851
|
Alva N, Panisello-Roselló A, Flores M, Roselló-Catafau J, Carbonell T. Ubiquitin-proteasome system and oxidative stress in liver transplantation. World J Gastroenterol 2018; 24:3521-3530. [PMID: 30131658 PMCID: PMC6102496 DOI: 10.3748/wjg.v24.i31.3521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 02/06/2023] Open
Abstract
A major issue in organ transplantation is the development of a protocol that can preserve organs under optimal conditions. Damage to organs is commonly a consequence of flow deprivation and oxygen starvation following the restoration of blood flow and reoxygenation. This is known as ischemia-reperfusion injury (IRI): a complex multifactorial process that causes cell damage. While the oxygen deprivation due to ischemia depletes cell energy, subsequent tissue oxygenation due to reperfusion induces many cascades, from reactive oxygen species production to apoptosis initiation. Autophagy has also been identified in the pathogenesis of IRI, although such alterations and their subsequent functional significance are controversial. Moreover, proteasome activation may be a relevant pathophysiological mechanism. Different strategies have been adopted to limit IRI damage, including the supplementation of commercial preservation media with pharmacological agents or additives. In this review, we focus on novel strategies related to the ubiquitin proteasome system and oxidative stress inhibition, which have been used to minimize damage in liver transplantation.
Collapse
Affiliation(s)
- Norma Alva
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona 08028, Spain
| | - Arnau Panisello-Roselló
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona, Barcelona 08036, Spain
| | - Marta Flores
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona 08028, Spain
| | - Joan Roselló-Catafau
- Experimental Pathology Department, Institute of Biomedical Research of Barcelona, Barcelona 08036, Spain
| | - Teresa Carbonell
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona 08028, Spain
| |
Collapse
|
852
|
Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Mitochondrial bioenergetics and cardiolipin alterations in myocardial ischemia-reperfusion injury: implications for pharmacological cardioprotection. Am J Physiol Heart Circ Physiol 2018; 315:H1341-H1352. [PMID: 30095969 DOI: 10.1152/ajpheart.00028.2018] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mitochondrial dysfunction plays a central role in myocardial ischemia-reperfusion (I/R) injury. Increased reactive oxygen species production, impaired electron transport chain activity, aberrant mitochondrial dynamics, Ca2+ overload, and opening of the mitochondrial permeability transition pore have been proposed as major contributory factors to mitochondrial dysfunction during myocardial I/R injury. Cardiolipin (CL), a mitochondria-specific phospholipid, plays a pivotal role in multiple mitochondrial bioenergetic processes, including respiration and energy conversion, in mitochondrial morphology and dynamics as well as in several steps of the apoptotic process. Changes in CL levels, species composition, and degree of oxidation may have deleterious consequences for mitochondrial function with important implications in a variety of pathophysiological conditions, including myocardial I/R injury. In this review, we focus on the role played by CL alterations in mitochondrial dysfunction in myocardial I/R injury. Pharmacological strategies to prevent myocardial injury during I/R targeting mitochondrial CL are also examined.
Collapse
Affiliation(s)
- Giuseppe Paradies
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari , Bari , Italy
| | | | - Francesca Maria Ruggiero
- Department of Biosciences, Biotechnologies, and Biopharmaceutics, University of Bari , Bari , Italy
| | - Giuseppe Petrosillo
- Institute of Biomembranes, Bioenergetics, and Molecular Biotechnologies, National Research Council , Bari , Italy
| |
Collapse
|
853
|
Stankovic-Valentin N, Melchior F. Control of SUMO and Ubiquitin by ROS: Signaling and disease implications. Mol Aspects Med 2018; 63:3-17. [PMID: 30059710 DOI: 10.1016/j.mam.2018.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/23/2018] [Accepted: 07/27/2018] [Indexed: 01/06/2023]
Abstract
Reversible post-translational modifications (PTMs) ensure rapid signal transmission from sensors to effectors. Reversible modification of proteins by the small proteins Ubiquitin and SUMO are involved in virtually all cellular processes and can modify thousands of proteins. Ubiquitination or SUMOylation is the reversible attachment of these modifiers to lysine residues of a target via isopeptide bond formation. These modifications require ATP and an enzymatic cascade composed of three classes of proteins: E1 activating enzymes, E2 conjugating enzymes and E3 ligases. The reversibility of the modification is ensured by specific isopeptidases. E1 and E2 enzymes, some E3 ligases and most isopeptidases have catalytic cysteine residues, which make them potentially susceptible for oxidation. Indeed, an increasing number of examples reveal regulation of ubiquitination and SUMOylation by reactive oxygen species, both in the context of redox signaling and in severe oxidative stress. Importantly, ubiquitination and SUMOylation play essential roles in the regulation of ROS homeostasis, participating in the control of ROS production and clearance. In this review, we will discuss the interplay between ROS homeostasis, Ubiquitin and SUMO pathways and the implications for the oxidative stress response and cell signaling.
Collapse
Affiliation(s)
- Nicolas Stankovic-Valentin
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Heidelberg, Germany.
| | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
854
|
Surinkaew P, Sawaddiruk P, Apaijai N, Chattipakorn N, Chattipakorn SC. Role of microglia under cardiac and cerebral ischemia/reperfusion (I/R) injury. Metab Brain Dis 2018; 33:1019-1030. [PMID: 29656335 DOI: 10.1007/s11011-018-0232-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/06/2018] [Indexed: 12/27/2022]
Abstract
Both cerebral and cardiac ischemia causes loss of cerebral blood flow, which may lead to neuronal cell damage, neurocognitive impairment, learning and memory difficulties, neurological deficits, and brain death. Although reperfusion is required immediately to restore the blood supply to the brain, it could lead to several detrimental effects on the brain. Several studies demonstrate that microglia activity increases following cerebral and cardiac ischemic/reperfusion (I/R) injury. However, the effects of microglial activation in the brain following I/R remains unclear. Some reports demonstrated that microglia were involved in neurodegeneration and oxidative stress generation, whilst others showed that microglia did not respond to I/R injury. Moreover, microglia are activated in a time-dependent manner, and in a specific brain region following I/R. Recently, several therapeutic approaches including pharmacological interventions and electroacupuncture showed the beneficial effects, while some interventions such as hyperthermia and hyperoxic resuscitation, demonstrated the deteriorated effects on the microglial activity after I/R. Therefore, the present review summarized and discussed those studies regarding the effects of global and focal cerebral as well as cardiac I/R injury on microglia activation, and the therapeutic interventions.
Collapse
Affiliation(s)
- Poomarin Surinkaew
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Anesthesiology, Lamphun Hospital, Lamphun, 51000, Thailand
| | - Passakorn Sawaddiruk
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Department of Anesthesiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Cardiac Electrophysiology, Chiang Mai University, Chiang Mai, 50200, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
855
|
Yin P, Wei Y, Wang X, Zhu M, Feng J. Roles of Specialized Pro-Resolving Lipid Mediators in Cerebral Ischemia Reperfusion Injury. Front Neurol 2018; 9:617. [PMID: 30131754 PMCID: PMC6090140 DOI: 10.3389/fneur.2018.00617] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/10/2018] [Indexed: 12/14/2022] Open
Abstract
Ischemic stroke contributes to ~80% of all stroke cases. Recanalization with thrombolysis or endovascular thrombectomy are currently critical therapeutic strategies for rebuilding the blood supply following ischemic stroke. However, recanalization is often accompanied by cerebral ischemia reperfusion injury that is mediated by oxidative stress and inflammation. Resolution of inflammation belongs to the end stage of inflammation where inflammation is terminated and the repair of damaged tissue is started. Resolution of inflammation is mediated by a group of newly discovered lipid mediators called specialized pro-resolving lipid mediators (SPMs). Accumulating evidence suggests that SPMs decrease leukocyte infiltration, enhance efferocytosis, reduce local neuronal injury, and decrease both oxidative stress and the production of inflammatory cytokines in various in vitro and in vivo models of ischemic stroke. In this review, we summarize the mechanisms of reperfusion injury and the various roles of SPMs in stroke therapy.
Collapse
Affiliation(s)
- Ping Yin
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China.,First Department of Neurology and Neuroscience Center, Heilongjiang Provincial Hospital, Harbin, China
| | - Yafen Wei
- First Department of Neurology and Neuroscience Center, Heilongjiang Provincial Hospital, Harbin, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Mingqin Zhu
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
856
|
Neuroprotective Effects of Mitochondria-Targeted Plastoquinone in a Rat Model of Neonatal Hypoxic⁻Ischemic Brain Injury. Molecules 2018; 23:molecules23081871. [PMID: 30060443 PMCID: PMC6222533 DOI: 10.3390/molecules23081871] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/13/2018] [Accepted: 07/25/2018] [Indexed: 12/29/2022] Open
Abstract
Neonatal hypoxia⁻ischemia is one of the main causes of mortality and disability of newborns. To study the mechanisms of neonatal brain cell damage, we used a model of neonatal hypoxia⁻ischemia in seven-day-old rats, by annealing of the common carotid artery with subsequent hypoxia of 8% oxygen. We demonstrate that neonatal hypoxia⁻ischemia causes mitochondrial dysfunction associated with high production of reactive oxygen species, which leads to oxidative stress. Targeted delivery of antioxidants to the mitochondria can be an effective therapeutic approach to treat the deleterious effects of brain hypoxia⁻ischemia. We explored the neuroprotective properties of the mitochondria-targeted antioxidant SkQR1, which is the conjugate of a plant plastoquinone and a penetrating cation, rhodamine 19. Being introduced before or immediately after hypoxia⁻ischemia, SkQR1 affords neuroprotection as judged by the diminished brain damage and recovery of long-term neurological functions. Using vital sections of the brain, SkQR1 has been shown to reduce the development of oxidative stress. Thus, the mitochondrial-targeted antioxidant derived from plant plastoquinone can effectively protect the brain of newborns both in pre-ischemic and post-stroke conditions, making it a promising candidate for further clinical studies.
Collapse
|
857
|
Casciato P, Ambrosi N, Caro F, Vazquez M, Müllen E, Gadano A, de Santibañes E, de Santibañes M, Zandomeni M, Chahdi M, Lazarte JC, Biagiola DA, Iaquinandi JC, Santofimia-Castaño P, Iovanna J, Incardona C, Chuluyan E. α-lipoic acid reduces postreperfusion syndrome in human liver transplantation - a pilot study. Transpl Int 2018; 31:1357-1368. [PMID: 29974521 DOI: 10.1111/tri.13314] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/11/2018] [Accepted: 06/29/2018] [Indexed: 12/21/2022]
Abstract
A double-blind randomized controlled trial was performed to compare the safety and efficacy of α-lipoic acid (ALA) in liver transplantation (LT). The grafts were randomized to receive ALA or placebo before the cold ischemia time. Furthermore, patients transplanted with the ALA-perfused graft received 600 mg of intravenous ALA, while patients with the nonperfused graft received the placebo just before graft reperfusion. Hepatic biopsy was performed 2 h postreperfusion. Blood samples were collected before, during and 1 and 2 days after reperfusion. Quantitative polymerase chain reaction (qPCR) analysis was performed on biopsies to assess genes involved in the response to hypoxia, apoptosis, cell growth, survival and proliferation, cytokine production and tissue damage protection. Nine of 40 patients developed postreperfusion syndrome (PRS), but seven of them belonged to the control group. There was a decrease in PHD2 and an increase in alpha subunit of hypoxia-inducible factor-1 (HIF-1α) and baculoviral IAP repeat containing 2 (Birc2) transcript levels in the biopsies from the ALA-treated versus the control group of patients. Additionally, plasma levels of alarmins were lower in ALA-treated patients than control patients, which suggests that ALA-treated grafts are less inflammatory than untreated grafts. These results showed that ALA is safe for use in LT, induces gene changes that protect against hypoxia and oxidative stress and reduces the appearance of PRS.
Collapse
Affiliation(s)
- Paola Casciato
- Unidad de Trasplante Hepático, Hospital Italiano, Buenos Aires, Argentina
| | - Nella Ambrosi
- Facultad de Medicina, CEFYBO-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fiorella Caro
- Facultad de Medicina, CEFYBO-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mónica Vazquez
- Unidad de Trasplante Hepático, Hospital Italiano, Buenos Aires, Argentina
| | - Eduardo Müllen
- Unidad de Trasplante Hepático, Hospital Italiano, Buenos Aires, Argentina
| | - Adrian Gadano
- Unidad de Trasplante Hepático, Hospital Italiano, Buenos Aires, Argentina
| | | | | | - Marcos Zandomeni
- Unidad de Trasplante Hepático, Hospital Italiano, Buenos Aires, Argentina
| | - Magali Chahdi
- Unidad de Trasplante Hepático, Hospital Italiano, Buenos Aires, Argentina
| | - Julio C Lazarte
- Unidad de Trasplante Hepático, Hospital Italiano, Buenos Aires, Argentina
| | - David A Biagiola
- Unidad de Trasplante Hepático, Hospital Italiano, Buenos Aires, Argentina
| | | | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Claudio Incardona
- Unidad de Trasplante Hepático, Hospital Italiano, Buenos Aires, Argentina.,Fundación GADOR, Buenos Aires, Argentina
| | - Eduardo Chuluyan
- Facultad de Medicina, CEFYBO-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
858
|
Wang Y, Jin L, Song Y, Zhang M, Shan D, Liu Y, Fang M, Lv F, Xiao RP, Zhang Y. β-arrestin 2 mediates cardiac ischemia-reperfusion injury via inhibiting GPCR-independent cell survival signalling. Cardiovasc Res 2018; 113:1615-1626. [PMID: 29016703 DOI: 10.1093/cvr/cvx147] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 08/03/2017] [Indexed: 01/14/2023] Open
Abstract
Aims Ischemic heart disease is a leading cause of morbidity and mortality worldwide. Although timely restoration of coronary blood flow (reperfusion) is the most effective therapeutics of myocardial infarction, reperfusion causes further cardiac damage, i.e. ischemia-reperfusion (I/R) injury. β-arrestins (Arrbs) have been traditionally defined as negative regulators of G protein-coupled receptor (GPCR) signalling, but recent studies have shown that they are essential for G protein-independent, GPCR-mediated biased signalling. Several ligands have been reported to be cardioprotective via Arrbs dependent pathway. However, it is unclear whether Arrbs exert receptor-independent physiological or pathological functions in the heart. Here, we sought to determine whether and how Arrbs play a role in regulating cardiomyocyte viability and myocardial remodelling following I/R injury. Methods and results The expression of β-arrestin 2 (Arrb2), but not β-arrestin 1 (Arrb1), is upregulated in rat hearts subjected to I/R injury, or in cultured neonatal rat cardiomyocytes treated with hypoxia-reoxygenation (H/R) injury. Deficiency of Arrb2 in cultured neonatal rat cardiomyocytes alleviates H/R-induced cardiomyocyte death and Arrb2-/- mice are resistant to myocardial damage caused by I/R injury. In contrast, upregulation of Arrb2 triggers cardiomyocyte death and exaggerates I/R (or H/R)-induced detrimental effects. Mechanically, Arrb2 induces cardiomyocyte death by interacting with the p85 subunit of PI3K, and negatively regulating the formation of p85-PI3K/CaV3 survival complex, thus blocking activation of PI3K-Akt-GSK3β cell survival signalling pathway. Conclusion We define an upregulation of Arrb2 as a pathogenic factor in cardiac I/R injury, and also reveal a novel GPCR-independent mechanism of Arrb2-mediated cell death signalling in the heart.
Collapse
Affiliation(s)
- Yimei Wang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Li Jin
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Ying Song
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Mao Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Dan Shan
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Yuli Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Meng Fang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Fengxiang Lv
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Rui-Ping Xiao
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| |
Collapse
|
859
|
Protective Effect of Rosamultin against H 2O 2-Induced Oxidative Stress and Apoptosis in H9c2 Cardiomyocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8415610. [PMID: 30116494 PMCID: PMC6079377 DOI: 10.1155/2018/8415610] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/16/2018] [Accepted: 06/03/2018] [Indexed: 01/11/2023]
Abstract
Rosamultin is one of the main active compounds isolated from Potentilla anserina L., which belongs to a triterpene compound. Few studies have examined the effect of rosamultin on oxidative stress and its molecular mechanism. The aim of this present study was to elucidate the protective effect of rosamultin on H2O2-induced oxidative damage and apoptosis in H9c2 cardiomyocytes and its mechanism. The results showed that the pretreatment of rosamultin not only increased cell viability but also reduced the release of LDH and CK. Rosamultin inhibited a H2O2-induced decrease in SOD, CAT, and GSH-Px activities and an increase in MDA content. Meanwhile, ROS level, intracellular (Ca2+) fluorescence intensity, and apoptosis rate in the rosamultin pretreated group were markedly decreased compared with the model group. Rosamultin pretreatment significantly reversed the morphological changes and attenuated H2O2-induced apoptosis. Western blot analysis showed that rosamultin enhanced the expression of Bcl-2 and pCryAB and downregulated the expression of Bax, Cyt-c, Caspase-3, and Caspase-9 expression. Additionally, rosamultin might activate PI3K/Akt signal pathways and CryAB relative factors. Therefore, we suggest that rosamultin could have the potential for treating H2O2-induced oxidative stress injury through its antioxidant and antiapoptosis effect.
Collapse
|
860
|
Moonen L, D'Haese PC, Vervaet BA. Epithelial Cell Cycle Behaviour in the Injured Kidney. Int J Mol Sci 2018; 19:E2038. [PMID: 30011818 PMCID: PMC6073451 DOI: 10.3390/ijms19072038] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 07/10/2018] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI), commonly caused by ischemia-reperfusion injury, has far-reaching health consequences. Despite the significant regenerative capacity of proximal tubular epithelium cells (PTCs), repair frequently fails, leading to the development of chronic kidney disease (CKD). In the last decade, it has been repeatedly demonstrated that dysregulation of the cell cycle can cause injured kidneys to progress to CKD. More precisely, severe AKI causes PTCs to arrest in the G1/S or G2/M phase of the cell cycle, leading to maladaptive repair and a fibrotic outcome. The mechanisms causing these arrests are far from known. The arrest might, at least partially, be attributed to DNA damage since activation of the DNA-damage response pathway leads to cell cycle arrest. Alternatively, cytokine signalling via nuclear factor kappa beta (NF-κβ) and p38-mitogen-activated protein kinase (p38-MAPK) pathways, and reactive oxygen species (ROS) can play a role independent of DNA damage. In addition, only a handful of cell cycle regulators (e.g., p53, p21) have been thoroughly studied during renal repair. Still, why and how PTCs decide to arrest their cell cycle and how this arrest can efficiently be overcome remain open and challenging questions. In this review we will discuss the evidence for cell cycle involvement during AKI and development of CKD together with putative therapeutic approaches.
Collapse
Affiliation(s)
- Lies Moonen
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium.
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium.
| | - Benjamin A Vervaet
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium.
| |
Collapse
|
861
|
Kanugula AK, Thodeti CK. AMP-activated kinase "Keaps" ischemia/reperfusion-induced necroptosis under control. Int J Cardiol 2018; 259:168-169. [PMID: 29579596 DOI: 10.1016/j.ijcard.2018.02.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Anantha K Kanugula
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, United States
| | - Charles K Thodeti
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, United States.
| |
Collapse
|
862
|
Matsumoto S, Murozono M, Kanazawa M, Nara T, Ozawa T, Watanabe Y. Edaravone and cyclosporine A as neuroprotective agents for acute ischemic stroke. Acute Med Surg 2018; 5:213-221. [PMID: 29988669 PMCID: PMC6028804 DOI: 10.1002/ams2.343] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/02/2018] [Indexed: 01/12/2023] Open
Abstract
It is well known that acute ischemic stroke (AIS) and subsequent reperfusion produce lethal levels of reactive oxygen species (ROS) in neuronal cells, which are generated in mitochondria. Mitochondrial ROS production is a self-amplifying process, termed "ROS-induced ROS release". Furthermore, the mitochondrial permeability transition pore (MPTP) is deeply involved in this process, and its opening could cause cell death. Edaravone, a free radical scavenger, is the only neuroprotective agent for AIS used in Japan. It captures and reduces excessive ROS, preventing brain damage. Cyclosporine A (CsA), an immunosuppressive agent, is a potential neuroprotective agent for AIS. It has been investigated that CsA prevents cellular death by suppressing MPTP opening. In this report, we will outline the actions of edaravone and CsA as neuroprotective agents in AIS, focusing on their relationship with ROS and MPTP.
Collapse
Affiliation(s)
- Shohei Matsumoto
- Department of AnesthesiologySUBARU Health Insurance Association Ota Memorial HospitalGunmaJapan
| | - Michihiro Murozono
- Department of AnesthesiologyTokyo Medical University Ibaraki Medical CenterIbarakiJapan
| | - Masahiro Kanazawa
- Department of AnesthesiologySUBARU Health Insurance Association Ota Memorial HospitalGunmaJapan
| | - Takeshi Nara
- Department of AnesthesiologySUBARU Health Insurance Association Ota Memorial HospitalGunmaJapan
| | - Takuro Ozawa
- Department of AnesthesiologySUBARU Health Insurance Association Ota Memorial HospitalGunmaJapan
| | - Yasuo Watanabe
- General Health Medical CenterYokohama University of PharmacyKanagawaJapan
| |
Collapse
|
863
|
Gorissen B, de Bruin A, Miranda-Bedate A, Korthagen N, Wolschrijn C, de Vries TJ, van Weeren R, Tryfonidou MA. Hypoxia negatively affects senescence in osteoclasts and delays osteoclastogenesis. J Cell Physiol 2018; 234:414-426. [PMID: 29932209 PMCID: PMC6220985 DOI: 10.1002/jcp.26511] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 02/02/2018] [Indexed: 12/11/2022]
Abstract
Cellular senescence, that is, the withdrawal from the cell cycle, combined with the acquirement of the senescence associated secretory phenotype has important roles during health and disease and is essential for tissue remodeling during embryonic development. Osteoclasts are multinucleated cells, responsible for bone resorption, and cell cycle arrest during osteoclastogenesis is well recognized. Therefore, the aim of this study was to investigate whether these cells should be considered senescent and to assess the influence of hypoxia on their potential senescence status. Osteoclastogenesis and bone resorption capacity of osteoclasts, cultured from CD14+ monocytes, were evaluated in two oxygen concentrations, normoxia (21% O2) and hypoxia (5% O2). Osteoclasts were profiled by using specific staining for proliferation and senescence markers, qPCR of a number of osteoclast and senescence‐related genes and a bone resorption assay. Results show that during in vitro osteoclastogenesis, osteoclasts heterogeneously obtain a senescent phenotype. Furthermore, osteoclastogenesis was delayed at hypoxic compared to normoxic conditions, without negatively affecting the bone resorption capacity. It is concluded that osteoclasts can be considered senescent, although senescence is not uniformly present in the osteoclast population. Hypoxia negatively affects the expression of some senescence markers. Based on the direct relationship between senescence and osteoclastogenesis, it is tempting to hypothesize that contents of the so‐called senescence associated secretory phenotype (SASP) not only play a functional role in matrix resorption, but also may regulate osteoclastogenesis.
Collapse
Affiliation(s)
- Ben Gorissen
- Department of Pathobiology, Anatomy and Physiology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alain de Bruin
- Dutch Molecular Pathology Centre, Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alberto Miranda-Bedate
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nicoline Korthagen
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Claudia Wolschrijn
- Department of Pathobiology, Anatomy and Physiology Division, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Teun J de Vries
- Department of Periodontology,, Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | - René van Weeren
- Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marianna A Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
864
|
Gholampour F, Sadidi Z. Hepatorenal protection during renal ischemia by quercetin and remote ischemic perconditioning. J Surg Res 2018; 231:224-233. [PMID: 30278933 DOI: 10.1016/j.jss.2018.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/15/2018] [Accepted: 05/23/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Pathogenesis of renal ischemia/reperfusion injury (IRI) involves oxidative stress response in the kidney and remote organs. Both quercetin and remote ischemic perconditioning (RIPerC) can protect partially against IRI. This study determined whether combined quercetin and RIPerC could provide an augmented hepatorenal protection against renal IRI. MATERIALS AND METHODS I/R was induced by clamping renal arteries for 45 min followed by 24-h reperfusion. RIPerC consisted of four cycles of 2 min of left femoral artery ischemia followed by 3 min of reperfusion administered at the beginning of renal ischemia. Rats were divided into five groups: sham, I/R, RIPerC, quercetin (Q + I/R), and combined quercetin and RIPerC (Q + RIPerC). At the end of reperfusion period, blood, urine, and tissue samples were collected. RESULTS I/R caused kidney dysfunction, as proved by significant decrease in creatinine clearance, and a significant increase in liver functional indicators as evidenced by increased plasma alanine aminotransferase and aspartate aminotransferase activity. This was accompanied by a decrease of glutathione peroxidase and catalase activities with an increase of malondialdehyde levels and histological damages in renal and hepatic tissues. Treatment with RIPerC and quercetin reduced all these changes. However, the measure of improvements was enhanced by combined quercetin and RIPerC treatment. CONCLUSIONS This study demonstrated protective effects of quercetin and RIPerC strategy on the both kidney and liver after renal I/R. The results suggest that combined quercetin and RIPerC provides an enhanced protection against renal IRI by reduction of lipid peroxidation and augmentation of antioxidant systems.
Collapse
Affiliation(s)
- Firouzeh Gholampour
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran.
| | - Zahra Sadidi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| |
Collapse
|
865
|
Ikejiri AT, Somaio Neto F, Bertoletto PR, Chaves JC, WakateTeruya AK, Kassuya CAL, Taha MO, Fagundes DJ. Effect of hyperbaric oxygenation on the expression of glutathione peroxidase 4 and lactoperoxidase genes in the lung of isogenic mice after ischemia/reperfusion injury in the small bowel. Acta Cir Bras 2018; 33:462-471. [PMID: 29924206 DOI: 10.1590/s0102-865020180050000009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/13/2018] [Indexed: 11/21/2022] Open
Abstract
PURPOSE To evaluate the effect of hyperbaric oxygenation (HBO) on the expression of the genes antioxidant glutathione peroxidase 4 (Gpx4) and lactoperoxidase (Lpo) in the lung of mice subjected to intestinal ischemia and reperfusion (IIR). METHODS Control group (CG) in which were subjected to anesthesia, laparotomy and observation for 120 minutes; an ischemia and reperfusion group (IRG) subjected to anesthesia, laparotomy, small bowel ischemia for 60 minutes and reperfusion for 60 minutes; and three groups treated with HBO during ischemia (HBOG + I), during reperfusion (HBOG + R) and during ischemia and reperfusion (HBOG + IR). Studied 84 genes of oxidative stress by the method (RT-qPCR). Genes with expression levels three times below or above the threshold cycle were considered significantly hypoexpressed or hyperexpressed, respectively (Student's t-test p<0.05). RESULTS Gpx4 and Lpo were hiperexpressed on IRG, showing a correlation with these genes with lung oxidative stress. Treated with HBO, there was a significant reduction on genic expression on HBOG+I. CONCLUSION Hyperbaric oxygenation showed to be associated with decreased expression of these antioxidant genes, suggesting a beneficial effect on the mechanism of pulmonary oxidative stress whenever applied during the ischemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Murched Omar Taha
- Division of Surgical Techniques and Experimental Surgery, Department of Surgery, Universidade Federal de São Paulo, Brazil
| | - Djalma José Fagundes
- Division of Surgical Techniques and Experimental Surgery, Department of Surgery, UNIFESP, Sao Paulo, SP, Brazil
| |
Collapse
|
866
|
Fang W, Wang G, Tang L, Su H, Chen H, Liao W, Xu J. Hydrogen gas inhalation protects against cutaneous ischaemia/reperfusion injury in a mouse model of pressure ulcer. J Cell Mol Med 2018; 22:4243-4252. [PMID: 29921037 PMCID: PMC6111801 DOI: 10.1111/jcmm.13704] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/25/2018] [Indexed: 12/13/2022] Open
Abstract
Pressure ulcer formation depends on various factors among which repetitive ischaemia/reperfusion(I/R) injury plays a vital role. Molecular hydrogen (H2) was reported to have protective effects on I/R injuries of various internal organs. In this study, we investigated the effects of H2 inhalation on pressure ulcer and the underlying mechanisms. H2 inhalation significantly reduced wound area, 8‐oxo‐dG level (oxidative DNA damage) and cell apoptosis rates in skin lesions. H2 remarkably decreased ROS accumulation and enhanced antioxidant enzymes activities by up‐regulating expression of Nrf2 and its downstream components in wound tissue and/or H2O2‐treated endothelia. Meanwhile, H2 inhibited the overexpression of MCP‐1, E‐selectin, P‐selectin and ICAM‐1 in oxidant‐induced endothelia and reduced inflammatory cells infiltration and proinflammatory cytokines (TNF‐α, IL‐1, IL‐6 and IL‐8) production in the wound. Furthermore, H2 promoted the expression of pro‐healing factors (IL‐22, TGF‐β, VEGF and IGF1) and inhibited the production of MMP9 in wound tissue in parallel with acceleration of cutaneous collagen synthesis. Taken together, these data indicated that H2 inhalation suppressed the formation of pressure ulcer in a mouse model. Molecular hydrogen has potentials as a novel and alternative therapy for severe pressure ulcer. The therapeutic effects of molecular hydrogen might be related to its antioxidant, anti‐inflammatory, pro‐healing actions.
Collapse
Affiliation(s)
- Wei Fang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,The Shanghai Institute of Dermatology, Shanghai, China.,Department of Dermatology and Venereology, Changzheng Hospital, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai, China
| | - Guizhen Wang
- Emergency room, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Luyan Tang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,The Shanghai Institute of Dermatology, Shanghai, China
| | - Huilin Su
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Huyan Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wanqing Liao
- Department of Dermatology and Venereology, Changzheng Hospital, Shanghai Key Laboratory of Molecular Medical Mycology, Shanghai, China
| | - Jinhua Xu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China.,The Shanghai Institute of Dermatology, Shanghai, China
| |
Collapse
|
867
|
Miyauchi T, Uchida Y, Kadono K, Hirao H, Kawasoe J, Watanabe T, Ueda S, Jobara K, Kaido T, Okajima H, Terajima H, Uemoto S. Preventive Effect of Antioxidative Nutrient-Rich Enteral Diet Against Liver Ischemia and Reperfusion Injury. JPEN J Parenter Enteral Nutr 2018; 43:133-144. [PMID: 29870084 DOI: 10.1002/jpen.1308] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/23/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Liver ischemia and reperfusion injury (IRI) is a major problem associated with liver surgery. This study is aimed to compare the preventive effect of an antioxidative nutrient-rich enteral diet (Ao diet) with an ordinal enteral diet (control diet) against liver IRI. METHODS The Ao diet was an ordinary diet comprising polyphenols (catechin and proanthocyanidin) and enhanced levels of vitamins C and E. Male C57BL/6 mice were fed the Ao or control diet for 7 days before ischemic insult for 60 minutes, followed by reperfusion for 6 hours. The levels of inflammatory cytokines, chemokines, and antioxidant enzymes and oxidative stress were evaluated. RESULTS After 7 days of pretreatment with the Ao diet, the serum levels of vitamins C and E in mice were markedly elevated. The levels of serum aspartate aminotransferase and alanine aminotransferase, as well as the scores of liver necrosis caused by ischemia and reperfusion, were significantly lower in the Ao diet group than in the control diet group. The gene expression levels of inflammatory cytokines and chemokines, such as interleukin-6 and CXCL1, were significantly lower in the Ao diet group. In the liver, the levels of antioxidant enzymes superoxide dismutase 1 (SOD1) and SOD2 were significantly higher and the malondialdehyde levels were significantly lower in the Ao diet group. Cell adhesion molecule expression was significantly lower, and neutrophil and macrophage infiltration was less in the Ao diet group. CONCLUSIONS Antioxidative nutrient supplementation to an ordinary enteral diet may mitigate liver IRI by causing an antioxidant effect and suppressing inflammation.
Collapse
Affiliation(s)
- Tomoyuki Miyauchi
- Division of Hepato-Pancreato-Biliary and Transplantation Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - Yoichiro Uchida
- Division of Hepato-Pancreato-Biliary and Transplantation Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - Kentaro Kadono
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - Hirofumi Hirao
- Division of Hepato-Pancreato-Biliary and Transplantation Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Junya Kawasoe
- Division of Hepato-Pancreato-Biliary and Transplantation Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - Takeshi Watanabe
- Tazuke Kofukai Medical Research Institute, Kitano Hospital, Osaka, Japan
| | - Shugo Ueda
- Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - Kanta Jobara
- Division of Hepato-Pancreato-Biliary and Transplantation Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshimi Kaido
- Division of Hepato-Pancreato-Biliary and Transplantation Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideaki Okajima
- Division of Hepato-Pancreato-Biliary and Transplantation Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Terajima
- Division of Hepato-Pancreato-Biliary and Transplantation Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Gastroenterological Surgery and Oncology, Kitano Hospital, Osaka, Japan
| | - Shinji Uemoto
- Division of Hepato-Pancreato-Biliary and Transplantation Surgery, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
868
|
Linagliptin attenuates chronic post-ischemia pain: Possible anti-inflammatory and anti-oxidant mechanisms. Eur J Pharmacol 2018; 828:110-118. [DOI: 10.1016/j.ejphar.2018.03.039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 03/27/2018] [Accepted: 03/28/2018] [Indexed: 02/08/2023]
|
869
|
Bender D, Schwarz G. Nitrite-dependent nitric oxide synthesis by molybdenum enzymes. FEBS Lett 2018; 592:2126-2139. [DOI: 10.1002/1873-3468.13089] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Daniel Bender
- Department of Chemistry; Institute for Biochemistry; University of Cologne; Germany
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Germany
| | - Guenter Schwarz
- Department of Chemistry; Institute for Biochemistry; University of Cologne; Germany
- Center for Molecular Medicine Cologne (CMMC); University of Cologne; Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD); University of Cologne; Germany
| |
Collapse
|
870
|
Oroszi M, Szabó A, Fehér ÁM, Deák G, Bajory Z. Microcirculatory effects of sildenafil in experimental testicular torsion in rats. World J Urol 2018; 36:2081-2087. [PMID: 29785490 DOI: 10.1007/s00345-018-2340-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 05/14/2018] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Investigate the short-term effect of sildenafil on microcirculation, especially the velocity, the pattern of the flow and the recruitment of the leukocyte in postcapillaries. METHODS In male Sprague-Dawley rats, the microcirculatory consequences of 60 min experimental testicular torsion, followed by 240 min of reperfusion, were examined. Using fluorescence intravital microscopy, changes in red blood cell velocity in post-capillary venules and rolling as well as adhesion of leukocytes in the postcapillary venules were examined before the torsion and every hour during the reperfusion period. Sildenafil was given 10 min prior to reperfusion (iv 0.7 mg/kg, n = 6), while control animals received saline vehicle (n = 5). RESULTS The characteristic flow motion disappeared in the affected testicular during the torsion. Red blood cell velocity values were dramatically decreased (by > 50%) and both rolling and adhesion of leukocytes increased during the reperfusion phase. Sildenafil treatment resulted in significantly higher red blood cell velocity values during the entire reperfusion period, but exerted only a temporary positive effect on the plost-ischaemic leukocyte-endothelial interactions. CONCLUSIONS Intraoperative administration of sildenafil during surgical detorsion may provide marked testicular microperfusion benefits, but failed to influence the overall leukocyte-driven microcirculatory inflammatory reactions.
Collapse
Affiliation(s)
- Márton Oroszi
- Department of Urology, Szent-Györgyi Albert Medical and Pharmaceutical Center, University of Szeged, Kálvária sgt. 57, Szeged, 6725, Hungary.
| | - Andrea Szabó
- Institute of Surgical Research, Szent-Györgyi Albert Medical and Pharmaceutical Center, University of Szeged, Szőkefalvi-Nagy Béla street 6., Szeged, 6720, Hungary
| | - Ádám Miklós Fehér
- Department of Urology, Szent-Györgyi Albert Medical and Pharmaceutical Center, University of Szeged, Kálvária sgt. 57, Szeged, 6725, Hungary
| | - Gábor Deák
- Department of Urology, Szent-Györgyi Albert Medical and Pharmaceutical Center, University of Szeged, Kálvária sgt. 57, Szeged, 6725, Hungary
| | - Zoltán Bajory
- Department of Urology, Szent-Györgyi Albert Medical and Pharmaceutical Center, University of Szeged, Kálvária sgt. 57, Szeged, 6725, Hungary
| |
Collapse
|
871
|
Wu WY, Li YD, Cui YK, Wu C, Hong YX, Li G, Wu Y, Jie LJ, Wang Y, Li GR. The Natural Flavone Acacetin Confers Cardiomyocyte Protection Against Hypoxia/Reoxygenation Injury via AMPK-Mediated Activation of Nrf2 Signaling Pathway. Front Pharmacol 2018; 9:497. [PMID: 29867499 PMCID: PMC5962741 DOI: 10.3389/fphar.2018.00497] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
The present study investigates the potential signal pathway of acacetin in cardioprotection against ischemia/reperfusion injury using an in vitro hypoxia/reoxygenation model in primary cultured neonatal rat cardiomyocytes and H9C2 cardiomyoblasts. It was found that acacetin (0.3–3 μM) significantly decreased the apoptosis and reactive oxygen species production induced by hypoxia/reoxygenation injury in cardiomyocytes and H9C2 cardiomyoblasts via reducing the pro-apoptotic proteins Bax and cleaved-caspase-3 and increasing the anti-apoptotic protein Bcl-2. In addition, acacetin not only suppressed the release of pro-inflammatory cytokines TLR-4 and IL-6 induced by hypoxia/reoxygenation injury, but also increased the secretion of anti-inflammatory cytokine IL-10. Moreover, acacetin increased Nrf2 and HO-1 in a concentration-dependent manner, and rescued SOD1 and SOD2 reduction induced by hypoxia/reoxygenation insult. These beneficial effects of acacetin disappeared in cells with silenced Nrf2, suggesting that Nrf2 activation participates in the cardioprotective effect of acacetin against hypoxia/reoxygenation insult. However, acacetin-induced Nrf2 activation was not observed in cells with silenced AMPK and in ventricular tissues of rat hearts treated with the AMPK inhibitor Compound C and subjected to ischemia/reperfusion injury. Our results demonstrate for the first time that AMPK-mediated Nrf2 activation is involved in the cardiomyocytes protection of acacetin against hypoxia/reoxygenation injury by activating a series of intracellular signals involved in anti-oxidation, anti-inflammation, and anti-apoptosis.
Collapse
Affiliation(s)
- Wei-Yin Wu
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Yun-Da Li
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Yu-Kai Cui
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Chan Wu
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Yi-Xiang Hong
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Gang Li
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Yao Wu
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Ling-Jun Jie
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Yan Wang
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Gui-Rong Li
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
872
|
Lefevre S, Stecyk JAW, Torp MK, Løvold LY, Sørensen C, Johansen IB, Stensløkken KO, Couturier CS, Sloman KA, Nilsson GE. Re-oxygenation after anoxia induces brain cell death and memory loss in the anoxia-tolerant crucian carp. ACTA ACUST UNITED AC 2018; 220:3883-3895. [PMID: 29093186 DOI: 10.1242/jeb.165118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/01/2017] [Indexed: 01/15/2023]
Abstract
Crucian carp (Carassius carassius) survive without oxygen for several months, but it is unknown whether they are able to protect themselves from cell death normally caused by the absence, and particularly return, of oxygen. Here, we quantified cell death in brain tissue from crucian carp exposed to anoxia and re-oxygenation using the terminal deoxy-nucleotidyl transferase dUTP nick-end labelling (TUNEL) assay, and cell proliferation by immunohistochemical staining for proliferating cell nuclear antigen (PCNA) as well as PCNA mRNA expression. We also measured mRNA and protein expression of the apoptosis executer protease caspase 3, in laboratory fish exposed to anoxia and re-oxygenation and fish exposed to seasonal anoxia and re-oxygenation in their natural habitat over the year. Finally, a behavioural experiment was used to assess the ability to learn and remember how to navigate in a maze to find food, before and after exposure to anoxia and re-oxygenation. The number of TUNEL-positive cells in the telencephalon increased after 1 day of re-oxygenation following 7 days of anoxia, indicating increased cell death. However, there were no consistent changes in whole-brain expression of caspase 3 in either laboratory-exposed or naturally exposed fish, indicating that cell death might occur via caspase-independent pathways or necrosis. Re-oxygenated crucian carp appeared to have lost the memory of how to navigate in a maze (learnt prior to anoxia exposure), while the ability to learn remained intact. PCNA mRNA was elevated after re-oxygenation, indicating increased neurogenesis. We conclude that anoxia tolerance involves not only protection from damage but also repair after re-oxygenation.
Collapse
Affiliation(s)
- Sjannie Lefevre
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Jonathan A W Stecyk
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - May-Kristin Torp
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Lisa Y Løvold
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Christina Sørensen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Ida B Johansen
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Kåre-Olav Stensløkken
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Christine S Couturier
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| | - Katherine A Sloman
- Institute of Biomedical and Environmental Health Research, School of Science and Sport, University of the West of Scotland, PA1 2BE, UK
| | - Göran E Nilsson
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, 0371 Oslo, Norway
| |
Collapse
|
873
|
Mendes-Braz M, Martins JO. Diabetes Mellitus and Liver Surgery: The Effect of Diabetes on Oxidative Stress and Inflammation. Mediators Inflamm 2018; 2018:2456579. [PMID: 29853784 PMCID: PMC5964489 DOI: 10.1155/2018/2456579] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/02/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder characterized by hyperglycaemia and high morbidity worldwide. The detrimental effects of hyperglycaemia include an increase in the oxidative stress (OS) response and an enhanced inflammatory response. DM compromises the ability of the liver to regenerate and is particularly associated with poor prognosis after ischaemia-reperfusion (I/R) injury. Considering the growing need for knowledge of the impact of DM on the liver following a surgical procedure, this review aims to present recent publications addressing the effects of DM (hyperglycaemia) on OS and the inflammatory process, which play an essential role in I/R injury and impaired hepatic regeneration after liver surgery.
Collapse
Affiliation(s)
- Mariana Mendes-Braz
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University Sao Paulo (FCF/USP), São Paulo, SP, Brazil
| | - Joilson O. Martins
- Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences of University Sao Paulo (FCF/USP), São Paulo, SP, Brazil
| |
Collapse
|
874
|
Adefegha SA, Leal DBR, de Oliveira JS, Manzoni AG, Bremm JM. Modulation of reactive oxygen species production, apoptosis and cell cycle in pleural exudate cells of carrageenan-induced acute inflammation in rats by rutin. Food Funct 2018; 8:4459-4468. [PMID: 29090709 DOI: 10.1039/c7fo01008g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The present study seeks to investigate the effect of rutin, a flavonoid compound in rat models of acute inflammation induced by carrageenan (CAR). Twenty-four female Wistar rats weighing 222-247 g received saline or 2% λ-carrageenan in the pleural cavity and treatment with rutin (80 mg kg-1) or saline by oral gavage for 21 days prior to the intrapleural induction of CAR. After 4 h of induction, the rats were euthanized, the plasma was prepared from the blood for the analysis of haematological parameters and the pleural exudate was obtained for the analysis of the total cell count, cell viability, reactive oxygen species (ROS) production, apoptosis and cell cycle. The result revealed that rutin exhibited anti-inflammatory effects by modulating the ROS level, apoptosis and cell cycle. This study indicates that rutin may exert a protective effect against ROS-mediated oxidative damage associated with an anti-inflammatory activity in rat models of acute inflammation.
Collapse
Affiliation(s)
- Stephen Adeniyi Adefegha
- Functional Food and Nutraceutical Unit, Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria.
| | | | | | | | | |
Collapse
|
875
|
Battelli MG, Bortolotti M, Polito L, Bolognesi A. The role of xanthine oxidoreductase and uric acid in metabolic syndrome. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2557-2565. [PMID: 29733945 DOI: 10.1016/j.bbadis.2018.05.003] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/20/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022]
Abstract
Xanthine oxidoreductase (XOR) could contribute to the pathogenesis of metabolic syndrome through the oxidative stress and the inflammatory response induced by XOR-derived reactive oxygen species and uric acid. Hyperuricemia is strongly linked to hypertension, insulin resistance, obesity and hypertriglyceridemia. The serum level of XOR is correlated to triglyceride/high density lipoprotein cholesterol ratio, fasting glycemia, fasting insulinemia and insulin resistance index. Increased activity of endothelium-linked XOR may promote hypertension. In addition, XOR is implicated in pre-adipocyte differentiation and adipogenesis. XOR and uric acid play a role in cell transformation and proliferation as well as in the progression and metastatic process. Collected evidences confirm the contribution of XOR and uric acid in metabolic syndrome. However, in some circumstances XOR and uric acid may have anti-oxidant protective outcomes. The dual-face role of both XOR and uric acid explains the contradictory results obtained with XOR inhibitors and suggests caution in their therapeutic use.
Collapse
Affiliation(s)
- Maria Giulia Battelli
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum - University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum - University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum - University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum - University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
876
|
Twayana KS, Ravanan P. Eukaryotic cell survival mechanisms: Disease relevance and therapeutic intervention. Life Sci 2018; 205:73-90. [PMID: 29730169 DOI: 10.1016/j.lfs.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/17/2018] [Accepted: 05/01/2018] [Indexed: 01/10/2023]
Abstract
Cell responds to stress by activating various modes of stress responses which aim for minimal damage to cells and speedy recovery from the insults. However, unresolved stresses exceeding the tolerance limit lead to cell death (apoptosis, autophagy etc.) that helps to get rid of damaged cells and protect cell integrity. Furthermore, aberrant stress responses are the hallmarks of several pathophysiologies (neurodegeneration, metabolic diseases, cancer etc.). The catastrophic remodulation of stress responses is observed in cancer cells in favor of their uncontrolled growth. Whereas pro-survival stress responses redirected to death signaling provokes excessive cell death in neurodegeneration. Clear understanding of such mechanistic link to disease progression is required in order to modulate these processes for new therapeutic targets. The current review explains this with respect to novel drug discoveries and other breakthroughs in therapeutics.
Collapse
Affiliation(s)
- Krishna Sundar Twayana
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India
| | - Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Laboratory, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu-632014, India.
| |
Collapse
|
877
|
Almohanna AM, Wray S. Hypoxic conditioning in blood vessels and smooth muscle tissues: effects on function, mechanisms, and unknowns. Am J Physiol Heart Circ Physiol 2018; 315:H756-H770. [PMID: 29702009 DOI: 10.1152/ajpheart.00725.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hypoxic preconditioning, the protective effect of brief, intermittent hypoxic or ischemic episodes on subsequent more severe hypoxic episodes, has been known for 30 yr from studies on cardiac muscle. The concept of hypoxic preconditioning has expanded; excitingly, organs beyond the heart, including the brain, liver, and kidney, also benefit. Preconditioning of vascular and visceral smooth muscles has received less attention despite their obvious importance to health. In addition, there has been no attempt to synthesize the literature in this field. Therefore, in addition to overviewing the current understanding of hypoxic conditioning, in the present review, we consider the role of blood vessels in conditioning and explore evidence for conditioning in other smooth muscles. Where possible, we have distinguished effects on myocytes from other cell types in the visceral organs. We found evidence of a pivotal role for blood vessels in conditioning and for conditioning in other smooth muscle, including the bladder, vascular myocytes, and gastrointestinal tract, and a novel response in the uterus of a hypoxic-induced force increase, which helps maintain contractions during labor. To date, however, there are insufficient data to provide a comprehensive or unifying mechanism for smooth muscles or visceral organs and the effects of conditioning on their function. This also means that no firm conclusions can be drawn as to how differences between smooth muscles in metabolic and contractile activity may contribute to conditioning. Therefore, we have suggested what may be general mechanisms of conditioning occurring in all smooth muscles and tabulated tissue-specific mechanistic findings and suggested ideas for further progress.
Collapse
Affiliation(s)
- Asmaa M Almohanna
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom.,Princess Nourah bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Susan Wray
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine University of Liverpool , Liverpool , United Kingdom
| |
Collapse
|
878
|
Mubarak HA, Mahmoud MM, Shoukry HS, Merzeban DH, Sayed SS, Rashed LA. Protective effects of melatonin and glucagon-like peptide-1 receptor agonist (liraglutide) on gastric ischaemia-reperfusion injury in high-fat/sucrose-fed rats. Clin Exp Pharmacol Physiol 2018; 45:934-942. [PMID: 29697857 DOI: 10.1111/1440-1681.12956] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/18/2018] [Accepted: 04/18/2018] [Indexed: 01/13/2023]
Abstract
Ischaemia-reperfusion (I-R) injury is a serious pathology that is often encountered with thrombotic events, during surgery when blood vessels are cross-clamped, and in organs for transplantation. Increased oxidative stress is the main pathology in I-R injury, as assessed in studies on the heart, kidney, and brain with little data available on gastric I-R (GI-R). Liraglutide is a GLP-1 receptor agonist that has insulinotropic and weight reducing actions, and melatonin that has been much studied as a chronotropic hormone; have also studied as being anti-oxidative stress agents. Herein, we aimed to explore the effects of liraglutide and melatonin on GI-R injury with high-fat/sucrose diet. Rats were divided into six groups; two diet-control, two melatonin- and two liraglutide-pretreated groups. All rats were subjected to 30 minutes of gastric ischaemia followed by 1 hour of reperfusion. Gastric tissues were assessed for the percentage of DNA fragmentation, myeloperoxidase activity, total oxidant status, total antioxidant capacity, oxidative stress index, BMI and histopathological examination. We showed that high-fat feeding for four weeks prior to GI-R significantly increased BMI, oxidative stress indices and decreased total antioxidant capacity, with a neutral effect on apoptosis compared to controls. Pretreatment with either melatonin (10 mg/kg per day orally) or liraglutide (25 μg/kg per day ip) reverses these effects. Furthermore, both drugs reduced weight only in HFS-fed rats. Both liraglutide and melatonin have nearly similar protective effects on gastric I-R injury through decreasing the oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Hanan A Mubarak
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Manal M Mahmoud
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Heba S Shoukry
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina H Merzeban
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Physiology Department, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Safinaz S Sayed
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila A Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
879
|
Braun D, Dietze S, Pahlitzsch TMJ, Wennysia IC, Persson PB, Ludwig M, Patzak A. Short-term hypoxia and vasa recta function in kidney slices. Clin Hemorheol Microcirc 2018; 67:475-484. [PMID: 28922144 DOI: 10.3233/ch-179230] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Descending vasa recta (DVR) supply the inner part of outer renal medulla an area at risk for hypoxic damages. OBJECTIVE We hypothesize increased vasoreactivity after hypoxia/re-oxygenation (H/R) in DVR, which might contribute to the reduced medullary perfusion after an ischemic event. METHODS Live kidney slices (200μm) from SD rats were used for functional experiments. TUNEL assay and H&E staining were used to estimate slice viability. Kidney slices were treated with carbogen or hypoxia (1% O2) for 60 or 90 min and vasoreactivity to Ang II (10-7 M) was recorded by DIC microscopy after re-oxygenation with carbogen. Expression of NOS and NADPH enzymes mRNA were determined in iron-perfusion isolated VR. RESULTS Percentage of apoptotic cells increased in control and H/R after 90 min in the medulla. Ang II- induced constriction of DVR was reduced after 90 min in control (compared to 60 min), but not after H/R. NOS enzymes mRNA expression levels decreased over 90 min hypoxia. CONCLUSIONS Increased reactivity of DVR to Ang II after H/R compared to control (90 min) suggest a role of DVR in renal ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Diana Braun
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany
| | - Stefanie Dietze
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany
| | | | - Inggrid C Wennysia
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany
| | - Pontus B Persson
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany
| | - Marion Ludwig
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany
| | - Andreas Patzak
- Institute of Vegetative Physiology, Charité-Universitätsmedizin Berlin, Germany
| |
Collapse
|
880
|
Pak O, Sydykov A, Kosanovic D, Schermuly RT, Dietrich A, Schröder K, Brandes RP, Gudermann T, Sommer N, Weissmann N. Lung Ischaemia-Reperfusion Injury: The Role of Reactive Oxygen Species. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:195-225. [PMID: 29047088 DOI: 10.1007/978-3-319-63245-2_12] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Lung ischaemia-reperfusion injury (LIRI) occurs in many lung diseases and during surgical procedures such as lung transplantation. The re-establishment of blood flow and oxygen delivery into the previously ischaemic lung exacerbates the ischaemic injury and leads to increased microvascular permeability and pulmonary vascular resistance as well as to vigorous activation of the immune response. These events initiate the irreversible damage of the lung with subsequent oedema formation that can result in systemic hypoxaemia and multi-organ failure. Alterations in the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been suggested as crucial mediators of such responses during ischaemia-reperfusion in the lung. Among numerous potential sources of ROS/RNS within cells, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, xanthine oxidases, nitric oxide synthases and mitochondria have been investigated during LIRI. Against this background, we aim to review here the extensive literature about the ROS-mediated cellular signalling during LIRI, as well as the effectiveness of antioxidants as treatment option for LIRI.
Collapse
Affiliation(s)
- Oleg Pak
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Akylbek Sydykov
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Djuro Kosanovic
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Ralph T Schermuly
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Alexander Dietrich
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336, Munich, Germany
| | - Katrin Schröder
- Institut für Kardiovaskuläre Physiologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Ralf P Brandes
- Institut für Kardiovaskuläre Physiologie, Goethe University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Thomas Gudermann
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Goethestraße 33, 80336, Munich, Germany
| | - Natascha Sommer
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-pulmonary System, University of Giessen Lung Center, German Center for Lung Research (DZL), Justus-Liebig-University Giessen, Aulweg 130, 35392, Giessen, Germany.
| |
Collapse
|
881
|
Berry BJ, Trewin AJ, Amitrano AM, Kim M, Wojtovich AP. Use the Protonmotive Force: Mitochondrial Uncoupling and Reactive Oxygen Species. J Mol Biol 2018; 430:3873-3891. [PMID: 29626541 DOI: 10.1016/j.jmb.2018.03.025] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
Abstract
Mitochondrial respiration results in an electrochemical proton gradient, or protonmotive force (pmf), across the mitochondrial inner membrane. The pmf is a form of potential energy consisting of charge (∆ψm) and chemical (∆pH) components, that together drive ATP production. In a process called uncoupling, proton leak into the mitochondrial matrix independent of ATP production dissipates the pmf and energy is lost as heat. Other events can directly dissipate the pmf independent of ATP production as well, such as chemical exposure or mechanisms involving regulated mitochondrial membrane electrolyte transport. Uncoupling has defined roles in metabolic plasticity and can be linked through signal transduction to physiologic events. In the latter case, the pmf impacts mitochondrial reactive oxygen species (ROS) production. Although capable of molecular damage, ROS also have signaling properties that depend on the timing, location, and quantity of their production. In this review, we provide a general overview of mitochondrial ROS production, mechanisms of uncoupling, and how these work in tandem to affect physiology and pathologies, including obesity, cardiovascular disease, and immunity. Overall, we highlight that isolated bioenergetic models-mitochondria and cells-only partially recapitulate the complex link between the pmf and ROS signaling that occurs in vivo.
Collapse
Affiliation(s)
- Brandon J Berry
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA.
| | - Adam J Trewin
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA.
| | - Andrea M Amitrano
- Department of Pathology, University of Rochester Medical Center, Box 609, 601 Elmwood Ave., Rochester, NY 14642, USA; Department of Microbiology and Immunology, University of Rochester Medical Center, Box 609, 601 Elmwood Ave., Rochester, NY 14642, USA.
| | - Minsoo Kim
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA; Department of Pathology, University of Rochester Medical Center, Box 609, 601 Elmwood Ave., Rochester, NY 14642, USA; Department of Microbiology and Immunology, University of Rochester Medical Center, Box 609, 601 Elmwood Ave., Rochester, NY 14642, USA.
| | - Andrew P Wojtovich
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA; Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, Box 711/604, 575 Elmwood Ave., Rochester, NY 14642, USA.
| |
Collapse
|
882
|
Nuñez A, Benavente I, Blanco D, Boix H, Cabañas F, Chaffanel M, Fernández-Colomer B, Fernández-Lorenzo JR, Loureiro B, Moral MT, Pavón A, Tofé I, Valverde E, Vento M. Oxidative stress in perinatal asphyxia and hypoxic-ischaemic encephalopathy. An Pediatr (Barc) 2018. [DOI: 10.1016/j.anpede.2017.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
883
|
Preconditioning-Like Properties of Short-Term Hypothermia in Isolated Perfused Rat Liver (IPRL) System. Int J Mol Sci 2018; 19:ijms19041023. [PMID: 29596325 PMCID: PMC5979303 DOI: 10.3390/ijms19041023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 12/28/2022] Open
Abstract
Hypothermia may attenuate the progression of ischemia-induced damage in liver. Here, we determined the effects of a brief cycle of hypothermic preconditioning applied before an ischemic/reperfusion (I/R) episode in isolated perfused rat liver (IPRL) on tissue damage and oxidative stress. Rats (male, 200–250 g) were anaesthetised with sodium pentobarbital (60 mg·kg−1 i.p) and underwent laparatomy. The liver was removed and perfused in a temperature-regulated non-recirculating system. Livers were randomly divided into two groups (n = 6 each group). In the hypothermia-preconditioned group, livers were perfused with hypothermic buffer (cycle of 10 min at 22 °C plus 10 min at 37 °C) and the other group was perfused at 37 °C. Both groups were then submitted to 40 min of warm ischemia and 20 min of warm reperfusion. The level of tissue-damage indicators (alanine amino transferase, ALT; lactate dehydrogenase, LDH; and proteins), oxidative stress markers (thiobarbituric acid-reactive substances, TBARS; advanced oxidation protein products, AOPP; and glutathione, GSH) were measured in aliquots of perfusate sampled at different time intervals. Histological determinations and oxidative stress biomarkers in homogenized liver (AOPP; TBARS; nitric oxide derivatives, NOx; GSH and glutathione disulphide, GSSG) were also made in the tissue at the end. Results showed that both damage and oxidant indicators significantly decreased while antioxidant increased in hypothermic preconditioned livers. In addition, homogenized liver determinations and histological observations at the end of the protocol corroborate the results in the perfusate, confirming the utility of the perfusate as a non-invasive method. In conclusion, hypothermic preconditioning attenuates oxidative damage and appears to be a promising strategy to protect the liver against IR injury.
Collapse
|
884
|
Lee JH, Kim K, Jo YH, Hwang JE, Chung HJ, Yang C. Reoxygenation speed and its implication for cellular injury responses in hypoxic RAW 264.7 cells. J Surg Res 2018; 227:88-94. [PMID: 29804868 DOI: 10.1016/j.jss.2017.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 09/12/2017] [Accepted: 11/03/2017] [Indexed: 01/02/2023]
Abstract
BACKGROUND Ischemia/reperfusion injury is characterized by excess generation of reactive oxygen species (ROS). The purpose of this study is to test the effect of reoxygenation speed on ROS production and the cellular injury responses in hypoxic macrophages RAW 264.7 cells and its potential mechanisms for the generation of ROS. MATERIALS AND METHODS After hypoxic exposure of RAW 264.7 cells for 20 h, reoxygenation was performed for 6 h by stepwise increase in oxygen concentration (0.8% increase of oxygen every 15 min) in the slow reoxygenation (SRox) group or by moving the culture flasks quickly to a normoxic incubator in the rapid reoxygenation (RRox) group. To identify the potential effect of reoxygenation speed on the generation of ROS, the cells were pretreated with apocynin, VAS2870, and MitoTEMPO before the induction of hypoxia. RESULTS SRox significantly decreased cell death and cytotoxicity compared with RRox (P < 0.05). RRox resulted in significantly more generation of ROS, interleukin-1β, interleukin-6, and nitric oxide than SRox (P < 0.05). SRox also increased the expression of prosurvival proteins and decreased apoptosis. In cells pretreated with VAS2870 or MitoTEMPO, the reduced ROS generation by SRox was maintained. However, pretreatment with apocynin abolished the effect of reoxygenation speed on ROS generation. CONCLUSIONS SRox compared with RRox decreased cellular injury in hypoxic RAW 264.7 cells by decreasing ROS and inflammatory cytokine production and decreasing apoptosis.
Collapse
Affiliation(s)
- Jae Hyuk Lee
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Kyuseok Kim
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea.
| | - You Hwan Jo
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Ji Eun Hwang
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| | - Hea Jin Chung
- Department of Emergency Medicine, Emergency Care Center, Soonchunhyang University Hospital, Seoul, Republic of Korea
| | - Chungmi Yang
- Department of Emergency Medicine, Seoul National University Bundang Hospital, Gyeonggi-do, Republic of Korea
| |
Collapse
|
885
|
Abstract
Glycogen synthase kinase-3 beta (GSK3β) is principally is a glycogen synthase phosphorylating enzyme that is well known for its role in muscle metabolism. GSK3β is a serine/threonine protein Kinase, which is responsible for several essential roles in mammalian cells. This enzyme is implicated in the pathophysiology of many conditions involved in homeostasis and cellular immigration. GSK3β is involved in several pathways leading to neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Increasing evidence has shown the potential importance of GSK3β in ischemic heart disease and ischemia-reperfusion pathologies. Reperfusion injury may occur in tissues after prolonged ischemia following reperfusion. Reperfusion injury can be life threatening. Reperfusion injury occurs due to a change in ionic homeostasis, excess free radical production, mitochondrial damage and cell death. There are however clear, cardiac-protective signals; although the molecular pathophysiology is not clearly understood. In normal physiology, GSK3β has a critical role in the cytoprotective pathway. However, it`s controversial role in ischemia and ischemia-reperfusion is a topic of current interest. In this review, we have opted to focus on GSK3β interactions with mitochondria in ischemic heart disease and expand on the therapeutic interventions.
Collapse
|
886
|
Hong DK, Kho AR, Choi BY, Lee SH, Jeong JH, Lee SH, Park KH, Park JB, Suh SW. Combined Treatment With Dichloroacetic Acid and Pyruvate Reduces Hippocampal Neuronal Death After Transient Cerebral Ischemia. Front Neurol 2018; 9:137. [PMID: 29593636 PMCID: PMC5857568 DOI: 10.3389/fneur.2018.00137] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/26/2018] [Indexed: 12/28/2022] Open
Abstract
Transient cerebral ischemia (TCI) occurs when blood flow to the brain is ceased or dramatically reduced. TCI causes energy depletion and oxidative stress, which leads to neuronal death and cognitive impairment. Dichloroacetic acid (DCA) acts as an inhibitor of pyruvate dehydrogenase kinase (PDK). Additionally, DCA is known to increase mitochondrial pyruvate uptake and promotes glucose oxidation during glycolysis, thus enhancing pyruvate dehydrogenase (PDH) activity. In this study, we investigated whether the inhibition of PDK activity by DCA, which increases the rate of pyruvate conversion to adenosine triphosphate (ATP), prevents ischemia-induced neuronal death. We used a rat model of TCI, which was induced by common carotid artery occlusion and hypovolemia for 7 min while monitoring the electroencephalography for sustained isoelectric potential. Male Sprague-Dawley rats were given an intraperitoneal injection of DCA (100 mg/kg) with pyruvate (50 mg/kg) once per day for 2 days after insult. The vehicle, DCA only or pyruvate on rats was injected on the same schedule. Our study demonstrated that the combined administration of DCA with pyruvate significantly decreased neuronal death, oxidative stress, microglia activation when compared with DCA, or pyruvate injection alone. These findings suggest that the administration of DCA with pyruvate may enhance essential metabolic processes, which in turn promotes the regenerative capacity of the post-ischemic brain.
Collapse
Affiliation(s)
- Dae Ki Hong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - A Ra Kho
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Bo Young Choi
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Song Hee Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Jeong Hyun Jeong
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Sang Hwon Lee
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Kyoung-Ha Park
- Division of Cardiovascular Diseases, Hallym University Sacred Heart Hospital, Anyang, South Korea
| | - Jae-Bong Park
- Department of Biochemistry, College of Medicine, Hallym University, Chuncheon, South Korea
| | - Sang Won Suh
- Department of Physiology, College of Medicine, Hallym University, Chuncheon, South Korea
| |
Collapse
|
887
|
Peptide Inhibitor of Complement C1 (PIC1) demonstrates antioxidant activity via single electron transport (SET) and hydrogen atom transfer (HAT). PLoS One 2018; 13:e0193931. [PMID: 29499069 PMCID: PMC5834197 DOI: 10.1371/journal.pone.0193931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Reactive oxygen species (ROS) are natural byproducts of oxidative respiration that are toxic to organs and tissues. To mitigate ROS damage, organisms have evolved a variety of antioxidant systems to counteract these harmful molecules, however in certain pathological conditions these protective mechanisms can be overwhelmed. We have recently demonstrated that Peptide Inhibitor of Complement C1 (PIC1) mitigates peroxidase activity of the heme bearing proteins myeloperoxidase, hemoglobin, and myoglobin through a reversible process. To determine if this property of PIC1 was antioxidant in nature, we tested PIC1 in a number of well-established antioxidant assays. PIC1 showed dose-dependent antioxidant activity in a total antioxidant (TAC) assay, hydroxyl radical antioxidant capacity (HORAC) assay, oxygen radical antioxidant capacity (ORAC) assay as well as the thiobarbituric acid reactive substances (TBARS) assay to screen for PIC1 antioxidant activity in human plasma. The antioxidant activity of PIC1 in the TAC assay, as well as the HORAC/ORAC assay demonstrated that this peptide acts via the single electron transport (SET) and hydrogen atom transfer (HAT) mechanisms, respectively. Consistent with this mechanism of action, PIC1 did not show activity in a metal chelating activity (MCA) assay. PIC1 contains two vicinal cysteine residues and displayed similar antioxidant activity to the well characterized cysteine-containing tripeptide antioxidant molecule glutathione (GSH). Consistent with the role of the cysteine residues in the antioxidant activity of PIC1, oxidation of these residues significantly abrogated antioxidant activity. These results demonstrate that in addition to its described complement inhibiting activity, PIC1 displays in vitro antioxidant activity.
Collapse
|
888
|
Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med 2018; 117:76-89. [PMID: 29373843 DOI: 10.1016/j.freeradbiomed.2018.01.024] [Citation(s) in RCA: 551] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/19/2018] [Accepted: 01/21/2018] [Indexed: 02/06/2023]
Abstract
Ischemia-reperfusion (IR) injury is central to the pathology of major cardiovascular diseases, such as stroke and myocardial infarction. IR injury is mediated by several factors including the elevated production of reactive oxygen species (ROS), which occurs particularly at reperfusion. The mitochondrial respiratory chain and NADPH oxidases of the NOX family are major sources of ROS in cardiomyocytes. The first part of this review discusses recent findings and controversies on the mechanisms of superoxide production by the mitochondrial electron transport chain during IR injury, as well as the contribution of the NOX isoforms expressed in cardiomyocytes, NOX1, NOX2 and NOX4, to this damage. It then focuses on the effects of ROS on the opening of the mitochondrial permeability transition pore (mPTP), an inner membrane non-selective pore that causes irreversible damage to the heart. The second part analyzes the redox mechanisms of cardiomyocyte mitochondrial protection; specifically, the activation of the hypoxia-inducible factor (HIF) pathway and the antioxidant transcription factor Nrf2, which are both regulated by the cellular redox state. Redox mechanisms involved in ischemic preconditioning, one of the most effective ways of protecting the heart against IR injury, are also reviewed. Interestingly, several of these protective pathways converge on the inhibition of mPTP opening during reperfusion. Finally, the clinical and translational implications of these cardioprotective mechanisms are discussed.
Collapse
Affiliation(s)
- Susana Cadenas
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) and Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006 Madrid, Spain.
| |
Collapse
|
889
|
Partial loss of complex I due to NDUFS4 deficiency augments myocardial reperfusion damage by increasing mitochondrial superoxide/hydrogen peroxide production. Biochem Biophys Res Commun 2018; 498:214-220. [PMID: 29501746 DOI: 10.1016/j.bbrc.2018.02.208] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 02/28/2018] [Indexed: 01/20/2023]
Abstract
Recent work has found that complex I is the sole source of reactive oxygen species (ROS) during myocardial ischemia-reperfusion (IR) injury. However, it has also been reported that heart mitochondria can also generate ROS from other sources in the respiratory chain and Krebs cycle. This study examined the impact of partial complex I deficiency due to selective loss of the Ndufs4 gene on IR injury to heart tissue. Mice heterozygous for NDUFS4 (NDUFS4+/-) did not display any significant changes in overall body or organ weight when compared to wild-type (WT) littermates. There were no changes in superoxide (O2●-)/hydrogen peroxide (H2O2) release from cardiac or liver mitochondria isolated from NDUFS4 ± mice. Using selective ROS release inhibitors, we found that complex III is a major source of ROS in WT and NDUFS4 ± cardiac mitochondria respiring under state 4 conditions. Subjecting hearts from NDUFS4 ± mice to reperfusion injury revealed that the partial loss of complex I decreases contractile recovery and increases myocardial infarct size. These results correlated with a significant increase in O2●-/H2O2 release rates in mitochondria isolated from NDUFS4 ± hearts subjected to an IR challenge. Taken together, these results demonstrate that the partial absence of complex I sensitizes the myocardium towards IR injury and that the main source of ROS following reperfusion is complex III.
Collapse
|
890
|
Madungwe NB, Feng Y, Lie M, Tombo N, Liu L, Kaya F, Bopassa JC. Mitochondrial inner membrane protein (mitofilin) knockdown induces cell death by apoptosis via an AIF-PARP-dependent mechanism and cell cycle arrest. Am J Physiol Cell Physiol 2018; 315:C28-C43. [PMID: 29489384 DOI: 10.1152/ajpcell.00230.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mitofilin is an inner membrane protein that has been defined as a mitochondria-shaping protein in controlling and maintaining mitochondrial cristae structure and remodeling. We determined the role of mitofilin in cell survival by investigating the mechanism underlying mitofilin knockdown-induced cell death by apoptosis. Cultured H9c2 myoblasts and HEK 293 cells were treated with mitofilin siRNA or scrambled siRNA for 24 h. Cell death (apoptosis), caspase 3 activity and cell cycle phases were assessed by flow cytometry, while cytochrome c release and intracellular ATP production were measured by ELISA. Mitofilin, apoptosis-inducing factor (AIF) and poly(ADP-ribose) polymerase (PARP) expression were measured by Western blot analysis and calpain activity was assessed using a calpain activity kit. Mitochondrial images were taken using electron microscopy. We found that mitofilin knockdown increases apoptosis mainly via activation of the AIF-PARP pathway leading to nuclear fragmentation that is correlated with S phase arrest of the cell cycle. Knockdown of mitofilin also led to mitochondrial swelling and damage of cristae that is associated with the increase in reactive oxygen species production and mitochondrial calpain activity, as well as a marked decrease in intracellular ATP production and mitochondrial membrane potential. Together, these results indicate that mitofilin knockdown by siRNA increases calpain activity that presumably leads to mitochondrial structural degradation resulting in a critical reduction of mitochondrial function that is responsible for the increase in cell death by apoptosis via an AIF-PARP mechanism and associated with nuclear fragmentation, and S phase arrest of the cell cycle.
Collapse
Affiliation(s)
- Ngonidzashe B Madungwe
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,Department of Biomedical Engineering, University of Texas at San Antonio , San Antonio, Texas
| | - Yansheng Feng
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas.,Department of Pathophysiology, Xinxiang Medical University, Xinxiang, China
| | - Mihaela Lie
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Nathalie Tombo
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Li Liu
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | - Ferdinand Kaya
- Department of Ophthalmology, University of California , Davis, California
| | - Jean C Bopassa
- Department of Cellular and Integrative Physiology, School of Medicine, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| |
Collapse
|
891
|
Sharapov MG, Gordeeva AE, Goncharov RG, Tikhonova IV, Ravin VK, Temnov AA, Fesenko EE, Novoselov VI. The Effect of Exogenous Peroxiredoxin 6 on the State of Mesenteric Vessels and the Small Intestine in Ischemia–Reperfusion Injury. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350917060239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
892
|
Ding H, Xu XW, Wang H, Xiao L, Zhao L, Duan GL, Li XR, Ma ZX, Chen HP. DJ-1 plays an obligatory role in the cardioprotection of delayed hypoxic preconditioning against hypoxia/reoxygenation-induced oxidative stress through maintaining mitochondrial complex I activity. Cell Biochem Funct 2018; 36:147-154. [DOI: 10.1002/cbf.3326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/13/2018] [Accepted: 01/22/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Hao Ding
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science; Nanchang University; Nanchang People's Republic of China
| | - Xing-Wang Xu
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science; Nanchang University; Nanchang People's Republic of China
| | - Huan Wang
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science; Nanchang University; Nanchang People's Republic of China
| | - Lin Xiao
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science; Nanchang University; Nanchang People's Republic of China
| | - Le Zhao
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science; Nanchang University; Nanchang People's Republic of China
| | - Guang-Ling Duan
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science; Nanchang University; Nanchang People's Republic of China
| | - Xiao-Ran Li
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science; Nanchang University; Nanchang People's Republic of China
| | - Zhao-Xia Ma
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science; Nanchang University; Nanchang People's Republic of China
| | - He-Ping Chen
- The Key Laboratory of Basic Pharmacology, School of Pharmaceutical Science; Nanchang University; Nanchang People's Republic of China
| |
Collapse
|
893
|
Li C, Sun H, Xu G, McCarter KD, Li J, Mayhan WG. Mito-Tempo prevents nicotine-induced exacerbation of ischemic brain damage. J Appl Physiol (1985) 2018; 125:49-57. [PMID: 29420160 DOI: 10.1152/japplphysiol.01084.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Nicotine may contribute to the pathogenesis of cerebrovascular disease via the generation of reactive oxygen species (ROS). Overproduction of ROS leads to brain damage by intensifying postischemic inflammation. Our goal was to determine the effect of Mito-Tempo, a mitochondria-targeted antioxidant, on ischemic brain damage and postischemic inflammation during chronic exposure to nicotine. Male Sprague-Dawley rats were divided into four groups: control, nicotine, Mito-Tempo-treated control, and Mito-Tempo-treated nicotine. Nicotine (2 mg·kg-1·day-1) was administered via an osmotic minipump for 4 wk. Mito-Tempo (0.7 mg·kg-1·day-1 ip) was given for 7 days before cerebral ischemia. Transient focal cerebral ischemia was induced by occlusion of the middle cerebral artery for 2 h. Brain damage and inflammation were evaluated after 24 h of reperfusion by measuring infarct volume, expression of adhesion molecules, activity of matrix metalloproteinase, brain edema, microglial activation, and neutrophil infiltration. Nicotine exacerbated infarct volume and worsened neurological deficits. Nicotine did not alter baseline ICAM-1 expression, matrix metallopeptidase-2 activity, microglia activation, or neutrophil infiltration but increased these parameters after cerebral ischemia. Mito-Tempo did not have an effect in control rats but prevented the chronic nicotine-induced augmentation of ischemic brain damage and postischemic inflammation. We suggest that nicotine increases brain damage following cerebral ischemia via an increase in mitochondrial oxidative stress, which, in turn, contributes to postischemic inflammation. NEW & NOTEWORTHY Our findings have important implications for the understanding of mechanisms contributing to increased susceptibility of the brain to damage in smokers and users of nicotine-containing tobacco products.
Collapse
Affiliation(s)
- Chun Li
- Department of Cellular Biology and Anatomy, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Hong Sun
- Department of Cellular Biology and Anatomy, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Guodong Xu
- Department of Cellular Biology and Anatomy, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport , Shreveport, Louisiana.,Department of Neurology, Hebei General Hospital , Shijiazhuang, Hebei , China
| | - Kimberly D McCarter
- Department of Cellular Biology and Anatomy, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - Jiyu Li
- Department of Cellular Biology and Anatomy, Center for Cardiovascular Diseases and Sciences, Louisiana State University Health Sciences Center-Shreveport , Shreveport, Louisiana
| | - William G Mayhan
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, Vermillion, South Dakota
| |
Collapse
|
894
|
Valls-Lacalle L, Barba I, Miró-Casas E, Ruiz-Meana M, Rodríguez-Sinovas A, García-Dorado D. Selective Inhibition of Succinate Dehydrogenase in Reperfused Myocardium with Intracoronary Malonate Reduces Infarct Size. Sci Rep 2018; 8:2442. [PMID: 29402957 PMCID: PMC5799359 DOI: 10.1038/s41598-018-20866-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 01/25/2018] [Indexed: 02/07/2023] Open
Abstract
Inhibition of succinate dehydrogenase (SDH) with malonate during reperfusion reduces infarct size in isolated mice hearts submitted to global ischemia. However, malonate has toxic effects that preclude its systemic administration in animals. Here we investigated the effect of intracoronary malonate on infarct size in pigs submitted to transient coronary occlusion. Under baseline conditions, 50 mmol/L of intracoronary disodium malonate, but not lower concentrations, transiently reduced systolic segment shortening in the region perfused by the left anterior descending coronary artery (LAD) in open-chest pigs. To assess the effects of SDH inhibition on reperfusion injury, saline or malonate 10 mmol/L were selectively infused into the area at risk in 38 animals submitted to ischemia-reperfusion. Malonate improved systolic shortening in the area at risk two hours after 15 min of ischemia (0.18 ± 0.07 vs 0.00 ± 0.01 a.u., p = 0.025, n = 3). In animals submitted to 40 min of ischemia, malonate reduced reactive oxygen species production (MitoSOX staining) during initial reperfusion and limited infarct size (36.46 ± 5.35 vs 59.62 ± 4.00%, p = 0.002, n = 11), without modifying reperfusion arrhythmias. In conclusion, inhibition of SDH with intracoronary malonate during early reperfusion limits reperfusion injury and infarct size in pigs submitted to transient coronary occlusion without modifying reperfusion arrhythmias or contractile function in distant myocardium.
Collapse
Affiliation(s)
- Laura Valls-Lacalle
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Departament de Medicina, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Ignasi Barba
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Departament de Medicina, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Elisabet Miró-Casas
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Departament de Medicina, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Marisol Ruiz-Meana
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Departament de Medicina, Barcelona, Spain.,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Rodríguez-Sinovas
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Departament de Medicina, Barcelona, Spain. .,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| | - David García-Dorado
- Cardiovascular Diseases Research Group, Department of Cardiology, Vall d'Hebron University Hospital and Research Institute, Universitat Autònoma de Barcelona, Departament de Medicina, Barcelona, Spain. .,Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
895
|
Zhang Y, Li XR, Zhao L, Duan GL, Xiao L, Chen HP. DJ-1 preserving mitochondrial complex I activity plays a critical role in resveratrol–mediated cardioprotection against hypoxia/reoxygenation–induced oxidative stress. Biomed Pharmacother 2018; 98:545-552. [DOI: 10.1016/j.biopha.2017.12.094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 01/03/2023] Open
|
896
|
Abstract
Reactive oxygen species have long been implicated in the pathophysiology of acute liver injury. However, the translation of these findings to the clinic and the development of therapeutic agents have been slow mainly due to the poor mechanistic understanding of the pathophysiology and the many indirect approaches used to characterize the role of oxidant stress in liver injury. The current review discusses in depth the sources of reactive oxygen, the oxidants involved and the impact of this oxidant stress in the mechanism of cell death in 3 different clinically relevant acute liver injury models.
Collapse
Affiliation(s)
- Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
897
|
Wagner S, Van Aken O, Elsässer M, Schwarzländer M. Mitochondrial Energy Signaling and Its Role in the Low-Oxygen Stress Response of Plants. PLANT PHYSIOLOGY 2018; 176:1156-1170. [PMID: 29298823 PMCID: PMC5813528 DOI: 10.1104/pp.17.01387] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/29/2017] [Indexed: 05/07/2023]
Abstract
Cellular responses to low-oxygen stress and to respiratory inhibitors share common mitochondrial energy signaling pathways.
Collapse
Affiliation(s)
- Stephan Wagner
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, 48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany
| | | | - Marlene Elsässer
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, 48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany
- Institute for Cellular and Molecular Botany (IZMB), Rheinische Friedrich-Wilhelms-Universität Bonn, 53115 Bonn, Germany
| | - Markus Schwarzländer
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-Universität Münster, 48143 Münster, Germany
- Institute of Crop Science and Resource Conservation (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Germany
| |
Collapse
|
898
|
Wan J, Wan H, Yang R, Wan H, Yang J, He Y, Zhou H. Protective effect of Danhong Injection combined with Naoxintong Capsule on cerebral ischemia-reperfusion injury in rats. JOURNAL OF ETHNOPHARMACOLOGY 2018; 211:348-357. [PMID: 28986333 DOI: 10.1016/j.jep.2017.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/13/2017] [Accepted: 10/02/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danhong Injection (DHI) and Naoxintong Capsule (NXT) are renowned traditional Chinese medicine in China. The drug combination of DHI and NXT is frequently applied for the treatment of cardiovascular and cerebrovascular diseases in clinic. However, there had been no pharmacological experiment studies of interaction between DHI and NXT. Due to the drug interactions, exploring their interaction profile is of great importance. MATERIAL AND METHODS In this study, focal cerebral I/R injury in adult male Sprague-Dawley rats were induced by transient middle cerebral artery occlusion (tMCAO) for 1h followed by reperfusion. Rats were divided into 5 groups: sham group, ischemia reperfusion untreated group (IRU), DHI group (DHI 10mL/kg/d), NXT group (NXT 0.5g/kg/d), DHI plus NXT group (DHI-NXT, DHI 10mL/kg/d plus NXT 0.5g/kg/d). All drug-treated groups were respectively successive administrated for 7 days after ischemia/ reperfusion (I/R) injury. The effects on rat neurological function were estimated by neurological defect scores. Brain infarct volumes were determined based on 2, 3, 5-triphenyltetrazolium chloride (TTC) staining. Pathological changes in brain tissues were observed using hematoxylin and eosin (H&E) staining and transmission electron microscope (TEM). Levels of nitric oxide (NO), granulocyte colony-stimulating factor (G-CSF) and granulocyte macrophage colony-stimulating factor (GM-CSF) in serum were determined with enzyme-linked immunosorbent assay (ELISA). Immunohisto-chemistry and Western blot were used to detect the expressions of basic fibroblast growth factor (bFGF), von Willebrand factor-microvessel vascular density (vWF-MVD), vascular endothelial cell growth factor (VEGF), transforming growth factor-β1 (TGF-β1), angiogenin-1 (Ang-1), angiogenin-2 (Ang-2) and platelet derived growth factor (PDGF) at day 7 after ischemia/reperfusion (I/R) injury. RESULTS Compared with IRU group and mono-therapy group (DHI group or NXT group), Danhong Injection combined with Naoxintong Capsule (DHI-NXT) group significantly ameliorated neurological deficits scores, infarct volume and pathological change, significantly decreased the overexpression of NO and the level of Ang-1, significantly increased the expressions of VEGF, Ang-2, G-CSF, GM-CSF, bFGF, PDGF, vWF, TGF-β1. CONCLUSION The protective benefits on rat brain against I/R injury were clearly produced when DHI and NXT were used in combination, which provided rational guidance for clinical combined application of DHI and NXT, and this protection maybe associated with the up-regulation expressions of the related chemokines and growth factors of angiogenesis.
Collapse
Affiliation(s)
- Jiayang Wan
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haofang Wan
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Rongbin Yang
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
899
|
Ayudhya TI, Pellechia PJ, Dingra NN. ROS-mediated carbon monoxide and drug release from drug-conjugated carboxyboranes. Dalton Trans 2018; 47:538-543. [DOI: 10.1039/c7dt03581k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dual nature of amine carboxyboranes for combined CO and drug delivery is facilitated by ROS.
Collapse
Affiliation(s)
- T. I. Ayudhya
- Department of Chemistry
- University of Alaska
- Anchorage
- USA
| | - P. J. Pellechia
- Department of Chemistry and Biochemistry
- University of South Carolina
- Columbia
- USA
| | - N. N. Dingra
- Department of Chemistry
- University of Alaska
- Anchorage
- USA
| |
Collapse
|
900
|
Krylatov AV, Maslov LN, Voronkov NS, Boshchenko AA, Popov SV, Gomez L, Wang H, Jaggi AS, Downey JM. Reactive Oxygen Species as Intracellular Signaling Molecules in the Cardiovascular System. Curr Cardiol Rev 2018; 14:290-300. [PMID: 29962348 PMCID: PMC6300799 DOI: 10.2174/1573403x14666180702152436] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/13/2018] [Accepted: 06/20/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Redox signaling plays an important role in the lives of cells. This signaling not only becomes apparent in pathologies but is also thought to be involved in maintaining physiological homeostasis. Reactive Oxygen Species (ROS) can activate protein kinases: CaMKII, PKG, PKA, ERK, PI3K, Akt, PKC, PDK, JNK, p38. It is unclear whether it is a direct interaction of ROS with these kinases or whether their activation is a consequence of inhibition of phosphatases. ROS have a biphasic effect on the transport of Ca2+ in the cell: on one hand, they activate the sarcoplasmic reticulum Ca2+-ATPase, which can reduce the level of Ca2+ in the cell, and on the other hand, they can inactivate Ca2+-ATPase of the plasma membrane and open the cation channels TRPM2, which promote Ca2+-loading and subsequent apoptosis. ROS inhibit the enzyme PHD2, which leads to the stabilization of HIF-α and the formation of the active transcription factor HIF. CONCLUSION Activation of STAT3 and STAT5, induced by cytokines or growth factors, may include activation of NADPH oxidase and enhancement of ROS production. Normal physiological production of ROS under the action of cytokines activates the JAK/STAT while excessive ROS production leads to their inhibition. ROS cause the activation of the transcription factor NF-κB. Physiological levels of ROS control cell proliferation and angiogenesis. ROS signaling is also involved in beneficial adaptations to survive ischemia and hypoxia, while further increases in ROS can trigger programmed cell death by the mechanism of apoptosis or autophagy. ROS formation in the myocardium can be reduced by moderate exercise.
Collapse
Affiliation(s)
| | - Leonid N. Maslov
- Address correspondence to this author at the Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of
Science, Tomsk, Russia; Tel: 3822 262174; Fax: 3822 555057;
E-mail:
| | | | | | | | | | | | | | | |
Collapse
|