851
|
Evans MF, Peng Z, Clark KM, Adamson CSC, Ma XJ, Wu X, Wang H, Luo Y, Cooper K. HPV E6/E7 RNA in situ hybridization signal patterns as biomarkers of three-tier cervical intraepithelial neoplasia grade. PLoS One 2014; 9:e91142. [PMID: 24625757 PMCID: PMC3953338 DOI: 10.1371/journal.pone.0091142] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/07/2014] [Indexed: 11/19/2022] Open
Abstract
Cervical lesion grading is critical for effective patient management. A three-tier classification (cervical intraepithelial neoplasia [CIN] grade 1, 2 or 3) based on H&E slide review is widely used. However, for reasons of considerable inter-observer variation in CIN grade assignment and for want of a biomarker validating a three-fold stratification, CAP-ASCCP LAST consensus guidelines recommend a two-tier system: low- or high-grade squamous intraepithelial lesions (LSIL or HSIL). In this study, high-risk HPV E6/E7 and p16 mRNA expression patterns in eighty-six CIN lesions were investigated by RNAscope chromogenic in situ hybridization (CISH). Specimens were also screened by immunohistochemistry for p16INK4a (clone E6H4), and by tyramide-based CISH for HPV DNA. HPV genotyping was performed by GP5+/6+ PCR combined with cycle-sequencing. Abundant high-risk HPV RNA CISH signals were detected in 26/32 (81.3%) CIN 1, 22/22 (100%) CIN 2 and in 32/32 (100%) CIN 3 lesions. CIN 1 staining patterns were typified (67.7% specimens) by abundant diffusely staining nuclei in the upper epithelial layers; CIN 2 lesions mostly (66.7%) showed a combination of superficial diffuse-stained nuclei and multiple dot-like nuclear and cytoplasmic signals throughout the epithelium; CIN 3 lesions were characterized (87.5%) by multiple dot-like nuclear and cytoplasmic signals throughout the epithelial thickness and absence/scarcity of diffusely staining nuclei (trend across CIN grades: P<0.0001). These data are consistent with productive phase HPV infections exemplifying CIN 1, transformative phase infections CIN 3, whereas CIN 2 shows both productive and transformative phase elements. Three-tier data correlation was not found for the other assays examined. The dual discernment of diffuse and/or dot-like signals together with the assay's high sensitivity for HPV support the use of HPV E6/E7 RNA CISH as an adjunct test for deciding lesion grade when CIN 2 grading may be beneficial (e.g. among young women) or when 'LSIL vs. HSIL' assignment is equivocal.
Collapse
Affiliation(s)
- Mark F. Evans
- Department of Pathology, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| | - Zhihua Peng
- Department of Pathology, University of Vermont, Burlington, Vermont, United States of America
| | - Kelli M. Clark
- Department of Pathology, University of Vermont, Burlington, Vermont, United States of America
- Department of Pathology and Laboratory Medicine, Fletcher Allen Health Care, Burlington, Vermont, United States of America
| | - Christine S.-C. Adamson
- Department of Pathology, University of Vermont, Burlington, Vermont, United States of America
| | - Xiao-Jun Ma
- Advanced Cell Diagnostics, Inc., Hayward, California, United States of America
| | - Xingyong Wu
- Advanced Cell Diagnostics, Inc., Hayward, California, United States of America
| | - Hongwei Wang
- Advanced Cell Diagnostics, Inc., Hayward, California, United States of America
| | - Yuling Luo
- Advanced Cell Diagnostics, Inc., Hayward, California, United States of America
| | - Kumarasen Cooper
- Department of Pathology, University of Vermont, Burlington, Vermont, United States of America
- Department of Pathology and Laboratory Medicine, Fletcher Allen Health Care, Burlington, Vermont, United States of America
| |
Collapse
|
852
|
Ancillary Diagnostics in Gynecologic Cytology. Surg Pathol Clin 2014; 7:89-103. [PMID: 26839271 DOI: 10.1016/j.path.2013.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytology has been the mainstay of cervical dysplasia and cancer screening in the United States. The specificity of a woman harboring a high-grade lesion when identified as high-grade squamous intraepithelial lesion on Pap test is high; however, the test suffers from low sensitivity. Epidemiology studies have demonstrated that human papillomavirus (HPV) types 16 and 18 account for most cervical squamous cell carcinomas. Tests have been developed to identify high-risk HPV, some specifically to identify HPV 16 and 18. Simultaneous to the increase in HPV detection methods, interdisciplinary groups are making recommendations on the managerial use of the tests.
Collapse
|
853
|
|
854
|
Dochez C, Bogers JJ, Verhelst R, Rees H. HPV vaccines to prevent cervical cancer and genital warts: an update. Vaccine 2014; 32:1595-601. [DOI: 10.1016/j.vaccine.2013.10.081] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 12/12/2022]
|
855
|
Hartwig FP, Entiauspe LG, Nunes EM, Rodrigues FM, Collares T, Seixas FK, da Silveira MF. Evidence for an epistatic effect between TP53 R72P and MDM2 T309G SNPs in HIV infection: a cross-sectional study in women from South Brazil. PLoS One 2014; 9:e89489. [PMID: 24586820 PMCID: PMC3938491 DOI: 10.1371/journal.pone.0089489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/22/2014] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To investigate the associations of TP53 R72P and MDM2 T309G SNPs with HPV infection status, HPV oncogenic risk and HIV infection status. DESIGN Cross-sectional study combining two groups (150 HIV-negative and 100 HIV-positive) of women. METHODS Data was collected using a closed questionnaire. DNA was extracted from cervical samples. HPV infection status was determined by nested-PCR, and HPV oncogenic risk group by Sanger sequencing. Both SNPS were genotyped by PCR-RFLP. Crude and adjusted associations involving each exposure (R72P and T309G SNPs, as well as 13 models of epistasis) and each outcome (HPV status, HPV oncogenic risk group and HIV infection) were assessed using logistic regression. RESULTS R72P SNP was protectively associated with HPV status (overdominant model), as well as T309G SNP with HPV oncogenic risk (strongest in the overdominant model). No epistatic model was associated with HPV status, but a dominant (R72P over T309G) protective epistatic effect was observed for HPV oncogenic risk. HIV status was strongly associated (risk factor) with different epistatic models, especially in models based on a visual inspection of the results. Moreover, HIV status was evidenced to be an effect mediator of the associations involving HPV oncogenic risk. CONCLUSIONS We found evidence for a role of R72P and T309G SNPs in HPV status and HPV oncogenic risk (respectively), and strong associations were found for an epistatic effect in HIV status. Prospective studies in larger samples are warranted to validate our findings, which point to a novel role of these SNPs in HIV infection.
Collapse
Affiliation(s)
- Fernando Pires Hartwig
- Postgraduate Program in Epidemiology, Department of Social Medicine, Faculty of Medicine, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Molecular and Cellular Oncology Research Group, Biotechnology Unit, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ludmila Gonçalves Entiauspe
- Postgraduate Program in Biotechnology, Technology Development Center (Biotechnology Unit), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Molecular and Cellular Oncology Research Group, Biotechnology Unit, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Emily Montosa Nunes
- Molecular and Cellular Oncology Research Group, Biotechnology Unit, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fernanda Martins Rodrigues
- Molecular and Cellular Oncology Research Group, Biotechnology Unit, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Tiago Collares
- Postgraduate Program in Biotechnology, Technology Development Center (Biotechnology Unit), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Molecular and Cellular Oncology Research Group, Biotechnology Unit, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana Kömmling Seixas
- Postgraduate Program in Biotechnology, Technology Development Center (Biotechnology Unit), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Molecular and Cellular Oncology Research Group, Biotechnology Unit, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Mariângela Freitas da Silveira
- Postgraduate Program in Epidemiology, Department of Social Medicine, Faculty of Medicine, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Maternal and Child Department, Faculty of Medicine, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
856
|
The tetraspanin CD151 in papillomavirus infection. Viruses 2014; 6:893-908. [PMID: 24553111 PMCID: PMC3939487 DOI: 10.3390/v6020893] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 12/18/2022] Open
Abstract
Human papillomaviruses (HPV) are non-enveloped DNA tumor viruses that infect skin and mucosa. The most oncogenic subtype, HPV16, causes various types of cancer, including cervical, anal, and head and neck cancers. During the multistep process of infection, numerous host proteins are required for the delivery of virus genetic information into the nucleus of target cells. Over the last two decades, many host-cell proteins such as heparan sulfate proteoglycans, integrins, growth factor receptors, actin and the tetraspanin CD151 have been described to be involved in the process of infectious entry of HPV16. Tetraspanins have the ability to organize membrane microdomains and to directly influence the function of associated molecules, including binding of receptors to their ligands, receptor oligomerization and signal transduction. Here, we summarize the current knowledge on CD151, and CD151-associated partners during HPV infection and discuss the underlying mechanisms.
Collapse
|
857
|
Correlation between human papillomavirus and p16 overexpression in oropharyngeal tumours: a systematic review. Br J Cancer 2014; 110:1587-94. [PMID: 24518594 PMCID: PMC3960616 DOI: 10.1038/bjc.2014.42] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 12/17/2013] [Accepted: 01/07/2014] [Indexed: 11/29/2022] Open
Abstract
Background: A significant proportion of squamous cell carcinomas of the oropharynx (OP-SCC) are related to human papillomavirus (HPV) infection and p16 overexpression. This subgroup proves better prognosis and survival but no evidence exists on the correlation between HPV and p16 overexpression based on diagnostic measures and definition of p16 overexpression. We evaluated means of p16 and HPV diagnostics, and quantified overexpression of p16 in HPV-positive and -negative OP-SCCs by mode of immunohistochemical staining of carcinoma cells. Methods: PubMed, Embase, and the Cochrane Library were searched from 1980 until October 2012. We applied the following inclusion criteria: a minimum of 20 cases of site-specific OP-SCCs, and HPV and p16 results present. Studies were categorised into three groups based on their definition of p16 overexpression: verbal definition, nuclear and cytoplasmatic staining between 5 and 69%, and ⩾70% staining. Results: We identified 39 studies with available outcome data (n=3926): 22 studies (n=1980) used PCR, 6 studies (n=688) used ISH, and 11 studies (n=1258) used both PCR and ISH for HPV diagnostics. The methods showed similar HPV-positive results. Overall, 52.5% of the cases (n=2062) were HPV positive. As to p16 overexpression, 17 studies (n=1684) used a minimum of 5–69% staining, and 7 studies (n=764) used ⩾70% staining. Fifteen studies (n=1478) referred to a verbal definition. Studies showed high heterogeneity in diagnostics of HPV and definition of p16. The correlation between HPV positivity and p16 overexpression proved best numerically in the group applying ⩾70% staining for p16 overexpression. The group with verbal definitions had a significantly lower false-positive rate, but along with the group applying 5–69% staining showed a worse sensitivity compared with ⩾70% staining. Conclusions: There are substantial differences in how studies diagnose HPV and define p16 overexpression. Numerically, p16 staining is better to predict the presence of HPV (i.e. larger sensitivity), when the cutoff is set at ⩾70% of cytoplasmatic and nuclear staining.
Collapse
|
858
|
Day PM, Schelhaas M. Concepts of papillomavirus entry into host cells. Curr Opin Virol 2014; 4:24-31. [PMID: 24525291 PMCID: PMC3951680 DOI: 10.1016/j.coviro.2013.11.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Revised: 11/17/2013] [Accepted: 11/19/2013] [Indexed: 12/17/2022]
Abstract
Papillomaviruses enter basal cells of stratified epithelia. Assembly of new virions occurs in infected cells during terminal differentiation. This unique biology is reflected in the mechanism of entry. Extracellularly, the interaction of nonenveloped capsids with several host cell proteins, after binding, results in discrete conformational changes. Asynchronous internalization occurs over several hours by an endocytic mechanism related to, but distinct from macropinocytosis. Intracellular trafficking leads virions through the endosomal system, and from late endosomes to the trans-Golgi-network, before nuclear delivery. Here, we discuss the existing data with the aim to synthesize an integrated model of the stepwise process of entry, thereby highlighting key open questions. Additionally, we relate data from experiments with cultured cells to in vivo results.
Collapse
Affiliation(s)
- Patricia M Day
- Laboratory of Cellular Oncology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Mario Schelhaas
- Emmy-Noether Group: Virus Endocytosis, Institutes of Molecular Virology and Medical Biochemistry, ZMBE, University of Münster, Münster, Germany; Cluster of Excellence EXC1003, Cells in Motion, CiM, Münster, Germany.
| |
Collapse
|
859
|
|
860
|
Di Domenico F, De Marco F, Perluigi M. Proteomics strategies to analyze HPV-transformed cells: relevance to cervical cancer. Expert Rev Proteomics 2014; 10:461-72. [DOI: 10.1586/14789450.2013.842469] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
861
|
Murall CL, McCann KS, Bauch CT. Revising ecological assumptions about Human papillomavirus interactions and type replacement. J Theor Biol 2014; 350:98-109. [PMID: 24412334 DOI: 10.1016/j.jtbi.2013.12.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 12/12/2013] [Accepted: 12/29/2013] [Indexed: 12/25/2022]
Abstract
The controversy over whether vaccine-targeted HPV types will be replaced by other oncogenic, non-vaccine-targeted types remains unresolved. This is in part because little is known about the ecology of HPV types. Patient data has been interpreted to suggest independence or facilitative interactions between types and therefore replacement is believed to be unlikely. With a novel mathematical model, we investigated which HPV type interactions and their immune responses gave qualitatively similar patterns frequently observed in patients. To assess the possibility of type replacement, vaccination was added to see if non-vaccine-targeted types increased their 'niche'. Our model predicts that independence and facilitation are not necessary for the coexistence of types inside hosts, especially given the patchy nature of HPV infection. In fact, independence and facilitation inadequately represented co-infected patients. We found that some form of competition is likely in natural co-infections. Hence, non-vaccine-targeted types that are not cross-reactive with the vaccine could spread to more patches and can increase their viral load in vaccinated hosts. The degree to which this happens will depend on replication and patch colonization rates. Our results suggest that independence between types could be a fallacy, and so without conclusively untangling HPV within-host ecology, type replacement remains theoretically viable. More ecological thinking is needed in future studies.
Collapse
Affiliation(s)
- Carmen Lía Murall
- Department of Integrative Biology, University of Guelph, Canada; Department of Mathematics and Statistics, University of Guelph, Canada.
| | - Kevin S McCann
- Department of Integrative Biology, University of Guelph, Canada
| | - Chris T Bauch
- Department of Applied Mathematics, University of Waterloo, Canada
| |
Collapse
|
862
|
Clinical validation of the HPV-risk assay, a novel real-time PCR assay for detection of high-risk human papillomavirus DNA by targeting the E7 region. J Clin Microbiol 2014; 52:890-6. [PMID: 24391196 DOI: 10.1128/jcm.03195-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The HPV-Risk assay is a novel real-time PCR assay targeting the E7 region of 15 high-risk human papillomavirus (HPV) types (i.e., HPV16, -18, -31, -33, -35, -39, -45, -51, -52, -56, -58, -59, -66, -67, and -68), and provides additional genotype information for HPV16 and HPV18. This study evaluated the clinical performance and reproducibility of the HPV-Risk assay with cervical scraping specimens and its utility with self-collected (cervico)vaginal specimens. The clinical performance of the HPV-Risk assay for cervical intraepithelial neoplasia of grade 2 or worse (CIN2+) with cervical scraping specimens was evaluated by a noninferiority analysis, relative to high-risk HPV GP5+/6+ PCR, following international guidelines for HPV test requirements for cervical cancer screening. The HPV-Risk assay showed clinical sensitivity for CIN2+ of 97.1% (95% confidence interval [CI], 89.1 to 99.3%; 67/69 samples) and a clinical specificity for CIN2+ of 94.3% (95% CI, 92.5 to 95.7%; 777/824 samples). The clinical sensitivity and specificity were noninferior to those of GP5+/6+ PCR (noninferiority score test, P=0.006 and 0.0003, respectively). Intralaboratory reproducibility over time (99.5% [95% CI, 98.6 to 99.8%]; 544/547 samples, kappa=0.99) and interlaboratory agreement (99.2% [95% CI, 98.6 to 99.8%]; 527/531 samples, kappa=0.98) for the HPV-Risk assay with cervical scraping specimens were high. The agreement of the HPV-Risk assay results for self-collected (cervico)vaginal specimens and clinician-obtained cervical scraping specimens was also high, i.e., 95.9% (95% CI, 85.1 to 99.0%; 47/49 samples, kappa=0.90) for self-collected lavage samples and 91.6% (95% CI, 84.6 to 95.6%; 98/107 samples, kappa=0.82) for self-collected brush samples. In conclusion, the HPV-Risk assay meets the cross-sectional clinical and reproducibility criteria of the international guidelines for HPV test requirements and can be considered clinically validated for cervical screening purposes. The compatibility of the HPV-Risk assay with self-collected specimens supports its utility for HPV self-sampling.
Collapse
|
863
|
Stanley M. HPV vaccination in boys and men. Hum Vaccin Immunother 2014; 10:2109-11. [PMID: 25424825 PMCID: PMC4186028 DOI: 10.4161/hv.29137] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 04/07/2014] [Indexed: 11/19/2022] Open
Abstract
Human papillomaviruses are DNA viruses that infect skin or mucosal cells. In the genital tract HPV (especially types 6 and 11) cause genital warts, the commonest viral sexually transmitted disease. At least 13 of the more than 100 known HPV genotypes are oncogenic "high-risk" genotypes. The 2 most common of these (genotypes 16 and 18) cause approximately 70% of all cervical cancers. Oncogenic HPVs particularly HPV 16 are associated with other anogenital cancers, anus, vagina, vulva and penis, and cancers of the head and neck and current estimates are that 5.2% of all cancers are HPV associated. In industrialised countries cervical cancer is controlled by secondary intervention other HPV associated malignancies are increasing in incidence and the burden of HPV associated disease in men is now comparable to that in women in economically developed countries. Randomized control trials with the quadrivalent HPV VLP vaccine demonstrate robust antibody responses and high efficacy against genital warts anal precancers in men. Few countries have recommended male vaccination on the basis that this is not cost effective. However gender-neutral vaccination has been recommended in the USA, Canada, Austria, and Australia. Careful cost effective modeling has preceded these decisions showing that when the burden of disease in men is included in the models then, depending upon coverage, vaccine price, and other factors male vaccination can become cost effective.
Collapse
|
864
|
Nakahara T, Kiyono T. [Regulation of human papillomavirus (HPV) genome replication in the viral life cycle and its association with the viral persistence and cancer development]. Uirusu 2014; 64:57-66. [PMID: 25765981 DOI: 10.2222/jsv.64.57] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
High-risk human papillomavirus (HR-HPV) infections account for more than 5% of all cancers (11% in women) such as cervical cancer worldwide. HPVs infect to basal cells of the stratified squamous epithelium and establish persistent infection within the basal compartment. HR-HPV infections can persist more than a decade, leading to development of cancers. The life cycle of HPVs is tightly associated with the differentiation processes of the stratified squamous epithelium; the replication of the viral genome and the expression of the viral genes are strictly regulated depending on differentiation of the host keratinocytes. The viral genome is transiently amplified immediately following infection and then maintained at constant copy numbers in the basal cells. In terminally differentiating keratinocytes, the viral genome is drastically amplified. However, molecular mechanisms underlying switching these three stages of viral genome replication in the viral life cycle are poorly understood. Recently, it has become evident that DNA damage response pathways are involved in the regulation of HPV genome replication. In this review, we would like to introduce recent findings describing the associations of DNA damage response with HPV genome replication.
Collapse
Affiliation(s)
- Tomomi Nakahara
- National Cancer Center Research Institute, Division of Virology
| | | |
Collapse
|
865
|
Poljak M, Kocjan BJ, Hošnjak L. Role of human papillomaviruses in esophageal carcinoma: an updated systematic review from 1982 to 2013. Future Virol 2014. [DOI: 10.2217/fvl.13.116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
ABSTRACT: Tobacco, alcohol and betel quid are known etiological agents of esophageal squamous cell carcinoma (ESCC). A meta-analysis in 2012 and a literature update (1982–August 2013) identified 159 studies with a total of 11,310 ESCCs tested for the presence of human papillomaviruses (HPVs). HPV DNA was present in 30.3% of fESCCs, with substantial geographic differences. A recent meta-analysis of 21 case–control studies investigating the HPV–ESCC association showed that HPVs increase the risk of ESCC at least threefold. Vaccine-preventable HPV-16 and HPV-18 are the most commonly identified HPV types in ESCC in both low- and high-incidence settings. HPVs should now be seriously considered as etiological agents for at least a subset of ESCC, and more studies are needed to provide conclusive evidence that HPVs cause ESCC.
Collapse
Affiliation(s)
- Mario Poljak
- University of Ljubljana, Faculty of Medicine, Institute of Microbiology & Immunology, Zaloška 4, 1105 Ljubljana, Slovenia
| | - Boštjan J Kocjan
- Institute of Microbiology & Immunology, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Lea Hošnjak
- Institute of Microbiology & Immunology, Faculty of Medicine, University of Ljubljana, Slovenia
| |
Collapse
|
866
|
Bosch FX, Broker TR, Forman D, Moscicki AB, Gillison ML, Doorbar J, Stern PL, Stanley M, Arbyn M, Poljak M, Cuzick J, Castle PE, Schiller JT, Markowitz LE, Fisher WA, Canfell K, Denny LA, Franco EL, Steben M, Kane MA, Schiffman M, Meijer CJLM, Sankaranarayanan R, Castellsagué X, Kim JJ, Brotons M, Alemany L, Albero G, Diaz M, de Sanjosé S. Comprehensive control of human papillomavirus infections and related diseases. Vaccine 2013; 31 Suppl 7:H1-31. [PMID: 24332295 PMCID: PMC7605442 DOI: 10.1016/j.vaccine.2013.10.003] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Infection with human papillomavirus (HPV) is recognized as one of the major causes of infection-related cancer worldwide, as well as the causal factor in other diseases. Strong evidence for a causal etiology with HPV has been stated by the International Agency for Research on Cancer for cancers of the cervix uteri, penis, vulva, vagina, anus and oropharynx (including base of the tongue and tonsils). Of the estimated 12.7 million new cancers occurring in 2008 worldwide, 4.8% were attributable to HPV infection, with substantially higher incidence and mortality rates seen in developing versus developed countries. In recent years, we have gained tremendous knowledge about HPVs and their interactions with host cells, tissues and the immune system; have validated and implemented strategies for safe and efficacious prophylactic vaccination against HPV infections; have developed increasingly sensitive and specific molecular diagnostic tools for HPV detection for use in cervical cancer screening; and have substantially increased global awareness of HPV and its many associated diseases in women, men, and children. While these achievements exemplify the success of biomedical research in generating important public health interventions, they also generate new and daunting challenges: costs of HPV prevention and medical care, the implementation of what is technically possible, socio-political resistance to prevention opportunities, and the very wide ranges of national economic capabilities and health care systems. Gains and challenges faced in the quest for comprehensive control of HPV infection and HPV-related cancers and other disease are summarized in this review. The information presented may be viewed in terms of a reframed paradigm of prevention of cervical cancer and other HPV-related diseases that will include strategic combinations of at least four major components: 1) routine introduction of HPV vaccines to women in all countries, 2) extension and simplification of existing screening programs using HPV-based technology, 3) extension of adapted screening programs to developing populations, and 4) consideration of the broader spectrum of cancers and other diseases preventable by HPV vaccination in women, as well as in men. Despite the huge advances already achieved, there must be ongoing efforts including international advocacy to achieve widespread-optimally universal-implementation of HPV prevention strategies in both developed and developing countries. This article summarizes information from the chapters presented in a special ICO Monograph 'Comprehensive Control of HPV Infections and Related Diseases' Vaccine Volume 30, Supplement 5, 2012. Additional details on each subtopic and full information regarding the supporting literature references may be found in the original chapters.
Collapse
Affiliation(s)
- F Xavier Bosch
- Cancer Epidemiology Research Program (CERP), Institut Català d'Oncologia - Catalan Institute of Oncology (ICO), IDIBELL, L'Hospitalet de Llobregat (Barcelona), Spain.
| | - Thomas R Broker
- University of Alabama at Birmingham, Biochemistry and Molecular Genetics, Birmingham, Alabama, USA
| | - David Forman
- Section of Cancer Information, International Agency for Research on Cancer, Lyon, France
| | - Anna-Barbara Moscicki
- Division of Adolescent Medicine, Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Maura L Gillison
- Viral Oncology, The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA
| | - John Doorbar
- Division of Virology, National Institute for Medical Research, London, UK
| | - Peter L Stern
- Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
| | | | - Marc Arbyn
- Unit of Cancer Epidemiology, Scientific Institute of Public Health, Brussels, Belgium; Laboratory for Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Jack Cuzick
- Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | | | - John T Schiller
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lauri E Markowitz
- National Center for HIV, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - William A Fisher
- Department of Psychology and Department of Obstetrics and Gynaecology, University of Western Ontario, Social Sciences Centre 7428, London, Ontario, Canada
| | - Karen Canfell
- Lowy Cancer Research Centre, Prince of Wales Clinical School, The University of NSW, Australia and Cancer Epidemiology Research Unit, Cancer Council NSW, Sydney, Australia (past affiliation)
| | - Lynette A Denny
- Department Obstetrics and Gynaecology and Institute of Infectious Diseases and Molecular Medicine, University of Cape Town/Groote Schuur Hospital, Cape Town, South Africa
| | - Eduardo L Franco
- Division of Cancer Epidemiology, McGill University, Montreal, Canada
| | - Marc Steben
- Institut National de Santé Publique du Québec, Montréal, Québec, Canada
| | - Mark A Kane
- Consultant on Immunization Policy, Mercer Island, WA, USA
| | - Mark Schiffman
- National Cancer Institute, Division of Cancer Epidemiology and Genetics, Bethesda, MD, USA
| | - Chris J L M Meijer
- Department of Pathology, VU University Medical Centre, Amsterdam, The Netherlands
| | | | - Xavier Castellsagué
- Cancer Epidemiology Research Program (CERP), Institut Català d'Oncologia - Catalan Institute of Oncology (ICO), IDIBELL, L'Hospitalet de Llobregat (Barcelona), Spain; CIBER en Epidemiología y Salud Pública (CIBERESP), Spain
| | - Jane J Kim
- Center for Health Decision Science, Department of Health Policy and Management, Harvard School of Public Health, Boston, MA, USA
| | - Maria Brotons
- Cancer Epidemiology Research Program (CERP), Institut Català d'Oncologia - Catalan Institute of Oncology (ICO), IDIBELL, L'Hospitalet de Llobregat (Barcelona), Spain
| | - Laia Alemany
- Cancer Epidemiology Research Program (CERP), Institut Català d'Oncologia - Catalan Institute of Oncology (ICO), IDIBELL, L'Hospitalet de Llobregat (Barcelona), Spain; CIBER en Epidemiología y Salud Pública (CIBERESP), Spain
| | - Ginesa Albero
- Cancer Epidemiology Research Program (CERP), Institut Català d'Oncologia - Catalan Institute of Oncology (ICO), IDIBELL, L'Hospitalet de Llobregat (Barcelona), Spain; CIBER en Epidemiología y Salud Pública (CIBERESP), Spain
| | - Mireia Diaz
- Cancer Epidemiology Research Program (CERP), Institut Català d'Oncologia - Catalan Institute of Oncology (ICO), IDIBELL, L'Hospitalet de Llobregat (Barcelona), Spain
| | - Silvia de Sanjosé
- Cancer Epidemiology Research Program (CERP), Institut Català d'Oncologia - Catalan Institute of Oncology (ICO), IDIBELL, L'Hospitalet de Llobregat (Barcelona), Spain; CIBER en Epidemiología y Salud Pública (CIBERESP), Spain
| |
Collapse
|
867
|
Odar K, Kocjan BJ, Hošnjak L, Gale N, Poljak M, Zidar N. Verrucous carcinoma of the head and neck - not a human papillomavirus-related tumour? J Cell Mol Med 2013; 18:635-45. [PMID: 24350715 PMCID: PMC4000115 DOI: 10.1111/jcmm.12211] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/18/2013] [Indexed: 02/02/2023] Open
Abstract
Association between verrucous carcinoma (VC) of the head and neck and human papillomaviruses (HPV) is highly controversial. Previous prevalence studies focused mostly on α-PV, while little is known about other PV genera. Our aim was to investigate the prevalence of a broad spectrum of HPV in VC of the head and neck using sensitive and specific molecular assays. Formalin-fixed, paraffin-embedded samples of 30 VC and 30 location-matched normal tissue samples were analysed, by using six different polymerase chain reaction-based methods targeting DNA of at least 87 HPV types from α-PV, β-PV, γ-PV and μ-PV genera, and immunohistochemistry against p16 protein. α-PV, γ-PV and μ-PV were not detected. β-PV DNA was detected in 5/30 VC (16.7%) and in 18/30 normal tissue samples (60.0%): HPV-19, -24 and -36 were identified in VC, and HPV-5, -9, -12, -23, -24, -38, -47, -49 and -96 in normal tissue, whereas HPV type was not determined in 2/5 cases of VC and in 6/18 normal tissue samples. p16 expression was detected in a subset of samples and was higher in VC than in normal tissue. However, the reaction was predominantly cytoplasmic and only occasionally nuclear, and the extent of staining did not exceed 75%. Our results indicate that α-PV, γ-PV and μ-PV are not associated with aetiopathogenesis of VC of the head and neck. β-PV DNA in a subset of VC and normal tissue might reflect incidental colonization, but its potential biological significance needs further investigation.
Collapse
Affiliation(s)
- Katarina Odar
- Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | |
Collapse
|
868
|
Tyler M, Tumban E, Chackerian B. Second-generation prophylactic HPV vaccines: successes and challenges. Expert Rev Vaccines 2013; 13:247-55. [PMID: 24350614 DOI: 10.1586/14760584.2014.865523] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The role of HPV as the causative factor in cervical cancer has led to the development of the HPV vaccines Gardasil and Cervarix. These vaccines effectively protect against two HPV types associated with 70% of cervical cancer cases. Despite this success, researchers continue to develop second-generation HPV vaccines to protect against more HPV types and allow increased uptake in developing countries. While a reformulated vaccine based on the current technology is currently in clinical trials, another strategy consists of targeting highly conserved epitopes in the minor capsid protein of HPV, L2. Vaccines targeting L2 induce broadly neutralizing antibodies, capable of blocking infection by a wide range of HPV types. Several vaccine designs have been developed to optimize the display of L2 epitopes to the immune system and to reduce the cost of manufacture and distribution. L2-based vaccines show considerable promise as a potential next-generation HPV vaccine.
Collapse
Affiliation(s)
- Mitchell Tyler
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
869
|
Co NNC, Chu LO, Chow JKF, Tam JWO, Ng EKO. HPV Prevalence and Detection of Rare HPV Genotypes in Hong Kong Women from Southern China with Cytological Abnormalities. ACTA ACUST UNITED AC 2013. [DOI: 10.5402/2013/312706] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human papillomavirus (HPV) has been identified as the primary cause of cervical squamous intraepithelial lesion and invasive cervical cancer. The emergence of various commercial HPV genotyping kits with different characteristics facilitates the detection of most high-risk and low-risk HPV genotypes, but the rare HPV types are usually underdiagnosed. In the present study, HPV detection was performed using the GenoFlow HPV Array Test kit (DiagCor Bioscience), which can identify 33 HPV subtypes by specific probes. Besides, a HPV consensus probe (universal probe) was designed to capture not only the 33 genotypes but also rare subtypes. Of the 1643 Southern Chinese women tested between 2012 and 2013, the HPV prevalence was 42.3%, with HPV 52 (139/1643, 8.5%), HPV 81 (89/1643, 5.4%), and HPV 16 (63/1643, 3.8%) being the most frequent subtypes detected. Among all 695 HPV-positive cases, 56 (8.1%) cases were only detected by the universal probe, in which 5 were either ASCUS or LSIL cases. Sequencing results confirmed HPV types 30, 91, and 74, and the intratypic variants of HPV 72 and 82 were present in the 5 cases. The result suggests that some rare HPV subtypes might be involved in cervical lesions.
Collapse
Affiliation(s)
- Ngai Na Chloe Co
- Molecular Diagnostics Division, DiagCor Bioscience Incorporation Ltd, Hong Kong SAR, Hong Kong
| | - Lai-On Chu
- Molecular Diagnostics Division, DiagCor Bioscience Incorporation Ltd, Hong Kong SAR, Hong Kong
| | - Joseph K. F. Chow
- Molecular Diagnostics Division, DiagCor Bioscience Incorporation Ltd, Hong Kong SAR, Hong Kong
| | - Joseph W. O. Tam
- Molecular Diagnostics Division, DiagCor Bioscience Incorporation Ltd, Hong Kong SAR, Hong Kong
| | - Enders K. O. Ng
- Molecular Diagnostics Division, DiagCor Bioscience Incorporation Ltd, Hong Kong SAR, Hong Kong
| |
Collapse
|
870
|
Tommasino M. The human papillomavirus family and its role in carcinogenesis. Semin Cancer Biol 2013; 26:13-21. [PMID: 24316445 DOI: 10.1016/j.semcancer.2013.11.002] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 11/22/2013] [Accepted: 11/27/2013] [Indexed: 01/17/2023]
Abstract
Human papillomaviruses (HPVs) are a family of small double-stranded DNA viruses that have a tropism for the epithelia of the genital and upper respiratory tracts and for the skin. Approximately 150 HPV types have been discovered so far, which are classified into several genera based on their DNA sequence. Approximately 15 high-risk mucosal HPV types are clearly associated with cervical cancer; HPV16 and HPV18 are the most carcinogenic since they are responsible for approximately 50% and 20% of all cervical cancers worldwide, respectively. It is now also clear that these viruses are linked to a subset of other genital cancers, as well as head and neck cancers. Due to their high level of carcinogenic activity, HPV16 and HPV18 are the most studied HPV types so far. Biological studies have highlighted the key roles in cellular transformation of the products of two viral early genes, E6 and E7. Many of the mechanisms of E6 and E7 in subverting the regulation of fundamental cellular events have been fully characterized, contributing not only to our knowledge of how the oncogenic viruses promote cancer development but also to our understanding of basic cell biology. Despite HPV research resulting in extraordinary achievements in the last four decades, significantly improving the screening and prophylaxis of HPV-induced lesions, additional research is necessary to characterize the biology and epidemiology of the vast number of HPV types that have been poorly investigated so far, with a final aim of clarifying their potential roles in other human diseases.
Collapse
Affiliation(s)
- Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer - World Health Organization, 150 Cours Albert-Thomas, 69372 Lyon cedex 08, France.
| |
Collapse
|
871
|
Bosgraaf RP, Siebers AG, De Hullu JA, Massuger LFAG, Bulten J, Bekkers RLM, Melchers WJG. The current position and the future perspectives of cervical cancer screening. Expert Rev Anticancer Ther 2013; 14:75-92. [DOI: 10.1586/14737140.2014.856273] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
872
|
Leinonen MK, Anttila A, Malila N, Dillner J, Forslund O, Nieminen P. Type- and age-specific distribution of human papillomavirus in women attending cervical cancer screening in Finland. Br J Cancer 2013; 109:2941-50. [PMID: 24136148 PMCID: PMC3844908 DOI: 10.1038/bjc.2013.647] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 08/08/2013] [Accepted: 09/25/2013] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Large-scale data on type-specific HPV prevalences and disease burden are needed to monitor the impact of HPV vaccination and to plan for HPV-based cervical screening. METHODS 33 043 women (aged 25-65) were screened for HPV by a Hybrid Capture 2 (HC2) in a population-based programme. HPV-positive women (n=2574) were triaged by cytology and HPV genotyped using PCR-Luminex. Type-specific prevalence of HPV infection and its correlation to findings in cytology triage and histology as well as Population Attributable Fractions for a referral to colposcopy and findings in histology were calculated. RESULTS Among HC2-positive women, 61.5% had normal, 23.1% had ASC-US and 15.5% had LSIL or more severe (LSIL+) results in cytology. Out of HC2-positive samples, 57% contained the 13 Group 1/2A HPV types, which were targeted by the HC2, 15% contained Group 2B types, 8.5% Group 3 types and 30% were found to be negative in HPV genotyping. The proportion of samples positive for HPV by the HC2, but negative in HPV genotyping increased with age and decreased with increasing cytological abnormality. The most frequent types were HPV 16 (0.9% of screened women and 12.1% of the HC2-positive women), HPV 31 (0.7% and 8.9%, respectively) and HPV 52 (0.5% and 6.3%, respectively). The prevalence of Group 1/2A HPV types increased with increasing CIN grade and attributed 78.3% (95% CI 53.4-89.9) of the CIN 3+ lesions, while HPV 16 attributed 55.8% (40.0-67.5) of them. CONCLUSION The type-specific prevalence of HPV were slightly lower than the average in international meta-analyses. Genotyping for HPV 16 better identified women with CIN 3+ than cytology triage at the threshold of LSIL+. The high proportion of women that were HC2-positive but HPV-negative in genotyping suggests that HPV genotyping may be useful also for validation of results in HPV screening. The large-scale HPV genotyping data were found to be directly useful for planning further preventive efforts for cervical cancer.
Collapse
Affiliation(s)
- M K Leinonen
- Finnish Cancer Registry, Pieni Roobertinkatu 9, FI-00130 Helsinki, Finland
| | - A Anttila
- Mass Screening Registry, Finnish Cancer Registry, Pieni Roobertinkatu 9, FI-00130 Helsinki, Finland
| | - N Malila
- Finnish Cancer Registry, Pieni Roobertinkatu 9, FI-00130 Helsinki, Finland
- Tampere School of Health Sciences, University of Tampere, Medisiinarinkatu 3, FI-33014 Tampere, Finland
| | - J Dillner
- Department of Medical Microbiology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
- Departments of Laboratory Medicine, Medical Epidemiology and Biostatistics, Karolinska Institute, SE-17177 Stockholm, Sweden
| | - O Forslund
- Department of Medical Microbiology, Lund University, Jan Waldenströms gata 59, 205 02 Malmö, Sweden
| | - P Nieminen
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Turuntie 150, FI-02740 Espoo, Finland
| |
Collapse
|
873
|
HPV16 infection of HaCaTs is dependent on β4 integrin, and α6 integrin processing. Virology 2013; 449:45-52. [PMID: 24418536 DOI: 10.1016/j.virol.2013.10.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/12/2013] [Accepted: 10/23/2013] [Indexed: 11/21/2022]
Abstract
Our understanding of human papillomavirus (HPV) is still evolving. To further study the field, our laboratory has focused on determining the role of integrins in the initial steps of viral endocytosis into HaCaT cells. Our and others' previous findings have shown that α6 is necessary for infection. Here we show that α3 and β1 were dispensable, and we identified integrin α6β4 complex as necessary for infection in HaCaTs. β4 knock down resulted in a significant decrease in HPV16 PsV infection and perhaps most importantly resulted in defective post-translational α6 processing. We showed that the unprocessed α6 does not localize to the cell surface. We propose that the α6β4 complex is necessary for the formation of an endocytic complex that results in the signaling transduction events necessary for initial endocytosis.
Collapse
|
874
|
Differential in vitro immortalization capacity of eleven (probable) [corrected] high-risk human papillomavirus types. J Virol 2013; 88:1714-24. [PMID: 24257607 DOI: 10.1128/jvi.02859-13] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Epidemiological studies identified 12 high-risk HPV (hrHPV) types and 8 probable/possible hrHPV types that display different cancer risks. Functional studies on transforming properties of hrHPV are mainly limited to HPV16 and -18, which induce immortalization of human foreskin keratinocytes (HFKs) by successive bypass of two proliferative life span barriers, senescence and crisis. Here, we systematically compared the in vitro immortalization capacities, as well as influences on p53, pRb, hTERT, growth behavior, and differentiation capacity, of nine hrHPV types (HPV16, -18, -31, -33, -35, -45, -51, -52, and -59), and two probable hrHPV types (HPV66 and -70). By retroviral transduction, the respective E6/E7 coding sequences were expressed in HFKs from two or three independent donors. Reduced p53 levels and low-level hTERT expression in early-passage cells, as seen in HPV16-, -31-, -33-, and -35-, and to a lesser extent HPV18-transduced HFKs, was associated with continuous growth and an increased immortalization capacity. Less frequent immortalization by HPV45 and -51 and immortalization by HPV66 and -70 was preceded by an intervening period of strongly reduced growth (crisis) without prior increase in hTERT expression. Immortalization by HPV59 was also preceded by a period crisis, despite the onset of low hTERT expression at early passage. HPV52 triggered an extended life span but failed to induce immortality. Variations in p53 and pRb levels were not correlated with differences in alternative E6/E7 mRNA splicing in all hrHPV-transduced HFKs. On collagen rafts, transductants showed disturbed differentiation reminiscent of precancerous lesions. In conclusion, in vitro oncogenic capacities differ between the established hrHPV types, and both some established and probable hrHPV types display weak or moderate immortalization potential.
Collapse
|
875
|
Abstract
The human papillomavirus (HPV) may be associated with various oral, genital, and cutaneous conditions, both benign and malignant. The association between sexually transmitted α-HPV types is the strongest with cervical cancer because almost all such malignancies contain viral DNA, notably HPV types 16 and 18. The contribution of cancer causing HPV types in other anogenital, oral, and oropharyngeal malignancies, plus benign disorders, is lower and with a less significant public health concern. Cervical cytologic screening is a well-established preventive measure that allows early detection and successful treatment of precancerous cervical lesions. In cases of all other HPV-associated disorders, early detection of a precancerous lesion is either difficult or almost impossible. HPV vaccination remains the only preventive measure against most HPV-related diseases.
Collapse
|
876
|
Mirghani H, Amen F, Moreau F, Guigay J, Ferchiou M, Melkane AE, Hartl DM, Lacau St Guily J. Human papilloma virus testing in oropharyngeal squamous cell carcinoma: what the clinician should know. Oral Oncol 2013; 50:1-9. [PMID: 24169585 DOI: 10.1016/j.oraloncology.2013.10.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/03/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
Abstract
High risk Human Papilloma virus (HR-HPV) associated oropharyngeal cancers are on the increase. Although, the scientific community is aware of the importance of Human Papilloma Virus (HPV) testing, there is no consensus on the assays that are required to reliably identify HR-HPV related tumors. A wide range of methods have been developed. The most widely used techniques include viral DNA detection, with polymerase chain reaction (PCR) or In Situ Hybridization, and p16 detected by immunohistochemistry. However, these tests provide different information and have their own specific limitations. In this review, we summarize these different techniques, in light of the recent literature. p16 Overexpression, which is an indirect marker of HPV infection, is considered by many head and neck oncologists to be the most important marker for patient stratification. We describe the frequent lack of concordance of this marker with other assays and the possible reasons for this. The latest developments in HPV testing are also reported, such as the RNAscope™ HPV test, and how they fit into the existing framework of techniques. HPV testing must not be considered in isolation, as there are important interactions with other parameters, such as tobacco exposure. This is an important and rapidly evolving field and is likely to become pivotal to staging and choice of treatment of oropharyngeal carcinoma in the future.
Collapse
Affiliation(s)
- Haïtham Mirghani
- Department of Head and Neck Surgery, Institut de Cancérologie Gustave Roussy, Villejuif, France.
| | - Furrat Amen
- Department of Head and Neck Surgery, Institut de Cancérologie Gustave Roussy, Villejuif, France.
| | - Frederique Moreau
- Department of Virology, Faculty of Medicine, University Pierre et Marie Curie Paris VI and Hospital Tenon Assistance Publique Hôpitaux de Paris, France.
| | - Joel Guigay
- Department of Medical Oncology, Institut de Cancérologie Gustave Roussy, Villejuif, France.
| | - Malek Ferchiou
- Department of Pathology, Institut de Cancérologie Gustave Roussy, Villejuif, France.
| | - Antoine E Melkane
- Department of Head and Neck Surgery, Institut de Cancérologie Gustave Roussy, Villejuif, France.
| | - Dana M Hartl
- Department of Head and Neck Surgery, Institut de Cancérologie Gustave Roussy, Villejuif, France.
| | - Jean Lacau St Guily
- Department of Otolaryngology, Head and Neck Surgery, Faculty of Medicine, University Pierre et Marie Curie Paris VI and Hospital Tenon Assistance Publique Hôpitaux de Paris, France.
| |
Collapse
|
877
|
Lorenz LD, Rivera Cardona J, Lambert PF. Inactivation of p53 rescues the maintenance of high risk HPV DNA genomes deficient in expression of E6. PLoS Pathog 2013; 9:e1003717. [PMID: 24204267 PMCID: PMC3812038 DOI: 10.1371/journal.ppat.1003717] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 09/03/2013] [Indexed: 01/28/2023] Open
Abstract
The human papillomavirus DNA genome undergoes three distinct stages of replication: establishment, maintenance and amplification. We show that the HPV16 E6 protein is required for the maintenance of the HPV16 DNA genome as an extrachromosomal, nuclear plasmid in its natural host cell, the human keratinocyte. Based upon mutational analyses, inactivation of p53 by E6, but not necessarily E6-mediated degradation of p53, was found to correlate with the ability of E6 to support maintenance of the HPV16 genome as a nuclear plasmid. Inactivation of p53 with dominant negative p53 rescued the ability of HPV16 E6STOP and E6SAT mutant genomes to replicate as extrachromosomal genomes, though not to the same degree as observed for the HPV16 E6 wild-type (WT) genome. Inactivation of p53 also rescued the ability of HPV18 and HPV31 E6-deficient genomes to be maintained at copy numbers comparable to that of HPV18 and HPV31 E6WT genomes at early passages, though upon further passaging copy numbers for the HPV18 and 31 E6-deficient genomes lessened compared to that of the WT genomes. We conclude that inactivation of p53 is necessary for maintenance of HPV16 and for HPV18 and 31 to replicate at WT copy number, but that additional functions of E6 independent of inactivating p53 must also contribute to the maintenance of these genomes. Together these results suggest that re-activation of p53 may be a possible means for eradicating extrachromosomal HPV16, 18 or 31 genomes in the context of persistent infections. Human papillomaviruses (HPVs) infect epithelial tissues. HPVs that infect mucosal epithelia cause infectious lesions in the anogenital tract and oral cavity. HPV infections are normally cleared by the immune system; however, in rare cases, infections can persist for years. Persistent infections by certain HPVs place one at a high risk of developing carcinomas of the cervix, other anogenital tissues, and the head/neck region. These HPVs are responsible for over 5% of all human cancers. For an HPV infection to persist, the viral circular genome must be maintained, i.e. replicated and inherited during cell division. In this study we define the mechanism by which the viral gene E6 contributes to the maintenance of the HPV genome. We demonstrate that E6 must inactivate the cellular factor, p53, for the viral genome to be maintained. Significantly, p53, is inactivated in many types of human cancers and because much research has been done on p53, promising new drugs have been identified that can re-activate p53. If such drugs can re-activate the p53 that has been inactivated by E6, then we hypothesize that these drugs could be used to cure patients with persistent HPV infections and thereby reduce their risk of developing HPV associated cancers.
Collapse
Affiliation(s)
- Laurel D. Lorenz
- McArdle Laboratory for Cancer Research, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Jessenia Rivera Cardona
- McArdle Laboratory for Cancer Research, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
878
|
Manzo-Merino J, Thomas M, Fuentes-Gonzalez AM, Lizano M, Banks L. HPV E6 oncoprotein as a potential therapeutic target in HPV related cancers. Expert Opin Ther Targets 2013; 17:1357-68. [DOI: 10.1517/14728222.2013.832204] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
879
|
Epidemiology of oral human papillomavirus infection. Oral Oncol 2013; 50:364-9. [PMID: 24080455 DOI: 10.1016/j.oraloncology.2013.09.003] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/18/2013] [Accepted: 09/04/2013] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To describe what is known about the epidemiology of oral human papillomavirus (HPV) infection. METHODS In this article we review current data on HPV prevalence, natural history, mode of acquisition, and risk factors for oral HPV infection. RESULTS & CONCLUSION Over the past several years new studies have informed our understanding of oral HPV infection. These data suggest oral HPV prevalence is higher in men than women and support the sexual transmission of HPV to the mouth by oral sex. Data is emerging suggesting that most oral HPV infections usually clear within a year on and describing risk factors for prevalent and persistent infection. Recent data support likely efficacy of the HPV vaccine for oral HPV, suggesting vaccination may reduce risk of HPV-related oropharyngeal cancer.
Collapse
|
880
|
Tomaić V, Ganti K, Pim D, Bauer C, Blattner C, Banks L. Interaction of HPV E6 oncoproteins with specific proteasomal subunits. Virology 2013; 446:389-96. [PMID: 24074603 DOI: 10.1016/j.virol.2013.08.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 04/25/2013] [Accepted: 08/14/2013] [Indexed: 10/26/2022]
Abstract
The Human Papillomavirus E6 oncoproteins have the capacity to target several of their cellular interacting partners for proteasome mediated degradation, and recent proteomic analyses suggest a close involvement of E6 with the cellular proteasome machinery. In this study we have performed an extensive analysis of the capacity of different E6 oncoproteins to interact with specific proteasome components. We demonstrate that multiple subunits of the proteasome can be bound by different HPV E6 oncoproteins. Furthermore, whilst most of these interactions appear independent of the E6AP ubiquitin ligase, the association of E6 with the major ubiquitin-accepting proteasome subunit, S5a, does require the presence of E6AP. One consequence of the interaction between E6/E6AP and S5a is enhanced ubiquitination of this proteasome subunit. These results suggest a complex interplay between E6 and the proteasome, only some aspects of which are dependent upon the E6AP ubiquitin ligase.
Collapse
Affiliation(s)
- Vjekoslav Tomaić
- International Centre for Genetic Engineering and Biotechnology, Padriciano 99, I-34149 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
881
|
Ruttkay-Nedecky B, Jimenez Jimenez AM, Nejdl L, Chudobova D, Gumulec J, Masarik M, Adam V, Kizek R. Relevance of infection with human papillomavirus: the role of the p53 tumor suppressor protein and E6/E7 zinc finger proteins (Review). Int J Oncol 2013; 43:1754-62. [PMID: 24045364 DOI: 10.3892/ijo.2013.2105] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/12/2013] [Indexed: 12/13/2022] Open
Abstract
Human papillomaviruses (HPV) are small circular, double-stranded DNA viruses infecting epithelial tissues. HPV types can be classified both as high-risk or low-risk. Of the more than 120 different identified types of HPV, the majority are involved in infections of the genital tract, cancer of the cervix, vulva, vagina and penis, and of non-anogenital localizations, such as the head and neck areas. From the point of view of the infection, human papillomaviruses have developed several molecular mechanisms to enable infected cells to suppress apoptosis. This review provides a comprehensive and critical summary of the current literature that focuses on cervical carcinoma and cancer of the head and neck caused by HPV. In particular, we discuss HPV virology, the molecular mechanisms of carcinogenesis, the role of the tumor suppressor protein p53 and the E6/E7 zinc finger proteins. Classification of HPV according to diagnosis is also described.
Collapse
Affiliation(s)
- Branislav Ruttkay-Nedecky
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, CZ-613 00 Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
882
|
PDZ domains and viral infection: versatile potentials of HPV-PDZ interactions in relation to malignancy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:369712. [PMID: 24093094 PMCID: PMC3777178 DOI: 10.1155/2013/369712] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/09/2013] [Accepted: 07/31/2013] [Indexed: 12/13/2022]
Abstract
Cervical cancer is caused by high-risk human papillomaviruses (HPVs), and a unique characteristic of these is a PDZ (P¯SD-95/D¯lg/Z¯O-1-)binding motif in their E6 proteins. Through this motif HPV E6 interacts with a variety of PDZ domain-containing proteins and targets them mainly for degradation. These E6-PDZ interactions exhibit extraordinarily different functions in relation to HPV-induced malignancy, depending upon various cellular contexts; for example, Dlg and Scrib show different distribution patterns from what is seen in normal epithelium, both in localization and in amount, and their loss may be a late-stage marker in malignant progression. Recent studies show that interactions with specific forms of the proteins may have oncogenic potential. In addition, it is interesting that PDZ proteins make a contribution to the stabilization of E6 and viral episomal maintenance during the course of HPV life cycle. Various posttranslational modifications also greatly affect their functions. Phosphorylation of hDlg and hScrib by certain kinases regulates several important signaling cascades, and E6-PDZ interactions themselves are regulated through PKA-dependent phosphorylation. Thus these interactions naturally have great potential for both predictive and therapeutic applications, and, with development of screening tools for identifying novel targets of their interactions, comprehensive spatiotemporal analysis is currently underway.
Collapse
|
883
|
Andersen AS, Koldjaer Sølling AS, Ovesen T, Rusan M. The interplay between HPV and host immunity in head and neck squamous cell carcinoma. Int J Cancer 2013; 134:2755-63. [PMID: 23913554 DOI: 10.1002/ijc.28411] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/15/2013] [Indexed: 12/13/2022]
Abstract
Persistent infection with human papillomavirus (HPV) type 16 is a major risk factor for the development of head and neck squamous cell carcinoma (HNSCC), in particular oropharyngeal squamous cell carcinoma (OPSCC). The oropharyngeal epithelium differs from the mucosal epithelium at other commonly HPV16-infected sites (i.e., cervix and anogenital region) in that it is juxtaposed with the underlying lymphatic tissue, serving a key immunologic function in the surveillance of inhaled and ingested pathogens. Therefore, the natural history of infection and immune response to HPV at this site may differ from that at other anatomic locations. This review summarizes the literature concerning the adaptive immune response against HPV in the context of HNSCC, with a focus on the T-cell response. Recent studies have shown that a broad repertoire of tumor-infiltrating HPV-specific T-cells are found in nearly all patients with HPV-positive tumors. A systemic response is found in only a proportion of these. Furthermore, the local response is more frequent in OPSCC patients than in cervical cancer patients and HPV-negative OPSCC patients. Despite this, tumor persistence may be facilitated by abnormalities in antigen processing, a skewed T-helper cell response, and an increased local prevalence of T-regulatory cells. Nonetheless, the immunologic profile of HPV-positive vs. HPV-negative HNSCC is associated with a significantly better outcome, and the HPV-specific immune response is suggested to play a role in the significantly better response to therapy of HPV-positive patients. Immunoprofiling may prove a valuable prognostic tool, and immunotherapy trials targeting HPV are underway, providing hope for decreasing treatment-related toxicity.
Collapse
Affiliation(s)
- Anne Skou Andersen
- Department of Otorhinolaryngology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | | |
Collapse
|
884
|
Verdoodt F, Szarewski A, Halfon P, Cuschieri K, Arbyn M. Triage of women with minor abnormal cervical cytology: Meta-analysis of the accuracy of an assay targeting messenger ribonucleic acid of 5 high-risk human papillomavirus types. Cancer Cytopathol 2013; 121:675-87. [DOI: 10.1002/cncy.21325] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/03/2013] [Accepted: 05/03/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Freija Verdoodt
- Unit of Cancer Epidemiology; Scientific Institute of Public Health; Brussels Belgium
| | - Anne Szarewski
- Center for Cancer Prevention; Wolfson Institute of Preventive Medicine; Queen Mary University of London; London United Kingdom
| | - Philippe Halfon
- Virological Laboratory and Infectious Diseases; Laboratory Alphabio; Marseille France
| | - Kate Cuschieri
- Scottish Human Papilloma Virus Reference Laboratory; Royal Infirmary of Edinburgh; Edinburgh United Kingdom
| | - Marc Arbyn
- Unit of Cancer Epidemiology; Scientific Institute of Public Health; Brussels Belgium
| |
Collapse
|
885
|
Sakakibara N, Chen D, McBride AA. Papillomaviruses use recombination-dependent replication to vegetatively amplify their genomes in differentiated cells. PLoS Pathog 2013; 9:e1003321. [PMID: 23853576 PMCID: PMC3701714 DOI: 10.1371/journal.ppat.1003321] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Nozomi Sakakibara
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Dan Chen
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
| | - Alison A. McBride
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
886
|
Doorbar J. Latent papillomavirus infections and their regulation. Curr Opin Virol 2013; 3:416-21. [PMID: 23816390 DOI: 10.1016/j.coviro.2013.06.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/05/2013] [Accepted: 06/06/2013] [Indexed: 02/09/2023]
Abstract
Model systems show that papillomavirus DNA can persist after lesion-regression, and be maintained in a subset of epithelial basal cells. These are very likely long-lived 'stem-cells' or 'stem-like cells', with latency arising via at least two distinct mechanisms. The first involves low-titre virus infection and the retention of viral DNA at levels that are too low to allow life-cycle completion. The second involves lesion-formation, and clearance by the adaptive immune system, followed by persistence with low-level viral gene expression, and possible reactivation upon immune depletion. Mechanical irritation, inflammation and other extracellular influences affect viral copy number in the latently infected cell, and may predispose to lesion-reappearance. Reactivation may account for the recurrence of 'apparently cleared' cervical lesions caused by high-risk types, the appearance of Beta HPV-lesions following immunosuppression, and the development of recurrent respiratory papillomatosis in afflicted children.
Collapse
Affiliation(s)
- John Doorbar
- Division of Virology, National Institute for Medical Research, London, United Kingdom.
| |
Collapse
|
887
|
Litjens RJNTM, Hopman AHN, van de Vijver KK, Ramaekers FCS, Kruitwagen RFPM, Kruse AJ. Molecular biomarkers in cervical cancer diagnosis: a critical appraisal. ACTA ACUST UNITED AC 2013; 7:365-77. [DOI: 10.1517/17530059.2013.808621] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
888
|
Wang JW, Roden RBS. L2, the minor capsid protein of papillomavirus. Virology 2013; 445:175-86. [PMID: 23689062 DOI: 10.1016/j.virol.2013.04.017] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/16/2013] [Accepted: 04/19/2013] [Indexed: 12/28/2022]
Abstract
The capsid protein L2 plays major roles in both papillomavirus assembly and the infectious process. While L1 forms the majority of the capsid and can self-assemble into empty virus-like particles (VLPs), L2 is a minor capsid component and lacks the capacity to form VLPs. However, L2 co-assembles with L1 into VLPs, enhancing their assembly. L2 also facilitates encapsidation of the ∼8 kbp circular and nucleosome-bound viral genome during assembly of the non-enveloped T=7d virions in the nucleus of terminally differentiated epithelial cells, although, like L1, L2 is not detectably expressed in infected basal cells. With respect to infection, L2 is not required for particles to bind to and enter cells. However L2 must be cleaved by furin for endosome escape. L2 then travels with the viral genome to the nucleus, wherein it accumulates at ND-10 domains. Here, we provide an overview of the biology of L2.
Collapse
Affiliation(s)
- Joshua W Wang
- Department of Pathology, The Johns Hopkins University, Baltimore, MD 21287, USA
| | | |
Collapse
|
889
|
Hawkins MG, Winder DM, Ball SLR, Vaughan K, Sonnex C, Stanley MA, Sterling JC, Goon PKC. Detection of specific HPV subtypes responsible for the pathogenesis of condylomata acuminata. Virol J 2013; 10:137. [PMID: 23634957 PMCID: PMC3658907 DOI: 10.1186/1743-422x-10-137] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/19/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The low-risk human papillomavirus types 6 and 11 are responsible for approximately 90% of anogenital wart cases, with approximately 190,000 new and recurrent cases reported in the UK in 2010. The UK has recently selected the quadrivalent HPV vaccine, which conveys protection against both HPV6 and HPV 11, as part of its immunisation programme for 2012 and it is expected that this will reduce disease burden in the UK. The aims of the study were to evaluate current strategies used for the monitoring of HPV infection in genital warts and to assess the suitability of laser-capture microdissection (LCM) as a technique to improve the understanding of the natural history of HPV types associated with genital wart lesions. METHODS DNA and RNA were extracted from whole wart, surface swabs and LCM sections from 23 patients. HPV types present were determined using the Linear Array HPV Genotyping Test (Roche), with HPV DNA viral load and mRNA expression investigated using qPCR and qRT-PCR, respectively. RESULTS Results indicated that swabbing the surface of warts does not accurately reflect potential causative HPV types present within a wart lesion, multiple HPV types being present on the surface of the wart that are absent in the lower layers of tissue isolated by LCM. Although it was shown that HPV DNA viral load does not directly correlate with HPV mRNA load, the presence of both DNA and mRNA from a single HPV type suggested a causative role in lesion development in 8/12 (66.6%) of patients analysed, with dual infections seen in 4/12 (33.3%) cases. HPV 6 and HPV 11 were present in more than 90% of the lesions examined. CONCLUSIONS Surface swabbing of warts does not necessarily reflect the causative HPV types. HPV type specific DNA and mRNA loads do not correlate. HPV 6 and 11 were likely to be causally involved in over 90% of the lesions. Dual infections were also found, and further studies are required to determine the biological and clinical nature of dual/multiple infections and to establish the relationship of multiple HPV types within a single lesion.
Collapse
Affiliation(s)
- Matthew G Hawkins
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | | | | | | | | | | | | | | |
Collapse
|
890
|
Seedat RY, Combrinck CE, Burt FJ. HPV associated with recurrent respiratory papillomatosis. Future Virol 2013. [DOI: 10.2217/fvl.13.31] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Papillomaviruses are members of the Papillomaviridae family. Over 150 HPV types have been identified. Recurrent respiratory papillomatosis (RRP) is a chronic condition caused by HPV characterized by recurrent papillomas of the respiratory tract, mainly the larynx. During the early stages, the condition presents with hoarseness, while more advanced disease presents with stridor and respiratory distress. There is no specific cure and treatment consists of repeated surgical procedures to remove the papillomas. Most patients eventually go into remission, but some suffer for many years with this condition, which may be fatal. HPV-6 and HPV-11 are the HPV types most commonly associated with RRP. Although most studies have found RRP due to HPV-11 to be more aggressive than disease due to HPV-6, the variability in disease aggressiveness is probably multifactorial. Information regarding the current epidemiology, molecular diversity and host immune responses is important for strategizing ways to reduce disease. Data on HPV genotypes associated with RRP would provide valuable information for vaccination programs to reduce the incidence of these genotypes in mothers and, in the long term, reduce the incidence of RRP in children. This review focuses on HPV-6 and HPV-11 as the HPV types that cause RRP, and discusses the viral genome and replication, clinical presentation of RRP, current techniques of diagnosis and genotyping, and the molecular diversity of HPV-6 and HPV-11.
Collapse
Affiliation(s)
- Riaz Y Seedat
- Department of Otorhinolaryngology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Otorhinolaryngology, Universitas Academic Hospital, Bloemfontein, South Africa
| | - Catharina E Combrinck
- Department of Medical Microbiology & Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Felicity J Burt
- Department of Medical Microbiology & Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
- Department of Medical Microbiology & Virology, National Health Laboratory Service Universitas, Bloemfontein, South Africa
| |
Collapse
|
891
|
The transcription factors TBX2 and TBX3 interact with human papillomavirus 16 (HPV16) L2 and repress the long control region of HPVs. J Virol 2013; 87:4461-74. [PMID: 23388722 DOI: 10.1128/jvi.01803-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The minor capsid protein L2 of human papillomaviruses (HPVs) has multiple functions during the viral life cycle. Although L2 is required for effective invasion and morphogenesis, only a few cellular interaction partners are known so far. Using yeast two-hybrid screening, we identified the transcription factor TBX2 as a novel interaction partner of HPV type 16 (HPV16) L2. Coimmunoprecipitations and immunofluorescence analyses confirmed the L2-TBX2 interaction and revealed that L2 also interacts with TBX3, another member of the T-box family. Transcription of the early genes during HPV infection is under the control of an upstream enhancer and early promoter region, the long control region (LCR). In promoter-reporter gene assays, we observed that TBX2 and TBX3 repress transcription from the LCR and that this effect is enhanced by L2. Repression of the HPV LCR by TBX2/3 seems to be a conserved mechanism, as it was also observed with the LCRs of different HPV types. Finally, interaction of TBX2 with the LCR was detected by chromatin immunoprecipitation, and we found a strong colocalization of L2 and TBX2 in HPV16-positive cervical intraepithelial neoplasia (CIN) I-II tissue sections. These results suggest that TBX2/3 might play a role in the regulation of HPV gene expression during the viral life cycle.
Collapse
|
892
|
Stern PL, van der Burg SH, Hampson IN, Broker TR, Fiander A, Lacey CJ, Kitchener HC, Einstein MH. Therapy of human papillomavirus-related disease. Vaccine 2012; 30 Suppl 5:F71-82. [PMID: 23199967 PMCID: PMC4155500 DOI: 10.1016/j.vaccine.2012.05.091] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/10/2012] [Accepted: 05/03/2012] [Indexed: 12/18/2022]
Abstract
This chapter reviews the current treatment of chronic and neoplastic human papillomavirus (HPV)-associated conditions and the development of novel therapeutic approaches. Surgical excision of HPV-associated lower genital tract neoplasia is very successful but largely depends on secondary prevention programmes for identification of disease. Only high-risk HPV-driven chronic, pre-neoplastic lesions and some very early cancers cannot be successfully treated by surgical procedures alone. Chemoradiation therapy of cervical cancer contributes to the 66-79% cervical cancer survival at 5 years. Outlook for those patients with persistent or recurrent cervical cancer following treatment is very poor. Topical agents such as imiquimod (immune response modifier), cidofovir (inhibition of viral replication; induction apoptosis) or photodynamic therapy (direct damage of tumour and augmentation of anti-tumour immunity) have all shown some useful efficacy (~50-60%) in treatment of high grade vulvar intraepithelial neoplasia (VIN). Provider administered treatments of genital warts include cryotherapy, trichloracetic acid, or surgical removal which has the highest primary clearance rate. Patient applied therapies include podophyllotoxin and imiquimod. Recurrence after "successful" treatment is 30-40%. Further improvements could derive from a rational combination of current therapy with new drugs targeting molecular pathways mediated by HPV in cancer. Small molecule inhibitors targeting the DNA binding activities of HPV E1/E2 or the anti-apoptotic consequences of E6/E7 oncogenes are in preclinical development. Proteasome and histone deacetylase inhibitors, which can enhance apoptosis in HPV positive tumour cells, are being tested in early clinical trials. Chronic high-risk HPV infection/neoplasia is characterised by systemic and/or local immune suppressive regulatory or escape factors. Recently two E6/E7 vaccines have shown some clinical efficacy in high grade VIN patients and this correlated with strong and broad systemic HPV-specific T cell response and modulation of key local immune factors. Treatments that can shift the balance of immune effectors locally in combination with vaccination are now being tested. This article forms part of a special supplement entitled "Comprehensive Control of HPV Infections and Related Diseases" Vaccine Volume 30, Supplement 5, 2012.
Collapse
Affiliation(s)
- Peter L Stern
- Paterson Institute for Cancer Research, University of Manchester, Manchester M20 4BX, UK.
| | | | | | | | | | | | | | | |
Collapse
|