, hybrid-type sensory histidine kinase) is known to interact with AtHPt1 (phosphotransfer proteins) in Arabidopsis. Based on predicted rice interactome network (PRIN), the ortholog of AtHK1 in rice, OsHK3b, was found to be interacting with OsHPt2. The analysis of amino acid sequence of AtHK1 showed the presence of transmitter domain (TD) and receiver domain (RD), while OsHK3b showed presence of three conserved domains namely CHASE (signaling domain), TD, and RD. In order to elaborate on structural details of functional domains of hybrid-type HK and phosphotransfer proteins in both these genera, we have modeled them using homology modeling approach. The structural motifs present in various functional domains of the orthologous proteins were found to be highly conserved. Binding analysis of the RD domain of these sensory proteins in Arabidopsis and rice revealed the role of various residues such as histidine in HPt protein which are essential for their interaction.
Collapse
Affiliation(s)
- Hemant Ritturaj Kushwaha
- Synthetic Biology and Biofuel Group, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Sneh Lata Singla-Pareek
- Plant Molecular Biology, International Center for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
865
|
Nicolau N, Giuliatti S. Modeling and molecular dynamics of the intrinsically disordered e7 proteins from high- and low-risk types of human papillomavirus. J Mol Model 2013; 19:4025-37. [PMID: 23864166 DOI: 10.1007/s00894-013-1915-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/09/2013] [Indexed: 10/26/2022]
Abstract
Cervical cancer affects millions of women worldwide each year. Most cases of cervical cancer are caused by the sexually transmitted human papillomavirus (HPV). The approximately 40 HPV types that infect the cervix are designated high- or low-risk based on their potential to lead to high-grade lesions and cancer. The HPV E7 oncoprotein is directly involved in the onset of cervical cancer and associates with the pRb protein and other cellular targets that promote cell immortalization and carcinogenesis. This is the first description of the modeling and molecular dynamics analysis of complete three-dimensional structures of high-risk (HPV types 16 and 18), low-risk (HPV type 11), and HPV type 01 E7 proteins. The models were constructed by a hybrid approach using homology (MODELLER) and ab initio (Rosetta) modeling, and the protein dynamics were simulated for 50 ns under normal pressure and temperature (NPT) conditions. The intrinsic disorder of the E7 protein sequence was assessed in silico. Complete models of E7 were obtained despite the predicted intrinsic disorder of the N-termini from the high-risk HPV types. The N-terminal domains of all of the E7 proteins studied, even those from high-risk strains, exhibited secondary structure after modeling. Trajectory analysis of E7 proteins from HPV types 16 and 18 showed higher instability in their N-terminal domains than in those of HPV types 11 and 01; however, this variation did not affect the secondary structure during the simulation. ANCHOR analysis indicated that the CR1 and CR2 regions of HPV types 16 and 18 contain possible targets for future drug-discovery studies.
Collapse
Affiliation(s)
- Nilson Nicolau
- Department of Genetics, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | | |
Collapse
|
866
|
Zhu S, Travis SM, Elcock AH. Accurate calculation of mutational effects on the thermodynamics of inhibitor binding to p38α MAP kinase: a combined computational and experimental study. J Chem Theory Comput 2013; 9:3151-3164. [PMID: 23914145 PMCID: PMC3731164 DOI: 10.1021/ct400104x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A major current challenge for drug design efforts focused on protein kinases is the development of drug resistance caused by spontaneous mutations in the kinase catalytic domain. The ubiquity of this problem means that it would be advantageous to develop fast, effective computational methods that could be used to determine the effects of potential resistance-causing mutations before they arise in a clinical setting. With this long-term goal in mind, we have conducted a combined experimental and computational study of the thermodynamic effects of active-site mutations on a well-characterized and high-affinity interaction between a protein kinase and a small-molecule inhibitor. Specifically, we developed a fluorescence-based assay to measure the binding free energy of the small-molecule inhibitor, SB203580, to the p38α MAP kinase and used it measure the inhibitor's affinity for five different kinase mutants involving two residues (Val38 and Ala51) that contact the inhibitor in the crystal structure of the inhibitor-kinase complex. We then conducted long, explicit-solvent thermodynamic integration (TI) simulations in an attempt to reproduce the experimental relative binding affinities of the inhibitor for the five mutants; in total, a combined simulation time of 18.5 μs was obtained. Two widely used force fields - OPLS-AA/L and Amber ff99SB-ILDN - were tested in the TI simulations. Both force fields produced excellent agreement with experiment for three of the five mutants; simulations performed with the OPLS-AA/L force field, however, produced qualitatively incorrect results for the constructs that contained an A51V mutation. Interestingly, the discrepancies with the OPLS-AA/L force field could be rectified by the imposition of position restraints on the atoms of the protein backbone and the inhibitor without destroying the agreement for other mutations; the ability to reproduce experiment depended, however, upon the strength of the restraints' force constant. Imposition of position restraints in corresponding simulations that used the Amber ff99SB-ILDN force field had little effect on their ability to match experiment. Overall, the study shows that both force fields can work well for predicting the effects of active-site mutations on small molecule binding affinities and demonstrates how a direct combination of experiment and computation can be a powerful strategy for developing an understanding of protein-inhibitor interactions.
Collapse
Affiliation(s)
- Shun Zhu
- Department of Biochemistry, University of Iowa, Iowa City, IA 52242
| | | | | |
Collapse
|
867
|
Adolf-Bryfogle J, Dunbrack Jr. RL. The PyRosetta Toolkit: a graphical user interface for the Rosetta software suite. PLoS One 2013; 8:e66856. [PMID: 23874400 PMCID: PMC3706480 DOI: 10.1371/journal.pone.0066856] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/11/2013] [Indexed: 01/25/2023] Open
Abstract
The Rosetta Molecular Modeling suite is a command-line-only collection of applications that enable high-resolution modeling and design of proteins and other molecules. Although extremely useful, Rosetta can be difficult to learn for scientists with little computational or programming experience. To that end, we have created a Graphical User Interface (GUI) for Rosetta, called the PyRosetta Toolkit, for creating and running protocols in Rosetta for common molecular modeling and protein design tasks and for analyzing the results of Rosetta calculations. The program is highly extensible so that developers can add new protocols and analysis tools to the PyRosetta Toolkit GUI.
Collapse
Affiliation(s)
- Jared Adolf-Bryfogle
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- Drexel University College of Medicine, Program in Molecular and Cell Biology and Genetics, Philadelphia, Pennsylvania, United States of America
| | - Roland L. Dunbrack Jr.
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
868
|
Tian F, Tan R, Guo T, Zhou P, Yang L. Fast and reliable prediction of domain–peptide binding affinity using coarse-grained structure models. Biosystems 2013; 113:40-9. [DOI: 10.1016/j.biosystems.2013.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/15/2013] [Accepted: 04/20/2013] [Indexed: 10/26/2022]
|
869
|
Jeschke G. Conformational dynamics and distribution of nitroxide spin labels. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2013; 72:42-60. [PMID: 23731861 DOI: 10.1016/j.pnmrs.2013.03.001] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 03/26/2013] [Accepted: 03/27/2013] [Indexed: 06/02/2023]
Abstract
Long-range distance measurements based on paramagnetic relaxation enhancement (PRE) in NMR, quantification of surface water dynamics near biomacromolecules by Overhauser dynamic nuclear polarization (DNP) and sensitivity enhancement by solid-state DNP all depend on introducing paramagnetic species into an otherwise diamagnetic NMR sample. The species can be introduced by site-directed spin labeling, which offers precise control for positioning the label in the sequence of a biopolymer. However, internal flexibility of the spin label gives rise to dynamic processes that potentially influence PRE and DNP behavior and leads to a spatial distribution of the electron spin even in solid samples. Internal dynamics of spin labels and their static conformational distributions have been studied mainly by electron paramagnetic resonance spectroscopy and molecular dynamics simulations, with a large body of results for the most widely applied methanethiosulfonate spin label MTSL. These results are critically discussed in a unifying picture based on rotameric states of the group that carries the spin label. Deficiencies in our current understanding of dynamics and conformations of spin labeled groups and of their influence on NMR observables are highlighted and directions for further research suggested.
Collapse
Affiliation(s)
- Gunnar Jeschke
- ETH Zürich, Laboratory Physical Chemistry, Zürich, Switzerland.
| |
Collapse
|
870
|
Structural and Affinity Insight into the Sequence-Specific Interaction of Transcription Factors DEC1 and DEC2 with E-box DNA: A Novel Model Peptide Approach. Int J Pept Res Ther 2013. [DOI: 10.1007/s10989-013-9354-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
871
|
MacDonald JT, Kelley LA, Freemont PS. Validating a Coarse-Grained Potential Energy Function through Protein Loop Modelling. PLoS One 2013; 8:e65770. [PMID: 23824634 PMCID: PMC3688807 DOI: 10.1371/journal.pone.0065770] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 04/26/2013] [Indexed: 12/02/2022] Open
Abstract
Coarse-grained (CG) methods for sampling protein conformational space have the potential to increase computational efficiency by reducing the degrees of freedom. The gain in computational efficiency of CG methods often comes at the expense of non-protein like local conformational features. This could cause problems when transitioning to full atom models in a hierarchical framework. Here, a CG potential energy function was validated by applying it to the problem of loop prediction. A novel method to sample the conformational space of backbone atoms was benchmarked using a standard test set consisting of 351 distinct loops. This method used a sequence-independent CG potential energy function representing the protein using -carbon positions only and sampling conformations with a Monte Carlo simulated annealing based protocol. Backbone atoms were added using a method previously described and then gradient minimised in the Rosetta force field. Despite the CG potential energy function being sequence-independent, the method performed similarly to methods that explicitly use either fragments of known protein backbones with similar sequences or residue-specific /-maps to restrict the search space. The method was also able to predict with sub-Angstrom accuracy two out of seven loops from recently solved crystal structures of proteins with low sequence and structure similarity to previously deposited structures in the PDB. The ability to sample realistic loop conformations directly from a potential energy function enables the incorporation of additional geometric restraints and the use of more advanced sampling methods in a way that is not possible to do easily with fragment replacement methods and also enable multi-scale simulations for protein design and protein structure prediction. These restraints could be derived from experimental data or could be design restraints in the case of computational protein design. C++ source code is available for download from http://www.sbg.bio.ic.ac.uk/phyre2/PD2/.
Collapse
Affiliation(s)
- James T. MacDonald
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
- * E-mail:
| | - Lawrence A. Kelley
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| | - Paul S. Freemont
- Division of Molecular Biosciences, Imperial College London, London, United Kingdom
| |
Collapse
|
872
|
Jing T, Feng J, Li D, Liu J, He G. Rational Design of Angiotensin-I-Converting Enzyme Inhibitory Peptides by Integrating in silico Modeling and an in vitro Assay. ChemMedChem 2013; 8:1057-66. [DOI: 10.1002/cmdc.201300132] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 04/27/2013] [Indexed: 12/31/2022]
|
873
|
Dhingra P, Jayaram B. A homology/ab initio hybrid algorithm for sampling near-native protein conformations. J Comput Chem 2013; 34:1925-36. [PMID: 23728619 DOI: 10.1002/jcc.23339] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/09/2013] [Accepted: 04/21/2013] [Indexed: 12/19/2022]
Abstract
One of the major challenges for protein tertiary structure prediction strategies is the quality of conformational sampling algorithms, which can effectively and readily search the protein fold space to generate near-native conformations. In an effort to advance the field by making the best use of available homology as well as fold recognition approaches along with ab initio folding methods, we have developed Bhageerath-H Strgen, a homology/ab initio hybrid algorithm for protein conformational sampling. The methodology is tested on the benchmark CASP9 dataset of 116 targets. In 93% of the cases, a structure with TM-score ≥ 0.5 is generated in the pool of decoys. Further, the performance of Bhageerath-H Strgen was seen to be efficient in comparison with different decoy generation methods. The algorithm is web enabled as Bhageerath-H Strgen web tool which is made freely accessible for protein decoy generation (http://www.scfbio-iitd.res.in/software/Bhageerath-HStrgen1.jsp).
Collapse
Affiliation(s)
- Priyanka Dhingra
- Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi, 110016, India
| | | |
Collapse
|
874
|
Kumar S, Biswal DK, Tandon V. In-silico analysis of caspase-3 and -7 proteases from blood-parasitic Schistosoma species (Trematoda) and their human host. Bioinformation 2013; 9:456-63. [PMID: 23847399 PMCID: PMC3705615 DOI: 10.6026/97320630009456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/21/2012] [Accepted: 04/17/2013] [Indexed: 12/24/2022] Open
Abstract
Proteolytic enzymes of the caspase family, which reside as latent precursors in most nucleated metazoan cells, are core effectors of apoptosis. Of them, the executioner caspases- 3 and -7 exist within the cytosol as inactive dimers and are activated by a process called dimerization. Caspase inhibition is looked upon as a promising approach for treating multiple diseases. Though caspases have been extensively studied in the human system, their role in eukaryotic pathogens and parasites of human hosts has not drawn enough attention. In protein sequence analysis, caspases of blood flukes (Schistosoma spp) were revealed to have a low sequence identity with their counterparts in human and other mammalian hosts, which encouraged us to analyse interacting domains that participate in dimerization of caspases in the parasite and to reveal differences, if any, between the host-parasite systems. Significant differences in the molecular surface arrangement of the dimer interfaces reveal that in schistosomal caspases only eight out of forty dimer conformations are similar to human caspase structures. Thus, the parasite-specific dimer conformations (that are different from caspases of the host) may emerge as potential drug targets of therapeutic value against schistosomal infections. Three important factors namely, the size of amino acids, secondary structures and geometrical arrangement of interacting domains influence the pattern of caspase dimer formation, which, in turn, is manifested in varied structural conformations of caspases in the parasite and its human hosts.
Collapse
Affiliation(s)
- Shakti Kumar
- Bioinformatics Centre, North-Eastern Hill University, Shillong 793022, Meghalaya, India
- Department of Zoology, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Devendra Kumar Biswal
- Bioinformatics Centre, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Veena Tandon
- Bioinformatics Centre, North-Eastern Hill University, Shillong 793022, Meghalaya, India
- Department of Zoology, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| |
Collapse
|
875
|
Moore BL, Kelley LA, Barber J, Murray JW, MacDonald JT. High-quality protein backbone reconstruction from alpha carbons using Gaussian mixture models. J Comput Chem 2013; 34:1881-9. [PMID: 23703289 DOI: 10.1002/jcc.23330] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 04/01/2013] [Accepted: 04/21/2013] [Indexed: 11/08/2022]
Abstract
Coarse-grained protein structure models offer increased efficiency in structural modeling, but these must be coupled with fast and accurate methods to revert to a full-atom structure. Here, we present a novel algorithm to reconstruct mainchain models from C traces. This has been parameterized by fitting Gaussian mixture models (GMMs) to short backbone fragments centered on idealized peptide bonds. The method we have developed is statistically significantly more accurate than several competing methods, both in terms of RMSD values and dihedral angle differences. The method produced Ramachandran dihedral angle distributions that are closer to that observed in real proteins and better Phaser molecular replacement log-likelihood gains. Amino acid residue sidechain reconstruction accuracy using SCWRL4 was found to be statistically significantly correlated to backbone reconstruction accuracy. Finally, the PD2 method was found to produce significantly lower energy full-atom models using Rosetta which has implications for multiscale protein modeling using coarse-grained models. A webserver and C++ source code is freely available for noncommercial use from: http://www.sbg.bio.ic.ac.uk/phyre2/PD2_ca2main/.
Collapse
Affiliation(s)
- Benjamin L Moore
- Division of Molecular Biosciences, Imperial College, South Kensington Campus, London, United Kingdom
| | | | | | | | | |
Collapse
|
876
|
Olson MA, Lee MS. Application of replica exchange umbrella sampling to protein structure refinement of nontemplate models. J Comput Chem 2013; 34:1785-93. [PMID: 23703032 DOI: 10.1002/jcc.23325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 03/12/2013] [Accepted: 04/21/2013] [Indexed: 12/30/2022]
Abstract
We provide an assessment of a computational strategy for protein structure refinement that combines self-guided Langevin dynamics with umbrella-potential biasing replica exchange using the radius of gyration as a coordinate (Rg -ReX). Eight structurally nonredundant proteins and their decoys were examined by sampling conformational space at room temperature using the CHARMM22/GBMV2 force field to generate the ensemble of structures. Two atomic statistical potentials (RWplus and DFIRE) were analyzed for structure identification and compared to the simulation force-field potential. The results show that, while the Rg -ReX simulations were able to sample conformational basins that were more structurally similar to the X-ray crystallographic structures than the starting first-order ranked decoys, the potentials failed to detect these basins from refinement. Of the three potential functions, RWplus yielded the highest accuracy for recognition of structures that refined to an average of nearly 20% increase in native contacts relative to the starting decoys. The overall performance of Rg -ReX is compared to an earlier study of applying temperature-based replica exchange to refine the same decoy sets and highlights the general challenge of achieving consistently the sampling and detection threshold of 70% fraction of native contacts.
Collapse
Affiliation(s)
- Mark A Olson
- Department of Cell Biology and Biochemistry, USAMRIID, Fredrick, Maryland 21702, USA.
| | | |
Collapse
|
877
|
Using the unfolded state as the reference state improves the performance of statistical potentials. Biophys J 2013. [PMID: 23199923 DOI: 10.1016/j.bpj.2012.09.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Distance-dependent statistical potentials are an important class of energy functions extensively used in modeling protein structures and energetics. These potentials are obtained by statistically analyzing the proximity of atoms in all combinatorial amino-acid pairs in proteins with known structures. In model evaluation, the statistical potential is usually subtracted by the value of a reference state for better selectivity. An ideal reference state should include the general chemical properties of polypeptide chains so that only the unique factors stabilizing the native structures are retained after calibrating on reference state. However, reference states available as of this writing rarely model specific chemical constraints of peptide bonds and therefore poorly reflect the behavior of polypeptide chains. In this work, we proposed a statistical potential based on unfolded state ensemble (SPOUSE), where the reference state is summarized from the unfolded state ensembles of proteins produced according to the statistical coil model. Due to its better representation of the features of polypeptides, SPOUSE outperforms three of the most widely used distance-dependent potentials not only in native conformation identification, but also in the selection of close-to-native models and correlation coefficients between energy and model error. Furthermore, SPOUSE shows promising possibility of further improvement by integration with the orientation-dependent side-chain potentials.
Collapse
|
878
|
Mitra P, Shultis D, Zhang Y. EvoDesign: De novo protein design based on structural and evolutionary profiles. Nucleic Acids Res 2013; 41:W273-80. [PMID: 23671331 PMCID: PMC3692067 DOI: 10.1093/nar/gkt384] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Protein design aims to identify new protein sequences of desirable structure and biological function. Most current de novo protein design methods rely on physics-based force fields to search for low free-energy states following Anfinsen’s thermodynamic hypothesis. A major obstacle of such approaches is the inaccuracy of the force field design, which cannot accurately describe the atomic interactions or distinguish correct folds. We developed a new web server, EvoDesign, to design optimal protein sequences of given scaffolds along with multiple sequence and structure-based features to assess the foldability and goodness of the designs. EvoDesign uses an evolution-profile–based Monte Carlo search with the profiles constructed from homologous structure families in the Protein Data Bank. A set of local structure features, including secondary structure, torsion angle and solvation, are predicted by single-sequence neural-network training and used to smooth the sequence motif and accommodate the physicochemical packing. The EvoDesign algorithm has been extensively tested in large-scale protein design experiments, which demonstrate enhanced foldability and structural stability of designed sequences compared with the physics-based designing methods. The EvoDesign server is freely available at http://zhanglab.ccmb.med.umich.edu/EvoDesign.
Collapse
Affiliation(s)
- Pralay Mitra
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109 USA
| | | | | |
Collapse
|
879
|
Parisien M, Wang X, Perdrizet G, Lamphear C, Fierke CA, Maheshwari KC, Wilde MJ, Sosnick TR, Pan T. Discovering RNA-protein interactome by using chemical context profiling of the RNA-protein interface. Cell Rep 2013; 3:1703-13. [PMID: 23665222 DOI: 10.1016/j.celrep.2013.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 03/04/2013] [Accepted: 04/12/2013] [Indexed: 02/04/2023] Open
Abstract
RNA-protein (RNP) interactions generally are required for RNA function. At least 5% of human genes code for RNA-binding proteins. Whereas many approaches can identify the RNA partners for a specific protein, finding the protein partners for a specific RNA is difficult. We present a machine-learning method that scores a protein's binding potential for an RNA structure by utilizing the chemical context profiles of the interface from known RNP structures. Our approach is applicable even when only a single RNP structure is available. We examined 801 mammalian proteins and find that 37 (4.6%) potentially bind transfer RNA (tRNA). Most are enzymes involved in cellular processes unrelated to translation and were not known to interact with RNA. We experimentally tested six positive and three negative predictions for tRNA binding in vivo, and all nine predictions were correct. Our computational approach provides a powerful complement to experiments in discovering new RNPs.
Collapse
Affiliation(s)
- Marc Parisien
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
880
|
Ding B, Li N, Wang W. Characterizing Binding of Small Molecules. II. Evaluating the Potency of Small Molecules to Combat Resistance Based on Docking Structures. J Chem Inf Model 2013; 53:1213-22. [DOI: 10.1021/ci400011c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Bo Ding
- Department
of Chemistry and Biochemistry, ‡Department of Cellular and Molecular Medicine, UCSD, La Jolla, California 92093-0359,
United States
| | - Nan Li
- Department
of Chemistry and Biochemistry, ‡Department of Cellular and Molecular Medicine, UCSD, La Jolla, California 92093-0359,
United States
| | - Wei Wang
- Department
of Chemistry and Biochemistry, ‡Department of Cellular and Molecular Medicine, UCSD, La Jolla, California 92093-0359,
United States
| |
Collapse
|
881
|
Detection and Characterisation of Mutations Responsible for Allele-Specific Protein Thermostabilities at the Mn-Superoxide Dismutase Gene in the Deep-Sea Hydrothermal Vent Polychaete Alvinella pompejana. J Mol Evol 2013; 76:295-310. [DOI: 10.1007/s00239-013-9559-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 03/27/2013] [Indexed: 12/19/2022]
|
882
|
Monti P, Russo D, Bocciardi R, Foggetti G, Menichini P, Divizia MT, Lerone M, Graziano C, Wischmeijer A, Viadiu H, Ravazzolo R, Inga A, Fronza G. EEC- and ADULT-associated TP63 mutations exhibit functional heterogeneity toward P63 responsive sequences. Hum Mutat 2013; 34:894-904. [PMID: 23463580 DOI: 10.1002/humu.22304] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/22/2013] [Indexed: 01/05/2023]
Abstract
TP63 germ-line mutations are responsible for a group of human ectodermal dysplasia syndromes, underlining the key role of P63 in the development of ectoderm-derived tissues. Here, we report the identification of two TP63 alleles, G134V (p.Gly173Val) and insR155 (p.Thr193_Tyr194insArg), associated to ADULT and EEC syndromes, respectively. These alleles, along with previously identified G134D (p.Gly173Asp) and R204W (p.Arg243Trp), were functionally characterized in yeast, studied in a mammalian cell line and modeled based on the crystal structure of the P63 DNA-binding domain. Although the p.Arg243Trp mutant showed both complete loss of transactivation function and ability to interfere over wild-type P63, the impact of p.Gly173Asp, p.Gly173Val, and p.Thr193_Tyr194insArg varied depending on the response element (RE) tested. Interestingly, p.Gly173Asp and p.Gly173Val mutants were characterized by a severe defect in transactivation along with interfering ability on two DN-P63α-specific REs derived from genes closely related to the clinical manifestations of the TP63-associated syndromes, namely PERP and COL18A1. The modeling of the mutations supported the distinct functional effect of each mutant. The present results highlight the importance of integrating different functional endpoints that take in account the features of P63 proteins' target sequences to examine the impact of TP63 mutations and the associated clinical variability.
Collapse
Affiliation(s)
- Paola Monti
- Molecular Mutagenesis and DNA Repair Unit, Istituto di Ricerca e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-IST-Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
883
|
Pedersen BP, Kumar H, Waight AB, Risenmay AJ, Roe-Zurz Z, Chau BH, Schlessinger A, Bonomi M, Harries W, Sali A, Johri AK, Stroud RM. Crystal structure of a eukaryotic phosphate transporter. Nature 2013; 496:533-6. [PMID: 23542591 PMCID: PMC3678552 DOI: 10.1038/nature12042] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 02/25/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Bjørn P Pedersen
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
884
|
Structure-based ligand discovery for the Large-neutral Amino Acid Transporter 1, LAT-1. Proc Natl Acad Sci U S A 2013; 110:5480-5. [PMID: 23509259 DOI: 10.1073/pnas.1218165110] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Large-neutral Amino Acid Transporter 1 (LAT-1)--a sodium-independent exchanger of amino acids, thyroid hormones, and prescription drugs--is highly expressed in the blood-brain barrier and various types of cancer. LAT-1 plays an important role in cancer development as well as in mediating drug and nutrient delivery across the blood-brain barrier, making it a key drug target. Here, we identify four LAT-1 ligands, including one chemically novel substrate, by comparative modeling, virtual screening, and experimental validation. These results may rationalize the enhanced brain permeability of two drugs, including the anticancer agent acivicin. Finally, two of our hits inhibited proliferation of a cancer cell line by distinct mechanisms, providing useful chemical tools to characterize the role of LAT-1 in cancer metabolism.
Collapse
|
885
|
The human bitter taste receptor TAS2R10 is tailored to accommodate numerous diverse ligands. J Neurosci 2013; 33:201-13. [PMID: 23283334 DOI: 10.1523/jneurosci.3248-12.2013] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bitter taste is a basic taste modality, required to safeguard animals against consuming toxic substances. Bitter compounds are recognized by G-protein-coupled bitter taste receptors (TAS2Rs). The human TAS2R10 responds to the toxic strychnine and numerous other compounds. The mechanism underlying the development of the broad tuning of some TAS2Rs is not understood. Using comparative modeling, site-directed mutagenesis, and functional assays, we identified residues involved in agonist-induced activation of TAS2R10, and investigated the effects of different substitutions on the receptor's response profile. Most interestingly, mutations in S85(3.29) and Q175(5.40) have differential impact on stimulation with different agonists. The fact that single point mutations lead to improved responses for some agonists and to decreased activation by others indicates that the binding site has evolved to optimally accommodate multiple agonists at the expense of reduced potency. TAS2R10 shares the agonist strychnine with TAS2R46, another broadly tuned receptor. Engineering the key determinants for TAS2R46 activation by strychnine in TAS2R10 caused a loss of response to strychnine, indicating that these paralog receptors display different strychnine-binding modes, which suggests independent acquisition of agonist specificities. This implies that the gene duplication event preceding primate speciation was accompanied by independent evolution of the strychnine-binding sites.
Collapse
|
886
|
Kalisman N, Schröder GF, Levitt M. The crystal structures of the eukaryotic chaperonin CCT reveal its functional partitioning. Structure 2013; 21:540-9. [PMID: 23478063 DOI: 10.1016/j.str.2013.01.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/20/2013] [Accepted: 01/28/2013] [Indexed: 12/22/2022]
Abstract
In eukaryotes, CCT is essential for the correct and efficient folding of many cytosolic proteins, most notably actin and tubulin. Structural studies of CCT have been hindered by the failure of standard crystallographic analysis to resolve its eight different subunit types at low resolutions. Here, we exhaustively assess the R value fit of all possible CCT models to available crystallographic data of the closed and open forms with resolutions of 3.8 Å and 5.5 Å, respectively. This unbiased analysis finds the native subunit arrangements with overwhelming significance. The resulting structures provide independent crystallographic proof of the subunit arrangement of CCT and map major asymmetrical features of the particle onto specific subunits. The actin and tubulin substrates both bind around subunit CCT6, which shows other structural anomalies. CCT is thus clearly partitioned, both functionally and evolutionary, into a substrate-binding side that is opposite to the ATP-hydrolyzing side.
Collapse
Affiliation(s)
- Nir Kalisman
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
887
|
Damjanovic A, Miller BT, Schleif R. Understanding the basis of a class of paradoxical mutations in AraC through simulations. Proteins 2013; 81:490-8. [PMID: 23150197 PMCID: PMC3557760 DOI: 10.1002/prot.24207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 09/15/2012] [Accepted: 10/02/2012] [Indexed: 11/10/2022]
Abstract
Most mutations at position 15 in the N-terminal arm of the regulatory protein AraC leave the protein incapable of responding to arabinose and inducing the proteins required for arabinose catabolism. Mutations at other positions of the arm do not have this behavior. Simple energetic analysis of the interactions between the arm and bound arabinose do not explain the uninducibility of AraC with mutations at position 15. Extensive molecular dynamics (MD) simulations, carried out largely on the Open Science Grid, were done of the wild-type protein with and without bound arabinose and of all possible mutations at position 15, many of which were constructed and measured for this work. Good correlation was found for deviation of arm position during the simulations and inducibility as measured in vivo of the same mutant proteins. Analysis of the MD trajectories revealed that preservation of the shape of the arm is critical to inducibility. To maintain the correct shape of the arm, the strengths of three interactions observed to be strong in simulations of the wild-type AraC protein need to be preserved. These interactions are between arabinose and residue 15, arabinose and residues 8-9, and residue 13 and residue 15. The latter interaction is notable because residues L9, Y13, F15, W95, and Y97 form a hydrophobic cluster which needs to be preserved for retention of the correct shape.
Collapse
Affiliation(s)
- Ana Damjanovic
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Benjamin T. Miller
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Robert Schleif
- Biology Department, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
888
|
Enhancing human spermine synthase activity by engineered mutations. PLoS Comput Biol 2013; 9:e1002924. [PMID: 23468611 PMCID: PMC3585406 DOI: 10.1371/journal.pcbi.1002924] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/28/2012] [Indexed: 11/25/2022] Open
Abstract
Spermine synthase (SMS) is an enzyme which function is to convert spermidine into spermine. It was shown that gene defects resulting in amino acid changes of the wild type SMS cause Snyder-Robinson syndrome, which is a mild-to-moderate mental disability associated with osteoporosis, facial asymmetry, thin habitus, hypotonia, and a nonspecific movement disorder. These disease-causing missense mutations were demonstrated, both in silico and in vitro, to affect the wild type function of SMS by either destabilizing the SMS dimer/monomer or directly affecting the hydrogen bond network of the active site of SMS. In contrast to these studies, here we report an artificial engineering of a more efficient SMS variant by transferring sequence information from another organism. It is confirmed experimentally that the variant, bearing four amino acid substitutions, is catalytically more active than the wild type. The increased functionality is attributed to enhanced monomer stability, lowering the pKa of proton donor catalytic residue, optimized spatial distribution of the electrostatic potential around the SMS with respect to substrates, and increase of the frequency of mechanical vibration of the clefts presumed to be the gates toward the active sites. The study demonstrates that wild type SMS is not particularly evolutionarily optimized with respect to the reaction spermidine → spermine. Having in mind that currently there are no variations (non-synonymous single nucleotide polymorphism, nsSNP) detected in healthy individuals, it can be speculated that the human SMS function is precisely tuned toward its wild type and any deviation is unwanted and disease-causing. Proteins are constantly subjected to evolutionary pressure to assure the organism's survival and reproduction. At the same time, the proteins' amino acid sequence undergoes mutations, some of which may cause diseases while others may be reflecting natural differences within the population (non-synonymous single nucleotide polymorphism, nsSNP). In this study we examine the human spermine synthase (HsSMS), for which currently there are no nsSNPs, while rare disease mutations are known to cause Snyder-Robinson syndrome. What is so special with this protein? Maybe the HsSMS is so well optimized for its function that any change of the wild type sequence should be degrading its performance. To check such a possibility, we engineered a mutant of HsSMS with enhanced stability, electrostatic and mechanical properties. The mutant was confirmed experimentally to be a better enzyme than the wild type. Thus, the HsSMS is not evolutionally optimized with respect to its enzymatic reaction, its amino acid sequence differs only in sick individuals and so far its sequence was found to be identical in all healthy individuals. Therefore, it can be speculated that the HsSMS function is precisely tuned toward the wild type characteristics such so any deviation is unwanted and is disease-causing.
Collapse
|
889
|
Tomé S, Manley K, Simard JP, Clark GW, Slean MM, Swami M, Shelbourne PF, Tillier ERM, Monckton DG, Messer A, Pearson CE. MSH3 polymorphisms and protein levels affect CAG repeat instability in Huntington's disease mice. PLoS Genet 2013; 9:e1003280. [PMID: 23468640 PMCID: PMC3585117 DOI: 10.1371/journal.pgen.1003280] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 12/12/2012] [Indexed: 01/21/2023] Open
Abstract
Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)∼100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases. The genetic instability of repetitive DNA sequences in particular genes can lead to numerous neurodegenerative, neurological, and neuromuscular diseases. These diseases show progressively increasing severity of symptoms through the life of the affected individual, a phenomenon that is linked with increasing instability of the repeated sequences as the person ages. There is variability in the levels of this instability between individuals—the source of this variability is unknown. We have shown in a mouse model of repeat instability that small differences in a certain DNA repair gene, MSH3, whose protein is known to fix broken DNA, can lead to variable levels of repeat instability. These DNA repair variants lead to different repair protein levels, where lower levels lead to reduced repeat instability. Our findings reveal that such naturally occurring variations in DNA repair genes in affected humans may serve as a predictor of disease progression. Moreover, our findings support the concept that pharmacological reduction of MSH3 protein should reduce repeat instability and disease progression.
Collapse
Affiliation(s)
- Stéphanie Tomé
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kevin Manley
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, New York, United States of America
| | - Jodie P. Simard
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Greg W. Clark
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Meghan M. Slean
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Meera Swami
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Peggy F. Shelbourne
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Elisabeth R. M. Tillier
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | - Darren G. Monckton
- Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anne Messer
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany, SUNY, Albany, New York, United States of America
| | - Christopher E. Pearson
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
890
|
Cui X, Li SC, Bu D, Alipanahi B, Li M. Protein Structure Idealization: How accurately is it possible to model protein structures with dihedral angles? Algorithms Mol Biol 2013; 8:5. [PMID: 23442792 PMCID: PMC3655034 DOI: 10.1186/1748-7188-8-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 02/05/2013] [Indexed: 11/28/2022] Open
Abstract
Previous studies show that the same type of bond lengths and angles fit Gaussian distributions well with small standard deviations on high resolution protein structure data. The mean values of these Gaussian distributions have been widely used as ideal bond lengths and angles in bioinformatics. However, we are not aware of any research done to evaluate how accurately we can model protein structures with dihedral angles and ideal bond lengths and angles. Here, we introduce the protein structure idealization problem. We focus on the protein backbone structure idealization. We describe a fast O(nm/ε) dynamic programming algorithm to find an idealized protein backbone structure that is approximately optimal according to our scoring function. The scoring function evaluates not only the free energy, but also the similarity with the target structure. Thus, the idealized protein structures found by our algorithm are guaranteed to be protein-like and close to the target protein structure. We have implemented our protein structure idealization algorithm and idealized the high resolution protein structures with low sequence identities of the CULLPDB_PC30_RES1.6_R0.25 data set. We demonstrate that idealized backbone structures always exist with small changes and significantly better free energy. We also applied our algorithm to refine protein pseudo-structures determined in NMR experiments.
Collapse
|
891
|
Langelaan DN, Reddy T, Banks AW, Dellaire G, Dupré DJ, Rainey JK. Structural features of the apelin receptor N-terminal tail and first transmembrane segment implicated in ligand binding and receptor trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1471-83. [PMID: 23438363 DOI: 10.1016/j.bbamem.2013.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/17/2013] [Accepted: 02/13/2013] [Indexed: 12/20/2022]
Abstract
G-protein coupled receptors (GPCRs) comprise a large family of membrane proteins with rich functional diversity. Signaling through the apelin receptor (AR or APJ) influences the cardiovascular system, central nervous system and glucose regulation. Pathophysiological involvement of apelin has been shown in atherosclerosis, cancer, human immunodeficiency virus-1 (HIV-1) infection and obesity. Here, we present the high-resolution nuclear magnetic resonance (NMR) spectroscopy-based structure of the N-terminus and first transmembrane (TM) segment of AR (residues 1-55, AR55) in dodecylphosphocholine micelles. AR55 consists of two disrupted helices, spanning residues D14-K25 and A29-R55(1.59). Molecular dynamics (MD) simulations of AR built from a hybrid of experimental NMR and homology model-based restraints allowed validation of the AR55 structure in the context of the full-length receptor in a hydrated bilayer. AR55 structural features were functionally probed using mutagenesis in full-length AR through monitoring of apelin-induced extracellular signal-regulated kinase (ERK) phosphorylation in transiently transfected human embryonic kidney (HEK) 293A cells. Residues E20 and D23 form an extracellular anionic face and interact with lipid headgroups during MD simulations in the absence of ligand, producing an ideal binding site for a cationic apelin ligand proximal to the membrane-water interface, lending credence to membrane-catalyzed apelin-AR binding. In the TM region of AR55, N46(1.50) is central to a disruption in helical character. G42(1.46), G45(1.49) and N46(1.50), which are all involved in the TM helical disruption, are essential for proper trafficking of AR. In summary, we introduce a new correlative NMR spectroscopy and computational biochemistry methodology and demonstrate its utility in providing some of the first high-resolution structural information for a peptide-activated GPCR TM domain.
Collapse
Affiliation(s)
- David N Langelaan
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | |
Collapse
|
892
|
Baradaran R, Berrisford JM, Minhas GS, Sazanov LA. Crystal structure of the entire respiratory complex I. Nature 2013; 494:443-8. [PMID: 23417064 PMCID: PMC3672946 DOI: 10.1038/nature11871] [Citation(s) in RCA: 615] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/21/2012] [Indexed: 02/05/2023]
Abstract
Complex I is the first and largest enzyme of the respiratory chain and has a central role in cellular energy production through the coupling of NADH:ubiquinone electron transfer to proton translocation. It is also implicated in many common human neurodegenerative diseases. Here, we report the first crystal structure of the entire, intact complex I (from Thermus thermophilus) at 3.3 Å resolution. The structure of the 536-kDa complex comprises 16 different subunits, with a total of 64 transmembrane helices and 9 iron-sulphur clusters. The core fold of subunit Nqo8 (ND1 in humans) is, unexpectedly, similar to a half-channel of the antiporter-like subunits. Small subunits nearby form a linked second half-channel, which completes the fourth proton-translocation pathway (present in addition to the channels in three antiporter-like subunits). The quinone-binding site is unusually long, narrow and enclosed. The quinone headgroup binds at the deep end of this chamber, near iron-sulphur cluster N2. Notably, the chamber is linked to the fourth channel by a 'funnel' of charged residues. The link continues over the entire membrane domain as a flexible central axis of charged and polar residues, and probably has a leading role in the propagation of conformational changes, aided by coupling elements. The structure suggests that a unique, out-of-the-membrane quinone-reaction chamber enables the redox energy to drive concerted long-range conformational changes in the four antiporter-like domains, resulting in translocation of four protons per cycle.
Collapse
Affiliation(s)
- Rozbeh Baradaran
- Medical Research Council Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | | | | | |
Collapse
|
893
|
Jaffe EK, Stith L, Lawrence SH, Andrake M, Dunbrack RL. A new model for allosteric regulation of phenylalanine hydroxylase: implications for disease and therapeutics. Arch Biochem Biophys 2013; 530:73-82. [PMID: 23296088 PMCID: PMC3580015 DOI: 10.1016/j.abb.2012.12.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/07/2012] [Accepted: 12/19/2012] [Indexed: 02/06/2023]
Abstract
The structural basis for allosteric regulation of phenylalanine hydroxylase (PAH), whose dysfunction causes phenylketonuria (PKU), is poorly understood. A new morpheein model for PAH allostery is proposed to consist of a dissociative equilibrium between two architecturally different tetramers whose interconversion requires a ∼90° rotation between the PAH catalytic and regulatory domains, the latter of which contains an ACT domain. This unprecedented model is supported by in vitro data on purified full length rat and human PAH. The conformational change is both predicted to and shown to render the tetramers chromatographically separable using ion exchange methods. One novel aspect of the activated tetramer model is an allosteric phenylalanine binding site at the intersubunit interface of ACT domains. Amino acid ligand-stabilized ACT domain dimerization follows the multimerization and ligand binding behavior of ACT domains present in other proteins in the PDB. Spectroscopic, chromatographic, and electrophoretic methods demonstrate a PAH equilibrium consisting of two architecturally distinct tetramers as well as dimers. We postulate that PKU-associated mutations may shift the PAH quaternary structure equilibrium in favor of the low activity assemblies. Pharmacological chaperones that stabilize the ACT:ACT interface can potentially provide PKU patients with a novel small molecule therapeutic.
Collapse
Affiliation(s)
- Eileen K Jaffe
- Developmental Therapeutics, Institute for Cancer Research, Fox Chase Cancer Center, Temple Health, 333 Cottman Ave., Philadelphia, PA 19111, USA.
| | | | | | | | | |
Collapse
|
894
|
Padilla A, Amiable C, Pochet S, Kaminski PA, Labesse G. Structure of the oncoprotein Rcl bound to three nucleotide analogues. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2013; 69:247-55. [PMID: 23385460 DOI: 10.1107/s0907444912045039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/30/2012] [Indexed: 08/26/2023]
Abstract
Rcl is a novel N-glycoside hydrolase found in mammals that shows specificity for the hydrolysis of 5'-monophosphate nucleotides. Its role in nucleotide catabolism and the resulting production of 2-deoxyribose 5-phosphate has suggested that it might fuel cancer growth. Its expression is regulated by c-Myc, but its role as an oncoprotein remains to be clarified. In parallel, various nucleosides have been shown to acquire pro-apoptotic properties upon 5'-monophosphorylation in cells. These include triciribine, a tricyclic nucleoside analogue that is currently in clinical trials in combination with a farnesyltransferase inhibitor. Similarly, an N(6)-alkyl-AMP has been shown to be cytotoxic. Interestingly, Rcl has been shown to be inhibited by such compounds in vitro. In order to gain better insight into the precise ligand-recognition determinants, the crystallization of Rcl with these nucleotide analogues was attempted. The first crystal structure of Rcl was solved by molecular replacement using its NMR structure in combination with distantly related crystal structures. The structures of Rcl bound to two other nucleotides were then solved by molecular replacement using the previous crystal structure as a template. The resulting structures, solved at high resolution, led to a clear characterization of the protein-ligand interactions that will guide further rational drug design.
Collapse
Affiliation(s)
- André Padilla
- CNRS, UMR5048, Université Montpellier 1 et 2, Centre de Biochimie Structurale, F-34090 Montpellier, France
| | | | | | | | | |
Collapse
|
895
|
Sethi A, Tian J, Vu DM, Gnanakaran S. Identification of minimally interacting modules in an intrinsically disordered protein. Biophys J 2013; 103:748-57. [PMID: 22947936 DOI: 10.1016/j.bpj.2012.06.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 06/20/2012] [Accepted: 06/25/2012] [Indexed: 10/28/2022] Open
Abstract
The conformational characterization of intrinsically disordered proteins (IDPs) is complicated by their conformational heterogeneity and flexibility. If an IDP could somehow be divided into smaller fragments and reconstructed later, theoretical and spectroscopic studies could probe its conformational variability in detail. Here, we used replica molecular-dynamics simulations and network theory to explore whether such a divide-and-conquer strategy is feasible for α-synuclein, a prototypical IDP. We characterized the conformational variability of α-synuclein by conducting >100 unbiased all-atom molecular-dynamics simulations, for a total of >10 μs of trajectories. In these simulations, α-synuclein formed a heterogeneous ensemble of collapsed coil states in an aqueous environment. These states were stabilized by heterogeneous contacts between sequentially distant regions. We find that α-synuclein contains residual secondary structures in the collapsed states, and the heterogeneity in the collapsed state makes it feasible to split α-synuclein into sequentially contiguous minimally interacting fragments. This study reveals previously unknown characteristics of α-synuclein and provides a new (to our knowledge) approach for studying other IDPs.
Collapse
Affiliation(s)
- Anurag Sethi
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | | | | | | |
Collapse
|
896
|
Biomacromolecular quantitative structure–activity relationship (BioQSAR): a proof-of-concept study on the modeling, prediction and interpretation of protein–protein binding affinity. J Comput Aided Mol Des 2013; 27:67-78. [DOI: 10.1007/s10822-012-9625-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/12/2012] [Indexed: 01/22/2023]
|
897
|
Miller SR, McGuirl MA, Carvey D. The Evolution of RuBisCO Stability at the Thermal Limit of Photoautotrophy. Mol Biol Evol 2013; 30:752-60. [DOI: 10.1093/molbev/mss327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
898
|
Moghadasi M, Kozakov D, Vakili P, Vajda S, Paschalidis IC. A New Distributed Algorithm for Side-Chain Positioning in the Process of Protein Docking *. PROCEEDINGS OF THE ... IEEE CONFERENCE ON DECISION & CONTROL. IEEE CONFERENCE ON DECISION & CONTROL 2013:739-744. [PMID: 24844567 PMCID: PMC4024309 DOI: 10.1109/cdc.2013.6759970] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Side-chain positioning (SCP) is an important component of computational protein docking methods. Existing SCP methods and available software have been designed for protein folding applications where side-chain positioning is also important. As a result they do not take into account significant special structure that SCP for docking exhibits. We propose a new algorithm which poses SCP as a Maximum Weighted Independent Set (MWIS) problem on an appropriately constructed graph. We develop an approximate algorithm which solves a relaxation of the MWIS and then rounds the solution to obtain a high-quality feasible solution to the problem. The algorithm is fully distributed and can be executed on a large network of processing nodes requiring only local information and message-passing between neighboring nodes. Motivated by the special structure in docking, we establish optimality guarantees for a certain class of graphs. Our results on a benchmark set of enzyme-inhibitor protein complexes show that our predictions are close to the native structure and are comparable to the ones obtained by a state-of-the-art method. The results are substantially improved if rotamers from unbound protein structures are included in the search. We also establish that the use of our SCP algorithm substantially improves docking results.
Collapse
Affiliation(s)
| | | | | | | | - Ioannis Ch. Paschalidis
- Corresponding author: Dept. of Electrical & Computer Eng., Boston University, 8 Mary’s St., Boston, MA 02215,
| |
Collapse
|
899
|
Padiadpu J, Mukherjee S, Chandra N. Rationalization and prediction of drug resistant mutations in targets for clinical anti-tubercular drugs. J Biomol Struct Dyn 2013; 31:44-58. [DOI: 10.1080/07391102.2012.691361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
900
|
Bhattacharya D, Cheng J. 3Drefine: consistent protein structure refinement by optimizing hydrogen bonding network and atomic-level energy minimization. Proteins 2013; 81:119-31. [PMID: 22927229 PMCID: PMC3634918 DOI: 10.1002/prot.24167] [Citation(s) in RCA: 137] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/26/2012] [Accepted: 08/17/2012] [Indexed: 12/27/2022]
Abstract
One of the major limitations of computational protein structure prediction is the deviation of predicted models from their experimentally derived true, native structures. The limitations often hinder the possibility of applying computational protein structure prediction methods in biochemical assignment and drug design that are very sensitive to structural details. Refinement of these low-resolution predicted models to high-resolution structures close to the native state, however, has proven to be extremely challenging. Thus, protein structure refinement remains a largely unsolved problem. Critical assessment of techniques for protein structure prediction (CASP) specifically indicated that most predictors participating in the refinement category still did not consistently improve model quality. Here, we propose a two-step refinement protocol, called 3Drefine, to consistently bring the initial model closer to the native structure. The first step is based on optimization of hydrogen bonding (HB) network and the second step applies atomic-level energy minimization on the optimized model using a composite physics and knowledge-based force fields. The approach has been evaluated on the CASP benchmark data and it exhibits consistent improvement over the initial structure in both global and local structural quality measures. 3Drefine method is also computationally inexpensive, consuming only few minutes of CPU time to refine a protein of typical length (300 residues). 3Drefine web server is freely available at http://sysbio.rnet.missouri.edu/3Drefine/.
Collapse
Affiliation(s)
| | - Jianlin Cheng
- Department of Computer Science, University of Missouri, Columbia, MO 65211, USA
- Informatics Institute, University of Missouri, Columbia, MO 65211, USA
- Bond Life Science Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|