851
|
Venkatesan S, Swanton C. Tumor Evolutionary Principles: How Intratumor Heterogeneity Influences Cancer Treatment and Outcome. Am Soc Clin Oncol Educ Book 2016; 35:e141-9. [PMID: 27249716 DOI: 10.1200/edbk_158930] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent studies have shown that intratumor heterogeneity contributes to drug resistance in advanced disease. Intratumor heterogeneity may foster the selection of a resistant subclone, sometimes detectable prior to treatment. Next-generation sequencing is enabling the phylogenetic reconstruction of a cancer's life history and has revealed different modes of cancer evolution. These studies have shown that cancer evolution is not always stochastic and has certain constraints. Consideration of cancer evolution may enable the better design of clinical trials and cancer therapeutics. In this review, we summarize the different modes of cancer evolution and how this might impact clinical outcomes. Furthermore, we will discuss several therapeutic strategies for managing emergent intratumor heterogeneity.
Collapse
Affiliation(s)
- Subramanian Venkatesan
- From the UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, London, United Kingdom; The Francis Crick Institute, London, United Kingdom
| | - Charles Swanton
- From the UCL Cancer Institute, CRUK Lung Cancer Centre of Excellence, London, United Kingdom; The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
852
|
Abstract
Myelodysplastic syndrome (MDS) encompasses a heterogeneous group of diseases originating in hematopoietic stem cells and is characterized by inefficient hematopoiesis and dysplastic changes in the bone marrow. In peripheral blood patients show anemia (mostly macrocytic), frequently accompanied by neutropenia and thrombocytopenia. Thus, clinically the patients suffer from fatigue (anemia), increased bleeding (thrombocytopenia) and infectious complications (neutropenia). Approximately one quarter of MDS patients develop acute myeloid leukemia (AML) in the course of the disease, which is characterized by a 20 % or more increase of blasts in the bone marrow. The estimated overall survival as well as the risk for AML transformation can be calculated with the international prognostic scoring system (IPSS) as well as the revised IPSS score (IPSS-R). Novel sequencing methods (e.g. next generation sequencing) allow the detection of recurrent gene mutations in MDS patients. Genes of the splicing machinery as well as genes involved in epigenetic regulation (e.g. ASXL1 and TET2) are most frequently mutated in MDS. Therapy is selected based on the patient risk profile (IPSS). Allogeneic stem cell transplantation is a curative approach for high risk patients (i.e. IPSS int-2 and higher) with a good performance status and a biological age below 70 years. Otherwise, high risk patients are treated with demethylating agents (e.g. decitabine and azacitidine). Low risk patients (IPSS low and int-1) mainly receive supportive therapy including iron chelation. An exceptional position is presented by MDS with an isolated 5q deletion as it can be treated with lenalidomide with good success. Enrolling patients in clinical trials is strongly recommended to improve the prospects of this disease.
Collapse
Affiliation(s)
- F Thol
- Klinik für Hämatologie, Hämostaseologie, Onkologie und Stammzelltransplantation, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland,
| | | | | |
Collapse
|
853
|
Brambati C, Galbiati S, Xue E, Toffalori C, Crucitti L, Greco R, Sala E, Crippa A, Chiesa L, Soriani N, Mazzi B, Tresoldi C, Stanghellini MTL, Peccatori J, Carrabba MG, Bernardi M, Ferrari M, Lampasona V, Ciceri F, Vago L. Droplet digital polymerase chain reaction for DNMT3A and IDH1/2 mutations to improve early detection of acute myeloid leukemia relapse after allogeneic hematopoietic stem cell transplantation. Haematologica 2015; 101:e157-61. [PMID: 26703962 DOI: 10.3324/haematol.2015.135467] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Chiara Brambati
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Silvia Galbiati
- Genomics for the Diagnosis of Human Pathologies Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Elisabetta Xue
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy. Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Cristina Toffalori
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Lara Crucitti
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Raffaella Greco
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Elisa Sala
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Alessandra Crippa
- Molecular Hematology Laboratory, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Lorenza Chiesa
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Nadia Soriani
- Genomics for the Diagnosis of Human Pathologies Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Benedetta Mazzi
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Cristina Tresoldi
- Molecular Hematology Laboratory, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | | | - Jacopo Peccatori
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Matteo G Carrabba
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Massimo Bernardi
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Maurizio Ferrari
- Genomics for the Diagnosis of Human Pathologies Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Vito Lampasona
- Genomics for the Diagnosis of Human Pathologies Unit, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | - Fabio Ciceri
- Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milano, Italy.
| | - Luca Vago
- Unit of Immunogenetics, Leukemia Genomics and Immunobiology, IRCCS San Raffaele Scientific Institute, Milano, Italy. Unit of Hematology and Bone Marrow Transplantation, IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
854
|
Paguirigan AL, Smith J, Meshinchi S, Carroll M, Maley C, Radich JP. Single-cell genotyping demonstrates complex clonal diversity in acute myeloid leukemia. Sci Transl Med 2015; 7:281re2. [PMID: 25834112 DOI: 10.1126/scitranslmed.aaa0763] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Clonal evolution in cancer-the selection for and emergence of increasingly malignant clones during progression and therapy, resulting in cancer metastasis and relapse-has been highlighted as an important phenomenon in the biology of leukemia and other cancers. Tracking mutant alleles to determine clonality from diagnosis to relapse or from primary site to metastases in a sensitive and quantitative manner is most often performed using next-generation sequencing. Such methods determine clonal frequencies by extrapolation of allele frequencies in sequencing data of DNA from the metagenome of bulk tumor samples using a set of assumptions. The computational framework that is usually used assumes specific patterns in the order of acquisition of unique mutational events and heterozygosity of mutations in single cells. However, these assumptions are not accurate for all mutant loci in acute myeloid leukemia (AML) samples. To assess whether current models of clonal diversity within individual AML samples are appropriate for common mutations, we developed protocols to directly genotype AML single cells. Single-cell analysis demonstrates that mutations of FLT3 and NPM1 occur in both homozygous and heterozygous states, distributed among at least nine distinct clonal populations in all samples analyzed. There appears to be convergent evolution and differential evolutionary trajectories for cells containing mutations at different loci. This work suggests an underlying tumor heterogeneity beyond what is currently understood in AML, which may be important in the development of therapeutic approaches to eliminate leukemic cell burden and control clonal evolution-induced relapse.
Collapse
Affiliation(s)
| | - Jordan Smith
- Fred Hutchinson Cancer Research Center, Seattle, WA 98117, USA
| | | | - Martin Carroll
- University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Carlo Maley
- Center for Evolution and Cancer, Helen Diller Family Comprehensive Cancer Center and Department of Surgery, University of California, San Francisco, San Francisco, CA 94158, USA. School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Jerald P Radich
- Fred Hutchinson Cancer Research Center, Seattle, WA 98117, USA
| |
Collapse
|
855
|
Mannini L, Cucco F, Quarantotti V, Amato C, Tinti M, Tana L, Frattini A, Delia D, Krantz ID, Jessberger R, Musio A. SMC1B is present in mammalian somatic cells and interacts with mitotic cohesin proteins. Sci Rep 2015; 5:18472. [PMID: 26673124 PMCID: PMC4682075 DOI: 10.1038/srep18472] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/18/2015] [Indexed: 01/02/2023] Open
Abstract
Cohesin is an evolutionarily conserved protein complex that plays a role in many biological processes: it ensures faithful chromosome segregation, regulates gene expression and preserves genome stability. In mammalian cells, the mitotic cohesin complex consists of two structural maintenance of chromosome proteins, SMC1A and SMC3, the kleisin protein RAD21 and a fourth subunit either STAG1 or STAG2. Meiotic paralogs in mammals were reported for SMC1A, RAD21 and STAG1/STAG2 and are called SMC1B, REC8 and STAG3 respectively. It is believed that SMC1B is only a meiotic-specific cohesin member, required for sister chromatid pairing and for preventing telomere shortening. Here we show that SMC1B is also expressed in somatic mammalian cells and is a member of a mitotic cohesin complex. In addition, SMC1B safeguards genome stability following irradiation whereas its ablation has no effect on chromosome segregation. Finally, unexpectedly SMC1B depletion impairs gene transcription, particularly at genes mapping to clusters such as HOX and PCDHB. Genome-wide analyses show that cluster genes changing in expression are enriched for cohesin-SMC1B binding.
Collapse
Affiliation(s)
- Linda Mannini
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Francesco Cucco
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Valentina Quarantotti
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Clelia Amato
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Mara Tinti
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Luigi Tana
- Azienda Ospedaliero Universitaria Pisana, U.O. Fisica Sanitaria, Pisa, Italy
| | - Annalisa Frattini
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Milan, Italy
- Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi dell’Insubria, Varese, Italy
| | - Domenico Delia
- Fondazione IRCCS Istituto Nazionale Tumori, Department of Experimental Oncology, Milan, Italy
| | - Ian D. Krantz
- Division of Human Genetics, The Children’s Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | - Rolf Jessberger
- Institute of Physiological Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| |
Collapse
|
856
|
Moehrle BM, Nattamai K, Brown A, Florian MC, Ryan M, Vogel M, Bliederhaeuser C, Soller K, Prows DR, Abdollahi A, Schleimer D, Walter D, Milsom MD, Stambrook P, Porteus M, Geiger H. Stem Cell-Specific Mechanisms Ensure Genomic Fidelity within HSCs and upon Aging of HSCs. Cell Rep 2015; 13:2412-2424. [PMID: 26686632 DOI: 10.1016/j.celrep.2015.11.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/13/2015] [Accepted: 11/08/2015] [Indexed: 01/22/2023] Open
Abstract
Whether aged hematopoietic stem and progenitor cells (HSPCs) have impaired DNA damage repair is controversial. Using a combination of DNA mutation indicator assays, we observe a 2- to 3-fold increase in the number of DNA mutations in the hematopoietic system upon aging. Young and aged hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) do not show an increase in mutation upon irradiation-induced DNA damage repair, and young and aged HSPCs respond very similarly to DNA damage with respect to cell-cycle checkpoint activation and apoptosis. Both young and aged HSPCs show impaired activation of the DNA-damage-induced G1-S checkpoint. Induction of chronic DNA double-strand breaks by zinc-finger nucleases suggests that HSPCs undergo apoptosis rather than faulty repair. These data reveal a protective mechanism in both the young and aged hematopoietic system against accumulation of mutations in response to DNA damage.
Collapse
Affiliation(s)
- Bettina M Moehrle
- Institute of Molecular Medicine, University of Ulm, 89081 Ulm, Germany
| | - Kalpana Nattamai
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Andreas Brown
- Institute of Molecular Medicine, University of Ulm, 89081 Ulm, Germany
| | - Maria C Florian
- Institute of Molecular Medicine, University of Ulm, 89081 Ulm, Germany
| | - Marnie Ryan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Mona Vogel
- Institute of Molecular Medicine, University of Ulm, 89081 Ulm, Germany
| | | | - Karin Soller
- Institute of Molecular Medicine, University of Ulm, 89081 Ulm, Germany
| | - Daniel R Prows
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Amir Abdollahi
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany; Molecular and Translational Radiation Oncology, Heidelberg Ion Therapy Center (HIT), 69120 Heidelberg, Germany
| | - David Schleimer
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Dagmar Walter
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH (HI-STEM), 69120 Heidelberg, Germany
| | - Michael D Milsom
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH (HI-STEM), 69120 Heidelberg, Germany; Deutsches Krebsforschungszentrum (DKFZ), Division of Stem Cells and Cancer, Experimental Hematology Group, 69120 Heidelberg, Germany
| | - Peter Stambrook
- Department of Molecular Genetics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Matthew Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Hartmut Geiger
- Institute of Molecular Medicine, University of Ulm, 89081 Ulm, Germany; Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
857
|
Mian SA, Rouault-Pierre K, Smith AE, Seidl T, Pizzitola I, Kizilors A, Kulasekararaj AG, Bonnet D, Mufti GJ. SF3B1 mutant MDS-initiating cells may arise from the haematopoietic stem cell compartment. Nat Commun 2015; 6:10004. [PMID: 26643973 PMCID: PMC4686651 DOI: 10.1038/ncomms10004] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/23/2015] [Indexed: 12/14/2022] Open
Abstract
Despite the recent evidence of the existence of myelodysplastic syndrome (MDS) stem cells in 5q-MDS patients, it is unclear whether haematopoietic stem cells (HSCs) could also be the initiating cells in other MDS subgroups. Here we demonstrate that SF3B1 mutation(s) in our cohort of MDS patients with ring sideroblasts can arise from CD34(+)CD38(-)CD45RA(-)CD90(+)CD49f(+) HSCs and is an initiating event in disease pathogenesis. Xenotransplantation of SF3B1 mutant HSCs leads to persistent long-term engraftment restricted to myeloid lineage. Moreover, genetically diverse evolving subclones of mutant SF3B1 exist in mice, indicating a branching multi-clonal as well as ancestral evolutionary paradigm. Subclonal evolution in mice is also seen in the clinical evolution in patients. Sequential sample analysis shows clonal evolution and selection of the malignant driving clone leading to AML transformation. In conclusion, our data show SF3B1 mutations can propagate from HSCs to myeloid progeny, therefore providing a therapeutic target.
Collapse
Affiliation(s)
- Syed A. Mian
- Department of Haematological Medicine, King's College London School of Medicine, London SE5 9NU, UK
| | - Kevin Rouault-Pierre
- Human Normal and Malignant Haematopoiesis Stem Cells and Their Microenvironment Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, UK
| | - Alexander E. Smith
- Department of Haematological Medicine, King's College London School of Medicine, London SE5 9NU, UK
- Department of Haematology, King's College Hospital, London SE5 9RS, UK
| | - Thomas Seidl
- Department of Haematological Medicine, King's College London School of Medicine, London SE5 9NU, UK
| | - Irene Pizzitola
- Human Normal and Malignant Haematopoiesis Stem Cells and Their Microenvironment Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, UK
| | - Aytug Kizilors
- Department of Haematology, King's College Hospital, London SE5 9RS, UK
| | - Austin G. Kulasekararaj
- Department of Haematological Medicine, King's College London School of Medicine, London SE5 9NU, UK
- Department of Haematology, King's College Hospital, London SE5 9RS, UK
| | - Dominique Bonnet
- Human Normal and Malignant Haematopoiesis Stem Cells and Their Microenvironment Laboratory, The Francis Crick Institute, Lincoln's Inn Fields Laboratories, London WC2A 3LY, UK
| | - Ghulam J. Mufti
- Department of Haematological Medicine, King's College London School of Medicine, London SE5 9NU, UK
- Department of Haematology, King's College Hospital, London SE5 9RS, UK
| |
Collapse
|
858
|
The shadowlands of MDS: idiopathic cytopenias of undetermined significance (ICUS) and clonal hematopoiesis of indeterminate potential (CHIP). Hematology 2015; 2015:299-307. [DOI: 10.1182/asheducation-2015.1.299] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AbstractThe WHO classification provides the best diagnostic approach to myelodysplastic syndromes (MDS). However, biologic and analytic limitations have emerged in the criteria currently adopted to establish the diagnosis and to classify MDS. The provisional category of idiopathic cytopenia of undetermined significance (ICUS) has been proposed to describe patients in whom MDS is possible but not proven. To formulate a diagnosis of ICUS, a thorough diagnostic work-up is required and repeated tests should be performed to reach a conclusive diagnosis. Recent studies provided consistent evidence of age-related hematopoietic clones (clonal hematopoiesis of indeterminate potential; CHIP), driven by mutations of genes that are recurrently mutated in myeloid neoplasms and associated with increase in the risk of hematologic cancer. A subset of mutated genes, mainly involved in epigenetic regulation, are likely initiating lesions driving the expansion of a premalignant clone. However, in a fraction of subjects the detected clone may be a small malignant clone expanding under the drive of the detected and additional undetected mutations. In addition, several experimental evidences suggest the potential relevance of an abnormal bone marrow environment in the selection and evolution of hematopoietic clones in MDS. The spreading of massively parallel sequencing techniques is offering translational opportunities in the clinical approach to myeloid neoplasms. Although several issues remain to be clarified, targeted gene sequencing may be of potential value in the dissection between clonal myelodysplasia, nonclonal cytopenia, and clonal hematopoiesis arising upon aging or in the context of acquired marrow failure.
Collapse
|
859
|
Graubert TA, Brunner AM, Fathi AT. New molecular abnormalities and clonal architecture in AML: from reciprocal translocations to whole-genome sequencing. Am Soc Clin Oncol Educ Book 2015:e334-40. [PMID: 24857122 DOI: 10.14694/edbook_am.2014.34.e334] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by recurrent genetic alterations, including amplifications, deletions, rearrangements, and point mutations. Clinically, these lesions can be used to stratify patients into categories of risk, which directs further clinical management and prognostication. Patient risk categories were first described based on recurrent karyotypic abnormalities; most patients with AML, however, fall into intermediate cytogenetic risk, the majority harboring a normal karyotype. Subsequently, identification of recurrently mutated genes, including FLT3, NPM1, and CEBPA, allowed further stratification of patients with a normal karyotype. More extensive genomic and epigenomic analysis of AML samples has expanded the number of known molecular alterations present in this disease. The further understanding of this mutational landscape has shed light into the pathogenesis of AML. AML arises in a founding clone that often gives rise to subclones. Clonal evolution is a feature of the natural history of the disease but may also be influenced by the selective pressure of chemotherapy. The complex network of genetic and epigenetic alterations in this disease has yielded numerous new targets for intervention. In the future, further understanding of this mutational framework, along with the development of novel therapeutic targets, may lead to improved outcomes for patients with AML.
Collapse
Affiliation(s)
| | | | - Amir T Fathi
- From the Massachusetts General Hospital, Boston, MA
| |
Collapse
|
860
|
|
861
|
Abstract
Novel target discovery is warranted to improve treatment in adult T-cell acute lymphoblastic leukemia (T-ALL) patients. We provide a comprehensive study on mutations to enhance the understanding of therapeutic targets and studied 81 adult T-ALL patients. NOTCH1 exhibitedthe highest mutation rate (53%). Mutation frequencies of FBXW7 (10%), WT1 (10%), JAK3 (12%), PHF6 (11%), and BCL11B (10%) were in line with previous reports. We identified recurrent alterations in transcription factors DNM2, and RELN, the WNT pathway associated cadherin FAT1, and in epigenetic regulators (MLL2, EZH2). Interestingly, we discovered novel recurrent mutations in the DNA repair complex member HERC1, in NOTCH2, and in the splicing factor ZRSR2. A frequently affected pathway was the JAK/STAT pathway (18%) and a significant proportion of T-ALL patients harboured mutations in epigenetic regulators (33%), both predominantly found in the unfavourable subgroup of early T-ALL. Importantly, adult T-ALL patients not only showed a highly heterogeneous mutational spectrum, but also variable subclonal allele frequencies implicated in therapy resistance and evolution of relapse. In conclusion, we provide novel insights in genetic alterations of signalling pathways (e.g. druggable by γ-secretase inhibitors, JAK inhibitors or EZH2 inhibitors), present in over 80% of all adult T-ALL patients, that could guide novel therapeutic approaches.
Collapse
|
862
|
Cogle CR, Scott BL, Boyd T, Garcia-Manero G. Oral Azacitidine (CC-486) for the Treatment of Myelodysplastic Syndromes and Acute Myeloid Leukemia. Oncologist 2015; 20:1404-12. [PMID: 26463870 PMCID: PMC4679081 DOI: 10.1634/theoncologist.2015-0165] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/21/2015] [Indexed: 12/22/2022] Open
Abstract
The myelodysplastic syndromes (MDS) comprise a heterogeneous group of clonal myeloid malignancies characterized by multilineage cytopenias, recurrent cytogenetic abnormalities, and risk of progression to acute myeloid leukemia (AML). AML, which can occur de novo as well as secondary to MDS, is characterized by malignant clones of myeloid lineage in the bone marrow and peripheral blood, with dissemination into tissues. The cytidine nucleoside analog and epigenetic modifier azacitidine is approved in the U.S. for the treatment of all French-American-British subtypes of MDS and in many countries for the treatment of AML with 20%-30% blasts and multilineage dysplasia according to the World Health Organization classification. Benefits of azacitidine treatment of patients with AML with >30% blasts have also been shown in a recent phase III trial. Oral administration of azacitidine may enhance patient convenience, eliminate injection-site reactions, allow for alternative dosing and scheduling, and enable long-term treatment. Phase I studies with oral azacitidine (CC-486) have shown biological activity, clinical responses, and tolerability in patients with MDS and AML. Extended dosing schedules of oral azacitidine (for 14 or 21 days of 28-day cycles) are currently under investigation as frontline therapy in patients with lower risk MDS, as maintenance therapy for patients with AML not eligible for stem cell transplant, and as maintenance therapy for patients with MDS or AML following stem cell transplant. This review presents clinical data supporting the use of injectable azacitidine in MDS and AML and examines the rationale for and results of the clinical development of oral azacitidine.
Collapse
Affiliation(s)
- Christopher R Cogle
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Bart L Scott
- Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Thomas Boyd
- North Star Lodge Cancer Center, Yakima, Washington, USA
| | - Guillermo Garcia-Manero
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
863
|
Singh VP, Gerton JL. Cohesin and human disease: lessons from mouse models. Curr Opin Cell Biol 2015; 37:9-17. [PMID: 26343989 DOI: 10.1016/j.ceb.2015.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/17/2015] [Indexed: 10/23/2022]
Abstract
Cohesin is an evolutionarily conserved large ring-like multi-subunit protein structure that can encircle DNA. Cohesin affects many processes that occur on chromosomes such as segregation, DNA replication, double-strand break repair, condensation, chromosome organization, and gene expression. Mutations in the genes that encode cohesin and its regulators cause human developmental disorders and cancer. Several mouse models have been established with the aim of understanding the cohesin mediated processes that are disrupted in these diseases. Mouse models support the idea that cohesin is essential for cell division, but partial loss of function can alter gene expression, DNA replication and repair, gametogenesis, and nuclear organization.
Collapse
Affiliation(s)
- Vijay Pratap Singh
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO 64110, United States; Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS 66160, United States.
| |
Collapse
|
864
|
Alexandrov LB, Jones PH, Wedge DC, Sale JE, Campbell PJ, Nik-Zainal S, Stratton MR. Clock-like mutational processes in human somatic cells. Nat Genet 2015; 47:1402-7. [PMID: 26551669 PMCID: PMC4783858 DOI: 10.1038/ng.3441] [Citation(s) in RCA: 703] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 10/14/2015] [Indexed: 12/16/2022]
Abstract
During the course of a lifetime, somatic cells acquire mutations. Different mutational processes may contribute to the mutations accumulated in a cell, with each imprinting a mutational signature on the cell's genome. Some processes generate mutations throughout life at a constant rate in all individuals, and the number of mutations in a cell attributable to these processes will be proportional to the chronological age of the person. Using mutations from 10,250 cancer genomes across 36 cancer types, we investigated clock-like mutational processes that have been operating in normal human cells. Two mutational signatures show clock-like properties. Both exhibit different mutation rates in different tissues. However, their mutation rates are not correlated, indicating that the underlying processes are subject to different biological influences. For one signature, the rate of cell division may influence its mutation rate. This study provides the first survey of clock-like mutational processes operating in human somatic cells.
Collapse
Affiliation(s)
- Ludmil B Alexandrov
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
- Theoretical Biology and Biophysics (T-6), Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Philip H Jones
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
- Medical Research Council (MRC) Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, UK
| | - David C Wedge
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - Peter J Campbell
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Serena Nik-Zainal
- Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK
- Department of Medical Genetics, Addenbrooke's Hospital National Health Service (NHS) Trust, Cambridge, UK
| | | |
Collapse
|
865
|
Jacoby MA, Duncavage EJ, Walter MJ. Implications of Tumor Clonal Heterogeneity in the Era of Next-Generation Sequencing. Trends Cancer 2015; 1:231-241. [PMID: 28741514 DOI: 10.1016/j.trecan.2015.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/24/2015] [Accepted: 10/26/2015] [Indexed: 02/05/2023]
Abstract
Recent whole-genome sequencing (WGS) studies have demonstrated that tumors typically comprise a founding clone and multiple subclones (i.e., clonal heterogeneity is common). The possible combination of mutations in each tumor clone is enormous, making each tumor genetically unique. Clonal heterogeneity likely has a role in cancer progression, relapse, metastasis, and chemoresistance due to functional differences in genetically unique subclones. In current clinical practice, gene mutations are only classified as being present or absent, ignoring the clonal complexity of cancers. In this review, we address how tumor clonality is measured using next-generation sequencing (NGS) data, highlight that clonal heterogeneity is common across multiple tumor types, and discuss the potential clinical implications of tumor clonal heterogeneity.
Collapse
Affiliation(s)
- Meagan A Jacoby
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Eric J Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA; Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA
| | - Matthew J Walter
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St Louis, MO, USA; Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
866
|
Increased expression of ESCO1 is correlated with poor patient survival and its role in human bladder cancer. Tumour Biol 2015; 37:5165-70. [PMID: 26547586 DOI: 10.1007/s13277-015-4375-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/03/2015] [Indexed: 12/19/2022] Open
Abstract
There is increasing evidence suggesting that establishment of sister chromatid cohesion N-acetyltransferase 1 (ESCO1) was involved in tumorigenesis. However, its role in bladder cancer remains unclear. In this study, we aimed to study the clinical correlation and biological significance of ESCO1 in bladder cancer. Our results showed that ESCO1 was significantly over-expressed in bladder cancer tissues compared with that in adjacent normal tissues. And, increased ESCO1 expression was significantly associated with higher grade (P < 0.001), higher tumor stage (P = 0.014), and multifocality (P = 0.042). Kaplan-Meier analysis and Cox proportional hazards model were performed to determine the prognostic significance of ESCO1, and the results showed that ESCO1 is a useful prognostic marker for bladder cancer patients. Moreover, we found that ESCO1 knockdown inhibited the growth, migration, and invasion of bladder cancer cells. In conclusion, our findings indicated that ESCO1 may play an important role in human bladder cancer, and ESCO1 might serve as a novel target and prognosis factor for human bladder cancer.
Collapse
|
867
|
Reikvam H, Brenner AK, Hagen KM, Liseth K, Skrede S, Hatfield KJ, Bruserud Ø. The cytokine-mediated crosstalk between primary human acute myeloid cells and mesenchymal stem cells alters the local cytokine network and the global gene expression profile of the mesenchymal cells. Stem Cell Res 2015; 15:530-541. [DOI: 10.1016/j.scr.2015.09.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/25/2015] [Accepted: 09/21/2015] [Indexed: 02/02/2023] Open
|
868
|
Thomas X. Understanding leukemic hematopoiesis as a complex adaptive system. World J Stem Cells 2015; 7:1145-1149. [PMID: 26516407 PMCID: PMC4620422 DOI: 10.4252/wjsc.v7.i9.1145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/24/2015] [Accepted: 10/13/2015] [Indexed: 02/06/2023] Open
Abstract
Normal and abnormal hematopoiesis is working as a complex adaptive system. From this perspective, the development and the behavior of hematopoietic cell lineages appear as a balance between normal and abnormal hematopoiesis in the setting of a functioning or malfunctioning microenvironment under the control of the immune system and the influence of hereditary and environmental events.
Collapse
|
869
|
Siudeja K, Nassari S, Gervais L, Skorski P, Lameiras S, Stolfa D, Zande M, Bernard V, Frio TR, Bardin AJ. Frequent Somatic Mutation in Adult Intestinal Stem Cells Drives Neoplasia and Genetic Mosaicism during Aging. Cell Stem Cell 2015; 17:663-674. [PMID: 26607382 PMCID: PMC5138153 DOI: 10.1016/j.stem.2015.09.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 07/31/2015] [Accepted: 09/18/2015] [Indexed: 12/21/2022]
Abstract
Adult stem cells may acquire mutations that modify cellular behavior, leading to functional declines in homeostasis or providing a competitive advantage resulting in premalignancy. However, the frequency, phenotypic impact, and mechanisms underlying spontaneous mutagenesis during aging are unclear. Here, we report two mechanisms of genome instability in adult Drosophila intestinal stem cells (ISCs) that cause phenotypic alterations in the aging intestine. First, we found frequent loss of heterozygosity arising from mitotic homologous recombination in ISCs that results in genetic mosaicism. Second, somatic deletion of DNA sequences and large structural rearrangements, resembling those described in cancers and congenital diseases, frequently result in gene inactivation. Such modifications induced somatic inactivation of the X-linked tumor suppressor Notch in ISCs, leading to spontaneous neoplasias in wild-type males. Together, our findings reveal frequent genomic modification in adult stem cells and show that somatic genetic mosaicism has important functional consequences on aging tissues. The aging Drosophila intestine is genetically mosaic Somatic recombination, genomic deletions, and rearrangements occur in aging ISCs Somatic inactivation of the tumor-suppressor Notch causes male-specific neoplasia
Collapse
Affiliation(s)
- Katarzyna Siudeja
- Institut Curie, 26 rue d'Ulm, F-75248 Paris, France; CNRS UMR3215, F-75248 Paris, France; INSERM U934, F-75248 Paris, France
| | - Sonya Nassari
- Institut Curie, 26 rue d'Ulm, F-75248 Paris, France; CNRS UMR3215, F-75248 Paris, France; INSERM U934, F-75248 Paris, France
| | - Louis Gervais
- Institut Curie, 26 rue d'Ulm, F-75248 Paris, France; CNRS UMR3215, F-75248 Paris, France; INSERM U934, F-75248 Paris, France
| | - Patricia Skorski
- Institut Curie, 26 rue d'Ulm, F-75248 Paris, France; CNRS UMR3215, F-75248 Paris, France; INSERM U934, F-75248 Paris, France
| | - Sonia Lameiras
- Next-Generation Sequencing Platform, Institut Curie, Hôpital Curie, 8 rue Louis-Thuillier, 75248 Paris Cedex 05, France
| | - Donato Stolfa
- Institut Curie, 26 rue d'Ulm, F-75248 Paris, France; CNRS UMR3215, F-75248 Paris, France; INSERM U934, F-75248 Paris, France
| | - Maria Zande
- Institut Curie, 26 rue d'Ulm, F-75248 Paris, France; CNRS UMR3215, F-75248 Paris, France; INSERM U934, F-75248 Paris, France
| | - Virginie Bernard
- Next-Generation Sequencing Platform, Institut Curie, Hôpital Curie, 8 rue Louis-Thuillier, 75248 Paris Cedex 05, France
| | - Thomas Rio Frio
- Next-Generation Sequencing Platform, Institut Curie, Hôpital Curie, 8 rue Louis-Thuillier, 75248 Paris Cedex 05, France
| | - Allison J Bardin
- Institut Curie, 26 rue d'Ulm, F-75248 Paris, France; CNRS UMR3215, F-75248 Paris, France; INSERM U934, F-75248 Paris, France.
| |
Collapse
|
870
|
Genomic analysis of germ line and somatic variants in familial myelodysplasia/acute myeloid leukemia. Blood 2015; 126:2484-90. [PMID: 26492932 DOI: 10.1182/blood-2015-04-641100] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/31/2015] [Indexed: 02/02/2023] Open
Abstract
Familial clustering of myelodysplastic syndromes (MDSs) and acute myeloid leukemia (AML) can be caused by inherited factors. We screened 59 individuals from 17 families with 2 or more biological relatives with MDS/AML for variants in 12 genes with established roles in predisposition to MDS/AML, and identified a pathogenic germ line variant in 5 families (29%). Extending the screen with a panel of 264 genes that are recurrently mutated in de novo AML, we identified rare, nonsynonymous germ line variants in 4 genes, each segregating with MDS/AML in 2 families. Somatic mutations are required for progression to MDS/AML in these familial cases. Using a combination of targeted and exome sequencing of tumor and matched normal samples from 26 familial MDS/AML cases and asymptomatic carriers, we identified recurrent frameshift mutations in the cohesin-associated factor PDS5B, co-occurrence of somatic ASXL1 mutations with germ line GATA2 mutations, and recurrent mutations in other known MDS/AML drivers. Mutations in genes that are recurrently mutated in de novo AML were underrepresented in the familial MDS/AML cases, although the total number of somatic mutations per exome was the same. Lastly, clonal skewing of hematopoiesis was detected in 67% of young, asymptomatic RUNX1 carriers, providing a potential biomarker that could be used for surveillance in these high-risk families.
Collapse
|
871
|
Wakita S, Yamaguchi H, Ueki T, Usuki K, Kurosawa S, Kobayashi Y, Kawata E, Tajika K, Gomi S, Koizumi M, Fujiwara Y, Yui S, Fukunaga K, Ryotokuji T, Hirakawa T, Arai K, Kitano T, Kosaka F, Tamai H, Nakayama K, Fukuda T, Inokuchi K. Complex molecular genetic abnormalities involving three or more genetic mutations are important prognostic factors for acute myeloid leukemia. Leukemia 2015; 30:545-54. [DOI: 10.1038/leu.2015.288] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 10/04/2015] [Accepted: 10/07/2015] [Indexed: 01/07/2023]
|
872
|
Viny AD, Ott CJ, Spitzer B, Rivas M, Meydan C, Papalexi E, Yelin D, Shank K, Reyes J, Chiu A, Romin Y, Boyko V, Thota S, Maciejewski JP, Melnick A, Bradner JE, Levine RL. Dose-dependent role of the cohesin complex in normal and malignant hematopoiesis. J Exp Med 2015; 212:1819-32. [PMID: 26438361 PMCID: PMC4612085 DOI: 10.1084/jem.20151317] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 09/04/2015] [Indexed: 01/18/2023] Open
Abstract
Cohesin complex members have recently been identified as putative tumor suppressors in hematologic and epithelial malignancies. The cohesin complex guides chromosome segregation; however, cohesin mutant leukemias do not show genomic instability. We hypothesized that reduced cohesin function alters chromatin structure and disrupts cis-regulatory architecture of hematopoietic progenitors. We investigated the consequences of Smc3 deletion in normal and malignant hematopoiesis. Biallelic Smc3 loss induced bone marrow aplasia with premature sister chromatid separation and revealed an absolute requirement for cohesin in hematopoietic stem cell (HSC) function. In contrast, Smc3 haploinsufficiency increased self-renewal in vitro and in vivo, including competitive transplantation. Smc3 haploinsufficiency reduced coordinated transcriptional output, including reduced expression of transcription factors and other genes associated with lineage commitment. Smc3 haploinsufficiency cooperated with Flt3-ITD to induce acute leukemia in vivo, with potentiated Stat5 signaling and altered nucleolar topology. These data establish a dose dependency for cohesin in regulating chromatin structure and HSC function.
Collapse
Affiliation(s)
- Aaron D Viny
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Christopher J Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Barbara Spitzer
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Martin Rivas
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Cem Meydan
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065
| | - Efthymia Papalexi
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Dana Yelin
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Department of Medicine, Rabin Medical Center, Beilinson Campus, Petah Tikvah 49100, Israel
| | - Kaitlyn Shank
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jaime Reyes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215
| | - April Chiu
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Yevgeniy Romin
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Vitaly Boyko
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Swapna Thota
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jaroslaw P Maciejewski
- Department of Translational Hematology and Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Ari Melnick
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215 Department of Medicine, Harvard Medical School, Boston, MA 02115
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Human Oncology and Pathogenesis Program, Leukemia Service, Department of Medicine, Department of Pathology, Molecular Cytology Core Facility, and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
873
|
Dang HX, Maher CA. Clonotyping for precision oncology. Drug Discov Today 2015; 20:1464-9. [PMID: 26494143 DOI: 10.1016/j.drudis.2015.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/24/2022]
Abstract
Advances in identifying subpopulations of cancer cells and reconstructing the clonal evolution of tumors greatly enhance our understanding of the molecular events within a patient and their context relative to one another. In the rapidly unfolding era of personalized medicine, the ability to monitor clonal dynamics throughout patient care has significant clinical implications for the appropriate development or application of targeted therapies as well as understanding the potential mechanisms driving resistance. In this review, we discuss advances in biotechnology and bioinformatics that improve precision treatment by dissecting clonal evolution, focusing first on the initial discoveries in lymphomas and leukemias followed by the more recent applications to advance our understanding of prostate cancer (PCa).
Collapse
Affiliation(s)
- Ha X Dang
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Internal Medicine, Division of Oncology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Christopher A Maher
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Internal Medicine, Division of Oncology, Washington University School of Medicine, St Louis, MO 63110, USA; Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University School of Medicine, St Louis, MO 63110, USA.
| |
Collapse
|
874
|
Ivanova M, Shivarov V, Pavlov I, Lilakos K, Naumova E. Clinical Evaluation of a Novel Nine-Gene Panel for Ion Torrent PGM Sequencing of Myeloid Malignancies. Mol Diagn Ther 2015; 20:27-32. [DOI: 10.1007/s40291-015-0172-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
875
|
Shi X, He BL, Ma ACH, Leung AYH. Fishing the targets of myeloid malignancies in the era of next generation sequencing. Blood Rev 2015; 30:119-30. [PMID: 26443083 DOI: 10.1016/j.blre.2015.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/15/2015] [Accepted: 09/04/2015] [Indexed: 11/29/2022]
Abstract
Recent advent in next generation sequencing (NGS) and bioinformatics has generated an unprecedented amount of genetic information in myeloidmalignancies. This information may shed lights to the pathogenesis, diagnosis and prognostication of these diseases and provide potential targets for therapeutic intervention. However, the rapid emergence of genetic information will quickly outpace their functional validation by conventional laboratory platforms. Foundational knowledge about zebrafish hematopoiesis accumulated over the past two decades and novel genomeediting technologies and research strategies in thismodel organismhavemade it a unique and timely research tool for the study of human blood diseases. Recent studies modeling human myeloid malignancies in zebrafish have also highlighted the technical feasibility and clinical relevance of thesemodels. Careful validation of experimental protocols and standardization among laboratorieswill further enhance the application of zebrafish in the scientific communities and provide important insights to the personalized treatment ofmyeloid malignancies.
Collapse
Affiliation(s)
- Xiangguo Shi
- Division of Haematology, Medical Oncology and Bone Marrow Transplantation, Department of Medicine, LKS Faculty Medicine, The University of Hong Kong.
| | - Bai-Liang He
- Division of Haematology, Medical Oncology and Bone Marrow Transplantation, Department of Medicine, LKS Faculty Medicine, The University of Hong Kong.
| | - Alvin C H Ma
- Division of Haematology, Medical Oncology and Bone Marrow Transplantation, Department of Medicine, LKS Faculty Medicine, The University of Hong Kong.
| | - Anskar Y H Leung
- Division of Haematology, Medical Oncology and Bone Marrow Transplantation, Department of Medicine, LKS Faculty Medicine, The University of Hong Kong.
| |
Collapse
|
876
|
Shlush LI, Zandi S, Itzkovitz S, Schuh AC. Aging, clonal hematopoiesis and preleukemia: not just bad luck? Int J Hematol 2015; 102:513-22. [PMID: 26440972 DOI: 10.1007/s12185-015-1870-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/09/2015] [Accepted: 09/18/2015] [Indexed: 12/14/2022]
Abstract
Chronological human aging is associated with a number of changes in the hematopoietic system, occurring at many levels from stem to mature cells, and the marrow microenvironment as well. This review will focus mainly on the aging of hematopoietic stem and progenitor cells (HSPCs), and on the associated increases in the incidence of hematological malignancies. HSPCs manifest reduced function and acquire molecular changes with chronological aging. Furthermore, while for many years it has been known that the human hematopoietic system becomes increasingly clonal with chronological aging (clonal hematopoiesis), only in the last few years has it become clear that clonal hematopoiesis may result from the accumulation of preleukemic mutations in HSPCs. Such mutations confer a selective advantage that leads to clonal hematopoiesis, and that may occasionally result in the development of leukemia, and define the existence of both preleukemic stem cells, and of 'preleukemia' as a clinical entity. While it is well appreciated that clonal hematopoiesis is very common in the elderly, several questions remain unanswered: why and how does clonal hematopoiesis develop? How is clonal hematopoiesis related to the age-related changes observed in the hematopoietic system? And why do only some individuals with clonal hematopoiesis develop leukemia?
Collapse
Affiliation(s)
- Liran I Shlush
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network (UHN), 610 University Ave, Toronto, ON, M5G 2M9, Canada. .,Weizmann Institute of Science, Rehovot, Israel.
| | - Sasan Zandi
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network (UHN), 610 University Ave, Toronto, ON, M5G 2M9, Canada
| | | | - Andre C Schuh
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network (UHN), 610 University Ave, Toronto, ON, M5G 2M9, Canada
| |
Collapse
|
877
|
Profiling of somatic mutations in acute myeloid leukemia with FLT3-ITD at diagnosis and relapse. Blood 2015; 126:2491-501. [PMID: 26438511 DOI: 10.1182/blood-2015-05-646240] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 09/22/2015] [Indexed: 01/15/2023] Open
Abstract
Acute myeloid leukemia (AML) with an FLT3 internal tandem duplication (FLT3-ITD) mutation is an aggressive hematologic malignancy with a grave prognosis. To identify the mutational spectrum associated with relapse, whole-exome sequencing was performed on 13 matched diagnosis, relapse, and remission trios followed by targeted sequencing of 299 genes in 67 FLT3-ITD patients. The FLT3-ITD genome has an average of 13 mutations per sample, similar to other AML subtypes, which is a low mutation rate compared with that in solid tumors. Recurrent mutations occur in genes related to DNA methylation, chromatin, histone methylation, myeloid transcription factors, signaling, adhesion, cohesin complex, and the spliceosome. Their pattern of mutual exclusivity and cooperation among mutated genes suggests that these genes have a strong biological relationship. In addition, we identified mutations in previously unappreciated genes such as MLL3, NSD1, FAT1, FAT4, and IDH3B. Mutations in 9 genes were observed in the relapse-specific phase. DNMT3A mutations are the most stable mutations, and this DNMT3A-transformed clone can be present even in morphologic complete remissions. Of note, all AML matched trio samples shared at least 1 genomic alteration at diagnosis and relapse, suggesting common ancestral clones. Two types of clonal evolution occur at relapse: either the founder clone recurs or a subclone of the founder clone escapes from induction chemotherapy and expands at relapse by acquiring new mutations. Relapse-specific mutations displayed an increase in transversions. Functional assays demonstrated that both MLL3 and FAT1 exert tumor-suppressor activity in the FLT3-ITD subtype. An inhibitor of XPO1 synergized with standard AML induction chemotherapy to inhibit FLT3-ITD growth. This study clearly shows that FLT3-ITD AML requires additional driver genetic alterations in addition to FLT3-ITD alone.
Collapse
|
878
|
Jakub JW, Grotz TE, Jordan P, Hunter E, Pittelkow M, Ramadass A, Akoulitchev A, Markovic S. A pilot study of chromosomal aberrations and epigenetic changes in peripheral blood samples to identify patients with melanoma. Melanoma Res 2015; 25:406-411. [PMID: 26225582 DOI: 10.1097/cmr.0000000000000182] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Prognosis is markedly improved when melanoma is diagnosed early. Improved methods are needed for earlier detection and screening. We hypothesized that epigenetic analysis of blood samples could discriminate patients with melanoma from patients with other cutaneous lesions and from healthy volunteers. After institutional review board approval and consent, whole blood was obtained from 59 patients with melanoma, 20 patients with other skin cancers, 20 patients with benign skin conditions, and 20 healthy volunteers. Fifteen conformation biomarkers from five gene loci were analyzed on chromatin with the EpiSwitch technology using a modified chromatin conformation capture assay. Differentiation between patients with melanoma and those with nonmelanoma skin cancers was correct 85% of the time, resulting in a sensitivity of 88% and a specificity of 82%. Differentiation of patients with melanoma from healthy controls was correct 80% of the time, resulting in a sensitivity of 85% and a specificity of 75%. The noninvasive test was more accurate in early-stage melanoma (1/10 and 1/16 stage I and stage II patients were misclassified, respectively) and became less accurate with more advanced disease (3/14 and 4/19 stage III and IV patients were misclassified, respectively). We report the results of a noninvasive test using chromosomal aberrations and epigenetic changes identified in peripheral blood that, in this pilot study, distinguished patients with early-stage melanoma from other cohorts.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Blood Cells/metabolism
- Blood Cells/pathology
- Carcinoma, Basal Cell/blood
- Carcinoma, Basal Cell/diagnosis
- Carcinoma, Basal Cell/genetics
- Carcinoma, Basal Cell/pathology
- Carcinoma, Squamous Cell/blood
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/pathology
- Case-Control Studies
- Chromosome Aberrations
- Epigenesis, Genetic
- Female
- Humans
- Male
- Melanoma/blood
- Melanoma/diagnosis
- Melanoma/genetics
- Melanoma/pathology
- Middle Aged
- Pilot Projects
- Prognosis
- Sensitivity and Specificity
- Skin Neoplasms/blood
- Skin Neoplasms/diagnosis
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
Collapse
Affiliation(s)
- James W Jakub
- aDepartment of Surgery, Mayo Clinic, Rochester, Minnesota, USA bOxford BioDynamics Limited, Oxford, UK
| | | | | | | | | | | | | | | |
Collapse
|
879
|
Clonal dynamics in a single AML case tracked for 9 years reveals the complexity of leukemia progression. Leukemia 2015; 30:295-302. [PMID: 26424407 DOI: 10.1038/leu.2015.264] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 09/16/2015] [Accepted: 09/22/2015] [Indexed: 12/30/2022]
Abstract
Most types of cancers are made up of heterogeneous mixtures of genetically distinct subclones. In particular, acute myeloid leukemia (AML) has been shown to undergo substantial clonal evolution over the course of the disease. AML tends to harbor fewer mutations than solid tumors, making it challenging to infer clonal structure. Here, we present a 9-year, whole-exome sequencing study of a single case at 12 time points, from the initial diagnosis until a fourth relapse, including 6 remission samples in between. To the best of our knowledge, it covers the longest time span of any data set of its kind. We used these time series data to track the hierarchy and order of variant acquisition, and subsequently analyzed the evolution of somatic variants to infer clonal structure. From this, we postulate the development and extinction of subclones, as well as their anticorrelated expansion via varying drug responses. In particular, we show that new subclones started appearing after the first complete remission. The presence and absence of different subclones during remission and relapses implies differing drug responses among subclones. Our study shows that time series analysis contrasting remission and relapse periods provides a much more comprehensive view of clonal structure and evolution.
Collapse
|
880
|
Abstract
Spontaneously occurring mutations accumulate in somatic cells throughout a person’s lifetime. The majority of these mutations do not have a noticeable effect, but some can alter key cellular functions. Early somatic mutations can cause developmental disorders, whereas the progressive accumulation of mutations throughout life can lead to cancer and contribute to aging. Genome sequencing has revolutionized our understanding of somatic mutation in cancer, providing a detailed view of the mutational processes and genes that drive cancer. Yet, fundamental gaps remain in our knowledge of how normal cells evolve into cancer cells. We briefly summarize a number of the lessons learned over 5 years of cancer genome sequencing and discuss their implications for our understanding of cancer progression and aging.
Collapse
Affiliation(s)
| | - Peter J. Campbell
- Wellcome Trust Sanger Institute, Hinxton CB10 1SA, Cambridgeshire, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| |
Collapse
|
881
|
Guo Y, Bosompem A, Mohan S, Erdogan B, Ye F, Vickers KC, Sheng Q, Zhao S, Li CI, Su PF, Jagasia M, Strickland SA, Griffiths EA, Kim AS. Transfer RNA detection by small RNA deep sequencing and disease association with myelodysplastic syndromes. BMC Genomics 2015; 16:727. [PMID: 26400237 PMCID: PMC4581457 DOI: 10.1186/s12864-015-1929-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/16/2015] [Indexed: 11/10/2022] Open
Abstract
Background Although advances in sequencing technologies have popularized the use of microRNA (miRNA) sequencing (miRNA-seq) for the quantification of miRNA expression, questions remain concerning the optimal methodologies for analysis and utilization of the data. The construction of a miRNA sequencing library selects RNA by length rather than type. However, as we have previously described, miRNAs represent only a subset of the species obtained by size selection. Consequently, the libraries obtained for miRNA sequencing also contain a variety of additional species of small RNAs. This study looks at the prevalence of these other species obtained from bone marrow aspirate specimens and explores the predictive value of these small RNAs in the determination of response to therapy in myelodysplastic syndromes (MDS). Methods Paired pre and post treatment bone marrow aspirate specimens were obtained from patients with MDS who were treated with either azacytidine or decitabine (24 pre-treatment specimens, 23 post-treatment specimens) with 22 additional non-MDS control specimens. Total RNA was extracted from these specimens and submitted for next generation sequencing after an additional size exclusion step to enrich for small RNAs. The species of small RNAs were enumerated, single nucleotide variants (SNVs) identified, and finally the differential expression of tRNA-derived species (tDRs) in the specimens correlated with diseasestatus and response to therapy. Results Using miRNA sequencing data generated from bone marrow aspirate samples of patients with known MDS (N = 47) and controls (N = 23), we demonstrated that transfer RNA (tRNA) fragments (specifically tRNA halves, tRHs) are one of the most common species of small RNA isolated from size selection. Using tRNA expression values extracted from miRNA sequencing data, we identified six tRNA fragments that are differentially expressed between MDS and normal samples. Using the elastic net method, we identified four tRNAs-derived small RNAs (tDRs) that together can explain 67 % of the variation in treatment response for MDS patients. Similar analysis of specifically mitochondrial tDRs (mt-tDRs) identified 13 mt-tDRs which distinguished disease status in the samples and a single mt-tDR which predited response. Finally, 14 SNVs within the tDRs were found in at least 20 % of the MDS samples and were not observed in any of the control specimens. Discussion This study highlights the prevalence of tDRs in RNA-seq studies focused on small RNAs. The potential etiologies of these species, both technical and biologic, are discussed as well as important challenges in the interpretation of tDR data. Conclusions Our analysis results suggest that tRNA fragments can be accurately detected through miRNA sequencing data and that the expression of these species may be useful in the diagnosis of MDS and the prediction of response to therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1929-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Guo
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Amma Bosompem
- Department of Pathology, Immunology, and Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Sanjay Mohan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Begum Erdogan
- Department of Pathology, Immunology, and Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA.
| | - Kasey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Quanhu Sheng
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Shilin Zhao
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Chung-I Li
- Department of Applied Mathematics, National Chiayi University, Chiayi City, Taiwan.
| | - Pei-Fang Su
- Department of Statistics, National Cheng Kung University, Tainan City, Taiwan.
| | - Madan Jagasia
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Stephen A Strickland
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| | | | - Annette S Kim
- Department of Pathology, Immunology, and Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA. .,Present address: Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
882
|
Apostoli AJ, Ailles L. Clonal evolution and tumor-initiating cells: New dimensions in cancer patient treatment. Crit Rev Clin Lab Sci 2015; 53:40-51. [PMID: 26397062 DOI: 10.3109/10408363.2015.1083944] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Human cancer is not a uniform disease but a plethora of disparate tumor types and subtypes. The differences that exist between individual tumors (intertumoral heterogeneity) present a significant roadblock to the eradication of cancer. It has also become increasingly clear that variations across individual tumors (intratumoral heterogeneity) have important implications to cancer progression and treatment efficacy. Therefore, in order to improve patient care and develop novel chemotherapeutics, the evolving tumor landscape needs to be further explored. Next-generation sequencing (NGS) technologies are revolutionizing the cancer research arena by providing state-of-the-art, high-speed methods of genome sequencing at single-nucleotide resolution, thus enabling an unprecedented detection of tumor-specific genetic abnormalities. These anomalies can be quantified to reveal specific frequencies of DNA alterations that correspond to distinct clonal populations within a given tumor. As such, NGS approaches have also been utilized to explore the heterogeneous landscape of patient tumors as well as to match metastatic and/or recurrent growths and patient-derived engrafts. By sequencing in this manner--through time so to speak--cancer researchers can track shifting clonal populations, make important inferences about tumor evolution and potentially identify tumor subclones that could be viably targeted. This exciting new territory has important implications for the competing clonal evolution and cancer stem cell models of tumor heterogeneity, and also offers a new dimension for cancer treatment and profound hope for patients in the coming years.
Collapse
Affiliation(s)
- Anthony J Apostoli
- a Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada and
| | - Laurie Ailles
- a Princess Margaret Cancer Centre, University Health Network , Toronto , Ontario , Canada and.,b Department of Medical Biophysics , University of Toronto , Toronto , Ontario , Canada
| |
Collapse
|
883
|
Abstract
PURPOSE OF REVIEW In the present review, we will define the preleukemic state. We aim at increasing awareness and research in the field of preleukemia that will nurture targeted therapy for the earlier steps of leukemia evolution. RECENT FINDINGS Emerging evidence supports the role of hematopoietic stem/progenitor cells carrying recurrent leukemia-related mutations as the cell of origin of both myeloid and lymphoid malignancies. The preleukemic stem cells can maintain at least to some extent their functionality; however, they have increased fitness endowed by the preleukemic mutations that lead to clonal expansion. SUMMARY The latent preleukemic period before overt leukemia presents can take years, and the majority of carriers will never develop leukemia in their lifetime. The preleukemic state is not rare, with greater than 1% of individuals having acquired one or more of the recognized preleukemic lesions. The high frequency of such abnormalities in the population may be the cost of growing old; however, another view could be that in order to survive to old age, the hematopoietic system must adapt to create robust hematopoietic stem/progenitor cells with an increased fitness and clonal expansion. Hence, leukemia does not necessarily start as a disease, but rather as a need, with the normally functioning preleukemic hematopoietic stem cells trying to maintain health for years but in time succumbing to their own acquired virtues.
Collapse
|
884
|
A simple one-tube assay for immunophenotypical quantification of leukemic stem cells in acute myeloid leukemia. Leukemia 2015; 30:439-46. [PMID: 26437777 DOI: 10.1038/leu.2015.252] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 08/30/2015] [Accepted: 09/07/2015] [Indexed: 01/01/2023]
Abstract
Relapses after initial successful treatment in acute myeloid leukemia are thought to originate from the outgrowth of leukemic stem cells. Their flow cytometrically assessed frequency is of importance for relapse prediction and is therefore assumed to be implemented in future risk group profiling. Since current detection methods are complex, time- and bone marrow consuming (multiple-tubes approach), it would be advantageous to have a broadly applicable approach that enables to quantify leukemia stem cells both at diagnosis and follow-up. We compared 15 markers in 131 patients concerning their prevalence, usefulness and stability in CD34(+)CD38(-) leukemic stem cell detection in healthy controls, acute myeloid leukemia diagnosis and follow-up samples. Ultimately, we designed a single 8-color detection tube including common markers CD45, CD34 and CD38, and specific markers CD45RA, CD123, CD33, CD44 and a marker cocktail (CLL-1/TIM-3/CD7/CD11b/CD22/CD56) in one fluorescence channel. Validation analyses in 31 patients showed that the single tube approach was as good as the multiple-tube approach. Our approach requires the least possible amounts of bone marrow, and is suitable for multi-institutional studies. Moreover, it enables detection of leukemic stem cells both at time of diagnosis and follow-up, thereby including initially low-frequency populations emerging under therapy pressure.
Collapse
|
885
|
Minimal PU.1 reduction induces a preleukemic state and promotes development of acute myeloid leukemia. Nat Med 2015; 21:1172-81. [PMID: 26343801 DOI: 10.1038/nm.3936] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/05/2015] [Indexed: 12/17/2022]
Abstract
Modest transcriptional changes caused by genetic or epigenetic mechanisms are frequent in human cancer. Although loss or near-complete loss of the hematopoietic transcription factor PU.1 induces acute myeloid leukemia (AML) in mice, a similar degree of PU.1 impairment is exceedingly rare in human AML; yet, moderate PU.1 inhibition is common in AML patients. We assessed functional consequences of modest reductions in PU.1 expression on leukemia development in mice harboring DNA lesions resembling those acquired during human stem cell aging. Heterozygous deletion of an enhancer of PU.1, which resulted in a 35% reduction of PU.1 expression, was sufficient to induce myeloid-biased preleukemic stem cells and their subsequent transformation to AML in a DNA mismatch repair-deficient background. AML progression was mediated by inhibition of expression of a PU.1-cooperating transcription factor, Irf8. Notably, we found marked molecular similarities between the disease in these mice and human myelodysplastic syndrome and AML. This study demonstrates that minimal reduction of a key lineage-specific transcription factor, which commonly occurs in human disease, is sufficient to initiate cancer development, and it provides mechanistic insight into the formation and progression of preleukemic stem cells in AML.
Collapse
|
886
|
Wang BH, Li YH, Yu L. Genomics-based Approach and Prognostic Stratification Significance of Gene Mutations in Intermediate-risk Acute Myeloid Leukemia. Chin Med J (Engl) 2015; 128:2395-403. [PMID: 26315090 PMCID: PMC4733808 DOI: 10.4103/0366-6999.163400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Intermediate-risk acute myeloid leukemia (IR-AML), which accounts for a substantial number of AML cases, is highly heterogeneous. We systematically summarize the latest research progress on the significance of gene mutations for prognostic stratification of IR-AML. DATA SOURCES We conducted a systemic search from the PubMed database up to October, 2014 using various search terms and their combinations including IR-AML, gene mutations, mutational analysis, prognosis, risk stratification, next generation sequencing (NGS). STUDY SELECTION Clinical or basic research articles on NGS and the prognosis of gene mutations in IR-AML were included. RESULTS The advent of the era of whole-genome sequencing has led to the discovery of an increasing number of molecular genetics aberrations that involved in leukemogenesis, and some of them have been used for prognostic risk stratification. Several studies have consistently identified that some gene mutations have prognostic relevance, however, there are still many controversies for some genes because of lacking sufficient evidence. In addition, tumor cells harbor hundreds of mutated genes and multiple mutations often coexist, therefore, single mutational analysis is not sufficient to make accurate prognostic predictions. The comprehensive analysis of multiple mutations based on sophisticated genomic technologies has raised increasing interest in recent years. CONCLUSIONS NGS represents a pioneering and helpful approach to prognostic risk stratification of IR-AML patients. Further large-scale studies for comprehensive molecular analysis are needed to provide guidance and a theoretical basis for IR-AML prognostic stratification and clinical management.
Collapse
Affiliation(s)
| | | | - Li Yu
- Department of Hematology, Chinese People's Liberation Army General Hospital, Beijing 100853; Department of Clinical Medicine, Tsinghua University School of Medicine, Medical Center, Beijing 100084, China
| |
Collapse
|
887
|
Endothelial cell derived angiocrine support of acute myeloid leukemia targeted by receptor tyrosine kinase inhibition. Leuk Res 2015; 39:984-9. [PMID: 26189107 PMCID: PMC9234949 DOI: 10.1016/j.leukres.2015.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 05/14/2015] [Accepted: 05/16/2015] [Indexed: 12/19/2022]
Abstract
In acute myeloid leukemia (AML), refractory disease is a major challenge and the leukemia microenvironment may harbor refractory disease. Human AML cell lines KG-1 and HL-60 expressed receptors also found on endothelial cells (ECs) such as VEGFRs, PDGFRs, and cKit. When human AML cells were co-cultured with human umbilical vein endothelial cells (HUVECs) and primary bone marrow endothelial cell (BMECs), the AML cells were more resistant to cytarabine chemotherapy, even in transwell co-culture suggesting angiocrine regulation. Primary BMECs secreted significantly increased levels of VEGF-A and PDGF-AB after exposure to cytarabine. Pazopanib, a receptor tyrosine kinase inhibitor (RTKI) of VEGFRs, PDGFRs, and cKit, removed EC protection of AML cells and enhanced AML cell sensitivity to cytarabine. Xenograft modeling showed significant regression of AML cells and abrogation of BM hypervascularity in RTKI treated cohorts. Together, these results show direct cytotoxicity of RTKIs on AML cells and reversal of EC protection. Combining RTKIs with chemotherapy may serve as promising therapeutic strategy for patients with AML.
Collapse
|
888
|
Green AS, Maciel TT, Hospital MA, Yin C, Mazed F, Townsend EC, Pilorge S, Lambert M, Paubelle E, Jacquel A, Zylbersztejn F, Decroocq J, Poulain L, Sujobert P, Jacque N, Adam K, So JCC, Kosmider O, Auberger P, Hermine O, Weinstock DM, Lacombe C, Mayeux P, Vanasse GJ, Leung AY, Moura IC, Bouscary D, Tamburini J. Pim kinases modulate resistance to FLT3 tyrosine kinase inhibitors in FLT3-ITD acute myeloid leukemia. SCIENCE ADVANCES 2015; 1:e1500221. [PMID: 26601252 PMCID: PMC4643770 DOI: 10.1126/sciadv.1500221] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/30/2015] [Indexed: 05/12/2023]
Abstract
Fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) is frequently detected in acute myeloid leukemia (AML) patients and is associated with a dismal long-term prognosis. FLT3 tyrosine kinase inhibitors provide short-term disease control, but relapse invariably occurs within months. Pim protein kinases are oncogenic FLT3-ITD targets expressed in AML cells. We show that increased Pim kinase expression is found in relapse samples from AML patients treated with FLT3 inhibitors. Ectopic Pim-2 expression induces resistance to FLT3 inhibition in both FLT3-ITD-induced myeloproliferative neoplasm and AML models in mice. Strikingly, we found that Pim kinases govern FLT3-ITD signaling and that their pharmacological or genetic inhibition restores cell sensitivity to FLT3 inhibitors. Finally, dual inhibition of FLT3 and Pim kinases eradicates FLT3-ITD(+) cells including primary AML cells. Concomitant Pim and FLT3 inhibition represents a promising new avenue for AML therapy.
Collapse
Affiliation(s)
- Alexa S. Green
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
- Department of Hematology, Charles Nicolle University Hospital, Rouen 76000, France
| | - Thiago T. Maciel
- INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, Paris 75015, France
- Imagine Institute, Paris Descartes–Sorbonne Paris Cité University, Paris 75015, France
- CNRS ERL 8254, Paris 75015, France
- Laboratory of Excellence GR-Ex, Paris 75015 , France
| | - Marie-Anne Hospital
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
| | - Chae Yin
- Division of Hematology, Department of Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Fetta Mazed
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
| | - Elizabeth C. Townsend
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston 02115, MA 02115, USA
| | - Sylvain Pilorge
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
- INSERM U1065/C3M Team 2, Cell Death Differentiation Inflammation and Cancer, Nice 06204, France
| | - Mireille Lambert
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
| | - Etienne Paubelle
- INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, Paris 75015, France
- Imagine Institute, Paris Descartes–Sorbonne Paris Cité University, Paris 75015, France
- CNRS ERL 8254, Paris 75015, France
- Laboratory of Excellence GR-Ex, Paris 75015 , France
| | - Arnaud Jacquel
- INSERM U1065/C3M Team 2, Cell Death Differentiation Inflammation and Cancer, Nice 06204, France
| | - Florence Zylbersztejn
- INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, Paris 75015, France
- Imagine Institute, Paris Descartes–Sorbonne Paris Cité University, Paris 75015, France
- CNRS ERL 8254, Paris 75015, France
- Laboratory of Excellence GR-Ex, Paris 75015 , France
| | - Justine Decroocq
- INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, Paris 75015, France
- Imagine Institute, Paris Descartes–Sorbonne Paris Cité University, Paris 75015, France
- CNRS ERL 8254, Paris 75015, France
- Laboratory of Excellence GR-Ex, Paris 75015 , France
| | - Laury Poulain
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
| | - Pierre Sujobert
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
| | - Nathalie Jacque
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
| | - Kevin Adam
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
| | - Jason C. C. So
- Division of Hematology, Department of Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Olivier Kosmider
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
| | - Patrick Auberger
- INSERM U1065/C3M Team 2, Cell Death Differentiation Inflammation and Cancer, Nice 06204, France
| | - Olivier Hermine
- INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, Paris 75015, France
- Imagine Institute, Paris Descartes–Sorbonne Paris Cité University, Paris 75015, France
- CNRS ERL 8254, Paris 75015, France
- Laboratory of Excellence GR-Ex, Paris 75015 , France
| | - David M. Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston 02115, MA 02115, USA
| | - Catherine Lacombe
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
| | - Patrick Mayeux
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
| | - Gary J. Vanasse
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - Anskar Y. Leung
- Division of Hematology, Department of Medicine, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Ivan C. Moura
- INSERM UMR 1163, Laboratory of cellular and molecular mechanisms of hematological disorders and therapeutic implications, Paris 75015, France
- Imagine Institute, Paris Descartes–Sorbonne Paris Cité University, Paris 75015, France
- CNRS ERL 8254, Paris 75015, France
- Laboratory of Excellence GR-Ex, Paris 75015 , France
| | - Didier Bouscary
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
| | - Jerome Tamburini
- Institut Cochin, Département Développement, Reproduction, Cancer, CNRS, UMR 8104, INSERM U1016, Paris 75014, France
- Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, Paris 75005, France
- Equipe Labellisée, Ligue Nationale Contre le Cancer (LNCC), Paris 75013, France
- Corresponding author. E-mail:
| |
Collapse
|
889
|
Qiu H, Fang X, Luo Q, Ouyang G. Cancer stem cells: a potential target for cancer therapy. Cell Mol Life Sci 2015; 72:3411-24. [PMID: 25967289 PMCID: PMC11113644 DOI: 10.1007/s00018-015-1920-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/08/2015] [Accepted: 04/28/2015] [Indexed: 02/06/2023]
Abstract
Current evidence indicates that a subpopulation of cancer cells, named cancer stem cells (CSCs) or tumor-initiating cells, are responsible for the initiation, growth, metastasis, therapy resistance and recurrence of cancers. CSCs share core regulatory pathways with normal stem cells; however, CSCs rely on distinct reprogrammed pathways to maintain stemness and to contribute to the progression of cancers. The specific targeting of CSCs, together with conventional chemotherapy or radiotherapy, may achieve stable remission or cure cancer. Therefore, the identification of CSCs and a better understanding of the complex characteristics of CSCs will provide invaluable diagnostic, therapeutic and prognostic targets for clinical application. In this review, we will introduce the dysregulated properties of CSCs in cancers and discuss the possible challenges in targeting CSCs for cancer treatment.
Collapse
Affiliation(s)
- Hong Qiu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102 China
| | - Xiaoguang Fang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102 China
- Department of Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Qi Luo
- Department of Surgical Oncology, First Affiliated Hospital of Xiamen University, Xiamen, 361003 China
| | - Gaoliang Ouyang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361102 China
| |
Collapse
|
890
|
Zakari M, Yuen K, Gerton JL. Etiology and pathogenesis of the cohesinopathies. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:489-504. [PMID: 25847322 PMCID: PMC6680315 DOI: 10.1002/wdev.190] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 01/12/2023]
Abstract
Cohesin is a chromosome-associated protein complex that plays many important roles in chromosome function. Genetic screens in yeast originally identified cohesin as a key regulator of chromosome segregation. Subsequently, work by various groups has identified cohesin as critical for additional processes such as DNA damage repair, insulator function, gene regulation, and chromosome condensation. Mutations in the genes encoding cohesin and its accessory factors result in a group of developmental and intellectual impairment diseases termed 'cohesinopathies.' How mutations in cohesin genes cause disease is not well understood as precocious chromosome segregation is not a common feature in cells derived from patients with these syndromes. In this review, the latest findings concerning cohesin's function in the organization of chromosome structure and gene regulation are discussed. We propose that the cohesinopathies are caused by changes in gene expression that can negatively impact translation. The similarities and differences between cohesinopathies and ribosomopathies, diseases caused by defects in ribosome biogenesis, are discussed. The contribution of cohesin and its accessory proteins to gene expression programs that support translation suggests that cohesin provides a means of coupling chromosome structure with the translational output of cells.
Collapse
Affiliation(s)
- Musinu Zakari
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Universite Pierre et Marie Curie, Paris, France
| | - Kobe Yuen
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Jennifer L Gerton
- Stowers Institute for Medical Research, Kansas City, MO, USA
- Department of Biochemistry and Molecular Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| |
Collapse
|
891
|
Burkhalter MD, Rudolph KL, Sperka T. Genome instability of ageing stem cells--Induction and defence mechanisms. Ageing Res Rev 2015; 23:29-36. [PMID: 25668152 PMCID: PMC4504031 DOI: 10.1016/j.arr.2015.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 01/25/2023]
Abstract
Stem cell function is declining with increasing age. DNA lesions and mutations accumulate in ageing stem cells. Inability to repair DNA can lead to premature depletion of stem cell pools. Checkpoint function preserves genomic integrity at young age. Enforced checkpoint induction contributes to stem cell ageing.
The mammalian organism is comprised of tissue types with varying degrees of self-renewal and regenerative capacity. In most organs self-renewing tissue-specific stem and progenitor cells contribute to organ maintenance, and it is vital to maintain a functional stem cell pool to preserve organ homeostasis. Various conditions like tissue injury, stress responses, and regeneration challenge the stem cell pool to re-establish homeostasis (Fig. 1). However, with increasing age the functionality of adult stem cells declines and genomic mutations accumulate. These defects affect different cellular response pathways and lead to impairments in regeneration, stress tolerance, and organ function as well as to an increased risk for the development of ageing associated diseases and cancer. Maintenance of the genome appears to be of utmost importance to preserve stem cell function and to reduce the risk of ageing associated dysfunctions and pathologies. In this review, we discuss the causal link between stem cell dysfunction and DNA damage accrual, different strategies how stem cells maintain genome integrity, and how these processes are affected during ageing.
Collapse
|
892
|
Detection of Dual IDH1 and IDH2 Mutations by Targeted Next-Generation Sequencing in Acute Myeloid Leukemia and Myelodysplastic Syndromes. J Mol Diagn 2015; 17:661-8. [PMID: 26331834 DOI: 10.1016/j.jmoldx.2015.06.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 05/06/2015] [Accepted: 06/17/2015] [Indexed: 11/22/2022] Open
Abstract
Studies in myeloid neoplasms have described recurrent IDH1 and IDH2 mutations as primarily mutually exclusive. Over a 6-month period of clinical testing with a targeted next-generation sequencing assay, we evaluated 92 patients with acute myeloid leukemia, myelodysplastic syndrome, and chronic myelomonocytic leukemia and identified a subset of 21 patients (23%) who harbored mutations in either IDH1 or IDH2. Of the 21 patients with IDH mutations, 4 (19%) were found to have single nucleotide variants in both IDH1 and IDH2. An additional patient included in the study was found to have two different IDH2 mutations. The mutations were typically present at different variant allelic frequencies, with one predominating over the other, consistent with the presence of multiple subclones in a single patient. In one case, the variant allelic frequencies in both IDH1 and IDH2 were equally low in the setting of a high percentage of blasts, suggesting that the IDH mutations were unlikely to be present in the founding clone. Given these data, we conclude that dual IDH1/2 mutations likely were previously underestimated, a finding that may carry important treatment implications.
Collapse
|
893
|
Evaluating frequency of PML-RARA mutations and conferring resistance to arsenic trioxide-based therapy in relapsed acute promyelocytic leukemia patients. Ann Hematol 2015; 94:1829-37. [PMID: 26294332 DOI: 10.1007/s00277-015-2477-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
Abstract
The aim of the study is to better understand the mechanism of relapse and acquired clinical resistance to arsenic trioxide (ATO) and/or all-trans retinoic acid (ATRA). Thirty relapsed acute promyelocytic leukemia (APL) patients were followed. Fifteen patients experienced two or more relapses; nine patients had clinical resistance to ATO-based therapy. The frequency and clinical significance of promyelocytic leukemia (PML)-retinoic acid receptor alpha (RARA) mutational status using Sanger sequencing were evaluated. Overall, eight different types of mutations in the RARA region (V218D, R272Q, T278A, T291I, N299D, R294W, A300G, and L220_F228delinsP) were identified in 11 patients. Eight missense mutations (L211P, C213R, S214L, A216V, L217F, D219H, S221G, and D241G) were found in the PML portion of PML-RARA in 14 patients, with A216V as the predominant mutation. Eight patients were found to harbor both PML and RARA mutations over the course of the disease. The PML-region mutations were associated with response to ATO-based therapy (P < 0.0001), number of relapses (P = 0.001), and early relapse (P = 0.013). Notably, one case sampled at nine different time points showed alternating clonal dominance over the course of treatment. This study demonstrated frequent mutations of PML-RARA and supported a clonal selection model in relation to APL relapse and ATO resistance.
Collapse
|
894
|
Phylogenetic analyses of melanoma reveal complex patterns of metastatic dissemination. Proc Natl Acad Sci U S A 2015; 112:10995-1000. [PMID: 26286987 DOI: 10.1073/pnas.1508074112] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Melanoma is difficult to treat once it becomes metastatic. However, the precise ancestral relationship between primary tumors and their metastases is not well understood. We performed whole-exome sequencing of primary melanomas and multiple matched metastases from eight patients to elucidate their phylogenetic relationships. In six of eight patients, we found that genetically distinct cell populations in the primary tumor metastasized in parallel to different anatomic sites, rather than sequentially from one site to the next. In five of these six patients, the metastasizing cells had themselves arisen from a common parental subpopulation in the primary, indicating that the ability to establish metastases is a late-evolving trait. Interestingly, we discovered that individual metastases were sometimes founded by multiple cell populations of the primary that were genetically distinct. Such establishment of metastases by multiple tumor subpopulations could help explain why identical resistance variants are identified in different sites after initial response to systemic therapy. One primary tumor harbored two subclones with different oncogenic mutations in CTNNB1, which were both propagated to the same metastasis, raising the possibility that activation of wingless-type mouse mammary tumor virus integration site (WNT) signaling may be involved, as has been suggested by experimental models.
Collapse
|
895
|
Abstract
PURPOSE OF REVIEW Recent genome sequencing studies have identified a broad spectrum of gene mutations in T-cell acute lymphoblastic leukemia (T-ALL). The purpose of this review is to outline the latest advances in our understanding of how these mutations contribute to the formation of T-ALL. RECENT FINDINGS Aberrant expression of transcription factors that control hematopoiesis can induce an aberrant stem cell-like program in T-cell progenitors, allowing the emergence of an ancestral or preleukemic stem cell (pre-LSC). In contrast, gain-of-function mutations of genes involved in signaling pathways regulating T-cell development, such as NOTCH1, interleukin-7, KIT and FLT3, are insufficient per se to initiate T-ALL but promote pre-LSC growth independent of the thymic niche. Loss-of-function mutations of epigenetic regulators, such as DNMT3A, have been identified in T-ALL, but their role in leukemogenesis remains to be defined. SUMMARY Relapse is associated with clonal evolution from a population of pre-LSCs that acquire the whole set of malignant mutations leading to a full-blown T-ALL. Understanding the genetic events that underpin the pre-LSC will be crucial for reducing the risk of relapse.
Collapse
|
896
|
A TIM-3/Gal-9 Autocrine Stimulatory Loop Drives Self-Renewal of Human Myeloid Leukemia Stem Cells and Leukemic Progression. Cell Stem Cell 2015; 17:341-52. [PMID: 26279267 DOI: 10.1016/j.stem.2015.07.011] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 05/17/2015] [Accepted: 07/20/2015] [Indexed: 10/23/2022]
Abstract
Signaling mechanisms underlying self-renewal of leukemic stem cells (LSCs) are poorly understood, and identifying pathways specifically active in LSCs could provide opportunities for therapeutic intervention. T-cell immunoglobin mucin-3 (TIM-3) is expressed on the surface of LSCs in many types of human acute myeloid leukemia (AML), but not on hematopoietic stem cells (HSCs). Here, we show that TIM-3 and its ligand, galectin-9 (Gal-9), constitute an autocrine loop critical for LSC self-renewal and development of human AML. Serum Gal-9 levels were significantly elevated in AML patients and in mice xenografted with primary human AML samples, and neutralization of Gal-9 inhibited xenogeneic reconstitution of human AML. Gal-9-mediated stimulation of TIM-3 co-activated NF-κB and β-catenin signaling, pathways known to promote LSC self-renewal. These changes were further associated with leukemic transformation of a variety of pre-leukemic disorders and together highlight that targeting the TIM-3/Gal-9 autocrine loop could be a useful strategy for treating myeloid leukemias.
Collapse
|
897
|
Jensen HA, Bunaciu RP, Varner JD, Yen A. GW5074 and PP2 kinase inhibitors implicate nontraditional c-Raf and Lyn function as drivers of retinoic acid-induced maturation. Cell Signal 2015; 27:1666-75. [PMID: 25817574 PMCID: PMC4529126 DOI: 10.1016/j.cellsig.2015.03.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/05/2015] [Accepted: 03/16/2015] [Indexed: 02/07/2023]
Abstract
The multivariate nature of cancer necessitates multi-targeted therapy, and kinase inhibitors account for a vast majority of approved cancer therapeutics. While acute promyelocytic leukemia (APL) patients are highly responsive to retinoic acid (RA) therapy, kinase inhibitors have been gaining momentum as co-treatments with RA for non-APL acute myeloid leukemia (AML) differentiation therapies, especially as a means to treat relapsed or refractory AML patients. In this study GW5074 (a c-Raf inhibitor) and PP2 (a Src-family kinase inhibitor) enhanced RA-induced maturation of t(15;17)-negative myeloblastic leukemia cells and rescued response in RA-resistant cells. PD98059 (a MEK inhibitor) and Akti-1/2 (an Akt inhibitor) were less effective, but did tend to promote maturation-uncoupled G1/G0 arrest, while wortmannin (a PI3K inhibitor) did not enhance differentiation surface marker expression or growth arrest. PD98059 and Akti-1/2 did not enhance differentiation markers and have potential, antagonistic off-targets effects on the aryl hydrocarbon receptor (AhR), but neither could the AhR agonist 6-formylindolo(3,2-b)carbazole (FICZ) rescue differentiation events in the RA-resistant cells. GW5074 rescued early CD38 expression in RA-resistant cells exhibiting an early block in differentiation before CD38 expression, while for RA-resistant cells with differentiation blocked later, PP2 rescued the later differentiation marker CD11b; but surprisingly, the combination of the two was not synergistic. Kinases c-Raf, Src-family kinases Lyn and Fgr, and PI3K display highly correlated signaling changes during RA treatment, while activation of traditional downstream targets (Akt, MEK/ERK), and even the surface marker CD38, were poorly correlated with c-Raf or Lyn during differentiation. This suggests that an interrelated kinase module involving c-Raf, PI3K, Lyn and perhaps Fgr functions in a nontraditional way during RA-induced maturation or during rescue of RA induction therapy using inhibitor co-treatment in RA-resistant leukemia cells.
Collapse
Affiliation(s)
- Holly A Jensen
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Rodica P Bunaciu
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| | - Jeffrey D Varner
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, United States
| | - Andrew Yen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
898
|
Laplane L, Beke A, Vainchenker W, Solary E. Concise Review: Induced Pluripotent Stem Cells as New Model Systems in Oncology. Stem Cells 2015; 33:2887-92. [PMID: 26179060 DOI: 10.1002/stem.2099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/15/2015] [Accepted: 05/31/2015] [Indexed: 12/31/2022]
Abstract
The demonstration that pluripotent stem cells could be generated by somatic cell reprogramming led to wonder if these so-called induced pluripotent stem (iPS) cells would extend our investigation capabilities in the cancer research field. The first iPS cells derived from cancer cells have now revealed the benefits and potential pitfalls of this new model. iPS cells appear to be an innovative approach to decipher the steps of cell transformation as well as to screen the activity and toxicity of anticancer drugs. A better understanding of the impact of reprogramming on cancer cell-specific features as well as improvements in culture conditions to integrate the role of the microenvironment in their behavior may strengthen the epistemic interest of iPS cells as model systems in oncology.
Collapse
Affiliation(s)
- Lucie Laplane
- Gustave Roussy Cancer Center, Villejuif, Paris, France.,INSERM, UMR1170, Villejuif, Paris, France.,Université Paris-Sud, Faculté de Médecine, Le Kremlin-Bicêtre, Paris, France.,Université Paris I-Panthéon Sorbonne, Institut d'Histoire et de Philosophie des Sciences et des Techniques, Paris, France
| | - Allan Beke
- Gustave Roussy Cancer Center, Villejuif, Paris, France.,INSERM, UMR1170, Villejuif, Paris, France.,Université Paris-Sud, Faculté de Médecine, Le Kremlin-Bicêtre, Paris, France
| | - William Vainchenker
- Gustave Roussy Cancer Center, Villejuif, Paris, France.,INSERM, UMR1170, Villejuif, Paris, France.,Université Paris-Sud, Faculté de Médecine, Le Kremlin-Bicêtre, Paris, France
| | - Eric Solary
- Gustave Roussy Cancer Center, Villejuif, Paris, France.,INSERM, UMR1170, Villejuif, Paris, France.,Université Paris-Sud, Faculté de Médecine, Le Kremlin-Bicêtre, Paris, France
| |
Collapse
|
899
|
Rozhok AI, Salstrom JL, DeGregori J. Stochastic modeling indicates that aging and somatic evolution in the hematopoetic system are driven by non-cell-autonomous processes. Aging (Albany NY) 2015; 6:1033-48. [PMID: 25564763 PMCID: PMC4298364 DOI: 10.18632/aging.100707] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Age-dependent tissue decline and increased cancer incidence are widely accepted to be rate-limited by the accumulation of somatic mutations over time. Current models of carcinogenesis are dominated by the assumption that oncogenic mutations have defined advantageous fitness effects on recipient stem and progenitor cells, promoting and rate-limiting somatic evolution. However, this assumption is markedly discrepant with evolutionary theory, whereby fitness is a dynamic property of a phenotype imposed upon and widely modulated by environment. We computationally modeled dynamic microenvironment-dependent fitness alterations in hematopoietic stem cells (HSC) within the Sprengel-Liebig system known to govern evolution at the population level. Our model for the first time integrates real data on age-dependent dynamics of HSC division rates, pool size, and accumulation of genetic changes and demonstrates that somatic evolution is not rate-limited by the occurrence of mutations, but instead results from aged microenvironment-driven alterations in the selective/fitness value of previously accumulated genetic changes. Our results are also consistent with evolutionary models of aging and thus oppose both somatic mutation-centric paradigms of carcinogenesis and tissue functional decline. In total, we demonstrate that aging directly promotes HSC fitness decline and somatic evolution via non-cell-autonomous mechanisms.
Collapse
Affiliation(s)
- Andrii I Rozhok
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Jennifer L Salstrom
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA. Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - James DeGregori
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA. Integrated Department of Immunology, University of Colorado School of Medicine, Aurora, CO 80045, USA. Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA. Department of Medicine, Section of Hematology, University of Colorado School of Medicine, Aurora, CO 80045,USA
| |
Collapse
|
900
|
Abstract
Cancer is a general name for more than 100 malignant diseases. It is postulated that all cancers start from a single abnormal cell that grows out of control. Untreated cancers can cause serious consequences and deaths. Great progress has been made in cancer research that has significantly improved our knowledge and understanding of the nature and mechanisms of the disease, but the origins of cancer are far from being well understood due to the limitations of suitable model systems and to the complexities of the disease. In view of the fact that cancers are found in various species of vertebrates and other metazoa, here, we suggest that cancer also occurs in parasitic protozoans such as Trypanosoma brucei, a blood parasite, and Toxoplasma gondii, an obligate intracellular pathogen. Without treatment, these protozoan cancers may cause severe disease and death in mammals, including humans. The simpler genomes of these single-cell organisms, in combination with their complex life cycles and fascinating life cycle differentiation processes, may help us to better understand the origins of cancers and, in particular, leukemias.
Collapse
|